
1

Genetic Programming for Dynamic Flexible Job
Shop Scheduling: Evolution with Single Individuals

and Ensembles
Meng Xu, Student Member, IEEE, Yi Mei, Senior Member, IEEE,

Fangfang Zhang, Member, IEEE, and Mengjie Zhang, Fellow, IEEE

Abstract—Dynamic flexible job shop scheduling is an impor-
tant but difficult combinatorial optimisation problem that has
numerous real-world applications. Genetic programming has
been widely used to evolve scheduling heuristics to solve this
problem. Ensemble methods have shown promising performance
in many machine learning tasks, but previous attempts to
combine genetic programming with ensemble techniques are still
limited and require further exploration. This paper proposes
a novel ensemble genetic programming method that uses a
population consisting of both single individuals and ensembles.
The main contributions include: 1) developing a genetic pro-
gramming method that evolves a population comprising both
single individuals and ensembles, allowing breeding between them
to explore the search space more effectively; 2) proposing an
ensemble construction and selection strategy to form ensembles
by selecting diverse and complementary individuals; and 3)
designing new crossover and mutation operators to produce
offspring from single individuals and ensembles. Experimental re-
sults demonstrate that the proposed method outperforms existing
traditional and ensemble genetic programming methods in most
scenarios. Further analyses find that the success is attributed
to the enhanced population diversity and extensive search space
exploration achieved by the proposed method.

Index Terms—heuristic learning, genetic programming, ensem-
ble, dynamic scheduling.

I. INTRODUCTION

DYNAMIC flexible job shop scheduling (DFJSS) stands
as a significant combinatorial optimisation challenge that

has received extensive interest from academia and industry
[1]–[5]. For DFJSS, two types of decision points need to be
considered: the routing and sequencing decision points [6]–
[9]. A routing decision point is when an operation is ready and
a machine needs to be selected from a number of candidate
machines. A sequencing decision point is when a machine is
available and an operation needs to be selected from its waiting
queue. To tackle the DFJSS problem, scheduling heuristics
have been widely used, typically comprising a routing rule and
a sequencing rule [10]–[12]. These rules are priority functions
used to assign priorities to available machines/operations when
meeting routing or sequencing decision points. Nonetheless,
the manual construction of such heuristics proves to be labor-
intensive and requires significant domain knowledge [13].

Meng Xu, Yi Mei, Fangfang Zhang, and Mengjie Zhang are with the
Centre for Data Science and Artificial Intelligence & School of Engineering
and Computer Science, Victoria University of Wellington, Wellington 6140,
New Zealand (e-mail: meng.xu@ecs.vuw.ac.nz; yi.mei@ecs.vuw.ac.nz; fang-
fang.zhang@ecs.vuw.ac.nz; mengjie.zhang@ecs.vuw.ac.nz).

Genetic programming (GP) has been successfully used to
automatically evolve effective scheduling heuristics for DFJSS
[14]–[18]. Most of the existing GP methods for DFJSS mainly
focus on evolving one scheduling heuristic [19], [20]. Re-
cently, there is a growing trend to learn a group of scheduling
heuristics and leverage this group to make decisions, allowing
for further exploration of the search space and the discovery of
high-quality solutions [21]. Ensemble GP (EGP) is a variant
of GP, incorporating GP with ensemble learning, which is able
to combine multiple scheduling heuristics into an ensemble to
make a decision [22]. In EGP, each scheduling heuristic in
an ensemble is expected to be different and complementary
to others [23]. The output of each scheduling heuristic in
an ensemble is then combined using an aggregation function,
such as voting or averaging, to make a final decision [24].
The goal of EGP is to improve the performance and general-
isation ability of GP by leveraging the strengths of multiple
scheduling heuristics while mitigating their weaknesses [25].
In this way, the probability of making a sub-optimal decision
in a given decision point is reduced, as the elements can
complement each other to avoid poor decisions. Consequently,
an ensemble is expected to be more stable than a single
scheduling heuristic, which can also provide confidence and
trust for users, especially in real-world applications [26]. EGP
has been applied in various domains, such as regression [27]
and classification [24], [28], [29], and has shown promising
results in terms of performance and generalisation ability.

Recently, EGP has been applied to evolve a group of
scheduling heuristics for solving scheduling problems [30]–
[33]. The existing studies about EGP for scheduling problems
are still in their early stage and can be divided into three
categories. The first category uses multiple subpopulations
to evolve scheduling heuristics simultaneously, then the best
scheduling heuristics from each subpopulation are grouped
to form an ensemble [34]. For this type of method, each
scheduling heuristic obtained is likely to be of high-quality.
However, they usually do not consider the cooperation be-
tween them, as the evolution of each scheduling heuristic is
carried out independently. Alternatively, they just consider the
cooperation of the scheduling heuristics when performing the
evaluation, not during the evolution. The second category uses
a single population to evolve scheduling heuristics, then selects
a subset of scheduling heuristics from the population in the
last generation to form the ensemble [35]. This type of method
can follow the conventional evolutionary process, consider

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2023.3334626

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on December 07,2023 at 01:24:28 UTC from IEEE Xplore. Restrictions apply.

2

population diversity (e.g., by niching), or evolve based on
different subsets of training instances to obtain a diverse set
of effective scheduling heuristics. After obtaining a group
of scheduling heuristics as candidates, this type of method
normally uses extra training instances to construct an ensemble
with the aid of some greedy selection methods. Although the
diversity issue can be considered for this type of method, they
still do not consider the cooperation between these scheduling
heuristics, and the evolution of each scheduling heuristic still
proceeds independently. Moreover, the greedy selection pro-
cess using extra training instances requires the evaluation on
more instances, which increases the computational time. The
above two categories do not consider the evolution of ensem-
bles. The third category explores the evolution of both single
individuals and ensembles [36]. However, the evolutionary
processes of single individuals and ensembles are independent.
For example, this type of method typically evolves a set of
scheduling heuristics as candidates using GP and then employs
meta-heuristic methods (e.g., genetic algorithm) to evolve an
ensemble. In such cases, single individuals and ensembles
cannot directly contribute to each other. Overall, the existing
studies on EGP for solving scheduling problems are still in
an early stage and need to be further explored. A novel
EGP method is required that has the potential to identify the
strengths of both single individuals and ensembles, and make
them mutually reinforcing. On the other hand, the lexicase
selection is a very effective technique to improve population
diversity, having the principle to evolve mutual complementary
expert individuals that are good for handling different cases
[37]. This highly motivates us to incorporate lexicase selection
and ensemble techniques so that diverse individuals can be
found by lexicase selection to form an ensemble.

This paper proposes a novel EGP method for solving
DFJSS, which contains a new ensemble construction and se-
lection strategy to select diverse individuals to form ensembles
and considers the evolution of single individuals and ensem-
bles together within a single population. Our method aims to
exploit the strengths of both single individuals and ensembles
to effectively solve the DFJSS problem. Specifically, the key
contributions of this paper are summarised as follows:

1) This paper proposes a new EGP method for DFJSS,
called EGPe, which enables the evolution between single
individuals and ensembles, offering more flexibility in
the evolutionary process and better exploration of search
space. Experimental results demonstrate that EGPe out-
performs the standard GP and existing EGP methods in
solving the DFJSS problem.

2) This paper designs a new ensemble construction and se-
lection strategy to help the proposed EGPe method select
diverse and high-quality individuals into an ensemble.
The strategy uses lexicase selection to choose diverse
individuals good at solving different cases as candidates
and then employs a new similarity-checking technique
to further enhance diversity. Experimental results verify
the effectiveness of the developed ensemble construction
and selection strategy.

3) This paper develops new crossover and mutation opera-

Start

Parent selection

Initialisation

Fitness evaluation

Iteration
stop?

Training
set

Test set

Breeding

yes no

(a) The GP hyper-heuristic for DFJSS

+

PT

WIQ

SL

- PT WIQ

routing sequencing

+

(b) Individual

Fig. 1: The flowchart depicting the GP hyper-heuristic method and a
representation example of the individual for DFJSS.

tors to facilitate the evolution between single individuals
and ensembles in EGPe. The offspring generated by
these operators can be either single individuals or ensem-
bles, resulting in more flexible breeding between single
individuals and ensembles. Experimental results verify
the effectiveness of the designed new genetic operators.

4) Further analyses show that the scheduling heuristics
in a promising ensemble perform differently but do
have some similarities, which enable them to make the
same decisions in most cases and complement each
other at particular decision points. Moreover, this paper
provides an interesting research direction that performs
evolution with single individuals and ensembles together
in ensemble learning.

II. BACKGROUND

A. GP for DFJSS

GP is a type of hyper-heuristic method [38] that has been
successfully used to learn scheduling heuristics for solving the
DFJSS problem [14], [16], [18], [39]. The process involves
two important steps: the training process and the test process
[2]. During the training process, GP is used along with a set
of training instances to evolve a scheduling heuristic [13].
This evolved scheduling heuristic is then applied to unseen
test instances to verify its generalisation ability [40].

The flowchart of the GP hyper-heuristic for evolving
scheduling heuristics to address the DFJSS problem is depicted
in Fig. 1(a). The process starts by randomly initialising a
population of individuals, where each individual represents a
scheduling heuristic for DFJSS [41]. Each scheduling heuristic
is composed of two rules: one for routing and the other for
sequencing, both represented by tree structures [20], as shown
in Fig. 1(b). WIQ represents work remaining in the queue,
PT is the processing time, and SL means the slack. After
population initialisation, fitness evaluation is carried out to
measure the performance of each individual on the training
instance(s) by making decisions on each decision point and
finally obtaining the scheduling result. The parent selection
process then selects high-quality individuals as parents for
breeding offspring for the next generation. The breeding
process involves reproduction, crossover, and mutation. This
process repeats until the termination condition is met.

B. Related Work

Ensemble learning is a widely used technique in the
machine learning community [30], [42]. Ensemble learning
[43] involves combining the decisions of multiple models to
improve the overall performance of the system. The idea is

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2023.3334626

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on December 07,2023 at 01:24:28 UTC from IEEE Xplore. Restrictions apply.

3

to leverage the diversity and complementarity of different
models to create a stronger and more accurate ensemble model
than each element model. EGP is a technique that combines
the power of GP with the idea of ensemble learning [36].
Recently, EGP has gained attention in the research community
for learning a group of scheduling heuristics [44].

In [45], NELLI-GP was proposed by extending a classical
ensemble method called NELLI, to evolve an ensemble of
scheduling heuristics for solving the job shop scheduling prob-
lem. NELLI-GP adopts a divide-and-conquer strategy in which
each scheduling heuristic in the ensemble solves a unique
subset of instances. Experiments show that an ensemble of
scheduling heuristics can be evolved that outperforms existing
scheduling heuristics and recent hyper-heuristic methods. In
[34], an ensemble of scheduling heuristics was evolved using
cooperative coevolution GP for solving the static job shop
scheduling problem and this method can produce more robust
scheduling heuristics than the classical GP. The cooperative
coevolution method contains the same number of subpopula-
tions as the number of elements in the ensemble, and each
subpopulation is used to evolve a single scheduling heuristic
for the ensemble. However, these works only consider a static
scheduling environment. Further, the individuals (scheduling
heuristics) from different subpopulations interact with each
other only when they are evaluated together as an ensemble.

