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Abstract—Multitask genetic programming methods have been
applied to various domains, such as classification, regression, and
combinatorial optimization problems. Most existing multitask
genetic programming methods are designed based on tree-based
structures, which are not good at reusing building blocks since
each sub-tree passes its outputs to only one parent. It may limit
the design and performance of knowledge sharing in multitask
optimization. Different from tree-based genetic programming,
building blocks in linear genetic programming can be easily
reused by more than one parent. Besides, existing multitask
genetic programming methods always allocate each individual
to a specific task and have to duplicate genetic materials from
task to task in knowledge transfer, which is inefficient and often
produces redundancy. Contrarily, it is natural for a linear genetic
programming individual to produce multiple distinct outputs,
which enables each linear genetic programming individual to
solve multiple tasks simultaneously. With this in mind, we
propose a new multitask linear genetic programming method
that transfers knowledge via multi-output individuals (i.e., shared
individuals among tasks). By integrating different solutions into
one multi-output individual, the proposed method efficiently
reuses common knowledge among tasks and maintains distinct
behaviors for each task. The empirical results show that the
proposed method has a significantly better test performance than
state-of-the-art multitask genetic programming methods. Further
analyses verify that the new knowledge transfer mechanism can
adjust the transfer rate automatically and thus improves its
effectiveness.

Index Terms—Multitask optimization, Linear genetic program-
ming, Directed acyclic graph, Dynamic job shop scheduling.

I. INTRODUCTION

Evolutionary multitask optimization is an emerging research
area in the last decade [1], [2]. In the light of the outstanding
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association ability of human brains, evolutionary multitask op-
timization techniques aim to design evolutionary computation
methods that fully exploit the latent synergies among tasks.
In contrast to solving every single task independently from
scratch, evolutionary multitask optimization techniques solve
similar tasks simultaneously and exchange useful information
in the course of evolution. Genetic materials such as elite
individuals and building blocks are shared among tasks, to
enhance convergence speed and search effectiveness. Nowa-
days, evolutionary multitask techniques have shown remark-
able performance on both continuous and discrete optimization
problems [3].

Genetic programming (GP) [4] is a popular evolutionary
computation method. Its individuals can represent mathemati-
cal formulas or computer programs based on a given primitive
set. Part of the existing literature has applied multitask opti-
mization to enhance tree-based GP in solving machine learning
problems and combinatorial optimization and has shown very
impressive results [5]–[7]. However, conventional tree-based
GP is not good at reusing building blocks, since each node in
the tree has at most one parent node. For reusing a sub-tree
(building block), tree-based GP has to duplicate that sub-tree
or design multiple outputs by complicated tricks [8], which
is inefficient in both space and computation and reduces the
diversity of genetic materials in the population.

On the other hand, linear genetic programming (LGP) [9]–
[11], which is a kind of graph-based GP [12], often has
a more compact and flexible representation than tree-based
structures. By decoding LGP individuals into directed acyclic
graphs, each node (i.e., primitive in LGP individuals) can
have multiple parent nodes, and each graph can have multiple
outputs. These graph characteristics allow the building blocks
of LGP (i.e., sub-graphs) to pass their outputs to multiple
graph nodes in the calculation and enable LGP to represent
multiple solutions within a single individual naturally.

However, extending LGP to existing multitask GP methods
cannot fully utilize the graph characteristic. The existing
multitask GP methods simply see each individual as a solu-
tion/heuristic for a specific task and transfer knowledge by
duplicating genetic materials (e.g., instruction segments in
LGP individuals). A primary investigation on multitask LGP
verified that directly applying existing multitask GP methods
to LGP has similar performance with existing multitask tree-
based GP methods [13]. Multitask LGP methods have not yet
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been well investigated.
In this paper, we aim to propose a new multitask framework

based on the graph characteristic of LGP, named Multitask
LGP with Shared Individuals (MLSI). MLSI evolves a sub-
population of multi-output individuals (i.e., shared individ-
uals). Each shared individual simultaneously encodes more
than one solution, each for a specific task and with a specific
output, within one directed acyclic graph. These solutions
share common building blocks to perform knowledge transfer.
The shared individuals then participate in the evolution of all
the tasks by shifting their graph outputs, in which way they
behave like task-specific individuals, but intrinsically carry
common building blocks from the other tasks.

There are four main contributions in this paper:

1) A new knowledge transfer strategy is proposed based
on LGP. The proposed strategy fully utilizes the topo-
logical structures in LGP by encoding the solutions
from different tasks into a directed acyclic graph. Due
to the high reusability and flexibility of graph-based
structures, the proposed strategy is expected to evolve
compact solutions for multiple tasks, and further im-
prove the efficiency of knowledge transfer. It reveals the
great potential of graph-based structures in multitask GP
methods. To the best of our knowledge, this is the first
multitask GP method that designs knowledge transfer
mechanisms based on graph-based structures.

2) New genetic operators are designed based on the new
knowledge transfer strategy. Specifically, a riffle shuffle
operator is proposed to integrate elite individuals into
shared individuals. A better-parent reservation strategy
is developed to further enhance the effectiveness of the
crossover in multitask LGP. Given that shared indi-
viduals are evaluated on multiple tasks simultaneously
and have more than one fitness, tournament selection
is updated accordingly to select elite individuals for
specific tasks.

3) Comprehensive experiments based on dynamic schedul-
ing are conducted. The experiments cover six multi-
task scenarios, in which tasks have different levels of
similarity. The results show that the proposed method
significantly outperforms three state-of-the-art multitask
GP methods in terms of both training efficiency and test
effectiveness.

4) Further analyses verify that the superior performance of
the newly proposed method stems from the intrinsical
adaptation ability on knowledge transfer rate. It implies
that adjusting the knowledge transfer rate based on the
evolution process and the similarity among tasks is a
useful strategy in improving search effectiveness. The
results also verify the necessity of the key components
in the proposed method and show a different pattern
of sharing common building blocks in GP individuals,
which promotes future study on graph-based GP.

The rest of this paper is organized as follows. Section II
introduces multitask optimization and the existing literature on
linear genetic programming. Section III presents the details of
the proposed method. Experiment designs including problem

formulation and comparison design are illustrated in Section
IV. The results and further analyses are shown in Section V
and VI respectively. Finally, Section VII draws the conclu-
sions.

II. LITERATURE REVIEW

A. Evolutionary Multitask Optimization
Existing evolutionary multitask methods can be categorized

into two paradigms, implicit and explicit genetic transfer [14],
[15]. Methods with implicit genetic transfer exchange knowl-
edge among tasks by applying a suite of genetic operators
to perform implicit genetic mating (e.g., applying crossover
operators on two parents from different tasks). One of the
most typical methods with the implicit genetic transfer is
the multifactorial evolutionary algorithm (MFEA) [3]. MFEA
designed four new concepts: factorial cost, factorial rank, skill
factor, and scalar fitness. The first two terms are vectors for
multiple tasks, denoting the fitness and rank in correspond-
ing tasks. The scalar fitness is the minimum factorial rank
among tasks. The task with the minimum factorial rank is
recorded by skill factor. An assortative mating and a vertical
cultural transmission are also proposed in [3] to facilitate
knowledge transfer. MFEA integrates multiple solutions into
one individual based on the skill factor. However, most MFEA
methods are designed based on numerical representation. The
idea of integrating multiple numerical solutions in MFEA
cannot be easily extended to GP methods whose search space
is symbolic. Based on MFEA, many studies developed new
techniques to enhance its performance. For example, Bali et
al. [16] proposed a linear transformation strategy to transform
the decision space among tasks. Ding et al. [17] developed
a decision variable translation strategy and decision variable
shuffling strategy for MFEA to improve the effectiveness
of knowledge sharing. Zheng et al. [18] proposed a self-
regulated method to perform knowledge sharing based on the
relatedness among tasks. Besides, MFEA has been applied
to many applications, such as capacitated vehicle routing
problems [19], robot path planning problem [20], and bi-level
optimization [21]. Gupta et al. [22] also extended MFEA to
multi-objective optimization.

