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Abstract—Scheduling heuristics are commonly used to solve
dynamic scheduling problems in real-world applications.
However, designing effective heuristics can be time-
consuming and often leads to suboptimal performance.
Genetic programming has been widely used to automatically
learn scheduling heuristics. In recent years, reinforcement
learning has also gained attention in this field. Understanding
their strengths and weaknesses is crucial for developing
effective scheduling heuristics. This paper takes a typical
genetic programming method and a typical reinforcement
learning method in dynamic flexible job shop scheduling for

investigation. The results show that the investigated
genetic programming algorithm outperforms the studied
reinforcement learning method in the examined scenarios.
Also, the study reveals that the compared reinforcement
learning method is more stable as the amount of training data
changes, and the investigated genetic programming method
can learn more effective scheduling heuristics as training data
increases. Additionally, the study highlights the potential and
value of genetic programming in real-world applications due
to its good generalization ability and interpretability. Based on
the results, this paper suggests using the investigated
reinforcement learning method when training data is limited
and stable results are required, and using the investigated
genetic programming method when training data is sufficient
and high interpretability is required.
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I. Introduction

D
ynamic scheduling [1] is a typical combinatorial
optimization problem with the goal of optimizing
resource allocation [2]. Dynamic scheduling has
beenwidely applied tomodel practical applications,

such as order picking in the warehouse [3], the manufacturing
industries [4], and grid/cloud computing [5]. Compared to static
scheduling problems that assume all jobs are known in advance,
dynamic scheduling is closer to reality. Dynamic flexible job
shop scheduling (DFJSS) is a prominent problem in the field of
dynamic scheduling, where machine allocation (routing) and
operation sequencing need to be considered simultaneously in
the presence of uncertain events. Such events may include
dynamic job arrivals [6] or machine breakdowns [7]. Due to the
uncertainty and NP-hardness of DFJSS, achieving satisfactory
performance is a challenging task [8].

Classical methods for solving scheduling problems, such as
exact methods [9], [10] and (meta-) heuristic solution optimi-
zation methods [11], [12], are not suitable for DFJSS, since
they cannot react to dynamic environments in real-time and it
takes time for them to obtain promising solutions. Scheduling
heuristics are the most commonly used methods for dynamic
scheduling in industries due to their advantages of simplicity to
implement and ability to quickly react to the changing envi-
ronments [13]. The first-in-first-out and the shortest-process-
ing-time-first are common scheduling heuristics in practical
applications [14]. However, the performance of scheduling
heuristics depends on various factors and scheduling scenarios.
Furthermore, manually designing effective scheduling heuris-
tics can be time-consuming and heavily rely on domain
knowledge [15].

Genetic programming (GP) [16], [17] and reinforcement
learning (RL) [18] have demonstrated their effectiveness in
automatically learning scheduling heuristics for dynamic
scheduling problems. GP has been a successful approach for
learning effective scheduling heuristics in DFJSS for a long
time, and it remains dominant in this research field [19]. GP
uses the evolutionary principles for learning scheduling heuris-
tics through an iterative, population-based, and stochastic evo-
lutionary process [20]. Recently, RL has gained increasing
attention in learning scheduling heuristics for dynamic sched-
uling problems. RL learns scheduling heuristics by interacting
with the dynamic scheduling environment. Specifically, at
each step, the RL agent chooses an action from the action
space based on the current state, using the policy (scheduling
heuristic) that maps states to actions. The agent then receives a
reward and moves to the next state according to the state tran-
sition probability. For an episodic problem, the process repeats
until the agent reaches a terminal state. After each episode, a
discounted accumulated reward is obtained according to a dis-
count factor. The agent’s goal is to maximize the expectation
of such long-term accumulated reward starting from any initial
state [21]. GP and RL are mechanically dissimilar, although
they both learn policies to make decisions at decision points.
However, no existing work has compared these two learning