Several studies have explored the use of ensemble methods
in dynamic scheduling problems. In [30], four ensemble learn-
ing methods were investigated to create ensembles of schedul-
ing heuristics for solving the dynamic scheduling problem.
The four ensemble learning methods apply simple ensemble
combinations, BagGP, BoostGP, and cooperative coevolution
GP. The results show that creating ensembles of schedul-
ing heuristics by simple ensemble combination, BagGP, and
BoostGP is able to obtain better scheduling results than the
standard GP method. In [46], a preliminary investigation about
using GP to evolve ensembles of scheduling heuristics for
solving the dynamic job shop scheduling problem was done.
The grouping is done randomly, and multiple groupings are
made for a single individual to find the overall performance
when it is part of an ensemble. However, the proposed method
does not show a significantly better performance than the
standard GP method. Some studies conducted investigations
about comparing different aggregation methods for forming
the ensemble [25], [47]. In [47], by comparing different aggre-
gation methods, it shows that the voting aggregation method
is much more stable than other aggregation methods. In [48],
the authors applied EGP and the multilevel GP on solving the
dynamic job shop scheduling problem and demonstrated that
using ensembles can improve the performance compared to
single scheduling heuristics.

In addition to these studies that focus on investigating
classical ensemble learning methods, some studies proposed
new ideas beyond this. In [49], the authors studied different
ensemble learning methods and proposed an ensemble subset
selection method to remove the elements from the ensemble
that do not contribute to its quality using extra training
instances. However, the use of extra training instances requires
additional instances and is more time-consuming. In [50],

the authors applied the niching mechanism to cooperative
coevolution GP to evolve an ensemble for the dynamic job
shop scheduling. The fitness is decided by the performance
and the diversity belonging to an ensemble by calculating
the phenotypic distance. The results show that the niched
cooperative coevolution GP method obtains similar perfor-
mance to the baseline cooperative coevolution GP methods,
but has smaller rule sizes. In [51], a new ensemble constructing
method was proposed that allows ensembles to consist not
only of scheduling heuristics but also of other ensembles.
This method can obtain better performance but takes high
computational cost.

Some studies combine GP with meta-heuristic algorithms,
first learning a set of scheduling heuristics by GP, then
learning ensembles by meta-heuristic algorithms [31]–[33].
For example, in [31], a hybrid algorithm by combining GP
and genetic algorithm was proposed to evolve an ensemble
of scheduling heuristics for solving an online one-machine
scheduling problem. This method interleaves GP and genetic
algorithm, GP is for generating scheduling heuristics and
genetic algorithm is to evolve ensembles from the scheduling
heuristics produced by the GP. This method is able to explore
different combinations of the ensemble by genetic algorithm.
However, the use of genetic algorithm to evolve ensembles
requires additional training time, and they only consider the
one-machine scheduling problem, which is less complex than
the DFJSS problem investigated in this paper.

In summary, the study in solving the scheduling problems
with GP and ensemble learning is limited. Most of the studies
are mainly about the investigation or comparison of classical
ensemble methods applied to scheduling problems, which
cannot provide significantly better performance but suggests
that the voting aggregation method can support better stability
than other aggregation methods. Moreover, the existing studies
about combining GP with ensemble technique to scheduling
problems mainly focus on evolving scheduling heuristics inde-
pendently, then grouping the evolved scheduling heuristics by
some greedy selection strategies, while rarely considering the
evolution with ensembles. To the best of our knowledge, no
study about GP considers evolution with single individuals and
ensembles together in the research area of DFJSS. By allowing
breeding between single individuals and ensembles, the search
space can be further explored, increasing the likelihood of
discovering novel and more effective scheduling heuristics. In
order to fill this research gap and improve the performance of
GP for DFJSS, we target to propose an effective EGP method.

III. PROBLEM DESCRIPTION AND MODELLING

The notations and decision variables used in this paper
are given in Table I. In DFJSS [37], the shop floor has
a set of heterogeneous machines M = {M1, ...,Mm}. A
number of jobs J = {J1, J2, ..., Jn} arrive at the shop floor
dynamically [52]–[58], which is a popular dynamic event in
real-world applications. Each job Ji has an arrival time ri, a
weight wi, a due date di, and consists of multiple operations
[Oi,1, Oi,2, ..., Oi,pi

] that need to be processed in order. Each
operation Oi,j has a workload πi,j , and can be processed by

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2023.3334626

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on December 07,2023 at 01:24:28 UTC from IEEE Xplore. Restrictions apply.

4

TABLE I: Notations and decision variables.
Notation Description

n The number of jobs
m The number of machines
Ji The i-th job
ri The arrival time of Ji
wi The weight of Ji
di The due date of Ji
pi The number of operations Ji consists of
Oi,j The j-th operation of the i-th job
πi,j The workload of Oi,j

M The machine set M = {M1, ...,Mm}
Mi,j The optional machine set for processing Oi,j , Mi,j ⊆M
Mk The k-th machine
γk The processing rate of Mk

ti,j,k The processing time of Oi,j on Mk

τk1,k2
The transport time between Mk1

and Mk2

Si,j The processing start time of Oi,j

Ci,j The processing completion time of Oi,j

Si The processing start time of Ji
Ci The processing completion time of Ji
Ti The tardiness of Ji
L A sufficiently large constant

zi,j,k1,k2
The auxiliary variable domain

an optional machine in Mi,j ⊆ M. Each machine Mk has
a unique processing rate γk. The processing time ti,j,k of
operation Oi,j on machine Mk is defined as ti,j,k = πi,j/γk.
The machines are distributed, and there is a transport time
τk1,k2

[59] to transport a job between machine Mk1
and Mk2

.
The goal of DFJSS is to find a schedule that allocates

each operation of every job to an available machine while
specifying the start time for each operation on its designated
machine [60]. This scheduling process must adhere to certain
constraints and assumptions, including operation sequencing,
non-preemptive behaviour, and so on [61].

In this paper, the objective of DFJSS is to minimise the
max-flowtime (Fmax), max-tardiness (Tmax), and mean-
weighted-tardiness (WTmean) of all jobs, respectively. The
definitions of the three objectives are as follows.

Fmax = maxni=1{Ci − ri}, Tmax = maxni=1{Ti}
WTmean = 1

n

∑n
i=1(wiTi)

where Ci is the completion time of the job Ji in the schedule,
and Ti = max{Ci − di, 0} is the tardiness of the job Ji.

The problem can be represented as follows [62]–[64]:
Minimise:

obj(·), obj(·) ∈ {Fmax, Tmax,WTmean} (1)

Subject to the following constraints:

Si,1 ≥ ri (2)

Ci,j ≥ Si,j + ti,j,kxi,j,k (3)

Si,j+1 ≥ Ci,j + τk1,k2
zi,j,k1,k2 (4)

Si,j ≤ Sa,b − ti,j,k + L · (1− yi,j,a,b,k) (5)∑mi,j

k=1 xi,j,k = 1 (6)

zi,j,k1,k2
≤ xi,j,k1 (7)

zi,j,k1,k2
≤ xi,j+1,k2 (8)

zi,j,k1,k2
≥ xi,j,k1

+ xi,j+1,k2
− 1 (9)

On individual or ensemble

Between individual and individual, individual
and ensemble, ensemble and ensemble

From individuals and ensembles

By using voting aggregation function and
multi-case fitness evaluation

StartPopulation initialisation

Individual evaluation

Ensemble evaluation

Mutation

Genetic operators

No

Parent selection

Crossover

Ensemble construction
and selection

Elitism Selection

By using multi-case fitness evaluation

By using lexicase/tournament selection

Iteration stop? End
Yes

Seed
rotation

Output individual/ensemble
with best fitness

Fig. 2: The flowchart of the proposed EGPe method.

zi,j,k1,k2
≥ 0 (10)

xi,j,k =

{
1, if Mk is chosen for Oi,j ,

0, otherwise,
(11)

yi,j,a,b,k =

{
1, if Oa,b is processed after Oi,j on Mk,

0, otherwise,
(12)

zi,j,k1,k2
=


1, if Mk1 is chosen for Oi,j

and Mk2 is chosen for Oi,j+1,

0, otherwise,
(13)

where ∀i, a = 1, . . . , n, ∀j, b = 1, . . . , pi, ∀k, k1, k2 =
1, . . . ,m. Further, L in Eq. (5) denotes a sufficiently large
constant. Constraint (2) ensures that the first operation of
each job is not allowed to be processed until the job arrived.
Constraint (3) establishes the relationship between the start
time Si,j and the completion time Ci,j of Oi,j . Constraint (4)
specifies that operation Oi,j+1 is not allowed to be processed
until its preceding operation Oi,j has completed and been
transported to the selected machine. Constraint (5) states that
each machine can only process one operation at a time,
and constraint (6) ensures that each operation can only be
processed by one of its optional machines. Constraints (7) to
(10) define the auxiliary variable domain zi,j,k1,k2 .

IV. PROPOSED METHOD

The flowchart of the proposed EGPe method is shown
in Fig. 2. Population initialisation, fitness evaluation, parent
selection, and breeding (crossover and mutation) are main
processes in GP, whereas special designs are developed for
each part. In addition, the ensemble construction and selec-
tion strategy as well as the ensemble evaluation are newly
proposed. The detailed population initialisation and the poten-
tial combinations of parents for the proposed crossover and
mutation operators can be seen in Fig. 3. It illustrates that
the population comprises both single individuals and ensem-
bles, and it presents three possible combinations of parents
for crossover and two possibilities of parents for mutation.
Overall, there are six differences between the proposed EGPe

and classical GP methods:
1) Population initialisation: EGPe initialises and maintains

a population containing both single individuals and
ensembles instead of only individuals (Section IV-A);

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2023.3334626

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on December 07,2023 at 01:24:28 UTC from IEEE Xplore. Restrictions apply.

5

population
𝑖𝑛𝑑! 𝑖𝑛𝑑" 𝑖𝑛𝑑# 𝑖𝑛𝑑$%! 𝑖𝑛𝑑$

e!"#

…

… e$

crossover

mutation

or

or

or

parents for

parent for

individual
parent

ensemble
parent

e!"# e$𝑖𝑛𝑑$%! 𝑖𝑛𝑑!

𝑖𝑛𝑑#
e!"#

(1) (2) (3)

(1) (2)

Fig. 3: The population composition and possible parent combina-
tion(s) for crossover and mutation of the proposed EGPe method.

2) Individual evaluation: EGPe uses a multi-case fitness
evaluation to assign each individual a list of case-
fitnesses and standard fitness rather than only one stan-
dard fitness (Section IV-B);

3) Ensemble Construction and Selection: EGPe uses lexi-
case selection to select individuals to form an ensemble,
which is expected to select diverse individuals that are
good at handling different cases. Additionally, a newly
proposed similarity-checking strategy is used to further
ensure the diversity and complementarity of elements in
the ensemble (Section IV-C);

4) Ensemble evaluation: EGPe uses a multi-case fitness
evaluation to assign each ensemble a list of case-
fitnesses and standard fitness (Section IV-D);

5) Genetic operators: EGPe proposes new crossover and
mutation operators to generate offspring which allows
both individual(s) and ensemble(s) to be parent(s). Also,
the generated offspring can be either individual(s) or
ensemble(s) (Section IV-E);

6) Output: EGPe allows an individual or ensemble as the
final output, depending on which one has the best
training performance, while classical GP methods output
an individual as the final result and traditional EGP
methods output an ensemble as the final result. In other
words, the output of EGPe is more flexible.