However, the implicit genetic transfer has a key limitation.
It unnecessarily limits the information exchange within ge-
netic mating [14]. In practice, genetic mating might not be
effective enough to transfer knowledge among different tasks.
To address this issue, the explicit genetic transfer methods
are proposed to explicitly consider different representations
and search mechanisms among tasks in knowledge transfer.
For example, Feng et al. [14], [23] proposed to use an
artificial neural network (e.g., denoising autoencoder) to per-
form knowledge transfer among different tasks. The artificial
neural network is trained beforehand on uniformly sampled
data. When performing knowledge transfer, solutions from
one task are mapped to another space by the artificial neural
network. This method demonstrates the superior performance
of explicit genetic transfer over implicit genetic transfer in
both single- and multi-objective optimization. To capture the
essential features of different tasks, Tang et al. [24] trans-
formed the distribution of sub-populations into task-specific
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low-dimension spaces, and made pairwise mapping among
tasks by well-trained alignment matrices. When the mapping
discrepancies among tasks are minimized, individuals from
different tasks can be transferred to another task based on
low-dimension spaces and alignment matrices. Chen et al.
[25] treated decision spaces of different tasks as manifolds
and projected the decision spaces of tasks to a joint manifold
to represent the task relationship. The knowledge transfer
among tasks is performed based on the latent task relationship.
Kullback-Leibler divergence [26] and Naive Bayes classifier
[27] are also extended as methods of selective knowledge
transfer. Nowadays, multitask optimization techniques with
explicit genetic transfer have been applied to some real-
world applications, such as time series prediction [28] and
capacitated vehicle routing problem [29].

B. Linear Genetic Programming
LGP is a representative graph-based GP. It was firstly

designed to evolve programs written in machine codes in the
1990s [9], [10]. Each LGP individual is a sequence of register-
based instructions. All instructions manipulate the same set of
registers to pass the intermediate results, and each instruction
contains a function to represent a specific operation. The
instruction sequence can be converted into a directed acyclic
graph (DAG).

Fully utilizing the graph-based structure of LGP provides
a different perspective from tree-based structures in designing
GP methods. For example, Fogelberg [30] and Downey [31],
[32] respectively applied LGP to multi-class classification and
showed very promising results. Since each LGP individual
has multiple outputs easily, and these outputs share common
building blocks, it is quite efficient for LGP to simultaneously
evolve multiple sub-classifiers. Based on the graph-based
structure of LGP, Kantschik et al. [33] proposed a linear-
tree GP for solving classification and symbolic regression
problems. Sotto et al. [34], [35] took LGP as an example
and further compared the effectiveness among different graph-
based GP methods. They found that the graph-based structure
of LGP which has limited graph width defined by the registers
is suitable for solving even parity circuits. Since the directed
acyclic graph neglects the non-effective instructions in LGP, an
investigation on the relationship between the bloat effect and
the impact of non-effective instructions in LGP was conducted
by Sotto et al [36], [37] to better understand the genotype-
phenotype mapping.

Nowadays, LGP has been applied to different applica-
tions and has undergone various developments. For example,
Brameier and Banzhaf [38] applied LGP to the classification of
medical data and proposed several effective genetic operators
to enhance LGP performance [39], [40]. In [41], Sotto et
al. enhanced LGP by a stochastic context-free grammar, and
achieved significantly better results than conventional LGP in
some symbolic regression problems. LGP can also be applied
as a hyper-heuristic method to solve combinatorial optimiza-
tion problems and showed very promising results [13], [42].
Besides, because of the concise chromosome representation,
LGP is seen as a representative example to analyze the
evolvability and robustness of GP methods [43], [44].

C. Multitask GP

Multitask techniques are also applied to GP methods to
enhance their performance in different domains. For exam-
ple, Zhong et al. [5] and Wei et al. [45] applied multi-
task techniques to gene expression programming for solving
symbolic regression and multi-class classification. Bi et al.
[6] proposed to use multitask techniques to encourage GP
to construct effective features for image classification. These
GP-constructed features from different tasks are concatenated
together based on an ensemble method. Bi et al. [46] proposed
to use a common tree structure to construct shared features
in similar classification tasks. Multitask GP is applied to
job shop scheduling problems. In [7], [47], Zhang et al.
proposed a multi-population based multitask GP method and
verified the effectiveness of the explicit genetic transfer. To
further improve the training convergency, surrogate models
are also introduced in multitask framework to selectively share
knowledge [48].

Based on the review, we found that existing multitask GP
methods are mostly designed based on tree-based GP. Knowl-
edge is transferred mainly by duplicating elite individuals or
sub-trees from one task to another, which is inefficient. Fur-
ther, since there is usually one output in tree-based structures
(i.e., the root), it is uneasy for the existing tree-based multitask
GP methods to switch among the representation of solutions
for different tasks, which is inflexible in utilizing common
building blocks. An investigation is conducted on LGP with
the existing multitask frameworks [13]. The results showed
that the existing multitask frameworks fail to utilize the graph-
based characteristic of LGP to evolve compact solutions since
they treat LGP solutions separately. To further improve the
effectiveness of knowledge sharing and encourage compact
representations, an improved LGP-based multitask method is
needed.

III. PROPOSED METHOD

This section demonstrates the proposed MLSI in detail. The
chromosome representation and evolutionary framework of
MLSI are firstly described, followed by the selection method.
The key new genetic operators are finally introduced.

A. Program Representation

An LGP individual f is a sequence of instructions (f =
[f0, f1, ..., fl−1]), where l is the total number of instructions.
To limit the search space of LGP, l has to be in a predefined
range [lmin, lmax]. Fig. 1 shows an example of an LGP
individual in solving multitask optimization. Every instruction
f consists of three parts: a destination register Rf,d (on the
left of the equal mark), a function funf (·) (the operation on
the right of the equal mark), and two source registers Rf,s (the
registers on the right of the equal mark). The instruction takes
the values from the source registers, calculates the output value
by the function, and passes the output value to the destination
register. Both destination and source registers are selected from
the same register set R = {R0, ..., R|R|−1} where | · | denotes
the cardinality of a set or a list, and functions are selected
from a predefined function set. In addition, constants such
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Fig. 1. An example of LGP individual with three outputs (i.e., R0, R1, and
R2). PT: processing time of each operation, W: weight of job, OWT: waiting
time of an operation, WKR: remaining processing time of a job.

as input features are treated as a special type of read-only
registers. They can act as source registers, but cannot be used
as destination registers.

The instructions in the LGP program are executed one by
one from the top of the program to the bottom. Before exe-
cution, the registers are initialized by the designated problem
features. In Fig. 1, R0 to R3 are respectively initialized by
the input features (i.e., processing time of a job (PT), weight
of a job (W), waiting time of an operation (OWT), and the
remaining processing time of a job (WKR)). To produce the
results for different tasks, multiple output registers are defined
for LGP. For the sake of simplicity, we designate the first k
registers as the output registers for the k tasks (e.g., R0 to R2

in Fig. 1). We can see that some of the registers are shared
among different tasks (i.e., different output registers), such as
R3 in the second instruction.

Fig. 1 also gives an example of converting LGP instructions
into a DAG. First, each function or constant in the instructions
is instantiated as a graph node. Duplicated constants (e.g.,
PT) are merged into one graph node. Then, we connect the
functions based on the registers (e.g., connecting function ×
to + since × in the last instruction reads the result in the
register R1 in the third instruction written by +) and connect
the functions to specific constants (e.g., connecting + to PT).
Following the existing style [11], the direction of arrows
denotes accepting inputs from another graph node and the
number beside the arrow indexes the first or second argument
of the function. The output of the DAG is stored in output
registers R0, R1, and R2. When an LGP individual is shared
by multiple tasks, it is evaluated on these tasks respectively
and obtains a list of fitness values, each for a specific task.

B. Algorithm Framework

Different from existing multi-population multitask evolu-
tionary frameworks in which each sub-population solves a
specific task, the first sub-population S0 of MLSI is a gener-
alist sub-population that aims to solve all the tasks, while the
remaining sub-populations Si(i = 1, ..., k) are specialist sub-
populations that aim to solve a single task respectively. Fig.
2 shows the flow of genetic materials (e.g., building blocks)
among tasks. The knowledge of different tasks is shared via
S0. The specialist sub-populations give genetic material to
the generalist one and accept knowledge from the generalist
sub-population for every generation. Since the individuals in
the generalist sub-population S0 are shared on all tasks, the

Subpop0 Subpop1 Subpop2

Generation i

Generation i+1

Intra-task Inter-task 

Fig. 2. The intra- and inter-flow of genetic materials among tasks.

S0

S3

f1

f2

f1

f2

Fit(f) Rank(f)

[1.1, 0.8, 1.5]

[1.2, 0.7, 0.9]

[1.3]

[1.0]

[3]

[2]

[1, 2, 4]

[2, 1, 1]

Fig. 3. An example of determining the rank of the third task (i.e., Rank3(f))
for S0 and S3, each sub-population with two individuals.

evolution of the generalist sub-population is seen as another
kind of sharing knowledge. By this means, the common
building blocks across tasks can be carried in a compact
representation in S0 and flexibly switch representations based
on different output registers (i.e., cooperate with task-specific
sub-graphs in the individuals).