paradigms in solving the DFJSS problem. Figuring out their
strengths and weaknesses is valuable for learning effective
scheduling heuristics as well as for practical applications.
Typically, test performance (generalization ability), the influ-
ence of training data, and interpretability are key indicators
for judging how promising a method is, especially with
regard to real-world applications. Generalization ability
determines how well the trained heuristic performs on
unseen instances, which can directly reflect the quality of the
learned heuristic. In practical applications, collecting data can
be challenging. Thus, the amount of training data becomes a
critical factor that influences the performance of the learned
heuristics. Interpretability refers to the ability to understand
and explain the learned heuristics, providing users with trust
and confidence. This paper aims to provide a preliminary
study by taking typical GP and RL algorithms in DFJSS as a
case study for investigation and analyzing the above metrics.
A typical GP (MTGP) [22] method and a typical RL
(DRL) [23] method designed for the DFJSS problem are
investigated. To be specific, this paper aims to explore the
following questions:
1) Which of the MTGP or the DRL is better for solving the

DFJSS problem?
2) How does the amount of training data affect the perfor-

mance of the MTGP and the DRL?
3) How well can the MTGP and the DRL be generalized to

solve more complex instances (i.e., considering more jobs
and more workcenters)?

4) Which of the MTGP and the DRL can obtain more inter-
pretable scheduling heuristics?
Overall, this work provides an empirical comparison of var-

ious aspects of the investigated MTGP and DRL methods, thus
guiding future research in the research domain of the DFJSS
problem.

II. Background

A. Problem Description
In the DFJSS problem, the shop floor has a set of machines
denoted by G ¼ fV1; . . .;Vkg, which belongs to certain
workcenters W ¼ fW1; . . .;Wwg. Jobs J ¼ fJ1; J2; . . .; Jng
arrive dynamically at the shop floor, and each job Jj has an
arrival time tarrj , a due date tduej , and must visit each workcenter
to be processed following a predetermined sequence of opera-
tions OJj ¼ ½Oj;1;Oj;2; . . .;Oj;qj �. Each operation Oj;i can be
processed only by a subset (kj;i) of machines Gj;i � G. The
processing time tproj;i;m of the operation Oj;i depends on the
selected machine Vm 2 Gj;i to process it.

The scheduling difficulty and production performance are
affected by three main factors, which are listed as follows:
1) Job arrival rate: a higher job arrival rate can lead to a higher

machine utilization level and also cause heavier system
congestion;

2) Job and machine heterogeneity: the processing times for opera-
tions on different machines can be different;
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3) Tightness of due dates: a tighter due date gives less flexibility in
operation and less job slack, thus tending to lead to higher
tardiness;
For DFJSS, a solution or schedule r refers to a set of alloca-

tion of the processing start time tstartj;i of each operation Oj;i on
its assigned machine Vm for all jobs. Total tardiness Ttotal is an
important objective in practical industries, which will be opti-
mized in this paper. The definition of Ttotal is listed as follows.

Ttotal ¼
Xn
j¼1

tardðJjÞ; tardðJjÞ ¼ maxftcomj � tduej ; 0g

where tardðJjÞ denotes the tardiness of the job Jj. The tcomj rep-
resents the completion time of the job Jj.

The mathematical model of the DFJSS problem is shown
as follows:

min Ttotal (1)

s.t.

tstartj1;i1
� tstartj2;i2

� tproj1;i1;m þ L � ð1� xj1;i1;j2;i2;mÞ;
8j1; j2 ¼ 1; . . . ; n; 8i1 ¼ 1; . . . ; qj1 ;

8i2 ¼ 1; . . . ; qj2 ; 8m ¼ 1; . . . ; k (2Þ
tstartj;1 � tarrj ; 8j ¼ 1; . . . ; n (3Þ
tcomj;i � tstartj;i þ tproj;i;m � yj;i;m; 8j ¼ 1; . . . ; n;

8i ¼ 1; . . . ; qj; 8m ¼ 1; . . . ; k (4Þ
tstartj;iþ1 � tcomj;i ; 8j ¼ 1; . . . ; n; 8i ¼ 1; . . . ; qj � 1 (5Þ

Xkj;i
m¼1

yj;i;m ¼ 1; 8j ¼ 1; . . . ; n; 8i ¼ 1; . . . ; qj (6Þ

xj1;i1;j2;i2;m ¼
1; ifOj1;i1 is processed by Vm beforeOj2;i2 ;

0; otherwise:

�
(7Þ

yj;i;m ¼
1; ifOj;i is assigned to Vm;

0; otherwise:

�
(8)

Constraint (2) specifies that a machine can only process one
operation at a time, with L representing a sufficiently large
constant. Constraint (3) indicates that the processing of each
job’s first operation can only begin after the job is released.