A. Population Initialisation

Different from classical GP methods which hold a popu-
lation of individuals only, our method initialises and main-
tains a population P of both single individuals Φ =
{ind1, · · · , indn} and ensembles ∆ = {en+1, · · · , eN},
P = Φ ∪∆, where N represents the population size. During
the population initialisation process, n single individuals Φ
are first initialised by the ramped-half-and-half method [65].
Following that, the individual evaluation process gives each
individual a list of case-fitnesses and standard fitness based on
the current training instance by multi-case fitness evaluation
[37] (details will be shown in Section IV-B). Then, based on
the case-fitnesses of each individual, the ensemble construction
and selection process selects diverse individuals to form N−n
ensembles ∆ (details will be shown in Section IV-C). In this
way, we finish the population initialisation using not only
individuals but also ensembles to fill the whole population.

B. Individual Evaluation

The process of individual evaluation involves using multi-
case fitness evaluation to assign a list of case-fitnesses and

Algorithm 1: Ensemble construction and selection.
Input: Individual set: Φ; Ensemble size: s; Number of cases for

similarity-checking: h; Similarity threshold: ζ.
Output: An ensemble of scheduling heuristics: ei.

1 ei ← ∅;
2 times← 0;
3 while size(ei) < s & times < 3 ∗ s do
4 inda ← LexicaseSelection(Φ);
5 oa ← CaseOrder(inda);

// Similarity-checking
6 ηa,b ← 0;
7 for indb ∈ ei do
8 ob ← CaseOrder(indb);
9 for k = 1→ h do

10 if oa[k] == ob[k] then
11 ηa,b ← ηa,b +

c−k−1
c
· P (oa[k], ob[k]);

12 end
13 end
14 end
15 if η ≤ ζ then
16 ei ← ei ∪ inda;
17 end
18 times← times+ 1;
19 end
20 return ei;

standard fitness to each individual in the population [37]. In
each generation, a new training instance consisting of m jobs
is used for evaluation. To obtain the list of case-fitnesses, the
instance is divided into a number of cases based on the jobs.
Specifically, if we intend to divide the instance into c cases,
the m jobs are split into c groups, with each group containing
g = m/c jobs based on their arrival time. This strategy ensures
that each case contains the same group of jobs, making it
fair to compare the case-fitnesses between individuals. The
calculation equation is different according to the objective
being optimised.

For example, when considering the mean-flowtime as the
objective, the case-fitness cf i(x) for the ith case of individual
indx is computed using Eq. (14). The standard fitness is
determined as the mean of the case-fitness values, as depicted
in Eq. (15).

cf i(x) =
1

g

g×i∑
j=g×(i−1)+1

(Cj − rj). (14)

sfmean =
1

c

c∑
i=1

cf i. (15)

When targeting the max-tardiness as the objective, the case-
fitness cf i(x) for the ith case of individual indx is calculated
using Eq. (16). The standard fitness is computed as the
maximum value among the case-fitnesses, as presented in Eq.
(17).

cf i(x) = max
j∈{g×(i−1)+1,...,g×i}

Tj . (16)

sfmax = max {cf1, cf2, · · · , cf c}, (17)

The case-fitnesses are used for lexicase selection, while the
standard fitness is used for elitism selection and tournament
selection. More information about the multi-case fitness eval-
uation can be found in [37].

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2023.3334626

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on December 07,2023 at 01:24:28 UTC from IEEE Xplore. Restrictions apply.

6

C. Ensemble Construction and Selection

The ensemble construction and selection process selects
individuals to construct ensembles. The goal of ensemble
construction and selection is to choose diverse and com-
plementary individuals for constructing each ensemble. It
involves two parts: lexicase selection and similarity-checking.
The pseudo-code of forming an ensemble by the ensemble
construction and selection is shown in Algorithm 1. At the
beginning, the ensemble ei is empty (line 1). To achieve
diverse and complementary individuals for an ensemble, we
first use lexicase selection to select individuals [37] (line 4). By
lexicase selection, we expect to select a diverse set of expert
individuals that are good at handling different cases. Every
time a candidate individual is selected and ready to be added
to the ensemble, the similarity-checking process is triggered
to check whether the selected candidate individual is good at
handling different cases from the individuals that are already
in the ensemble.

To be specific, as the individual is selected by lexicase
selection through a sequence of cases, it is expected to perform
well on the cases that rank front in the case sequence. For
example, we consider 5 cases and select an individual inda
based on the case sequence oa = [2, 1, 5, 3, 4]. Among these
5 cases, this individual is expected to perform the best on
the 2nd case (as oa[1] = 2), followed by the 1st case (as
oa[2] = 1), and finally the 4th case (as oa[5] = 4). Further,
we believe that different cases have different importances. In
this case, every time an individual is added to the ensemble,
the case sequence oa used for the lexicase selection is also
recorded. Then, we check the similarity between the top h
cases of the case sequence of the candidate individual and that
of all the individuals in the ensemble (line 11). Only when the
individual is selected using different cases (i.e., the similarity η
is smaller than a threshold ζ), it can be added to the ensemble
(line 16). Here, the threshold ζ is set to 0, which means that
we expect elements in the ensemble to be selected based on
totally different top h cases of the case sequence.

For example, if we consider that the first 2 cases (h = 2)
play more important roles, then we perform the similarity-
checking between individuals by comparing whether the first
2 cases are the same. Meanwhile, if we set the ensemble size
to s, then when there have been s individuals added to the
ensemble or 3 ∗ s individual additions have been tried, the
process is finished and an ensemble is obtained. Specifically,
the similarity ηa,b between individuals inda and indb is
calculated as Eq. (18).

ηa,b =

h∑
k=1

c− k − 1

c
· P (oa[k], ob[k]) (18)

where P (oa[k], ob[k]) is a decision variable, which is 1 if the
kth case oa[k] of individual inda equal to the kth case ob[k]
of individual indb, and 0 otherwise.

D. Ensemble Evaluation

At each generation, both single individuals and ensembles
are evaluated on the same training instance(s). Since an

ensemble consists of multiple individuals (i.e., scheduling
heuristics), an aggregation method is required to make a
decision at each decision point. In this paper, we adopt the
voting strategy [24] to make the final decision. The voting
strategy selects the operation/machine that received the most
votes from all the scheduling heuristics in the ensemble. Same
to the individual evaluation, we use the multi-case fitness
evaluation [37] to evaluate each ensemble. After ensemble
evaluation, the standard fitness and a list of case-fitnesses of
each ensemble are obtained.

E. Genetic Operators

During the evolutionary process, tournament selection is
used to select parents, which allows both single individuals
and ensembles to be chosen based on their standard fitnesses.
Crossover and mutation operators are commonly used to
generate offspring in GP. We develop novel crossover and
mutation operators, which can be applied to both single
individuals and ensembles to generate offspring. In addition,
in order to explore a wider range of ensemble combinations,
the proposed ensemble construction and selection in Section
IV-C enables the generation of ensemble offspring by selecting
individuals from the current generation to form ensembles.
The details about the newly proposed crossover and mutation
operators are shown as follows.

1) Crossover: Crossover requires two parents to generate
offspring. In our proposed EGPe method, the selected two
parents have three possible combinations, i.e., individual and
individual, individual and ensemble, or ensemble and ensem-
ble:

• If the two parents are both individuals, the conventional
tree swapping crossover [66] is adopted to generate two
offspring, and the two offspring are individuals.

• If one parent is an individual and the other is an ensemble,
then one offspring is generated by randomly selecting
an individual from the ensemble to do tree swapping
crossover between this individual and the other individual
parent. The generated offspring is an individual. The
other offspring is generated by randomly replacing an
individual of the ensemble with the individual parent.
This offspring is an ensemble. The detailed process is
shown in Fig. 4.

• If the two parents are both ensembles, then two offspring
are generated by randomly selecting an individual from
each ensemble and swapping them. Both offspring are
ensembles. The detailed process is shown in Fig. 5.

2) Mutation: Mutation generates offspring from a single
parent. There are two situations depending on the parent,
individual or ensemble:

• If the parent is an individual, then the standard subtree
mutation [66] is adopted to generate offspring, and the
offspring is also an individual.

• If the parent is an ensemble, then we randomly select
an individual from the ensemble and apply the standard
subtree mutation to generate an offspring. The generated
offspring is an individual. The detailed process is illus-
trated in Fig. 6.

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2023.3334626

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on December 07,2023 at 01:24:28 UTC from IEEE Xplore. Restrictions apply.

7

Crossover
point

Crossover
point

Parent A: individual Parent B: ensemble
Individual 1 Individual 2

random random

random

Offspring A: individual
Offspring B: ensemble

Individual 1 Individual 2

routing sequencing

Fig. 4: The crossover process between an individual and an ensemble.

Crossover
point

Crossover
point

Parent A: ensemble Parent B: ensemble
Individual 1 Individual 2

random random

Individual 1 Individual 2

Offspring A: ensemble Offspring B: ensemble
Individual 1 Individual 2Individual 1 Individual 2

Fig. 5: The crossover process between two ensembles.

Note that for mutation, the generated offspring is a single
individual regardless of whether the parent is an individual or
an ensemble. The reason for allowing only individuals rather
than ensembles as offspring is that in addition to producing
ensemble offspring that can be inherited to the next generation,
we also want to explore more ensemble structures by randomly
combining the generated offspring to form different ensembles
based on the proposed ensemble construction and selection
strategy. Therefore, in order to leave some place for new
ensembles while maintaining the ratio of single individuals
and ensembles in the population at the same time, only
individuals are allowed as offspring for mutation. In addition,
to further maintain the same ratio of single individuals and
ensembles in the population, the proposed method limits the
number of ensembles to a fixed number N −n. That is, when
the generated ensembles reach N − n, the proposed method
ignores the generated ensembles and only keeps the generated
individuals as offspring.

V. EXPERIMENT DESIGN

The DFJSS simulation [41] is used to simulate different job
shop scheduling systems with varying difficulties. We consider
a DFJSS problem with 10 heterogeneous machines, whose
processing rates are sampled from the range [10, 15]. The

Mutation
point

Parent: ensemble
Individual 1 Individual 2

random

random

Offspring: individual

Fig. 6: The mutation process for an ensemble parent.

machines are located at different positions on the shop floor.
When transferring operations from one machine to another,
the transportation time between machines is sampled from the
range [7, 100]. We consider dynamic and large-scale DFJSS
scenarios with 6000 jobs continuing to arrive at the shop floor.
The arrival time of the jobs follows a Poisson process, i.e.,
the gap between subsequent arrivals follows an exponential
distribution. Also, for each job, a due date is assigned to 1.5
times of its processing time plus arrival time. The importance
of each job is represented by its weight. The higher the weight,
the more important a job is. In the experiments, 20%, 60%,
and 20% of the jobs are given weights 1, 2, and 3, respectively.
To be noticed, the first 1000 jobs are used as warm-up jobs
to obtain a stable scheduling system. Each job consists of a
number of operations to be completed in sequence. For each
job, the number of operations is sampled between 2 and 10.
Each operation has a workload, which is sampled from the
range [100, 1000]. The processing time of an operation by a
machine is then calculated by dividing the workload of the
operation by the processing rate of the machine.