Each individual f ∈ S0 is evaluated on all the k tasks,
and thus has a vector of fitnesses, denoted as Fit(f) =
[Fit1(f), ..., F itk(f)]. Contrarily, the individuals in Si(i > 0)
only have a single fitness value for its corresponding task
(i.e., (Fit(f) = [Fiti(f)], i ∈ {1, ..., k}). Based on Fit(f),
the rank of an individual Rank(f) is designed accordingly.
For each generalist individual f ∈ S0, the rank of f is denoted
as Rank(f) = [Rank1(f), ..., Rankk(f)]. For each specialist
individual f ∈ Si(i > 0), Rank(f) = [Ranki(f)], i ∈
{1, ..., k}. To determine the rank of f , i.e., Rank(f) for
solving task t, all the individuals f ∈ S0

⋃
Si(t > 0, t = i)

are combined and sorted together. The example of determining
Rank(f) is shown in Fig. 3. There are two individuals in each
sub-population. When we are identifying the rank of the third
task (i.e., Rank3(f)), those individuals which are evaluated
on the third task (i.e., f ∈ S0

⋃
S3) are sorted together based

on the corresponding fitness, i.e., Fit3(f). Smaller fitness has
a better rank.

The pseudo-code of MLSI is shown in Alg. 1 1 where the
underlines “

:
” highlight the major differences from existing

multitask GP methods. To solve k similar tasks simultane-
ously, MLSI first initializes k + 1 sub-populations. At each
generation, the individuals in S0 are evaluated on all the k
tasks, and the individuals in Si(i > 0) are evaluated on task i
respectively. Then, Fit(f) and Rank(f) of the all individuals

1rand(a, b) and randint(a, b) return a random floating point number
or a random integer between [a, b) respectively. The notations are used in the
rest of the paper.
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are updated based on the new fitness. Elitism selection is
applied to retain competent individuals.

New offspring are produced by five genetic operators,
including macro mutation, micro mutation, crossover, repro-
duction, and riffle shuffle based on their rates. The riffle shuffle
is the newly proposed genetic operator in this paper to vary the
individuals with multiple outputs, while the other four genetic
operators are off-the-shelf operators [11], [42]. Specifically,
effective macro mutation, effective micro mutation, and linear
crossover in [11] act as mutation and crossover respectively.
Linear crossover is enhanced by a newly proposed better-
parent reservation strategy (i.e., BetterParentRes(·)).
Given that each individual in S0 has a list of fitnesses,
a new tournament selection TournamentSpecific(·) is
developed to select parents based on a specific task. More
specifically, S0 applies reproduction, linear crossover, and the
riffle shuffle (i.e., RiffleShuffle(·)) to produce offspring,
while Si(i > 0) apply reproduction, linear crossover, and
mutation to produce offspring. To share knowledge among
tasks, the parents of the linear crossover and riffle shuffle
are selected from a merged sub-population, formed by S0 and
specialist sub-populations. As suggested by [11], all macro
operators (i.e., crossover, riffle shuffle, and macro mutation)
are followed by a micro mutation. All the produced offspring
replace the parents without further comparison and form the
population of the next generation. This evolutionary process is
iterated for every generation until the stopping criteria are met.
The best individuals of the tasks in all the sub-populations are
outputted as the final results.

C. Selection

The parent selection is implemented by the
TournamentSpecific(·) method. This method is
extended from the standard tournament selection by enabling
cross-sub-population selection for a specific task. The
pseudo-code of TournamentSpecific(·) is shown in
Alg. 2, in which Fit(f , t) returns the tth element of Fit(f)
if |Fit(f)| > 1, and the only element in Fit(f) otherwise2.

Note that in the proposed multitask framework, the parents
of linear crossover and riffle shuffle for a certain task t
are selected from the generalist sub-population (i.e., S0) and
specialist sub-population (i.e., St) simultaneously. Specifically,
S0 and St are merged into one sub-population, and the two
parents for one mating are selected from the merged sub-
population based on the paradigm of tournament selection.
Therefore, the parents for linear crossover and riffle shuffle can
both come from S0, or both come from St, or come from either
S0 or St. The knowledge sharing among different tasks for
the linear crossover and riffle shuffle is achieved by selecting
the parents from S0 whose individuals are shared by all the
tasks. The parents for task t are selected based on their fitness
on that task. When the individuals in S0 have better fitness
on task t than those in St, they have a higher probability to
be selected by TournamentSpecific(·), and vice versa.
Such design helps MLSI determine the suitable timing and
frequency of knowledge transfer across tasks (i.e., transfer

2same as Rank(f , t) in Alg. 4.

Algorithm 1: Framework of MLSI
Input: k tasks, macro mutation rate θma, micro mutation rate θmi,

crossover rate θc, reproduction rate θr , step size of
RiffleShuffle η, tournament selection size s.

Output: k best heuristics ht(t = 1, ..., k), each for a specific task.
1 Initialize

::::
k + 1 sub-populations S0 to Sk .

2 while stopping criteria are not satisfied do
// Evaluation

3 Evaluate f ∈ S0 on all the tasks. Evaluate f ∈ Si(i = 1, .., k)
on task i respectively;

4 Update Fit(f) and Rank(f) for f ∈ {S0, ..., Sk};
// Breeding

5 foreach Si(i = 0, ..., k) do
6 S′i ← ∅;
7 Clone elite individuals of Si into S′i;
8 while |S′i| < |Si| do
9 rnd← rand(0, 1);

10 if rnd < θr then
11 c← TournamentSpecific(Si, i, s);
12 else if rnd < θr + θc then
13

:::
c←

::::
LGP

::::::
crossover

::::
with

:::::::::::::::::::::::::::
BetterParentRes({S0, ..., Sk}, i, s);

14 else
// generalist sub-population

15 if i = 0 then
16

:::::::::::::::::::::::::::::
c← RiffleShuffle({S0, ..., Sk}, η, s);

// specialist sub-population
17 else
18 p← TournamentSpecific(Si, i, s);
19 if rnd− (θc + θr) < θma then
20 Apply LGP macro mutation on p to

produce offspring c;
21 else
22 Apply LGP micro mutation on p to

produce offspring c;

23 if c is produced by macro operators then
24 Apply LGP micro mutation on c to update it;

25 S′i ← S′i
⋃
{c};

26 Si ← S′i;
27 Update the best heuristics ht(t = 1, .., k) for the k tasks;

28 Return ht(t = 1, .., k).

Algorithm 2: TournamentSpecific
Input: A merged sub-population Smeg , task index t, tournament

size s
Output: An LGP individual f

1 Randomly select an LGP individual f ′ from Smeg ;
2 f ← f ′;
3 Fit← Fit(f , t);
4 for j ← 1 to s− 1 do
5 Randomly select an LGP individual f ′ from Smeg ;
6 Fit′ ← Fit(f ′, t);
7 if Fit′ is better than Fit then
8 f ← f ′, Fit = Fit′;

9 Return f ;

knowledge when the individuals with common building blocks
have better performance).

D. Breeding Offspring

To improve the effectiveness of sharing knowledge, the
better-parent reservation is proposed to enhance the crossover
operator. The riffle shuffle is proposed to effectively integrate
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Fig. 4. An example of linear crossover with better-parent reservation strategy.
Smaller fitness is better.

Algorithm 3: Linear crossover with
BetterParentRes(·)

Input: Set of sub-populations {S0, ..., Sk}, index of current
sub-population i, tournament selection size s

Output: A new offspring c.
1 t = i;
2 if i = 0 then
3 t← randint(1, k);

4 Smeg ← S0
⋃

St
5 Apply TournamentSpecific(Smeg , t, s) to select pa and pb

respectively;
6 Apply linear crossover on pa and pb to produce two offspring ca

and cb;
// Better-parent reservation

7 c← ca;
8 if pb is better than pa then
9 c← cb;

10 Return c;

knowledge from different tasks.
1) Linear crossover with better-parent reservation: Multi-

task optimization framework promotes effectiveness by shar-
ing knowledge among similar tasks. However, different tasks
may have different specialist knowledge. The crossover oper-
ator should not only share useful common knowledge among
different sub-populations but also retain useful specialist build-
ing blocks for each specific task. It is reasonable to assume
that the parent with better fitness on a certain task is more
likely to have more useful building blocks for that task. Based
on this assumption, the crossover operator in this work only
retains the child whose corresponding parent (i.e., the parent
accepting a new genome to form the offspring) has better
fitness. An example of the better-parent reservation is shown in
Fig. 4 in which the to-be-swapped instructions are highlighted
as dark. Since Parent 1 has better (i.e., smaller) fitness than
Parent 2, only offspring 1 which is generated from Parent 1
by accepting new instructions is retained. The pseudo-code
of the linear crossover with better-parent reservation is shown
as Alg. 3, in which the linear crossover is followed by the
better-parent reservation based on the fitness of the parents.

