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Abstract Trucks play a significant role in transporting containers between the
seaside and storage yard at a container terminal. This paper exhibits a cooperative
strategy for scheduling trucks, which allows trucks working or acting together
toward a common purpose that can reduce truck-unload rate and cut back the make
span. The objective is to minimize the total time cost of the sum of the delay of
requests and the travel time of yard trucks. Particle swarm optimization (PSO) al-
gorithm and three of its variants are applied to deal with the scheduling problem.
The effectiveness of PSOs are analyzed by four typical different level-scale test
problems. The results demonstrate that social learning PSO (SLPSO) can obtain
better results than other algorithms for different scale cases.

Keywords Yard truck scheduling - Cooperative scheduling -« Particle swarm
optimization

1 Introduction

Due to the world trade expansion, container traffic has been growing steadily and
this trend is expected to continue. This calls for efficient container terminal oper-
ations. Therefore, the optimal management for container terminals is desperately
needed.

There are three fundamental equipment in typical container terminals: quay
cranes (QCs), yard trucks (YTs) and yard cranes (YCs) [1]. When a vessel arrives at
a port, containers are discharged by QCs. And then, YTs are utilized to transport the
containers to the storage yard. The storage yard refers to the area where containers
handling, transport, storage and transfer are occurred. YTs play a significant role in
the process of transportation between the seaside and storage yard.
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The yard truck scheduling problem has characteristics of backhaul due to the
repeated pickup and delivery processes involved. In traditional trucks scheduling in
container terminals, the itinerary of a single-truck consists of three major steps.
Firstly, a truck goes to a quay crane in discharging (called as CD) to pick up a
container. Secondly, it delivers the container to an assigned storage area (called as
AD). Finally, it turns back to the original CD. This is a typically static scheduling
between the seaside and storage yard [1]. For more dynamic scenario, for example,
a truck may go to another CD to discharge containers or a storage area for export
containers (called as AL) to load a container after the completion of previous
delivery operation.

There are many studies on the yard truck scheduling problem. In [2], a
mixed-integer programming model was raised to decide the yard truck fleet size and
allocate delivery jobs to YTs. In [3], the time-space network technique was utilized
to describe the potential movements of yard trucks, thus to decrease the pollution of
yard trucks operations. Taking the yard truck scheduling and storage allocation as a
whole, Wang et al. [4] studied the influence of yard truck configurations on the
truck employment strategy. In [5], a dynamic truck scheduling model with strong
applicability was designed to reduce truck-load rate, and shorten the time of han-
dling task. Wang et al. [6] gave weight to both internal truck scheduling and storage
allocation and put forward a model that determines the strategy of owning and
renting trucks in container terminals. Emphasizing on sequence-dependent pro-
cessing time and different preparation time, the problem of scheduling a fleet of
trucks to perform a set of transportation jobs was investigated in [7].

Unfortunately, most of the research above is not directly applicable to container
terminal operations while disregarding their dynamic nature. Yet, as we mentioned
before, on most dynamic scenario, container terminal operations need greater
flexibility. And the development of models should take into account the charac-
teristics and constraints associated with container terminals.

Taking dynamic characteristics into consideration, this paper addresses the truck
scheduling problem in the container terminal using cooperative scheduling strategy,
where trucks are normally considered to load a container to the assigned quay crane
in AL for export containers in loading operation (called as CL) after the delivery to
AD. Figure 1 is a truck-map which shows the cooperative scheduling of trucks in
the terminal.

As can be seen from Fig. 1, truck 1 turns to the AL (33) for export container to
load a container after delivering its container in AD (23) while truck 2 goes to the
AL (25) for export container to load a container after handing over its container in
AD (15). Obviously, this cooperative scheduling strategy will greatly reduce the
unload time compared with traditional static scheduling strategy.

Scheduling problem is NP-hard [8]. Heuristic algorithms have been widely
applied to deal with this kind of problem and achieve more effective solutions. Lee
et al. [9] used the preparation time for jobs as the representation of the chromosome,
instead of using job sequence which is generally employed in the typical genetic
algorithm. Chung et al. [10] presented a new hybrid genetic algorithm with
exhaustive searching in order to achieve fine local searching to determine the
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Fig. 1 An overview of cooperative scheduling for trucks

production schedule in the factories. Niu et al. [11] designed a mapping schema
using bacterial foraging optimization to deal with integrated yard truck scheduling
and storage allocation.