In the simulation, the utilisation level is an important factor
to reflect how busy the job shop is. A higher utilisation
level denotes a busier job shop. In this work, we consider
six scenarios by considering two different utilisation levels
(0.85 and 0.95) and three different objectives (Fmax, Tmax,
and WTmean). For example, the scenario <Fmax,0.85> rep-
resents a DFJSS simulation considering the objective max-
flowtime (Fmax) and a utilisation level of 0.85.

To validate the effectiveness of the presented EGPe method,
this paper compares it against the following traditional and
ensemble GP algorithms: GP [66], Bagging GP (BagGP)
[49], cooperative coevolution GP (CCGP) [34], DivNichGP
[35], multidimensional multiclass GP with multidimensional
populations (M3GP) [67], and ensemble GP (eGP) [36]. The
details about these comparison methods are shown in the
supplementary file. The reasons to select these algorithms
as the comparison methods are because: 1) GP is a typical
method to the DFJSS problem, and is widely used as a
benchmark in this field; 2) BagGP is a variation that applies
a classical ensemble learning technique (Bagging) to GP; 3)
CCGP, DivNichGP, M3GP, and eGP are effective GP-based
methods for evolving ensembles of heuristics.

Table II exhibits the terminals and functions utilised for

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2023.3334626

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on December 07,2023 at 01:24:28 UTC from IEEE Xplore. Restrictions apply.

8

TABLE II: The description of terminals and functions.
Terminal Description

TIS time stay in the system = t - arrivalTime
W the job weight

NOR the remaining operation number of the job
WKR the remaining work
rDD the relative due date = DD - t
SL the slack
PT the processing time for the operation

OWT the waiting time for the operation = t - ORT
NPT the median processing time for the succeeding operation

MWT the waiting time for the machine = t - MRT
NIQ the operation number in the machine waiting queue
WIQ the total work in the machine waiting queue

TRANT the transportation time
Functions max,min,+,−,×, protected /
* t: current time; arrivalTime: job arrival time; DD: due date; ORT: ready

time of operation; MRT: ready time of machine;

TABLE III: The configuration of parameters for GP methods.
Parameter Value

Initialisation method Ramped half and half
Initial maximum/minimum tree depth 6 / 2

Population size 1000
Maximal number of evaluations 50000

Maximal tree depth 8
Elitism individual/ensemble 8 / 2

Crossover/mutation rate 0.8 / 0.2
Non-terminal/terminal selection rate 0.9 / 0.10

Parent selection Tournament selection

Ensemble construction and selection Tournament selection
/Lexicase selection

Ensemble from offspring probability 0.3

constructing individuals in this work. The terminals encompass
attributes linked to jobs (i.e., TIS, W, NOR, and WKR),
operations (i.e., rDD, SL, PT, OWT, and NPT), machines
(i.e., MWT, NIQ, and WIQ), and transportation (i.e., TRANT).
Regarding the functions, the operators max and min each re-
quire two arguments and produce the maximum and minimum
values among these arguments, respectively. The arithmetic
operators accept dual arguments. The “/” operator is protected,
yielding a result of 1 when divided by zero. The parameter
configurations for all GP methods can be found in Table III.
Specifically, an ensemble size of 5 is set for EGPe, as previous
research has demonstrated that this ensemble size is able to
provide promising performance, and increasing the ensemble
size does not yield significant improvements in results [21],
[68].

VI. EXPERIMENTAL RESULTS

A. Sensitivity Analysis

To examine the impact of the number of ensembles on the
proposed EGPe method, a sensitivity analysis was conducted.
Fig. 7 presents violin plots illustrating the test performance of
30 runs of the proposed EGPe method with varying numbers
of ensembles (20, 40, 60, 80, and 100) in the population across
six scenarios. To be noticed, the number of single individuals
in the population changes as the number of ensembles changes.
For example, when we consider 20 ensembles, the number of
single individuals in the population will be 1000− 20× 5 =
900. The black curves in the figure represent the trend of the
mean test performance as the number of ensembles increases.
It is evident that the effect of the number of ensembles on the
test performance varies across different scenarios.

<Fmax, 0.95> <Tmax, 0.95> <WTmean, 0.95>

<Fmax, 0.85> <Tmax, 0.85> <WTmean, 0.85>

20 40 60 80 100
340

350

360

370

380

420

440

460

480

700

750

775

800

825

850

875

1290

1320

1350

1350

1400

1450

Te
st

 F
itn

es
s

EGPe−20 EGPe−40 EGPe−60 EGPe−80 EGPe−100

20 40 60 80 100

20 40 60 80 100

20 40 60 80 100

20 40 60 80 100

20 40 60 80 100

ensembles in the population
Fig. 7: The violin plots of the test performance of 30 runs of
the proposed EGPe with different ratios of single individuals and
ensembles on 6 scenarios.

Moreover, Table IV provides the mean and standard devia-
tion of the test performance for EGPe using different numbers
of ensembles in the population across 30 independent runs
in the six scenarios. To rank the EGPe method with varying
numbers of ensembles, we conducted the Friedman test [69].
The results indicate that the EGPe method with 40 ensembles
achieved the highest rank, followed by 60, 20, 80, and 100
ensembles, respectively. Hence, we observe that the EGPe

method with 40 ensembles delivers the best performance
among the tested parameters. Subsequent sections will focus
on further analyses using the EGPe method with 40 ensembles.
To simplify the description, in the subsequent sections we use
EGPe to denote EGPe with 40 ensembles.

B. Test Performance

Table V gives the mean and standard deviation of the test
performance derived from 30 independent runs of the EGPe

method and compared methods across six DFJSS scenarios.
We employ the Wilcoxon rank sum test [70] to perform
comparisons, where EGPe is compared with GP, BagGP,
CCGP, DivNichGP, M3GP, and eGP, respectively. The results
are considered significant when the obtained p-value is less
than 0.05 and a smaller (better) mean test performance is
given. The symbols “↑/↓/=” next to the results of EGPe in the
table indicate whether the results are significantly better than,
worse than, or comparable to the results of each algorithm
located to the left of EGPe. In the case of the <Fmax, 0.85>
scenario (first row of the table), the (=)(↑)(↑)(↑)(↑)(↑) for
EGPe indicates that EGPe shows no significantly different
performance from that of GP, performs significantly better than
BagGP, CCGP, DivNichGP, M3GP, and eGP. In addition, the
Friedman test [69] is conducted to rank these methods.

From Table V, it is observed that EGPe performs sig-
nificantly better than DivNichGP on two scenarios and is
comparable to DivNichGP on the remaining four scenarios.
Compared to standard GP, EGPe outperforms it on three out
of six scenarios. For the remaining three scenarios, EGPe per-
forms similarly to GP but with better mean test performance
and smaller standard deviation. Moreover, EGPe significantly
outperforms BagGP, CCGP, M3GP, and eGP on all six scenar-
ios. In addition, the outcomes of the Friedman test presented in
Table V indicate that EGPe ranked first, followed by compared
methods with the order DivNichGP, GP, eGP, BagGP, CCGP,

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2023.3334626

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on December 07,2023 at 01:24:28 UTC from IEEE Xplore. Restrictions apply.

9

TABLE IV: The mean and standard deviation test performance of the EGPe method with different numbers of ensembles in the population
through 30 independent runs across 6 scenarios.

Scenario EGPe-20 EGPe-40 EGPe-60 EGPe-80 EGPe-100
< Fmax, 0.85 > 1297.57(24.33) 1296.30(15.68) 1296.95(18.93) 1294.92(17.83) 1307.81(23.21)
< Fmax, 0.95 > 1382.50(24.17) 1380.17(32.67) 1372.36(18.27) 1387.91(27.49) 1385.42(34.20)
< Tmax, 0.85 > 700.98(16.23) 704.40(13.83) 704.29(17.65) 705.48(15.23) 709.33(21.96)
< Tmax, 0.95 > 812.95(20.88) 807.93(16.10) 808.15(17.46) 819.59(24.45) 812.00(22.79)

< WTmean, 0.85 > 352.60(5.69) 354.06(9.25) 355.33(8.71) 358.09(8.45) 357.10(8.93)
< WTmean, 0.95 > 440.00(11.06) 436.66(8.59) 441.02(10.15) 445.02(13.91) 447.20(14.51)

Average rank 2.5 1.83 2.33 4 4.33

TABLE V: The mean and standard deviation performance of the EGPe and compared methods on unseen test instances through 30 independent
runs across 6 scenarios.

Scenario GP BagGP CCGP DivNichGP M3GP eGP EGPe

< Fmax, 0.85 > 1304.36(23.96) 1338.32(20.62) 1354.59(36.46) 1305.82(15.66) 1558.49(72.74) 1322.48(25.00) 1296.30(15.68)(=)(↑)(↑)(↑)(↑)(↑)
< Fmax, 0.95 > 1388.71(27.11) 1446.07(31.94) 1472.51(87.37) 1389.39(27.44) 1768.12(298.25) 1418.06(52.46) 1380.17(32.67)(↑)(↑)(↑)(↑)(↑)(↑)
< Tmax, 0.85 > 711.58(14.85) 742.77(13.18) 768.02(40.37) 705.16(14.90) 918.16(54.20) 722.19(24.10) 704.40(13.83)(↑)(↑)(↑)(=)(↑)(↑)
< Tmax, 0.95 > 816.22(18.08) 874.25(12.31) 899.91(71.35) 813.72(20.42) 1082.08(99.83) 833.77(23.87) 807.93(16.10)(↑)(↑)(↑)(=)(↑)(↑)

< WTmean, 0.85 > 354.89(9.53) 370.13(6.23) 361.58(14.27) 352.62(7.33) 430.99(13.87) 358.15(8.29) 354.06(9.25)(=)(↑)(↑)(=)(↑)(↑)
< WTmean, 0.95 > 440.69(10.79) 457.32(5.26) 446.36(10.04) 439.35(9.10) 531.80(25.51) 443.74(11.48) 436.66(8.59)(=)(↑)(↑)(=)(↑)(↑)

Improvement 0.73% 4.88% 5.56% 0.40% 20.52% 2.16% -
Average rank 2.67 5.33 5.67 2.17 7.0 4.0 1.17

and M3GP. More precisely, the average improved percentage ρ
of the proposed EGPe over each comparison method A across
the 6 scenarios are calculated based on the Eq. (19) and shown
at the bottom of Table V. The reason why BagGP, CCGP,
M3GP, and eGP perform worse than the proposed EGPe and
GP is that these methods do not consider the problem-specific
characteristics of DFJSS. They neglect the commonly used
seed rotation strategy in DFJSS, which plays a crucial role in
its optimisation process.

ρ(EGP e|A) =
1

6

6∑
i=1

(Obj(A)−Obj(EGP e))

Obj(A)
(19)

To further compare the proposed EGPe with standard GP
and DivNichGP which are the second and third places, Fig. 8
shows their convergence curves of the mean test performance
of 30 runs from the number of evaluations 5000 to the number
of evaluations 50000 on 6 scenarios. As we can see, compared
to standard GP, EGPe converges faster and ultimately converge
to better results on scenarios <Tmax,0.85>, <Fmax,0.95>,
and <Tmax,0.95>. For the remaining scenarios, the curves
of standard GP and EGPe are quite close to each other but
EGPe finally gives smaller (better) test performance when
arriving at 50000 evaluations. Compared to DivNichGP, except
for the scenario <WTmean,0.85>, EGPe converges faster and
gives better test performance on most of the generations on
the remaining scenarios. Overall, the results confirm that the
proposed EGPe method is more effective than standard GP,
BagGP, CCGP, DivNichGP, M3GP, and eGP.