2) Riffle shuffle: Riffle shuffle is a technical term for
playing cards. When there are two decks of cards, the riffle
shuffle integrates them into a single deck by alternatively
interleaving the two decks of cards and maintaining the relative
order of cards within every deck. This concept is extended to
our work to integrate individuals from different tasks into a
new offspring. By this means, heuristics for different tasks
cannot only maintain the relative order of their instructions,
but also they can use the building blocks from other tasks.

The pseudo-code of the proposed riffle shuffle operator is

Parent 1–Task A Parent 2–Task B Parent 3–Task C
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Fig. 5. An example of the riffle shuffle operator for LGP individuals

shown in Alg. 4. First, the riffle shuffle operator samples
several LGP parents from different tasks. Then, the effective
instructions (i.e., extrons) are extracted based on their output
registers (lines 5 to 13) (The extraction method of effective
instructions can be referred to [11]). The extracted effective
instructions for different tasks are stored in lists respectively.
The task index whose sampled parent has the best rank is
recorded for later use. For lines 14 to 19, the riffle shuffle
operator alternatively interleaves instructions from the lists to
form a new instruction sequence. To prevent LGP programs
from increasing size too rapidly, a maximum step size η
is defined to limit the largest variation of program size.
Specifically, the new program size L of the offspring is defined
by aggregating the average program size of parents and a
random variation size based on η (lines 20 to 21). L is also
limited by the maximum and minimum program size of LGP
individuals (Lmax and Lmin). For lines 22 to 27, when the
actual program size after merging exceeds L, instructions are
randomly removed until the actual program size is consistent
with L. To protect the useful building blocks, the instructions
from the parent with a better rank have a higher priority to
be kept in the offspring. Specifically, the instructions from the
parent with a better rank are extracted based on the output
register Rt∗−1 (line 24). When the program size of the parent
with a better rank is smaller than L and the offspring still
contains the instructions from other tasks (i.e., |G| < |c|), the
instructions of better parent are protected from being removed
(lines 25 and 26).

Fig. 5 shows an example of the riffle shuffle. The two
LGP parents come from two different tasks and have three
and two effective instructions respectively. They first extract
the effective instructions, which are the second, fourth, and
fifth instructions of the first parent, and the first and second
instructions of the second parent. Then, the two sequences
of effective instructions are integrated into one sequence
alternatively to form an offspring.

Both better-parent reservation and riffle shuffle can be
applied to other methods. Specifically, better-parent reserva-
tion strategy can be applied together with other crossover
operators that accept more than one parent. Riffle shuffle is an
LGP-based genetic operator for transferring genetic materials.
Further, riffle shuffle is designed for merging building blocks
from different tasks. Applying riffle shuffle to evolve a single
task might produce many redundant instructions since the
building blocks from a single task are often too similar. The
effectiveness of the two operators and their collaboration with
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Algorithm 4: RiffleShuffle
Input: Set of sub-populations {S0, ..., Sk}, step size η, tournament

selection size s
Output: A new offspring c.

1 n← randint(2, k);
2 T,P,G, c← ∅;
3 Randomly select n unique task indices to initialize T;
4 t∗, Rank∗ ← +∞
5 foreach t in T do
6 p′ ← TournamentSpecific(S0

⋃
St, t, s);

7 P← P
⋃

p′;
8 G← IdentifyExtrons(p′, {Rt−1});
9 if G ̸= ∅ then

10 G← G
⋃

G;

11 if Rank(p′, t) < Rank∗ then
12 Rank∗ ← Rank(p′, t);
13 t∗ ← t;

// merge into one individual
14 while G ̸= ∅ do
15 G← Randomly select an element from G;
16 f ← get and remove the first element from G;
17 Append f to c;
18 if G = ∅ then
19 remove G from G;

// randomly remove instructions

20 L← Σp∈P|p|
n

+ randint(−η, η);
21 L← lmin if L < lmin (or L← lmax if L > lmax);
22 while |c| > L do
23 frmv ← randomly select an instruction from c;
24 G← IdentifyExtrons(c, Rt∗−1);
25 while |G| < L and |G| < |c| and frmv ∈ G do
26 frmv ← randomly select an instruction from c;

27 Remove frmv from c;

28 Return c;

other methods are investigated in Section VI-A.

IV. A CASE STUDY ON DYNAMIC JOB SHOP SCHEDULING

A. Problem Description

In this paper, we consider dynamic job shop scheduling
(DJSS) as a case study to verify the performance of the newly
proposed method. DJSS is a ubiquitous combinatorial opti-
mization problem in modern production lines [49]–[51], and
often has many similar optimization problems. For example,
the peak and off seasons of the same production line might
have similar scheduling methods, and the customers might
share similar requirements with the manager on the production
line. Fully utilizing the common knowledge among these tasks
(i.e., multitask optimization) is more efficient than searching
from a scratch for every single task. Further, multitask tree-
based GP methods have shown to be effective in solving
multitask DJSS problems [7], [48], [52]. It is convincing to
verify the proposed MLSI by comparing with the existing
multitask GP methods.

Technically, the job shop processes totally n jobs J =
{J1, ...,Jn}. Each Jj consists of a sequence of operations
Oj = {Oj1, ...,Ojmj

} where mj is the number of operations
for job Jj . Every operation Oji can only be processed by
a predefined machine π(Oji) with a processing time p(Oji).
Besides, Jj has an arrival time α(Jj) and a weight ω(Jj).
The job shop has a set of machines M = {M1, ...,M|M|}.

All of these machines have a buffer to store ready operations
for their own. The execution of operations on machines is
assumed to be atomic, which means machines do not interrupt
an operation once it starts processing. Machines can process
at most one operation at any time. Dynamic events may occur
during the execution of DJSS [53], [54]. Specifically, we focus
on DJSS with new job arrival, in which unknown new jobs
arrive to the job shop over time [55], [56].

The flowtime and tardiness of jobs which are popular
metrics in existing literature [7], [13], are considered as
performance measures in this paper. Flowtime is the total
time cost of jobs from arrival to being completed. Tardiness
denotes the delay of completion from a given due date. The
due date of each job is defined as the total processing time of
the job multiplied by a due-date factor. The due-date factor for
determining due date of jobs is defined as 1.5 in the simulation.
The flowtime and tardiness of a job Jj are defined as follows.

• flowtime(Jj) = Cj − α(Jj)
• tardiness(Jj) = max(0, Cj − dj)

where Cj and dj are the completion time and the due date
of Jj respectively. The objectives of our DJSS problems
are minimizing the mean, max, and weighted mean flowtime
(denoted as Fmean, Fmax, WFmean) and tardiness (denoted
as Tmean, Tmax, WTmean), which are defined as follows.

• Fmean =

∑
Jj∈J flowtime(Jj)

n
• Fmax = maxJj∈J flowtime(Jj)

• WFmean =

∑
Jj∈J flowtime(Jj)×ω(Jj)

n

• Tmean =

∑
Jj∈J tardiness(Jj)

n
• Tmax = maxJj∈J tardiness(Jj)

• WTmean =

∑
Jj∈J tardiness(Jj)×ω(Jj)

n

B. Applying GP to DJSS

New coming jobs often disturb the schedule of the job
shop. To improve the effectiveness of the overall job shop,
instant reaction (e.g., re-scheduling) is necessary. Dispatching
rules are designed to schedule new coming jobs as soon as
they arrive [57]–[60]. But those manually designed dispatching
rules are not effective enough to handle complex situations. To
improve the effectiveness of dispatching rules, GP is applied to
help humans design promising dispatching rules automatically
[52], [61]–[63], which is known as the GP-based hyper-
heuristic method.

In contrast to searching the specific schedules for job shops,
GP-based hyper-heuristic generates a heuristic (i.e., dispatch-
ing rule) based on the given primitives [64]. The obtained
dispatching rule is then applied to DJSS problem instances
to construct schedules in a greedy manner. Specifically, the
dispatching rules are used to prioritize operations in machines
[57], [59], [65]. In this paper, LGP is applied to DJSS as a
hyper-heuristic method to design dispatching rules.