Constraint (4) defines the dependence of the processing start
time tstartj;i and the processing completion time tcomj;i for the oper-
ation Oj;i. Constraint (5) states that the operation Oj;iþ1 must
wait for the completion of its preceding operation Oj;i before
it can be processed on the assigned machine. Constraint (6) sig-
nifies that an operation can only be processed on one of its
candidate machines.

B. Learning Scheduling Heuristics
The scheduling heuristic is an effective technique for dealing
with uncertainty because it can make a quick decision based on
the system state at the moment [24]. For DFJSS, which involves
both machine assignment (routing) and operation sequencing, a
scheduling heuristic contains two rules: a routing rule and a
sequencing rule. During the scheduling process, the routing rule
tells each workcenter which machine a ready operation is
assigned to be processed [25], and the sequencing rule tells each
machine which operation to process next [25]. The design of
effective scheduling heuristics needs extensive trial and error, and
their performance highly depends on the intuition and experi-
ence of human experts [26]. To address this issue, automatic heu-
ristic learning has been a growing trend. The fundamentals of
automatically learning heuristics are derived from the following
considerations. A class of problem instances may have similar
attributes, differing only in the data that follow different distribu-
tions [26]. Through learning, the underlying patterns of a partic-
ular problem class can be discovered, which can be used to learn
alternative heuristics superior to those designed by humans [26].

In the field of automatic learning scheduling heuristics,
RL [18] and GP [16] are two typical approaches to automati-
cally learn heuristics [23], [27], [28], [29], [30]. Figure 1 illus-
trates the general framework for how GP and RL learn
scheduling heuristics for the DFJSS problem. It can be seen
that GP and RL have some similarities.
❏ Firstly, GP and RL make decisions (selecting machine/

operation) based on the input state features related to jobs,
machines, and environments, which can be static (e.g., the
number of machines on the shop floor) or dynamic (e.g.,
the system time).

FIGURE 1Workflow about how scheduling heuristics learned by GP and RL work for the DFJSS problem.

20 IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | MAY 2024

Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on April 07,2024 at 00:45:53 UTC from IEEE Xplore.  Restrictions apply. 



❏ Secondly, different from traditional solution approaches
directly searching the solution space, both GP and RL
approaches explore the heuristic space [31].

❏ Thirdly, they will finally output a scheduling heuristic by
interacting with the dynamic environment.
There are also some differences between GP and RL.

❏ Firstly, GP and RL have different structures of the learned
scheduling heuristics, which can be seen in Figure 1. It
shows that the learned scheduling heuristic by RL is typi-
cally represented by the neural network [28]. Different
from RL, the learned scheduling heuristic by GP has the
tree-based structure [32]. Regardless of the structure of the
scheduling heuristics, they are utilized to choose a machine
whenever an operation is ready and determine an opera-
tion whenever a machine becomes idle.

❏ Secondly, they learn the scheduling heuristics in different
ways. GP maintains a population, and the learning process
is carried out through the crossover and mutation of
scheduling heuristics (individuals) in the population, while
the learning process of RL is based on the iterative adjust-
ment on a single scheduling heuristic (neural network).
A simulation model is usually used to measure how good a

learned scheduling heuristic is. Algorithm 1 illustrates the sim-
ulation process of applying a scheduling heuristic for a DFJSS
instance [33]. To be specific, the simulation starts when
the first job(s) arrive at the shop floor and the scheduling pro-
cess continues by triggering events sequentially, include the
job arrival event (JobArrivalEvent), the operation visit
event (OperationVisitEvent), the process start event
(ProcessStartEvent), and the process end event
(ProcessEndEvent). The job arrival event signifies the arrival
of the new job(s) to the shop floor, while the operation visit
event denotes that an operation becomes ready and is assigned
to a machine. The process start event and the process end
event represent the start and end of an operation processed by
a machine, respectively. The simulation stops when there is no
event in the event queue and outputs the resultant schedule.