Motivated by the foraging behavior of birds, PSO algorithm was developed by
Kennedy et al. in 1995 [12]. Then many researchers have studied the mechanism of
PSO algorithm and proposed variety of its variants, such as [13—15]. Particle swarm
optimization algorithm, as a significant branch of swarm intelligence, is also widely
used in many application fields. In order to dig deeper in PSO algorithm and
evaluate its performance in scheduling problems, this paper adopts PSOs to verify
the model we proposed.

This study optimizes the yard truck scheduling in container terminal with the
cooperative strategy. In the next section we describe the problem in detail. The
scheduling problem is formulated in Sect. 3. The PSOs for solving the scheduling
problem are discussed in Sect. 4. The results of computational experiments are
presented in Sect. 5. The final section concludes the paper.
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2 Problem Description

Aiming at improving YTs productivity, more dynamic itinerary courses should be
considered. Three dynamic itinerary routes were mentioned in [1], as follows.

pick up containers at a CD, deliver them to ADs, and go to another CD
after moving containers from a CD to ADs, go to ALs
after loaded at a CD, go to ADs and proceed to a CL

In this paper, we focus on the third itinerary course and elaborate the scenario.
We assume at least four jobs should be done. The following example includes three
quay cranes and four container storage points (two storage points for discharging
containers and two storage points for loading containers). Import containers dis-
charged by crane A, B are assigned to storage area AD; and AD,, respectively. And
export containers stored at AL;, AL, are assigned to crane B and C for their
loading, respectively. The dotted line represents the unloaded itinerary while the
solid line stands for loaded itinerary.

Figure 2 illustrates the process of traditional static handling operation in con-
tainer terminal. In the process of discharging, trucks turn back to their original
location (unloaded) after finishing the unloading jobs. Similarly, in the process of
loading, trucks have to go to the Ads (unloaded), to pick up export containers and
transfer them to assigned QCs. This scheduling strategy will leave the trucks
unloaded frequently.

The cooperative scheduling addressed in this paper is defined with a given set of
jobs, as shown in Fig. 3. When a vessel arrives at the terminal, containers are
discharged on trucks by the QCs. For example, a truck transfers the container to the
assigned storage area AD;. Then the truck moves to AL, to pick a container for
export. So, the container picked up from AL, will be transported to the assigned QC
incidentally. However, in a busy terminal, many containers are waiting to be
transported nearby the quay crane B, so the truck can undertake one job (for
example, transfers a container to AD,). The same rule is true for the following
scheduling. The truck moves to AL, to pick up a container for export. And finally,
the truck stops nearby quay crane C and waits for a new job. Obviously, this
cooperative scheduling strategy can decrease the rate of unloaded itinerary to a
large extent.

Fig. 2 Before cooperative
scheduling @ @ @
L J |
4 !
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Fig. 3 After cooperative
scheduling

unloaded truck— o« loaded truck— &%

As described above, the cooperative scheduling strategy we proposed is more
advantageous than the traditional static one.

3 Model Development

In this section, we build a model to minimize the total time cost, that is, the sum of
the delay of requests and the travel time of yard trucks. And the flowchart of the
cooperative scheduling strategy is shown in Fig. 4.

3.1 Modeling Assumptions

According to the previous research on yard truck scheduling [8, 16], the following
assumptions are made in this study.

The number of trucks is limited.
The number of storage locations is no less than the number of discharging
containers.

e The quay crane and yard crane are always available. That is to say, once the yard
truck arrives at the quay crane or yard crane, it can be served immediately.
Congestion among yard trucks is not considered.

The pick-up and drop-off locations of each job are known and uniquely iden-
tified by their (x,y) coordinates.

e The truck travel speed is the same for both loaded and empty trips.
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Fig. 4 The flowchart for the cooperative scheduling strategy

3.2 Notations

The following notations are used in this study.

i J Index of jobs, i #j
D q Index of location

N The number of containers to be transported

M The number of trucks to be used

J- Set of discharging jobs

Jt Set of loading jobs

J Union set of all jobs and initial status, J =J U {/,}
J' Union set of all jobs and final status, J' =J U {k, }
w; Starting time of job i

[ai,b;) A soft time window for each job. Ii is a period of time involving the earliest
possible g; and the due time b;

Ci Completion time of request i.

d; Delay of request i. d; = max{0, c¢; — b;}.