C. Simulation Configuration

Based on the problem formulation of DJSS, this paper sets
up a DJSS simulation to evaluate the fitness of GP individuals.
Every GP individual is decoded into a dispatching rule. Once
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TABLE I
THE SETTING OF MULTITASK SCENARIOS REPRESENTED BY OPTIMIZED

OBJECTIVES AND UTILIZATION LEVELS

Scenarios #tasks (k) Specific settings of tasks
A 3 < Fmean, 0.95 >,< Fmean, 0.85 >,< Fmean, 0.75 >
B 3 < Tmean, 0.95 >,< Tmean, 0.85 >,< Tmean, 0.75 >
C 3 < WTmean, 0.95 >,< WTmean, 0.85 >,< WTmean, 0.75 >
D 2 < Fmax, 0.95 >,< Tmax, 0.95 >
E 2 < WFmean, 0.95 >,< WTmean, 0.95 >
F 3 < Fmean, 0.95 >,< Tmean, 0.85 >,< WTmean, 0.75 >

a machine is idle and its buffer is not empty, the machine
will pick up one available operation with the best priority
given by the dispatching rule. The job shop totally has 10
machines (i.e., |M| = 10). The number of operations m for
every job ranges from 2 to 10. Every operation has a floating-
point processing time ranging from 1 to 99 time units. Jobs
have different weights, i.e., 20%, 60%, and 20% of jobs have
weights of 1, 2, and 4 respectively. To evaluate GP methods
in a steady state, our simulation has 1000 warm-up jobs and
takes the performance of the following 5000 jobs into account.

Jobs arrive to the job shop based on a Poisson distribution,
as shown in Eq. 1. t is the time interval before the next coming
job, and λ is the mean processing time of a job in the job shop,
defined by Eq. 2. ν is the average number of operations in all
jobs and µ is the average processing time of all operations.
We control the arrival rate of jobs by the utilization level
of machines ρ. When ρ is relatively large, the mean actual
processing time of jobs in the job shop is short, and thus new
jobs arrive to the job shop more frequently.

P (t = next job arrival time) ∼ exp(− t

λ
) (1)

λ =
ν · µ

ρ · |M|
(2)

D. Multitask Scenarios

In multitask optimization of DJSS, six multitask scenarios
are designed for verifying the performance of the proposed
method according to the above objectives [7]. In these multi-
task scenarios, each specific optimization problem with a spe-
cific optimized objective and a specific utilization level of the
simulation is defined as a task, denoted as “< objective, ρ >”.
The settings of the six multitask scenarios are shown in Table
I. To have a comprehensive investigation, Scenarios A to F
cover a wide range of tasks, with respect to the optimized
objective and utilization level. It should be noted that the six
scenarios cover different job sets which are specified by the
utilization level. For example, Sce. A, B, C, and F have the
same settings of utilization level for the three tasks (i.e., 0.95,
0.85, and 0.75) and thus have the same job sets with each
other. Sce. D and E have different job sets from Sce. A, B,
C, and F. Further, the three tasks in Sce. A are configured
with different job sets since each task is set with a different
utilization level. Other parameters in the simulation are the
same for all tasks, as introduced in Section IV-C.

E. Design of Comparison

We select four compared methods to verify the performance
of MLSI. First, multi-population LGP (MPLGP) is included as

the baseline method. It solves multiple tasks simultaneously,
each by a sub-population. But these sub-populations do not ex-
change any information and solve tasks independently. Second,
one of the state-of-the-art multitask tree-based GP methods,
M2GP [7], is compared in the experiment. M2GP is a recently
proposed method for solving multitask dynamic scheduling.
In addition, to comprehensively verify the effectiveness of
the proposed mechanism (i.e., transfer knowledge via shared
individuals), we compare with two recent multitask LGP
methods proposed in [13], denoted as M2LGP and MFLGP
respectively. Specifically, M2LGP replaces the tree-based GP
individuals in M2GP [7] with LGP individuals, and MFLGP
replaces the individual representation and genetic operators in
MFEA [3] (a popular framework for multitask optimization)
with that of LGP.

The parameters of the compared methods are designed
based on their original paper or existing literature [7], [13].
Specifically, the population size and generations are set sep-
arately based on the recommended settings of tree-based GP
and LGP. More specifically, tree-based GP is recommended
to have a large population and a small number of genera-
tions while LGP is recommended to have a small population
and a large number of generations [42]. All the compared
methods have the same total number of simulations to ensure
fairness. All methods keep elite individuals directly to the next
generation and apply tournament selection methods to select
parents. For MLSI, TournamentSpecific(·) replaces the
conventional tournament selection. M2GP, which is designed
based on tree-based GP, mainly breeds offspring by crossover,
mutation, and reproduction. The rates of these three operators
are 80%, 15%, and 5% respectively [7]. On the other hand,
the LGP-based methods, including MPLGP, M2LGP, MFLGP,
and MLSI, employ macro mutation, micro mutation, linear
crossover, and reproduction with rates of θma : θmi : θc : θr =
30% : 30% : 35% : 5% to produce offspring. MLSI enhances
the linear crossover by the better-parent reservation, and the
generalist sub-population in MLSI replaces mutation operators
by riffle shuffle. All the compared methods use the same set
of terminal and function sets to generate dispatching rules
[13], [53]. The terminal set contains sixteen DJSS features,
as shown in Table II. The function set in this experiment
contains {+,−,×,÷,max,min} where the division returns
one if divided by zero. LGP-based methods also utilize a
register set of 8 registers. The registers are initialized by the
first eight features of Table II before every execution.

The transfer rate of M2GP is set as 0.3 as suggested in [7].
Given that their knowledge transfer is mainly implemented
based on the crossover, actually 80%×0.3 = 24% of crossover
mate parents from different sub-populations. To keep the rate
of knowledge transfer the same, 68.6% of linear crossover
(35% × 68.6% = 24%) in M2LGP and MFLGP produce
offspring based on parents from different sub-populations.
Since MLSI selects parents from a merged population, the
parameter of transfer rate is not needed for MLSI. Contrarily,
MLSI introduces two new parameters, the population size of
the generalist sub-population and the step size of riffle shuffle
η. Without loss of generality, the size of the generalist sub-
population is defined as 30 to approximate the transfer rate of
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TABLE II
THE TERMINAL SET

Notation Description
PT Processing time of an operation in a job
NPT Processing time of the next operation in a job
WINQ Total processing time of operations in the buffer of a machine which

is the corresponding machine of the next operation in a job
WKR Total remaining processing time of a job
rFDD Difference between the expected due date of an operation and the

system time
OWT Waiting time of an operation
NOR Number of remaining operations of a job
NINQ Number of operations in the buffer of a machine which is the

corresponding machine of the next operation in a job
W Weight of a job
rDD Difference between the expected due date of a job and the system time
NWT Waiting time of the next to-be-ready machine
TIS Difference between system time and the arrival time of a job
SL Slack: difference between the expected due date and the sum of the

system time and WKR
NIQ Number of operations in the buffer of a machine
WIQ Total processing time of operations in the buffer of a machine
MWT Waiting time of a machine

TABLE III
PARAMETERS OF ALL COMPARED METHODS

Parameters M2GP MPLGP M2LGP MFLGP MLSI
number of sub-population k k k 1 k+1

(sub) population size 400 100 100 k*100 generalist:30,
specialist:70

generations 50 200 200 200 200
elitism selection size

for each sub-population 10 3 3 6 3

tournament selection size 5 7 7 7 7

crossover parameters inner node 90%,
leaf node 10%

segment length≤30,
segment length difference≤5,
crossover point distance≤30

mutation parameters inner node 90%,
leaf node 10%

macro(insertion 67%, deletion 33%),
micro (function 50%, destination

register 25%, source register
12.5%, constant 12.5% )

initial program size min depth=2,
max depth=6

min instruction=1,
max instruction=10

maximum program size max depth=8 max instruction=50

0.3. η is defined as 15 by default. The other parameters are
set as Table III.

In the training phase, all the compared methods are trained
by k DJSS instances for every generation, each DJSS instance
for a specific task. The random seeds of instances are ro-
tated every generation. All the compared methods are tested
on 50 unseen DJSS instances after training, and the mean
performance on these unseen instances is seen as the test
performance.

V. RESULTS

In this section, we compare the training and test perfor-
mance of all the compared methods. We analyze the objective
values on test instances and training convergence curves.
Friedman test and Wilcoxon test with a significance level of
0.05 are also applied to make a comprehensive analysis.