C. Effectiveness of Ensemble Construction and Selection

To study the effect of the proposed ensemble construc-
tion and selection on the proposed method, we compare the
proposed EGPe method to a variation of EGPe that uses
the standard tournament selection to select elements to form
ensembles (not using the proposed ensemble construction
and selection), which is named EGPt. Table VI provides
the mean and standard deviation test performance resulting
from 30 independent runs of both EGPt and EGPe across 6

<Fmax, 0.95> <Tmax, 0.95> <WTmean, 0.95>

<Fmax, 0.85> <Tmax, 0.85> <WTmean, 0.85>

10000 20000 30000 40000 50000 10000 20000 30000 40000 50000 10000 20000 30000 40000 50000

10000 20000 30000 40000 50000 10000 20000 30000 40000 50000 10000 20000 30000 40000 50000

360

370

380

390

400

440

450

460

470

480

490

720

750

780

810

800

840

880

920

960

1320

1360

1400

1400

1450

1500

1550

The number of evaluations

Te
st

 p
er

fo
rm

an
ce

GP DivNichGP EGPe

Fig. 8: The convergence curves of the mean test performance of 30
runs of standard GP, DivNichGP, and EGPe on 6 scenarios.

TABLE VI: The mean and standard deviation of test performance
from 30 independent runs of EGPt and EGPe across 6 scenarios.

Scenario EGPt EGPe

< Fmax, 0.85 > 1306.09(23.11) 1296.30(15.68)(=)
< Fmax, 0.95 > 1421.66(184.43) 1380.17(32.67)(↑)
< Tmax, 0.85 > 710.56(16.87) 704.40(13.83)(=)
< Tmax, 0.95 > 820.41(21.94) 807.93(16.10)(↑)

< WTmean, 0.85 > 354.21(9.22) 354.06(9.25)(=)
< WTmean, 0.95 > 440.41(8.94) 436.66(8.59)(↑)

scenarios. Notably, EGPe outperforms EGPt on 3 scenarios
and demonstrates no statistical difference in comparison to
EGPt within the remaining 3 scenarios. Moreover, on the
3 scenarios with similar performance, the proposed EGPe

method gives numerically better performance (smaller mean
test objective value) than EGPt. Through the comparison of
these two methods, the effectiveness of the proposed ensemble
construction and selection strategy is verified.

D. Effectiveness of Genetic Operators

To test the effectiveness of the presented genetic operators
that consider single individuals and ensembles together, we
conducted experiments comparing EGPe to a variation of
EGPe with classical crossover and mutation operators, which

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2023.3334626

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on December 07,2023 at 01:24:28 UTC from IEEE Xplore. Restrictions apply.

10

TABLE VII: The mean and standard deviation of test performance
from 30 independent runs of EGPc and EGPe across 6 scenarios.

Scenario EGPc EGPe

< Fmax, 0.85 > 1302.21(25.29) 1296.30(15.68)(=)
< Fmax, 0.95 > 1388.67(31.58) 1380.17(32.67)(=)
< Tmax, 0.85 > 707.28(13.74) 704.40(13.83)(=)
< Tmax, 0.95 > 820.45(24.65) 807.93(16.10)(↑)

< WTmean, 0.85 > 357.16(7.86) 354.06(9.25)(↑)
< WTmean, 0.95 > 440.69(12.11) 436.66(8.59)(=)

we named EGPc. The EGPc method only allows individuals
to be parents and produce individual offspring, while the
proposed ensemble construction and selection strategy is still
used to populate the ensemble portion of the population. Table
VII presents the mean and standard deviation test performance
by 30 runs of EGPc and EGPe on 6 scenarios. The results show
that EGPe outperforms EGPc on 2 scenarios and performs
comparably on the other 4 scenarios. These findings confirm
the effectiveness of the presented genetic operators (new
crossover and mutation) in generating high-quality offspring
by leveraging the advantages of both single individuals and
ensembles.

VII. FURTHER ANALYSES

A. Performance of Ensemble and Elements

We typically expect an ensemble to perform better than
each individual element within it. In this case, to analyse
the performance relationship between the ensemble and its
individual elements, we create the scatter plots (x, y) with the
ensemble performance as the x and the element performance
as the y. The visualisation is based on the 30 runs from
the number of evaluations 40000 to 50000, where EGPe

produces the ensemble as the best solution for every 1000
evaluations. The scatter plots of the training performance of
the ensemble versus the training performance of the element
from the number of evaluations 40000 to 50000 of 30 runs by
EGPe on 6 scenarios are shown in Fig. 9. To be noticed, the
points in red colour represent that the ensemble outperforms
the corresponding individual element and the line denotes
the reference line of y = x which makes it easy to see
the performance relationship between the ensemble and its
individual elements. It can be seen from Fig. 9, the learned
ensembles always outperform their individual element on the
training instances.

However, we observe different phenomena on unseen in-
stances. Fig. 10 shows the scatter plots of the test performance
of the ensemble versus the test performance of the element
from the number of evaluations 40000 to 50000 of 30 runs
by EGPe on 6 scenarios. Similarly, the points in red colour
represent that the ensemble outperforms the corresponding
individual element, while the points in blue colour indicate
that the ensemble performs worse than the corresponding in-
dividual element. As we can see, it is possible for an individual
element to outperform the ensemble it belongs to on the unseen
test set. Nevertheless, the visualisation indicates that in most
cases, the ensemble still outperforms the individual element
by a significant margin.

This finding emphasises the importance of carefully select-
ing elements to ensure that the formed ensemble can achieve

<Tmax, 0.95> <WTmean, 0.85> <WTmean, 0.95>

<Fmax, 0.85> <Fmax, 0.95> <Tmax, 0.85>

1000 1200 1400 510 540 570 600 600 650 700 750 800

13001400150016001700 1400 1600 1800 800 900 1000 1100

800

900

1000

1100

600

650

700

750

800

1400

1600

1800

510

540

570

600

1300

1400

1500

1600

1700

1000

1200

1400

Ensemble train performance

E
le

m
en

t t
ra

in
 p

er
fo

rm
an

ce

Fig. 9: The scatter plots of the train performance of the ensemble
versus that of its each element from the number of evaluations 40000
to 50000 of 30 runs by EGPe on 6 scenarios.

<Tmax, 0.95> <WTmean, 0.85> <WTmean, 0.95>

<Fmax, 0.85> <Fmax, 0.95> <Tmax, 0.85>

775 800 825 850 875 340 350 360 370 380 390 425 450 475 500 525

1260 1290 1320 1350 1380 1350 1400 1450 1500 690 720 750 780

690

720

750

780

425

450

475

500

525

1350

1400

1450

1500

340

350

360

370

380

390

1260

1290

1320

1350

1380

775

800

825

850

875

Ensemble test performance

E
le

m
en

t t
es

t p
er

fo
rm

an
ce

Fig. 10: The scatter plots of the test performance of the ensemble
versus the test performance of its each element from the number of
evaluations 40000 to 50000 of 30 runs by EGPe on 6 scenarios.

better performance. This also suggests that a combination
of single individuals and ensembles is necessary to achieve
good performance. Moreover, it suggests that the ensemble
construction and selection process may not fully capture the
underlying characteristics of the problem for the unseen data,
which could be explored in future research to improve the
ensemble construction and selection strategy.

B. Ensemble Win Percentage

The proposed method incorporates both single individuals
and ensembles in its population, it is interesting to track which
type of solution, i.e., individual or ensemble, performs better at
each generation, as well as the percentage of times each type
of solution achieves the best performance across 30 runs. Fig.
11 illustrates the percentage of times an ensemble achieves
the best performance every 1000 evaluations of EGPc and
EGPe across six scenarios of 30 runs. For different scenarios,
we observe different phenomena. For the scenarios with max-
objective, at the beginning, the percentage of ensembles that
achieve the best solution is low, but as evolution progresses,
the percentage of ensembles that achieve the best solution
increases, reaching a peak of approximately 50% around at
sixth generation. Subsequently, the percentage of ensembles
achieving the best solution decreases but remains stable at
around 10% towards the end of evolution. For the scenarios
with mean-objective, a similar trend in the curve was ob-
served, but the corresponding values were relatively large. To
be specific, initially, the proportion of ensembles that reach

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2023.3334626

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on December 07,2023 at 01:24:28 UTC from IEEE Xplore. Restrictions apply.

11

<Fmax, 0.95> <Tmax, 0.95> <WTmean, 0.95>

<Fmax, 0.85> <Tmax, 0.85> <WTmean, 0.85>

0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000

0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000
0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

0.0

0.1

0.2

0.3

0.4

0.0

0.1

0.2

0.3

0.4

0.1

0.2

0.3

0.4

0.0

0.2

0.4

The number of evaluations

E
ns

em
bl

e
w

in
 p

er
ce

nt
ag

e

Fig. 11: The convergence curves of the percentage of the ensemble
is output as the best solution every 1000 evaluations on 6 scenarios
of 30 runs by the proposed EGPe.

<WTmean, 0.95>

<Tmax, 0.95>

<Fmax, 0.95>

0 10000 20000 30000 40000 50000

0 10000 20000 30000 40000 50000

0 10000 20000 30000 40000 50000
0

10

20

30

0

10

20

30

0

10

20

30

The number of evaluations

N
um

be
r

better similar worse

Fig. 12: The number of runs that ensembles are significantly better
and worse than, or comparable to individuals out of 30 runs every
1000 evaluations on 3 scenarios of EGPe.

the best solution is low. However, as evolution continues,
this proportion gradually increases, peaking at approximately
80% by the sixth generation. Subsequently, the percentage of
ensembles attaining the best solution declines but stabilises
at around 20% towards the end of the evolutionary process.
This is a high proportion considering that the proportion of
ensembles in the entire population is only 4.8%. By tracking
the performance of each solution type and the percentage of
times each type achieves the best performance, we suggest
that a dynamic adjustment strategy to change the proportion
of ensembles and individuals in the population can help to
optimise the population and improve overall solution quality,
which can be explored in the future. In addition to this, the
above results show that the ensemble has a more pronounced
role on the scenarios with mean-objective. In this case, we
suggest to further analyse the difference between different ob-
jectives and design specific strategies for different objectives.

Furthermore, to provide a more intuitive understanding of
the results, we present the number of runs in which ensembles
are significantly better, worse, or comparable to individuals
in the population out of 30 runs every 1000 evaluations on
six scenarios of EGPe, which is shown as Fig. 12. It can be
seen that the distinction is not only scenario-dependent but
also changes with the evolutionary process. To be specific, in
scenarios with a max-objective, ensembles outperform individ-
uals in most cases during the early stages of evolution. As the
evolution progresses, the frequency of ensembles outperform-
ing individuals decreases, while the frequency of ensembles
behaving similarly to individuals increases. In the late stages
of evolution, ensembles perform significantly better than indi-

Number of evaluations 1000 Number of evaluations 25000 Number of evaluations 50000

1000 2000 3000 4000 5000 1000 2000 3000 4000 5000 1000 2000 3000 4000 5000
0.000

0.002

0.004

0.006

0.000

0.001

0.002

0.003

0.004

0.000

0.001

0.002

0.003

fitness

de
ns

ity

individuals ensemble
Fig. 13: The fitness distribution of ensembles and individuals of a
single run at the beginning (number of evaluations 1000), middle
(number of evaluations 25000), and late (number of evaluations
50000) stages of evolution on the scenario <Fmax,0.95> of EGPe.

viduals in a few cases and have no statistical difference from
individuals in most cases. However, in the scenario with a
mean-objective (i.e., the bottom graph in Fig. 12), ensembles
perform better than individuals in most cases at the early stages
of evolution. In the middle stages of evolution, ensembles
mostly perform significantly worse than individuals, while in
the late stages of evolution, ensembles exhibit no significant
difference from individuals in most cases.