Tp.g The travel time between location p and location g

t The processing time of job i
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Toi,ei» 1f jOb i is a loading job.
Toi,¢k» if job i is a discharging job and allocated to storage location k.

L, The initial location for a truck.

T'm The initial departure time for a truck

P; The pick-up location of job i

O; The drop-oft location of job i.

Si Setup time of trucks from the destination of job i to the origin of job j.

T.i, 0j, if job 7 and job j are discharging jobs.

Tei,zj» if job i is a discharging job and job j is a loading job.
Xik 1, if container i is allocated to storage location k.

0, otherwise.
Xijm 1, if truck m (Vm € M) processes job j after job i.

0, otherwise.
Yin 1, if truck m (Vm € M) processes job i (Vi €N).

0, otherwise.

3.3 Model Formulation

In the process of cooperative scheduling, we aim at decreasing the unloaded itin-
erary rate to minimize the total make span of the transportation jobs. The processing
time of job i has two components: the travel time for the empty trip to P; (if there is
any) and the complete time of job i. The problem formulation is modified based on
the model provided by Ng et al. [17] and Lee et al. [8]. However, Ng et al. [17]
proposed to schedule a fleet of trucks to perform a set of discharging jobs, ignoring
the loading jobs. And Lee et al. [8] only considered the typical static operation
pattern in the process of scheduling. In this paper, we take the loading jobs and
dynamic itinerary routes into consideration. The revised model is given as follows:

Minimize: Z=ay Y, di+o| X ti+ Y 8iXjjm (1)
ieEN ieEN ijelJ
M
Yimm=1 VieN (2)
m=1
N+1
Y Xju<Yin ViEN (3)
j=1 and i#j
N
3 Xjm <Yim ViEN (4)
j=1 and i#j
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12 Xjm +Xijm 2 Yim+Yim—1 Vi jEN and i#j, VYmeM (5)
wi+Sj+t:<K(1=Xjm)+w; VieJ and VieJ (6)
ai+d;i<c¢; VieEN (7)
I+t p+di<c YieN; VmeM (8)
S§=Teno Vi, jEJT (9)
Sj= X Te.q Xk Vi€J and YjeJT (10)
kekK

=%, VEJ*' (11)
= ) Toc Xk VielJ” (12)

kek
Xits Xijm» Yim€{0, 1}, Vie J,VieJ and VkeK (13)
Xijm» Yim€{0,1}, VieN-1L;YieN VmeM (14)
wi€R VieJ ulJ (15)
L ER Viel (16)
S;ER VYieJ and VjeJ (17)
di>0 vVieJulJ (18)

The movement of a container from its origin to destination is defined as a job,
denoted by i and j. Two types of jobs are considered in this paper, loading jobs and
discharging jobs. Let J* and J~ represent the set of loading jobs and the set of
discharging jobs, respectively. A soft time window [a;, b;) for each job is given as a
constant.

Constraint (2) states that each job is processed by only the same truck. Con-
straints (3)—(5) give the relationship between X and Y for jobs handled by the same
truck. Constraint (6) gives the connection of the starting time of a job and that of its
successor. Constraint (7) defines the relationship between the completion time,
preparation time and duration of a job. Constraint (8) gives the relationship between
the duration and completion time, the truck preparation time and the travel time of a
truck from its initial location to the pick-up location. Constraints (9) and (10) define
the setup time of trucks from the destination of job i to the origin of job j. Con-
straints (11) and (12) define the processing time of job i. Constraints (13)—(18) are
simple constraints which define the range of values of some variables.
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4 Solution Approach

This paper aims at employing PSOs in solving the scheduling problem. Tasgetiren
et al. [18] presented the completion time for n-job m-machine problem by equa-
tions. Similarly, in the yard truck scheduling problem, given the processing times
tin for job i on truck m (k=1,2,...,m), and a job permutation
7= "1, Ty - -5 in)s 1 jObs (J=1,2, ..., n) will be sequenced through m trucks.
Let T(r;,m) denotes the completion time of job x; on truck m. The calculation of
completion time for n-job m-truck problem is given as follows:

T(m1,1)=tm1 (19)
T(ﬂ],1)=T(ﬂ]_1,1)+tﬂj,1 J=2,3,...n (20)
T(mp,k)=T(zj_1,k) +tmr J=2,3,...n, k=2,3,....m (21)

Then the yard truck scheduling is to find a permutation m* in the set of all
permutations []. As demonstrated by the following equation.