C. Related Work
GP learns heuristics by first initializing a group of heuristics
randomly, then follows the natural biological principle of sur-
vival of the fittest through heuristic evaluation, selection, and
breeding (e.g., by crossover, mutation) to generate offspring.
This process continues until termination conditions are met,
and then the best-performing heuristic(s) are output as the
learned heuristic(s). There has been a lot of research using GP-
based methods to solve the DFJSS problem. Regarding indi-
vidual representation, GP comprises various types, including
tree-based GP [22], linear GP [34], gene expression program-
ming [35], and others. Among these variants, tree-based GP
stands out as a popular type, showcasing its effectiveness
through successful applications within the DFJSS domain [22],
[25], [30], [33], [36], [37]. At the early stage, a GP with a
multi-tree representation was presented to learn both the
sequencing rule and the routing rule simultaneously for

DFJSS [22]. Then, a number of studies regarding the improve-
ment of the genetic operators of GP emerged. For example,
some studies [33], [36] focused on the selection process,
improving the diversity of selected parents to generate off-
spring to avoid premature convergence. In addition, some
researchers integrated various techniques to enhance the per-
formance of GP, such as feature selection, multi-task learning,

Algorithm 1. DFJSS Simulation.

Input: The DFJSS instance with dynamic arrival jobs set J , the
sequencing rule hsð�Þ, the routing rule hrð�Þ

Output: The DFJSS schedule: r
1: r fg and the event queue D fg;
2: foreach Jj 2 Jdo
3: Create a JobArrivalEvent Ej and D D [ Ej ;
4: end
5: while D 6¼ ; do
6: Get the next event Ee ¼ fOj;i ;Ww ;Vmg from D;
7: If Ee is the JobArrivalEvent then

//Trigger the job arrival event

8: Calculate the priority hrðV�;Oj;iÞ of each machine
V� 2 Ww for Oj;i ;

9: Assign Oj;i to V� with the highest priority, create an
OperationVisitEvent E� and D D [ E�;

10: else if Ee is the OperationVisitEvent then
//Trigger the operation visit event

11: if Vm is idle then
12: Create a ProcessStartEvent E� and D D [ E�;
13: else
14: Add Oj;i to the waiting queue of Vm;
15: end
16: else if Ee is the ProcessStartEvent then

//Trigger the process start event

17: Calculate the processing time tproj;i;m of Oj;i on Vm;
18: Create a ProcessEndEvent E� and D D [ E�;
19: else if Ee is the ProcessEndEvent then

//Trigger the process end event

20: Record the processing start time tstartj;i of Oj;i on Vm into
the schedule: r r [ fOj;i ;Vm; tstartj;i g;

21: if The job Jj is not completed then
22: Calculate the priority hrðV�;Oj;iþ1Þ of each candidate

machine V� for its next operation Oj;iþ1;
23: Assign Oj;iþ1 to V� with the highest priority, create an

OperationVisitEvent E� and D D [ E�;
24: end
25: if The waiting queue of the machineVm is not empty

then
26: Calculate the priority hsðO�;VmÞ of each operation

O� in its waiting queue;
27: Choose O� with the highest priority, create a

ProcessStartEvent E� and D D [ E�;
28: end
29: end
30: end
31: return The obtained DFJSS schedule r;
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and surrogate models. In [30], a GP with surrogate was pro-
posed to automatically learn scheduling heuristics more effi-
ciently. More recently, some research use GP to address multi-
objective DFJSS to meet a number of objectives simulta-
neously [25], [37]. For GP, parameter settings are crucial and
can significantly impact its performance. Different from RL,
where the network structure is defined in advance and only its
parameters need to be tuned during the learning process, GP
requires exploration of both the parameters and the structures
during the learning process. Therefore, careful consideration
and experimentation with parameter settings and structural
variations are necessary to achieve good performance with GP.