More detailed, Fig. 13 illustrates the fitness distribution of
single individuals and ensembles from a single run at the
early (the number of evaluations 1000), middle (the number of
evaluations 25000), and late (the number of evaluations 50000)
stages of evolution of EGPe on the <Fmax,0.95> scenario. The
range of fitness values displayed in the figure is limited to 1000
to 5000, as most single individuals and ensembles fall within
this range. As observed in Fig. 13, at the beginning stage of
evolution, the shape of the distribution of fitness of ensembles
is higher and leaner than individuals and performs better
overall, while as the evolution process goes on, the shape of the
distribution of fitness of ensembles becomes shorter and wider
than that of individuals. At the same time, the overall density
of ensembles’ fitness is relatively uniformly distributed, rather
than being very concentrated within a certain range, as is the
case with individuals. Given the above analyses, we obtain the
following observations:

1) Firstly, even in the early stages of evolution, when
individuals tend to perform poorly, ensembles can still
achieve better performance by combining them;

2) Secondly, the better performance achieved by ensembles
can help to provide a lower bound for optimisation
and thus is able to improve the overall population
performance of both single individuals and ensembles;

3) Thirdly, the wider and shorter density distribution of
ensemble fitness as evolution proceeds indicates that
ensembles can provide more stable performance than
individuals;

4) Finally, when focusing on the proportion of individ-
uals/ensembles that perform exceptionally well (i.e.,
fitness within the range of 1000 to 2000), ensembles
still have a higher proportion than individuals. This ob-
servation further confirms the effectiveness of ensembles
as an effective technique for improving solution quality.

C. Elements Contribution to Ensemble

To avoid the situation that one individual dominates all
the others or the situation that other individuals make no
contributions to the ensemble, it is interesting to study the

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2023.3334626

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on December 07,2023 at 01:24:28 UTC from IEEE Xplore. Restrictions apply.

12

<Tmax, 0.95> <WTmean, 0.85> <WTmean, 0.95>

<Fmax, 0.85> <Fmax, 0.95> <Tmax, 0.85>

0.85 0.90 0.95 1.00 0.92 0.94 0.96 0.98 1.00 0.92 0.96 1.00

0.80 0.85 0.90 0.95 1.00 0.90 0.95 1.00 0.90 0.95 1.00

0.90

0.95

1.00

0.92

0.96

1.00

0.90

0.95

1.00

0.92

0.94

0.96

0.98

1.00

0.80

0.85

0.90

0.95

1.00

0.85

0.90

0.95

1.00

Train Ensemble Contribution

Te
st

 E
ns

em
bl

e
C

on
tr

ib
ut

io
n

Fig. 14: The scatter plots of training ensemble contribution versus test
ensemble contribution of each individual in the learned ensembles
from the number of evaluations 40000 to 50000 by the proposed
EGPe on 6 scenarios of 30 runs.

ensemble contribution of each individual in an ensemble. Here,
the ensemble contribution δi represents the percentage of the
same decisions made by an individual element indi compared
to the decisions made by the ensemble ej across all decision
points [25], which can be calculated by Eq. (20).

δi =

∑Dj

d=1 Zi,j,d

Dj
(20)

where Dj represents the total number of decisions when ej
works for the training instance(s). Zi,j,d is a decision variable,
equal to 1 when indi gives the same decision with ej on the
dth decision point.

If an individual has an ensemble contribution of 0 (no same
decision), it means that the individual does not make any
contribution to the ensemble. Conversely, if an individual has
an ensemble contribution of 1, it implies that this individual
is dominating the ensemble. We expect each individual to
give a high ensemble contribution, also it is expected that
each individual gives a relatively consistent (similar) ensemble
contribution on training instances (training ensemble contribu-
tion) and on unseen test instances (test ensemble contribution).
Fig. 14 gives the point plots of training ensemble contribution
versus test ensemble contribution of each individual in an
ensemble when the ensemble is output as the best solution at
each generation by the proposed EGPe on 6 scenarios of 30
runs. The points in red colour represent that the test ensemble
contribution is higher than the training ensemble contribution,
while the points in blue colour indicate that the test ensemble
contribution is lower than the training ensemble contribution.
Also, the line denotes the reference line of y = x, which
makes it easy to see the relationship between the training
ensemble contribution and the test ensemble contribution of
each individual. It can be seen that, EGPe can evolve en-
sembles wherein each element can support a high training
and test ensemble contribution (higher than 0.89). This gives
evidence that every element in ensembles contribute to the
performance of the ensemble. Also, about half of the situations
where the training ensemble contribution is higher than the test
ensemble contribution, and half of the situations where it is
the opposite. In general, the figure shows that each point lies
near the line y = x, which means each individual can provide
a test ensemble contribution that is generally consistent with

<Fmax, 0.95> <Tmax, 0.95> <WTmean, 0.95>

<Fmax, 0.85> <Tmax, 0.85> <WTmean, 0.85>

0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000

0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000

200

300

400

500

600

700

200

300

400

500

600

700

200

300

400

500

600

700

200

300

400

500

600

700

200

300

400

500

600

700

200

300

400

500

600

700

The number of evaluations

P
he

no
ty

pe
 D

iv
er

si
ty

EGP EGPet

Fig. 15: The convergence curves of the phenotypic diversity of the
individuals in the population by the proposed EGPe and EGPt on 6
scenarios of 30 runs.

its training ensemble contribution. This finding suggests that
we can trust the training results and use the trained ensembles
on unseen instances.

D. Diversity

Diversity plays an important role not only in the population
but also in the ensemble. In this paper, the proposed method
holds a population containing both single individuals and en-
sembles, and most of the ensembles are formed by individuals
in the population using the developed ensemble construction
and selection strategy. This section explores the diversity
among individuals within the population. Within the domain
of DFJSS, phenotypic diversity is more meaningful than geno-
typic diversity, as scheduling heuristics that have different
structures (genotypes) can have the same behaviour (pheno-
type). Here, the phenotypic diversity is quantified through the
calculation of the distinct sets of decisions made by individuals
within the population across 20 sequencing and 20 routing
decision points [41]. Fig. 15 shows the convergence curves of
the phenotypic diversity on each generation by the proposed
EGPe and EGPt on 6 scenarios of 30 runs. It can be observed
that the proposed EGPe gives a higher phenotypic diversity
on almost all the generations on 5 of the scenarios, except for
the scenario <WTmean,0.95>. Analysing these results with
the test performance of EGPe and EGPt from Section VI-C,
it shows that higher phenotypic diversity is able to contribute
to obtaining good performance on the scenarios with max-
objective, while not contribute to obtaining good performance
on the scenario with mean-objective.

This observation implies that, for the DFJSS problem, it
is beneficial to prioritise increasing diversity when optimising
the max-objective, while focusing more on convergence when
optimising the mean-objective. This is because of the char-
acteristic of these two types of objectives in DFJSS: 1) The
max-objective is more sensitive to outliers, as it focuses on
optimising the worst-case job/machine. If there are occasional
jobs or machines that have significantly higher processing
times, the max-objective may prioritise reducing the impact
of those outliers, potentially at the expense of the majority of
jobs. Consequently, there is a higher risk of getting trapped in
local optimal when handling the max-objective. 2) The mean-
objective, on the other hand, is less sensitive to outliers and

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2023.3334626

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on December 07,2023 at 01:24:28 UTC from IEEE Xplore. Restrictions apply.

13

Fig. 16: The tree structure of routing rule of an evolved ensemble with its training fitness and training ensemble contribution of a single run
on scenario <Fmax,0.85> of EGPe.

extreme values. It aims for a balanced performance across
all jobs and machines. By converging towards solutions that
distribute the workload evenly, the algorithm can ensure that
no particular job or machine is significantly overburdened.
This leads to improved overall system performance and min-
imises potential bottlenecks or delays. In summary, when
optimising the max-objective, diversity is crucial to explore the
search space effectively and avoid being stuck in local optimal.
Conversely, when optimising the mean-objective, convergence
is an important consideration to improve the average perfor-
mance and achieve a balanced workload distribution.

E. Structure Analyses of Elements in Ensemble

Studying the structure of elements in an ensemble can
help users understand the principles of each element. This
understanding can give users more confidence in using the
evolved ensemble [71]. In this case, we consider the tree
structures of routing rules in an evolved ensemble of a single
run on the scenario <Fmax,0.85> of EGPe as an example.
Fig. 16 illustrates the structures of routing rules, the training
fitness of the ensemble, and the training ensemble contribution
of each rule. The overall training fitness of this ensemble is
1359.25, better than the training fitness of each individual
element, which ranges from 1424.19 to 1505.83. Additionally,
the ensemble contribution of each individual element ranges
from 0.92 to 0.99. The tree structures of these five routing rules
can be expressed in the following simplified expressions:

R1 =min(min(NIQ, SL) + 2PT + TRANT,WIQ) + PT+

min(max(NOR− PT, 1), PT −NIQ+max(PT, 1))+

TRANT +max(TRANT,WIQ)

R2 =min(min(WIQ,PT −NOR+min(SL,WKR))+

TRANT,WIQ) + PT +min(max(TRANT,WIQ),

NOR−NIQ

TRANT
) + max(TRANT,WIQ)

R3 =2min(min(NIQ, SL) + PT + TRANT,WIQ)+

WIQ+ TRANT

R4 =min(min(NIQ, SL) + PT + TRANT,WIQ) + PT+

min(
max(min(WIQ,PT), NOR

OWT
)

TRANT
, TIS −

PT

NIQ
)+

max(TRANT,WIQ)

R5 =min(TIS,WIQ) + 2PT + TRANT −NIQ+

2max(TRANT,WIQ) +
NOR

OWT

(21)

To provide specific details, as illustrated in Eq. (21), the
routing rule R1 is composed of 6 terminals (NIQ, SL, PT,
TRANT, WIQ, and NOR), with PT being the most frequently
utilised terminal (appearing 6 times). Following closely is
TRANT, employed 3 times. Meanwhile, the routing rule R2

consists of 7 terminals (WIQ, PT, NOR, SL, WKR, TRANT,
and NIQ), with WIQ and TRANT being the predominant
terminals (each occurring 4 times). Additionally, PT and NOR
are used 2 times. As for routing rule R3, it involves 5 terminals
(NIQ, SL, PT, TRANT, and WIQ). TRANT and WIQ are the
terminals most frequently employed, each appearing 3 times,
followed by NIQ, SL, and PT, each used 2 times. Moving on
to routing rule R4, it encompasses 8 terminals (NIQ, SL, PT,
TRANT, WIQ, NOR, OWT, and TIS). PT claims the highest
frequency (occurring 4 times). Both TRANT and WIQ are
employed 3 times. Lastly, the routing rule R5 is combined
with 7 terminals (TIS, WIQ, PT, TRANT, NIQ, NOR, and
OWT). Within this combination, WIQ and TRANT lead the
pack with 3 appearances. PT follows with 2 appearances.
These rules behave differently (give different training fitness),
but there are some similarities. We can see that there are
some terminals (NIQ, PT, TRANT, and WIQ) used by all
these five routing rules, also PT and TRANT play important
roles (high use frequency) in the routing decision point, which
is expected, as processing time (PT) and transportation time
(TRANT) are two important factors of the machine. Moreover,
it is observed that some elements in the ensemble share the
same subtrees. For example, R1, R2, R4, and R5 all have
the subtree max(TRANT,WIQ). R3 and R4 both have the
subtree min(min(NIQ, SL) + PT + TRANT,WIQ).