T(z*)<T(7y,m) Vre]] (22)

4.1 Particle Swarm Optimization Algorithms (PSOs)

After Kennedy proposed particle swarm optimization in 1995 [12], inertia weight
was introduced into PSO algorithm (called SPSO) to provide a balance between
global and local exploration abilities by Shi et al. in 1998 [19]. The key opti-
mization mechanism of SPSO algorithm is described as follows.

Via=w* Vig+ci *rand() * (Pia — Xia) + 2 * rand () (Pgq — Xia) (23)
Xia=Xia + Via (24)

The vector P;; — Xj4 represents the distance from individual’s current positions
(Xiq) to the individual’s previous best position (P;s). The Ggq — X4 indicates the
distance between current positions (Xj;) and the best position (Pg,) that has been
found by any member of the neighborhood. ¢; and ¢, are two positive constants,
rand() is a uniformly distributed random function in the range [0, 1], and w is the
inertia weight.

Three improved PSOs, including CLPSO, LPSO and SLPSO can be referred to
literature [13—15], respectively. The main updating equations of the three PSOs are
described in Table 1.
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Table 1 The chosen PSOs for comparison

Algorithm Updating equations

CLPSO Via=w*Vig+c*rand() * (Pig — Xia)

LPSO Via=w* Vig+c1 * rand() * (Pig — Xia) + c2 * rand () (Pgq — Xia)
with topology structure of Square

SLPSO AXj(t+ 1) =1 * AX;i(1) + r2 (1) *L;(1) + r3 % € * Cy(1)
with I () = Xig (1) = X (1), Cyi (1) =X;(t) = X;(1)

PSOs are used to solve difficult continuous optimization problems. However, the
scheduling problem in this paper is a discrete one. So, we have to enable the PSOs
to be applicable to the continuous problem.

4.2 Solution Representation

In our former research, solution representation was discussed in [20]. The position
vector of each particle 7, + 4~ 474m) With (n* +n~ +1+m) dimensions is divided
into three parts. The (n* +n~) dimensions 7/ = [, 70, ..., 7 (n* +n7~)] denote
scheduling permutation of jobs. The [ dimension zl= [Titn+ +n- +1)»
Ti(n* +n- +2)> -+ s Fi(n+ +n- +z)} denotes potential locations available to the dis-
charging containers. We distinguish them from job permutation part with negative
numbers. The m dimension 7'[?1 = [”i(n*’ +n= +14+1)> Ti(n* +n= +142)> -+ > Ti(n*+ +n-
+ [+ m)] denotes workload assignment, namely, the number of jobs assigned to each
truck.

In order to design a corresponding relationship between the scheduling problem
and the particles, a suitable mapping to convert continuous position of particles
X! =X, Xi2, .. .. Xi(n+ +0-)) Into job sequence ) = (i1, i, - .., Tin(n+ +4-)] In
PSOs is needed. The smallest position value (SPV) rule [18] is employed in this
study.

Table 2 exhibits the solution representation of particle X/ for PSOs with its
corresponding sequence. According to the SPV rule, the smallest position value is -
1.57, so the dimension j=35 is assigned to be the first job in the processing
sequence; the second smallest position value is 0.03, so the dimension j=2 is
assigned to be the second job in the processing sequence, and so on.

Table 2 Spluti(;n e x j 1 2 3 4 5 6
tat; It i
representation of particle 7 XY 0.03 313 078 157 1.87
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The [ dimension 7} = [T+ 4 - +1)s Ti(n+ +n- +2) - - - Ti(n* +n- +1) 18 the permu-
tation of the integers from -1 to L. The m dimension #'= [n,-<,,+ n- +1+1)
Ti(n* 4n- +142)s -+ > Fi(n* +n- +l+m)] are workload assignment for trucks. As can be
seen in Fig. 5, two trucks are arranged to work on six scheduling jobs. And Truck 1
is responsible for four jobs while Truck 2 is assigned two jobs. We assume that the
first three jobs are discharging jobs and the second three jobs are loading jobs. The
scheduling solution is that Truck 1 will handle jobs 6, 2, 4, 3, sequentially, while
Truck 2 is assigned to handle jobs 5, 1, sequentially. According to the location
solution, the first discharging job is located in {,, the second discharging job is
located in ¢; and the last discharging job is located in {3, as shown in Fig. 6.