A. Test performance

Fig. 6 shows the test performance of all the compared
methods on different multitask scenarios. We can see that
the results of MLSI have relatively small objective values in
most tasks. For example, in the complex tasks of Scenarios
A, B, and D (e.g., A-<Fmean,0.95>, B-<Tmean,0.95>, and
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Fig. 6. The box plots of test performance on all tasks in different multitask
scenarios.

TABLE IV
RESULTS OF FRIEDMAN TEST

Metrics MPLGP M2GP M2LGP MFLGP MLSI
mean rank 3.78 3.56 3.13 3.16 1.38

p-value 1.14E−4

D-<Fmax,0.95>), MLSI has better medians and averages of
test performance than the other compared methods over 50
independent runs. In other tasks such as C-<WTmean,0.95>
and F-<Fmean,0.95>, although we cannot see significant
differences between MLSI and the other compared methods,
we can confirm that the medians and averages of MLSI test
performance are similar to the best medians and best averages
in the tested problems.

To have a more comprehensive comparison, we analyze
the test performance by the Friedman test, as shown in
Table IV. The p-value of the Friedman is 1.14E−4, which is
much smaller than 0.05. It implies that there is a significant
difference among these compared methods. Besides, the mean
rank from the Friedman test shows that MLSI has the best
average ranking on these tasks.

Based on the Friedman test, post-hoc analyses by the
Wilcoxon rank sum test with Bonferroni correction and a
significance level of 0.05 are conducted to further analyze the
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TABLE V
THE POST-HOC ANALYSES BY WILCOXON TEST WITH BONFERRONI TEST

(VS. MLSI) AND SIGNIFICANCE LEVEL OF 0.05.

Scenarios Tasks MPLGP M2GP M2LGP MFLGP

A
<Fmean,0.95> ≈ ≈ − −
<Fmean,0.85> − − − −
<Fmean,0.75> − ≈ − ≈

B
<Tmean,0.95> − ≈ ≈ −
<Tmean,0.85> − ≈ − −
<Tmean,0.75> − ≈ − ≈

C
<WTmean,0.95> ≈ − ≈ ≈
<WTmean,0.85> − − ≈ ≈
<WTmean,0.75> − ≈ ≈ ≈

D <Fmax,0.95> − − − −
<Tmax,0.95> ≈ − − ≈

E <WFmean,0.95> ≈ − ≈ ≈
<WTmean,0.95> − − ≈ ≈

F
<Fmean,0.95> ≈ ≈ ≈ −
<Tmean,0.85> − − ≈ −
<WTmean,0.75> ≈ ≈ ≈ ≈

win-draw-lose 0-6-10 0-8-8 0-9-7 0-9-7
p-value with Bonferroni correction 1.53E−4 8.24E−4 0.015 0.012

performance on different tasks. In Table V, “+” denotes that
a method is significantly better than MLSI, “−” denotes that a
method is significantly worse than MLSI on a certain task, and
“≈” denotes competitive performance with MLSI 3. It can be
seen that the four compared methods are significantly inferior
to MLSI on most tasks. Specifically, MLSI is significantly
better than the three state-of-the-art methods (i.e., M2GP,
M2LGP, MFLGP) in nearly half of the tasks. The p-values
with Bonferroni correction also validate that MLSI has a
significantly better overall performance than the others since
all of them are much smaller than 0.05. These results verify
that the newly proposed multitask mechanism is very effective
in improving the performance of multitask LGP.

B. Training Efficiency

To validate the training efficiency of MLSI, we compare
the training convergence. Fig. 7 shows the test objectives
of all compared methods over evaluation times. We select
one of the most complex tasks (i.e., those with a utilization
level of 0.95) in each scenario for investigation. It can be
seen that MLSI converges faster and lower than the others
overall. Specifically, MLSI achieves better performance than
the other compared methods over the whole training process-
ing in A-<Fmean,0.95>, B-<Tmean,0.95>, D-<Fmax,0.95>
and F-<Fmean,0.95>. Although MLSI performs similarly to
other compared methods at the final stage of training in
C-<WTmean,0.95> and E-<WFmean,0.95>, MLSI has a
faster training efficiency at the early stage of training (e.g.,
before 10000 simulations) in E-<WFmean,0.95>. The results
imply that MLSI has better efficiency in designing effective
dispatching rules.

VI. FURTHER ANALYSIS

In this section, we make further analyses to answer the
following research questions:

3The similar notations are used in the rest of the paper
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Fig. 7. Test objectives during evolution. X-axis:evaluation times, Y-
axis:objective values.

• What is the effectiveness of the newly proposed riffle
shuffle and the better-parent reservation strategy?

• How does performance change with the key parameters
of MLSI (i.e., the population size of the generalist pop-
ulation and the step size of riffle shuffle η)?

• How does MLSI control the rate of knowledge transfer?
• What do MLSI individuals look like?

These questions are answered respectively as follows.

A. Component Analysis

To investigate the effectiveness of each key component of
MLSI, this section conducts a component analysis. First, to
verify the effectiveness of riffle shuffle, an MLSI variant with-
out riffle shuffle, denoted as “MLSI/RS” is developed. Second,
to verify the effectiveness of the better-parent reservation, we
replace the crossover with the better-parent reservation with
conventional crossover, which retains both of the two offspring
after mating. This variant of MLSI is denoted as “MLSI/BPR”.
Further, to verify the performance gain from genetic transfer
rather than genetic operator bias, we apply riffle shuffle and
better-parent reservation to MPLGP, but has no knowledge
transfer among tasks, denoted as “MPLGP+”. Other settings
of these two compared methods are the same as MLSI by
default. The comparative results are shown in Table VI.

First, Table VI shows that simply applying the riffle shuffle
and better-parent reservation to MPLGP is harmful to MPLGP
performance. MPLGP+ performs much worse than MLSI on
all the tasks. Since riffle shuffle is specialized for merging var-
ious building blocks from different tasks, the similar building
blocks in the parents from a single task might be unnecessarily
duplicated by riffle shuffle, which produces a large number
of redundant instructions in offspring. The results further
verify that the performance gain of MLSI is due to genetic
transfer. Second, removing riffle shuffle from MLSI reduces
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TABLE VI
MEAN (STD.) TEST PERFORMANCE OF MLSI WITH DIFFERENT

COMPONENTS AND MPLGP+. THE BEST MEAN VALUES ARE
HIGHLIGHTED BY BOLD FONT

Tasks MPLGP+ MLSI/RS MLSI/BPR MLSI
A-<Fmean,0.95> 1584.6 (21.4) − 1570 (11.27) ≈ 1570.9 (10.85)− 1567.1 (16.51)
A-<Fmean,0.85> 1118.4 (192.7)− 863.4 (2.67) ≈ 863.4 (3.62) ≈ 862.6 (2.53)
A-<Fmean,0.75> 761.3 (100.3) − 656 (1.01) ≈ 656.2 (1.25) ≈ 655.9 (1.02)
B-<Tmean,0.95> 1133.8 (23.3) − 1123.3 (18.82) − 1123.9 (13.42)− 1116.6 (11.25)
B-<Tmean,0.85> 691.2 (164.8) − 417.2 (2.53) ≈ 417.2 (2.28) ≈ 417 (3.14)
B-<Tmean,0.75> 332.4 (141.9) − 216 (1.12) ≈ 216.2 (1.12) ≈ 216.2 (1.06)

C-<WTmean,0.95> 1925.8 (302.3)− 1743.3 (22.13) ≈ 1732.3 (24.65)≈ 1735.8 (23.08)
C-<WTmean,0.85> 1670.2 (691.2)− 726.4 (5.34) − 724 (5.51) ≈ 724 (6.05)
C-<WTmean,0.75> 682.5 (192.5) − 393.2 (2.8) ≈ 392.3 (1.95) ≈ 392.3 (2.41)

D-<Fmax,0.95> 4628.9 (117.6)− 4624.5 (208.65)− 4559.2 (96.6) ≈ 4533.5 (75.13)
D-<Tmax,0.95> 1.6E4 (23142)− 4024.3 (102.35)≈ 3968 (73.01) ≈ 3994.7 (92.4)

E-<WFmean,0.95> 2856.4 (233.2)− 2722.8 (25.9) ≈ 2713.5 (21.78)≈ 2718.2 (26.33)
E-<WTmean,0.95> 4799.1 (1517)− 1734.2 (24.55) ≈ 1727.1 (26.63)≈ 1732.4 (25.78)

F-<Fmean,0.95> 1587.3 (16.5) − 1569.7 (11.88) ≈ 1568 (11.26) ≈ 1568.8 (9.34)
F-<Tmean,0.85> 671.5 (180.1) − 418.1 (2.45) − 418 (2.62) − 417.3 (3.3)

F-<WTmean,0.75> 786.6 (211.5) − 394.1 (2.65) − 393 (2.66) ≈ 392.8 (3.86)
win-draw-lose 0-0-16 0-11-5 0-13-3

mean rank 3.94 2.75 1.81 1.50
p-value 5.0E-07 0.03 0.90

the effectiveness since MLSI/RS is significantly worse than
MLSI on five tasks and has a significantly worse (higher)
mean rank than MLSI based on the Friedman rank sum test
with the Bonferroni correction. The results imply that the riffle
shuffle operator is prominent for MLSI. Third, MLSI without
the better-parent reservation performs similarly to MLSI on
average, implying that selectively retaining offspring based on
superior parents is not so crucial for MLSI.