We can see that, the routing rules with some general subtrees
can cover most decision points, but some different subtrees are
required for some specific decision points, which means these
different subtrees can help these rules complement with each
other to make better overall decisions. Such a phenomenon
inspires us to aim for learning a good rule that is generalisable
to most decision points while also having subtrees that can
play crucial roles in specific decision points.

VIII. CONCLUSIONS

In this paper, we propose a novel EGP method named
EGPe, which allows the evolution of single individuals and
ensembles together for solving the DFJSS problem. Extensive
experiments and analyses demonstrate the effectiveness of our

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2023.3334626

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on December 07,2023 at 01:24:28 UTC from IEEE Xplore. Restrictions apply.

14

proposed method in terms of the evolved scheduling heuristic
quality compared to existing recent popular GP methods. To be
precise, the proposed method improves the test performance by
0.73% and saves the training time by 8.72% compared with the
classic GP. Our proposed strategies, including ensemble con-
struction and selection, and genetic operators considering both
single individuals and ensembles, have also been verified to be
effective in improving the performance of our EGPe method.
Further analyses show that these strategies can generate high-
quality single individuals and ensembles by preserving popula-
tion diversity and supporting high ensemble contributions from
ensemble elements. Moreover, the structural analyses of ele-
ments in the ensemble demonstrate that a promising ensemble
contains elements with both shared subtrees and distinctive
subtrees, allowing for effective complementarity and finally
leading to improved overall decision-making capabilities. This
combination of the ensemble enables the ensemble to make
reliable decisions for a wide range of decision points while
also excelling in specific decision points. Overall, we believe
that our findings contribute to the advancement of the field of
GP and ensemble learning and have the potential for practical
applications in real-world scheduling scenarios.

Further research could continue to improve the proposed
EGPe method by: 1) integrating surrogate models to accelerate
the training process and enhance its efficacy, 2) extending the
EGPe method to address the multi-objective DFJSS problem,
which considers multiple conflicting objectives simultane-
ously, and 3) developing a more generalised framework for a
smooth application of the proposed method in solving a wider
range of problems. Since the proposed method involves many
components such as the new genetic operators and multi-case
fitness evaluation, which make it complex.

REFERENCES

[1] Y. Li, W. Gu, M. Yuan, and Y. Tang, “Real-time data-driven dynamic
scheduling for flexible job shop with insufficient transportation resources
using hybrid deep q network,” Robotics and Computer-Integrated Man-
ufacturing, vol. 74, p. 102283, 2022.

[2] M. Xu, Y. Mei, F. Zhang, and M. Zhang, “Genetic programming with
diverse partner selection for dynamic flexible job shop scheduling,” in
Proceedings of the Genetic and Evolutionary Computation Conference
Companion, 2022, pp. 615–618.

[3] Y. Fu and P. W. Anderson, “Application of statistical mechanics to np-
complete problems in combinatorial optimisation,” Journal of Physics
A: Mathematical and General, vol. 19, no. 9, p. 1605, 1986.

[4] X. Long, J. Zhang, K. Zhou, and T. Jin, “Dynamic self-learning artificial
bee colony optimization algorithm for flexible job-shop scheduling
problem with job insertion,” Processes, vol. 10, no. 3, p. 571, 2022.

[5] Y. Gui, D. Tang, H. Zhu, Y. Zhang, and Z. Zhang, “Dynamic scheduling
for flexible job shop using a deep reinforcement learning approach,”
Computers & Industrial Engineering, vol. 180, p. 109255, 2023,
doi:10.1016/j.cie.2023.109255.

[6] L. Nie, L. Gao, P. Li, and X. Li, “A gep-based reactive scheduling
policies constructing approach for dynamic flexible job shop scheduling
problem with job release dates.” Journal of Intelligent Manufacturing,
vol. 24, no. 4, 2013.

[7] C. Destouet, H. Tlahig, B. Bettayeb, and B. Mazari, “Flexible job
shop scheduling problem under industry 5.0: A survey on human
reintegration, environmental consideration and resilience improvement,”
Journal of Manufacturing Systems, vol. 67, pp. 155–173, 2023.

[8] M. Thenarasu, K. Rameshkumar, J. Rousseau, and S. Anbuudayasankar,
“Development and analysis of priority decision rules using mcdm
approach for a flexible job shop scheduling: A simulation study,”
Simulation Modelling Practice and Theory, vol. 114, p. 102416, 2022.

[9] N. Zhu, G. Gong, D. Lu, D. Huang, N. Peng, and H. Qi, “An effective
reformative memetic algorithm for distributed flexible job-shop schedul-
ing problem with order cancellation,” Expert Systems with Applications,
vol. 237, p. 121205, 2024, doi:10.1016/j.eswa.2023.121205.

[10] C. Zhang, Y. Zhou, K. Peng, X. Li, K. Lian, and S. Zhang, “Dynamic
flexible job shop scheduling method based on improved gene expression
programming,” Measurement and Control, vol. 54, no. 7-8, pp. 1136–
1146, 2021.

[11] Y. Zhou, J. Yang, and L. Zheng, “Hyper-heuristic coevolution of machine
assignment and job sequencing rules for multi-objective dynamic flexible
job shop scheduling,” IEEE Access, vol. 7, pp. 68–88, 2018.

[12] R. Liu, R. Piplani, and C. Toro, “Deep reinforcement learning for
dynamic scheduling of a flexible job shop,” International Journal of
Production Research, vol. 60, no. 13, pp. 4049–4069, 2022.

[13] S. Nguyen, M. Zhang, and K. C. Tan, “Adaptive charting genetic
programming for dynamic flexible job shop scheduling,” in Proceedings
of the Genetic and Evolutionary Computation Conference, 2018, pp.
1159–1166.

[14] F. J. Gil-Gala, M. R. Sierra, C. Mencía, and R. Varela, “Surrogate model
for memetic genetic programming with application to the one machine
scheduling problem with time-varying capacity,” Expert Systems with
Applications, vol. 233, p. 120916, 2023.

[15] F. Zhang, Y. Mei, S. Nguyen, and M. Zhang, “Survey on genetic
programming and machine learning techniques for heuristic design in
job shop scheduling,” IEEE Transactions on Evolutionary Computation,
2023, doi:10.1109/TEVC.2023.3255246.

[16] R. Braune, F. Benda, K. F. Doerner, and R. F. Hartl, “A genetic program-
ming learning approach to generate dispatching rules for flexible shop
scheduling problems,” International Journal of Production Economics,
vol. 243, p. 108342, 2022.

[17] A. Sitahong, Y. Yuan, M. Li, J. Ma, Z. Ba, and Y. Lu, “Designing
dispatching rules via novel genetic programming with feature selection
in dynamic job-shop scheduling,” Processes, vol. 11, no. 1, p. 65, 2022.

[18] M. Xu, F. Zhang, Y. Mei, and M. Zhang, “Genetic programming
with multi-case fitness for dynamic flexible job shop scheduling,” in
Proceedings of the IEEE Congress on Evolutionary Computation, 2022,
pp. 1–8.

[19] ——, “Genetic programming with archive for dynamic flexible job shop
scheduling,” in Proceedings of the IEEE Congress on Evolutionary
Computation, 2021, pp. 2117–2124.

[20] F. Zhang, Y. Mei, S. Nguyen, K. C. Tan, and M. Zhang, “Instance rota-
tion based surrogate in genetic programming with brood recombination
for dynamic job shop scheduling,” IEEE Transactions on Evolutionary
Computation, 2022, doi:10.1109/TEVC.2022.3180693.

[21] M. Ðurasević, L. Planinić, F. J. G. Gala, and D. Jakobović, “Novel
ensemble collaboration method for dynamic scheduling problems,” in
Proceedings of the Genetic and Evolutionary Computation Conference,
2022, pp. 893–901.

[22] Z. S. Khozani, M. J. S. Safari, A. D. Mehr, and W. H. M. W. Mohtar, “An
ensemble genetic programming approach to develop incipient sediment
motion models in rectangular channels,” Journal of Hydrology, vol. 584,
p. 124753, 2020.

[23] T. G. Dietterich, “Ensemble methods in machine learning,” in Multiple
Classifier Systems: First International Workshop, 2000, pp. 1–15.

[24] K. Nag and N. R. Pal, “A multiobjective genetic programming-based
ensemble for simultaneous feature selection and classification,” IEEE
Transactions on Cybernetics, vol. 46, no. 2, pp. 499–510, 2015.

[25] J. Park, Y. Mei, S. Nguyen, G. Chen, and M. Zhang, “An investigation of
ensemble combination schemes for genetic programming based hyper-
heuristic approaches to dynamic job shop scheduling,” Applied Soft
Computing, vol. 63, pp. 72–86, 2018.

[26] Z. Wang, Z. Liang, R. Zeng, H. Yuan, and R. S. Srinivasan, “Identifying
the optimal heterogeneous ensemble learning model for building energy
prediction using the exhaustive search method,” Energy and Buildings,
vol. 281, p. 112763, 2023.

[27] H. Zhang, A. Zhou, Q. Chen, B. Xue, and M. Zhang, “Sr-
forest: A genetic programming based heterogeneous ensemble learn-
ing method,” IEEE Transactions on Evolutionary Computation, 2023,
doi:10.1109/TEVC.2023.3243172.

[28] U. Bhowan, M. Johnston, M. Zhang, and X. Yao, “Evolving diverse
ensembles using genetic programming for classification with unbalanced
data,” IEEE Transactions on Evolutionary Computation, vol. 17, no. 3,
pp. 368–386, 2012.

[29] W. Smart and M. Zhang, “Using genetic programming for multiclass
classification by simultaneously solving component binary classification
problems,” in Proceedings of the European Conference on Genetic
Programming, 2005, pp. 227–239.

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2023.3334626

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on December 07,2023 at 01:24:28 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1016/j.cie.2023.109255
http://dx.doi.org/10.1016/j.eswa.2023.121205
http://dx.doi.org/10.1109/TEVC.2023.3255246
http://dx.doi.org/10.1109/TEVC.2022.3180693
http://dx.doi.org/10.1109/TEVC.2023.3243172

15

[30] M. Ðurasević and D. Jakobović, “Comparison of ensemble learning
methods for creating ensembles of dispatching rules for the unrelated
machines environment,” Genetic Programming and Evolvable Machines,
vol. 19, pp. 53–92, 2018.