RL learns scheduling heuristics by first formulating the prob-
lem as a Markov decision process [38], then at each decision
point, RL interacts with the environment, fromwhich the expe-
rience is collected and eventually the policy is obtained after
many episodes. In recent years, there has been an increasing trend
towards using RL to solve scheduling problems. For example,
in [27], a deep RL (DRL) method was developed to solve the
static job shop scheduling problem and demonstrated its better
performance than the existing manually designed scheduling
heuristics. It represented the scheduling problem as a disjunctive
graph, then a graph neural network scheme was developed to
embed the states that are met during the scheduling process.
In [28], a DRL method was designed for solving the static flexi-
ble job shop scheduling problem, achieving better performance
than the existing manually designed scheduling heuristics. To be
specific, the operation selection and the machine assignment
were considered as one integrated decision. Then, it uses a new
heterogeneous graph to represent the scheduling state and pro-
poses a heterogeneous graph-neural-network-based framework
for capturing the complex relationships that exist within opera-
tions and machines. In [39], a DRL method with a double deep
Q-network (DQN) model was proposed for minimizing the
total penalty of earliness and tardiness in DFJSS. Also, a soft
�-greedy policy was designed to balance the exploration and
exploitation in the search space and improve learning efficiency.
In [40], a DQN was proposed to solve DFJSS. Six composite
scheduling heuristics were developed to choose an operation and
assign the operation to an available machine whenever an opera-
tion is completed or a new job arrives. The proposed DQN was
trained to select among these six scheduling heuristics. A recent
work [23] used a DRL method for learning scheduling heuristics
to solve the DFJSS problem with constant job arrivals. It trained
the sequencing rule and the routing rule using the double DQN,
separately. In addition, a surrogate reward-shaping function was
developed to enhance both learning efficiency and scheduling
performance. There are also some studies using RL for solving
multi-objective DFJSS problems [41], [42], [43], [44]. For RL,
the reward function is a very important factor in guiding the
search direction. A well-designed reward function heavily relies
on domain knowledge and also demands a great deal of effort in
its design and refinement. Also, actions might have a widespread
and lasting impact that can be difficult to measure by a scalar
reward [23]. In addition, RL is a highly parametrized algorithm,

which requires human expertise and time to find good hyper-
parameters.

GP and RL share similar mechanisms for solving the
DFJSS problems. However, so far they have been investigated
separately, and there is no analysis of or comparison between
them. While it is difficult to reach conclusions only by com-
paring the principles between them, we can conduct empirical
comparisons to show the advantages and disadvantages of GP
and RL, from which some novel ideas through combining GP
and RL might emerge.

Following the above investigation, this paper chooses two
representative techniques for comparison: the multi-tree GP
(MTGP) [22] and the deep RL (DRL) [23]. The choice to use
the MTGP for the investigation is because it is specially
designed for the DFJSS problem with a two-tree representa-
tion and can represent the classical GP with a classical evolu-
tion process. The DRL is chosen as it is a typical and recently
designed RL algorithm specifically for the DFJSS problem to
learn both routing and sequencing rules. It is representative of
RL with a classical DQN architecture and training process.

III.Methods
This section first introduces the used system state features for
learning. Then, the investigated MTGP [22] and DRL [23]
methods are described.

A. State Features
For scheduling heuristic learning, some features need to be
extracted to represent the scheduling system state, which serves
as the input of the MTGP and DRL. These features are used
to form the scheduling heuristics and are updated as the sched-
uling process goes on. In this paper, a number of features for
learning scheduling heuristics are extracted to solve the DFJSS
problem [23], which are described as follows.
1) PTj;i;mðtÞ: The processing time of the operation Oj;i on the

machine Vm at time t.
2) WKRjðtÞ: The work remaining, representing the total

processing time of the job Jj for the remaining operations
at time t.

3) CRjðtÞ: The completion rate, denoting the percentages of
completed operations among all the operations of the job
Jj at time t.

4) TTDjðtÞ: The time until due, meaning the remaining time
of the job Jj until the due date at time t.

5) SLACKjðtÞ: The slack of the job Jj at time t, SLACKjðtÞ ¼
tduej � t �WKRjðtÞ.

6) WIQmðtÞ: The remaining work (total processing time of all
the operations) in the waiting queue of machine Vm at
time t.