S Computational Experiments

The computational experiments used to evaluate the performance of PSOs are
discussed in this section. Four test problems of scheduling trucks are solved by
Matlab R2001b running on a PC with Intel Core i5 2.20 GHz and 4 GB RAM.
The number of jobs (n) ranges from 8 to 300 while the number of trucks
(m) ranges from 3 to 50 [17]. The four typical different scales of n and m are listed
in Table 3. The initial location of trucks and pick-up/drop-off location are created
following a uniform distribution in the two-dimension square from 0 * 0 m? to
1500 * 1500 m>. And the earliest possible time of the jobs is randomly generated

Table 3 Four representative oo n m
combinations of n and m
1 8 3
2 40 15
3 160 40
4 300 50
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Table 4 Performance of the four PSOs on the test problem
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Instance | (n,m) Algorithm | Max Min Mean Time(s)
1 (3,8) SPSO 1.9466e+003 | 1.8140e+003 | 1.8279e+003 0.70
CLPSO 1.8582e+003 | 1.8140e+003 | 1.8239e+003 1.30
LPSO 1.8583e+003 | 1.8140e+003 | 1.8184e+003 0.17
SLPSO 1.8147e+003 | 1.8140e+003 | 1.8140e+003 0.30
2 (15,40) SPSO 2.7748e+003 | 2.3547e+003 |2.5558e+003 | 13.26
CLPSO 2.8587e+003 | 2.4160e+003 | 2.6460e+003 | 10.44
LPSO 2.7941e+003 | 2.3125e4+003 |2.4494e4+003 |11.28
SLPSO 2.5863e+003 | 2.2678e+003 | 2.3932e+003 9.30
3 (40,160) | SPSO 5.2197e+003 | 5.1623e+003 |5.1710e+003 |37.89
CLPSO 5.3109e+003 | 5.2450e+003 | 5.2606e+003 |39.53
LPSO 4.9324e4+003 | 4.6359e+003 | 4.7829e4+003 | 38.08
SLPSO 4.7277e4+003 | 4.5305e+003 | 4.3096e+003 | 36.08
4 (50,300) | SPSO 6.9758e+003 | 6.7766e+003 | 6.8016e+003 |49.30
CLPSO 7.5080e+003 | 7.2925e+003 | 7.3626e+003 |61.73
LPSO 7.3979e+003 | 7.1155e+003 | 7.1690e+003 | 59.65
SLPSO 6.3277e+003 | 6.1905e+003 | 6.2306e+003 | 48.08

following a uniform distribution of U (0, 1500) (unit: second) and the due time of
jobs is generated following a uniform distribution of U (200, 500) (unit: second)
[16]. The travel speed of trucks is 11.11 m/s and the two weight a; and a, are set to

0.6 and 0.4 as described in literature [8]. Each experiment is run twenty times.

It can be seen from the results presented in Table 4 that, with the increase of the
number of jobs and trucks, the computational time grows rapidly. For the
small-scale instance (i.e. n=3,m=38), all of the PSOs can find the minimum
schedules for the problem. Figure 7 shows the average convergence rate on
small-scale instance.

Fig. 7 The average evolution
curve for small-scale instance

(n=3,m=38)

Fitness
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1800
0
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Experimental study shows that the SLPSO outperforms the other three PSOs on
all test problems. Our comparative results show that SLPSO performs well on
small-scale problems and is promising for solving large-scale problems as well. It
may be attributed to the fact that social learning mechanisms have the advantage of
allowing individuals to learn behaviors from others without incurring the costs of
individual trial-and-errors.

6 Conclusions

In this study, we addressed the cooperative scheduling strategy to reduce the
unloaded rate and thus to cut back the make span. And PSO and its variants are
applied to find optimal schedule strategy for the problem. A comprehensive set of
test problems are used to compare the performance of the PSOs. The computational
results demonstrated that the SLPSO performs better than all three PSOs on
small-scale problems and large-scale problems as well. In future research, the
development of more practical application will still be an emphasis on the study of
integrated optimization model in container terminal operations.
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