B. Parameter Sensitivity Analysis

There are two new parameters in MLSI, which are the
population size of the generalist sub-population and step size
η of the riffle shuffle. To investigate the parameter sensitivity,
we compare the performance of MLSI with different parameter
settings. Four different MLSI versions are developed. Specifi-
cally, “MLSI-pop15”, “MLSI-pop20”, and “MLSI-pop45” set
the population size of the shared population as 15, 20, and 45
respectively. “MLSI-η5”, “MLSI-η10” and “MLSI-η20” set η
as 5, 10 and 20 respectively. When the population size of the
shared population is changed, to be fair, the population size
of other specialized sub-populations is updated accordingly
(e.g., MLSI-pop15 has specialized sub-populations with 85
individuals). Other parameters of the four methods are set the
same as MLSI.

The test performance of different settings is shown in Table
VII. The results show that the performance of all different
settings is quite similar to the default ones in most cases based
on the Wilcoxon rank sum test. Though significant differences
can be seen on a few tasks, the mean rank by the Friedman
test and the p-values with Bonferroni correction verify that
different parameters have no significant difference in terms
of overall performance on these tasks. The results verify the
performance of MLSI is robust to the two newly introduced
parameters.

C. Rate of Knowledge Transfer

When selecting parents from a merged set of individuals
that consists of generalist and specialist sub-populations, MLSI

always selects parents that are good at a certain task, no matter
where they come from. It helps MLSI flexibly adjust the rate of
knowledge transfer (i.e., selecting parents from the generalist
sub-population) in the course of evolution. To validate the
necessity of selecting a suitable rate of knowledge transfer, we
compare MLSI with different fixed transfer rates and analyze
the ratio of knowledge transfer over generations in this section.

First, we explicitly distinguish generalist and specialist sub-
populations in the crossover. We select parents from generalist
and specialist sub-population based on a fixed rate. The fixed
rate of selecting parents from the generalist sub-population is
set as 0.1, 0.2, and 0.35 respectively. When the rate is small,
the sub-populations will mainly mate within their individuals
for crossover, and thus the knowledge transfer among tasks
is weak. These compared methods are denoted as “MLSI-
fix0.1”, “MLSI-fix0.2”, and “MLSI-fix0.35” respectively. As
shown in Table VIII, when fixing the knowledge transfer rate,
the performance of all fixed-rate MLSI variants is decreased.
They have a larger mean rank than MLSI and perform signif-
icantly worse on two tasks. Furthermore, MLSI-fix0.1 has a
significantly worse overall performance than MLSI based on
the p-value with Bonferroni correction. Besides, we can see
that these fixed-rate variants have different performances on
different tasks. For example, while MLSI-fix0.35 has worse
mean performance on tasks of Scenario B, MLSI-fix0.2 is not
so effective on tasks of Scenario D. It implies that to further
improve the performance of specific tasks, a suitable transfer
rate should be deliberated.

Second, we investigate the adaptation ability of knowledge
transfer rate in MLSI, which is defined as the mean rate of
mating with generalist sub-population parents. The curves of
mating rate over generations are drawn. If the mating rate is
high, MLSI prefers to produce offspring based on the parents
from the generalist sub-population. Thus, the knowledge trans-
fer among tasks is frequent. Contrarily, the individuals from
the generalist sub-population are hardly selected by MLSI. The
specialist sub-populations mainly evolve independently.

As shown in Fig. 8, the decline in mating rate can be seen in
all scenarios. At the beginning of evolution, sharing knowledge
among tasks is very useful. Individuals in generalist sub-
populations often have superior performance, which is more
likely to produce effective offspring. However, the mating
rate decreases with generations. When heuristics become more
sophisticated, evolving them specifically is more effective than
sharing knowledge (e.g., building blocks) with other similar
tasks. Besides, if we look at the level of the mating rate, we
can also find that problems with less similar tasks have lower
mating rates. For example, Scenario F whose both optimization
objectives and utilization levels are different has a mating rate
of 0.1 at the final stage of evolution. Contrarily, other problems
in which only the objective or utilization level is different,
have a mating rate of 0.15 at the end. Based on these results,
we believe MLSI not only adjusts the transfer rate in different
stages of evolution but also decides the rate based on similarity
among tasks.
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TABLE VII
MEAN (STD.) TEST PERFORMANCE OF MLSI WITH DIFFERENT PARAMETER SETTINGS.

Tasks MLSI-pop15 MLSI-pop20 MLSI-pop45 MLSI-η5 MLSI-η10 MLSI-η20 MLSI
A-<Fmean,0.95> 1565.8 (11.6) ≈ 1569.7 (12.25) − 1569.1 (11.61) ≈ 1564.4 (8.61) ≈ 1570.7 (11.3) − 1570.3 (17.2) ≈ 1567.1 (16.51)
A-<Fmean,0.85> 862.6 (2.27) ≈ 863.5 (2.48) − 863.3 (2.41) − 863 (2.71) ≈ 863.5 (1.84) − 862.9 (2.42) ≈ 862.6 (2.53)
A-<Fmean,0.75> 656.2 (1) ≈ 656 (0.96) ≈ 655.9 (1.12) ≈ 655.8 (1.08) ≈ 656.1 (0.97) ≈ 655.7 (1.12) ≈ 655.9 (1.02)
B-<Tmean,0.95> 1115.9 (12.63) ≈ 1119.5 (19.76) ≈ 1121.3 (11.19) − 1117.9 (10.44) ≈ 1120.7 (13.14) ≈ 1120.9 (11.47) ≈ 1116.6 (11.25)
B-<Tmean,0.85> 416.5 (2.29) ≈ 416.7 (2.72) ≈ 417.1 (2.46) ≈ 417.4 (2.64) ≈ 417 (2.62) ≈ 417.3 (2.63) ≈ 417 (3.14)
B-<Tmean,0.75> 216.1 (0.83) ≈ 216.2 (1.05) ≈ 216.3 (1.01) ≈ 216.2 (1.02) ≈ 216.3 (1.25) ≈ 216.3 (1.12) ≈ 216.2 (1.06)

C-<WTmean,0.95> 1727.5 (21.91) + 1726.9 (22.4) + 1731.2 (24.44) ≈ 1729.4 (23.85) ≈ 1730.1 (23.79) ≈ 1728 (22.87) ≈ 1735.8 (23.08)
C-<WTmean,0.85> 722.4 (6.35) ≈ 723.1 (4.63) ≈ 724.4 (7.19) ≈ 723.6 (6.27) ≈ 723.8 (6.14) ≈ 723.1 (5.64) ≈ 724 (6.05)
C-<WTmean,0.75> 392.2 (2.07) ≈ 392.1 (2.3) ≈ 392.1 (2.1) ≈ 392.1 (2.54) ≈ 392.2 (2.34) ≈ 391.9 (2.09) ≈ 392.3 (2.41)

D-<Fmax,0.95> 4542.1 (74.6) ≈ 4541.8 (83.84) ≈ 4557.7 (85.67) ≈ 4559 (89.01) ≈ 4538.8 (93.97) ≈ 4549.3 (89.26) ≈ 4533.5 (75.13)
D-<Tmax,0.95> 3984.6 (94.79) ≈ 3970.2 (81.27) ≈ 3956 (85.99) + 3961.9 (93.57) ≈ 3984.2 (95.44) ≈ 3963.6 (83.82) ≈ 3994.7 (92.4)

E-<WFmean,0.95> 2714.3 (25.23) ≈ 2713.9 (25.96) ≈ 2717.7 (25.08) ≈ 2714.4 (23.89) ≈ 2712.5 (28.03) ≈ 2713.5 (20.68) ≈ 2718.2 (26.33)
E-<WTmean,0.95> 1728.9 (23.36) ≈ 1728.9 (24.42) ≈ 1728.6 (21.82) ≈ 1728.7 (22.46) ≈ 1726.8 (27.66) ≈ 1725.3 (23.76) ≈ 1732.4 (25.78)