[31] F. J. Gil Gala, M. R. Sierra, C. Mencía, and R. Varela, “Combining
hyper-heuristics to evolve ensembles of priority rules for on-line schedul-
ing,” Natural Computing, vol. 21, no. 4, pp. 553–563, 2022.

[32] F. J. Gil Gala, C. Mencía, M. R. Sierra, and R. Varela, “Learning
ensembles of priority rules for online scheduling by hybrid evolutionary
algorithms,” Integrated Computer-Aided Engineering, vol. 28, no. 1, pp.
65–80, 2021.

[33] F. J. Gil Gala and R. Varela, “Genetic algorithm to evolve ensembles of
rules for on-line scheduling on single machine with variable capacity,”
in Proceedings of the International Work-Conference on the Interplay
Between Natural and Artificial Computation, 2019, pp. 223–233.

[34] J. Park, S. Nguyen, M. Zhang, and M. Johnston, “Evolving ensembles of
dispatching rules using genetic programming for job shop scheduling,”
in Proceedings of the European Conference on Genetic Programming,
2015, pp. 92–104.

[35] S. Wang, Y. Mei, and M. Zhang, “Novel ensemble genetic program-
ming hyper-heuristics for uncertain capacitated arc routing problem,” in
Proceedings of the Genetic and Evolutionary Computation Conference,
2019, pp. 1093–1101.

[36] N. M. Rodrigues, J. E. Batista, and S. Silva, “Ensemble genetic
programming,” in Proceedings of the European Conference on Genetic
Programming, 2020, pp. 151–166.

[37] M. Xu, Y. Mei, F. Zhang, and M. Zhang, “Genetic programming
with lexicase selection for large-scale dynamic flexible job shop
scheduling,” IEEE Transactions on Evolutionary Computation, 2023,
doi:10.1109/TEVC.2023.3244607.

[38] H.-B. Song and J. Lin, “A genetic programming hyper-heuristic for the
distributed assembly permutation flow-shop scheduling problem with se-
quence dependent setup times,” Swarm and Evolutionary Computation,
vol. 60, p. 100807, 2021.

[39] S. Shady, T. Kaihara, N. Fujii, and D. Kokuryo, “Feature selection
approach for evolving reactive scheduling policies for dynamic job shop
scheduling problem using gene expression programming,” International
Journal of Production Research, vol. 61, no. 15, pp. 5029–5052, 2023.

[40] N. Q. Uy, N. T. Hien, N. X. Hoai, and M. O’Neill, “Improving the
generalisation ability of genetic programming with semantic similarity
based crossover,” in Proceedings of the European Conference on Genetic
Programming, 2010, pp. 184–195.

[41] M. Xu, Y. Mei, F. Zhang, and M. Zhang, “Genetic programming
with cluster selection for dynamic flexible job shop scheduling,” in
Proceedings of the IEEE Congress on Evolutionary Computation, 2022,
pp. 1–8.

[42] H. Zhang, Q. Chen, A. Tonda, B. Xue, W. Banzhaf, and M. Zhang,
“Map-elites with cosine-similarity for evolutionary ensemble learning,”
in Proceedings of the European Conference on Genetic Programming,
2023, pp. 84–100.

[43] O. Sagi and L. Rokach, “Ensemble learning: A survey,” Wiley Interdisci-
plinary Reviews: Data Mining and Knowledge Discovery, vol. 8, no. 4,
p. e1249, 2018.

[44] H. Chen, G. Ding, S. Qin, and J. Zhang, “A hyper-heuristic based ensem-
ble genetic programming approach for stochastic resource constrained
project scheduling problem,” Expert Systems with Applications, vol. 167,
p. 114174, 2021.

[45] E. Hart and K. Sim, “A hyper-heuristic ensemble method for static job-
shop scheduling,” Evolutionary Computation, vol. 24, no. 4, pp. 609–
635, 2016.

[46] J. Park, S. Nguyen, M. Zhang, and M. Johnston, “A single population
genetic programming based ensemble learning approach to job shop
scheduling,” in Proceedings of the Genetic and Evolutionary Computa-
tion Conference Companion, 2015, pp. 1451–1452.

[47] M. Ðurasević and D. Jakobović, “Creating dispatching rules by simple
ensemble combination,” Journal of Heuristics, vol. 25, pp. 959–1013,
2019.

[48] J. Park, Y. Mei, S. Nguyen, G. Chen, M. Johnston, and M. Zhang,
“Genetic programming based hyper-heuristics for dynamic job shop
scheduling: Cooperative coevolutionary approaches,” in Proceedings of
the European Conference on Genetic Programming, 2016, pp. 115–132.

[49] M. Ðumić and D. Jakobović, “Ensembles of priority rules for resource
constrained project scheduling problem,” Applied Soft Computing, vol.
110, p. 107606, 2021.

[50] J. Park, Y. Mei, G. Chen, and M. Zhang, “Niching genetic programming
based hyper-heuristic approach to dynamic job shop scheduling: an

investigation into distance metrics,” in Proceedings of the Genetic and
Evolutionary Computation Conference Companion, 2016, pp. 109–110.

[51] F. J. Gil Gala, M. Ðurasević, R. Varela, and D. Jakobović, “Ensembles
of priority rules to solve one machine scheduling problem in real-time,”
Information Sciences, 2023, doi:10.1016/j.ins.2023.03.114.

[52] J. Chang, D. Yu, Y. Hu, W. He, and H. Yu, “Deep reinforcement learning
for dynamic flexible job shop scheduling with random job arrival,”
Processes, vol. 10, no. 4, p. 760, 2022.

[53] Z. Wang, J. Zhang, and S. Yang, “An improved particle swarm optimiza-
tion algorithm for dynamic job shop scheduling problems with random
job arrivals,” Swarm and Evolutionary Computation, vol. 51, p. 100594,
2019.

[54] J. Mohan, K. Lanka, and A. N. Rao, “A review of dynamic job shop
scheduling techniques,” Procedia Manufacturing, vol. 30, pp. 34–39,
2019.

[55] Q. Zhang, H. Manier, and M.-A. Manier, “A modified shifting bottle-
neck heuristic and disjunctive graph for job shop scheduling problems
with transportation constraints,” International Journal of Production
Research, vol. 52, no. 4, pp. 985–1002, 2014.

[56] V. Vinod and R. Sridharan, “Dynamic job-shop scheduling with
sequence-dependent setup times: simulation modeling and analysis,” The
International Journal of Advanced Manufacturing Technology, vol. 36,
pp. 355–372, 2008.

[57] P. Sharma and A. Jain, “Stochastic dynamic job shop scheduling with
sequence-dependent setup times: simulation experimentation,” Journal
of Engineering and Technology, vol. 5, no. 1, p. 19, 2015.

[58] K. C. W. Lim, L.-P. Wong, and J. F. Chin, “Hyper-heuristic for flexible
job shop scheduling problem with stochastic job arrivals,” Manufactur-
ing Letters, vol. 36, pp. 5–8, 2023.

[59] W. Ren, Y. Yan, Y. Hu, and Y. Guan, “Joint optimisation for dynamic
flexible job-shop scheduling problem with transportation time and
resource constraints,” International Journal of Production Research,
vol. 60, no. 18, pp. 5675–5696, 2022.

[60] L. Wei, J. He, Z. Guo, and Z. Hu, “A multi-objective migrating birds
optimization algorithm based on game theory for dynamic flexible job
shop scheduling problem,” Expert Systems with Applications, vol. 227,
p. 120268, 2023, doi:10.1016/j.eswa.2023.120268.

[61] H. Wang, Y. Jiang, H. Wang, and H. Luo, “An online optimization
scheme of the dynamic flexible job shop scheduling problem for intelli-
gent manufacturing,” in Proceedings of the International Conference on
Industrial Artificial Intelligence, 2022, pp. 1–6.

[62] L. Meng, C. Zhang, Y. Ren, B. Zhang, and C. Lv, “Mixed-integer linear
programming and constraint programming formulations for solving dis-
tributed flexible job shop scheduling problem,” Computers & Industrial
Engineering, vol. 142, p. 106347, 2020.

[63] K. Lei, P. Guo, W. Zhao, Y. Wang, L. Qian, X. Meng, and L. Tang,
“A multi-action deep reinforcement learning framework for flexible job-
shop scheduling problem,” Expert Systems with Applications, vol. 205,
p. 117796, 2022, doi:10.1016/j.eswa.2022.117796.

[64] K. Lei, P. Guo, Y. Wang, J. Zhang, X. Meng, and L. Qian, “Large-
scale dynamic scheduling for flexible job-shop with random arrivals of
new jobs by hierarchical reinforcement learning,” IEEE Transactions on
Industrial Informatics, 2023, doi:10.1109/TII.2023.3272661.

[65] J. R. Koza et al., Genetic programming II. MIT press Cambridge,
1994, vol. 17.

[66] F. Zhang, Y. Mei, and M. Zhang, “Genetic programming with multi-tree
representation for dynamic flexible job shop scheduling,” in Proceedings
of the Australasian Joint Conference on Artificial Intelligence, 2018, pp.
472–484.

[67] J. E. Batista and S. Silva, “Comparative study of classifier performance
using automatic feature construction by m3gp,” in Proceedings of the
IEEE Congress on Evolutionary Computation, 2022, pp. 1–8.

[68] M. Ðurasević, F. J. G. Gala, D. Jakobović, and C. A. C. Coello,
“Combining single objective dispatching rules into multi-objective en-
sembles for the dynamic unrelated machines environment,” Swarm and
Evolutionary Computation, p. 101318, 2023.

[69] D. W. Zimmerman and B. D. Zumbo, “Relative power of the wilcoxon
test, the friedman test, and repeated-measures anova on ranks,” Journal
of Experimental Education, vol. 62, no. 1, pp. 75–86, 1993.

[70] G. Divine, H. J. Norton, R. Hunt, and J. Dienemann, “A review of
analysis and sample size calculation considerations for wilcoxon tests,”
Anesthesia & Analgesia, vol. 117, no. 3, pp. 699–710, 2013.

[71] Y. Mei, Q. Chen, A. Lensen, B. Xue, and M. Zhang, “Explainable artifi-
cial intelligence by genetic programming: A survey,” IEEE Transactions
on Evolutionary Computation, 2022, doi:10.1109/TEVC.2022.3225509.

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2023.3334626

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on December 07,2023 at 01:24:28 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TEVC.2023.3244607
https://doi.org/10.1016/j.ins.2023.03.114
http://dx.doi.org/10.1016/j.eswa.2023.120268
http://dx.doi.org/10.1016/j.eswa.2022.117796
http://dx.doi.org/10.1109/TII.2023.3272661
http://dx.doi.org/10.1109/TEVC.2022.3225509

	Introduction
	Background
	GP for DFJSS
	Related Work

	Problem Description and Modelling
	Proposed Method
	Population Initialisation
	Individual Evaluation
	Ensemble Construction and Selection
	Ensemble Evaluation
	Genetic Operators
	Crossover
	Mutation

	Experiment Design
	Experimental Results
	Sensitivity Analysis
	Test Performance
	Effectiveness of Ensemble Construction and Selection
	Effectiveness of Genetic Operators

	Further Analyses
	Performance of Ensemble and Elements
	Ensemble Win Percentage
	Elements Contribution to Ensemble
	Diversity
	Structure Analyses of Elements in Ensemble

	Conclusions
	References