F-<Fmean,0.95> 1569.6 (18.02) ≈ 1566.2 (11.44) ≈ 1568.4 (15.68) ≈ 1569.9 (11.14) ≈ 1564.8 (11.46) ≈ 1568.5 (11.32) ≈ 1568.8 (9.34)
F-<Tmean,0.85> 417.4 (3.23) ≈ 416.5 (2.32) ≈ 417.2 (2.5) ≈ 417.7 (2.58) ≈ 416.9 (2.37) ≈ 417.5 (3.1) ≈ 417.3 (3.3)

F-<WTmean,0.75> 392.6 (1.98) ≈ 391.8 (1.96) ≈ 392.2 (2.53) ≈ 392.3 (1.87) ≈ 392.6 (3.72) ≈ 394.1 (12.07) ≈ 392.8 (3.86)
win-draw-lose 1-15-0 1-13-2 1-13-2 0-16-0 0-14-2 0-16-0

mean rank 4.09 3.13 4.75 3.94 3.97 3.91 4.22
p-value 1.000 0.782 0.993 1.000 1.000 1.000

TABLE VIII
MEAN (STD.) TEST PERFORMANCE OF MLSI WITH FIXED TRANSFER

RATES

Tasks MLSI-fix0.1 MLSI-fix0.2 MLSI-fix0.35 MLSI
A-<Fmean,0.95> 1569.5 (11.7) ≈ 1568.6 (11.0) ≈ 1570.9 (12.3) − 1567.1 (16.5)
A-<Fmean,0.85> 864 (2.1) − 863.3 (2.4) − 863.6 (2.7) − 862.6 (2.5)
A-<Fmean,0.75> 656.4 (1.1) ≈ 656.1 (1.1) ≈ 656.2 (1.1) ≈ 655.9 (1.0)
B-<Tmean,0.95> 1120.4 (12.8) ≈ 1118.8 (12.1) ≈ 1121.7 (12.1) ≈ 1116.6 (11.3)
B-<Tmean,0.85> 417.7 (3.3) ≈ 417.3 (3.3) ≈ 417.4 (2.3) ≈ 417 (3.1)
B-<Tmean,0.75> 216.3 (0.9) ≈ 216.3 (1.3) ≈ 216.4 (1.1) ≈ 216.2 (1.1)

C-<WTmean,0.95> 1730.8 (22.5) ≈ 1739.1 (30.7) ≈ 1723.4 (24.8) + 1735.8 (23.1)
C-<WTmean,0.85> 724.6 (5.4) ≈ 725.1 (6.6) ≈ 724 (6.9) ≈ 724 (6.1)
C-<WTmean,0.75> 391.7 (2.0) ≈ 392.7 (2.4) ≈ 392.4 (2.1) ≈ 392.3 (2.4)

D-<Fmax,0.95> 4558.5 (91.1) ≈ 4586.9 (106.8) − 4532.4 (83.8) ≈ 4533.5 (75.1)
D-<Tmax,0.95> 3985.6 (89.1) ≈ 4004.9 (93.4) ≈ 3970.6 (86.2) ≈ 3994.7 (92.4)

E-<WFmean,0.95> 2722.2 (27.9) ≈ 2714.8 (25.3) ≈ 2719 (28.1) ≈ 2718.2 (26.3)
E-<WTmean,0.95> 1734.4 (25.9) ≈ 1733.6 (28.1) ≈ 1731.7 (27.5) ≈ 1732.4 (25.8)

F-<Fmean,0.95> 1573.4 (12.9) ≈ 1567.9 (12.0) ≈ 1567.6 (11.2) ≈ 1568.8 (9.3)
F-<Tmean,0.85> 418.4 (2.6) − 417.4 (2.5) ≈ 417.2 (2.3) ≈ 417.3 (3.3)

F-<WTmean,0.75> 393.9 (12.4) ≈ 393.8 (12.2) ≈ 391.8 (1.9) ≈ 392.8 (3.9)
win-draw-lose 0-14-2 0-14-2 1-13-2

mean rank 3.31 2.63 2.22 1.84
p-value 0.01 0.31 0.84

D. Example Program Analysis

To further analyze the behavior of MLSI, we investigate the
obtained programs by MLSI. Specifically, we pick the final
obtained programs for different tasks (i.e., individuals with
the best training fitness for each task) from an independent
run in Scenario A as examples, which are shown in Fig. 9.
In this figure, ovals denote functions while rectangles denote
terminals. The directed edges specify the inputs of functions.
The numbers (i.e., 0 and 1) beside the edges respectively
indicate the first or second argument for the function.

It can be seen that these outputted programs for the three
similar tasks share some similarities. First, some common
building blocks can be found in these outputted programs.
For example, these three programs share a building block of
“min(WINQ−NPT,NPT)+PT”. It implies that minimizing
the processing time (PT) and the smaller value between the
processing time of the next operation (i.e., NPT) and the
remaining total processing time in the next corresponding
machine buffer (i.e., WINQ-NPT), is a useful strategy to
minimize mean flowtime. Second, they have a similar distri-
bution of terminals. All of them utilize the processing time
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Fig. 8. The mean rate of knowledge transfer over generations of MLSI.
X-axis: generations, Y-axis: the mean rate of mating with the generalist sub-
population.

of operations and the next operation (i.e., PT and NPT), and
the total processing time and the number of operations in the
next corresponding machine buffer (i.e., WINQ and NINQ).
Additionally, at least two of the three programs include a
number of remaining operations (NOR), waiting time of an
operation (OWT), and other machine-related terminals (e.g.,
WIQ and MWT) as primitives.

Despite the similarity, we can find that the outputted
programs are specialized for different tasks respectively.
For example, outputted programs for <Fmean,0.95> and
<Fmean,0.85> mainly apply “PT” together with addition.
Contrarily, the one for <Fmean,0.75> directly minimizes
“PT” (i.e., min(PT, ∗), “*” denotes any input) in most cases.
It shows that the three programs have different building blocks
when using a terminal. Besides, the output register for specific
tasks (e.g., R0 for <Fmean,0.95>) aggregates the results from
most the graph nodes, standing for the most sophisticated
program in this LGP individual. On the contrary, the other
output registers only store the intermediate results from part
of the computer program. It implies that these programs are
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Fig. 9. The final outputted programs for different tasks from an independent run in Scenario A. The common building blocks are highlighted in dark nodes

specifically designed for a certain task. Simply seeing the
whole individual from one task as the parents of another is
likely to be ineffective.

By comparing the learnt heuristics from multitask tree-based
GP and transfer learning methods for tree-based GP [63],
[66], we find that the common building blocks in graph-based
structures can be flexibly distributed in different parts of the
graphs and can be reused multiple times without duplication,
which is different from tree-based GP whose common building
blocks appear in particular parts of a tree, and each can be
typically used by a single part of tree only. To summarise,
graph-based structures show a flexible and concise way of
reusing shared knowledge among tasks.

VII. CONCLUSIONS

The main goal of this paper was to improve the knowledge
transfer efficiency in multitask LGP methods. It has been
successfully achieved by designing a new knowledge trans-
fer mechanism that evolves shared individuals with multiple
outputs, each for one task, based on the graph-based structure.

The experiment results show that the proposed method (i.e.,
MLSI) is significantly better than the baseline method and
three state-of-the-art multitask GP methods. Further analyses
verify that the adaptation ability of transfer rate based on
the evolution process and the similarity among tasks is the
essential reason for the superior performance. These results
fully imply the great potential of graph-based structures in
multitask optimization.

The proposed knowledge transfer mechanism enriches the
methodologies in transferring knowledge, but also provides
an effective example of designing graph-based knowledge
transfer. The improvement can be easily extended to other
domains such as classification and symbolic regression to
which LGP has been applied. This paper is expected to evoke
the research interest in LGP, which is a representative graph-
based GP method but not well investigated compared to tree-
based GP.

In future work, some characteristics of MLSI will be further
investigated. For example, though MLSI can adjust the transfer
rate based on the similarity of tasks in the course of evolution,
MLSI only has a slightly better performance than fixed-rate
variants. Fully utilizing this kind of ability of MLSI should be
an important direction to further improve MLSI. Besides, the
riffle shuffle merges LGP individuals randomly, which might
be not effective enough. Developing some selective methods to
identify valuable building blocks in the riffle shuffle is another
potential direction.
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