7) NIQmðtÞ: The number of operations in the waiting queue
of machine Vm at time t.

8) MRTmðtÞ: The ready time of machine Vm at time t, i.e.,
when machine becomes idle.

9) MWTmðtÞ: The waiting time of machine Vm at time t,
MWTmðtÞ ¼ t �MRTmðtÞ.
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10) MBTmðtÞ: The busy time, denoting the total working time
of machineMm at time t.

11) NPTj;iþ1ðtÞ: The median of the processing time for the
next operation Oj;iþ1 at time t.

12) NORjðtÞ: The number of the remaining operations of the
job Jj at time t.

13) OWTj;iðtÞ: The waiting time of the operation Oj;i at time
t, OWTj;iðtÞ ¼ t �ORTj;iðtÞ, where ORTj;iðtÞ denotes
the ready time of the operation Oj;i, which denotes the
time the operation arrived at the queue of the machine.

14) t: The current time of the scheduling system.
15) TISjðtÞ: The time that the job Jj has been in the scheduling

system at time t, TISjðtÞ ¼ t � tarrj .
It can be seen that the value of the features might change

over time, and the learned heuristics can take advantage of the
latest information. The MTGP and DRL are expected to learn
effective scheduling heuristics by combining these features
with functions.

B. The Multi-Tree Genetic Programming Method
This study uses the MTGP method developed for the
DFJSS problem in [22] to do the investigation. The MTGP
starts training by initializing a number of individuals as a
population. Each individual has two trees: one representing
the routing rule, and the other representing the sequencing
rule. The fitness evaluation process gives each individual a
fitness by applying the individual to the DFJSS training set,
which includes a number of DFJSS instances. The MTGP
selects individual(s) as parent(s) for reproduction/mutation/
crossover to generate offspring. Tournament selection is
adopted to select parents. For reproduction, each time a
parent is selected, it is copied into the next generation
directly. For mutation, each time a parent is selected, it ran-
domly chooses a subtree from one tree (either the routing
or sequencing rule, sampled at random) of the parent and
replaces the subtree with a newly generated subtree. During
crossover, each time two parents are selected. For one tree
(either the routing or sequencing rule, sampled at random)
of the two parents, a subtree is randomly selected from each
parent and swapped. For the other tree, the entire tree is
swapped directly. The crossover and mutation used in the
MTGP method are shown in Figures 2 and 3.

Based on the above process, the MTGP improves the
scheduling heuristics until the stopping criterion is reached.
Then, the best scheduling heuristic from the last generation
is output as the learned result. In addition, to improve the
generalization ability of the learned scheduling heuristics,
this paper uses a seed rotation strategy. The seed rotation
strategy rotates the random seed of the DFJSS simulation
at different generations, leading to different realized instan-
ces at each generation of the MTGP. This changes the
instance(s) for each new generation, which is a widely
used strategy to improve genralization of using GP for
DFJSS [45], [46].

C. The Deep Reinforcement Learning Method
This paper uses the DRL method proposed for the DFJSS
problem in [23] for investigation. The DRL models the DFJSS
problem as a Markov decision process (MDP) with a 5-ele-
ments tuple representation: ðS;A;P; g;RÞ. For each decision
point in the MDP, the DRL interacts with the scheduling sys-
tem based on a policy pðS;AÞ. At each decision point t, the
DRL observes the system state st 2 S and takes an action at 2
A according to the policy pðS;AÞ. Then the system state is
updated to the next decision point stþ1, and a reward rt 2 R is
received.

In the DRL method, double DQN is used as the learner of
the routing rule and the sequencing rule. The learning processes
of these two rules are carried out separately and independently.
When learning the routing rule, the first-in-first-out is used as
the sequencing rule for sequencing decisions. When learning the
sequencing rule, the earliest available machine is used as the rout-
ing rule for routing decisions. During the learning process, the
DRL uses an experience replay mechanism to store historical
information. The Q-network learns based on a minibatch of
experience et , where et ¼ ðst ; at ; rt ; stþ1Þ represents a transition
record in the MDP. The Q-network has an action network and
a target network. During the learning process, the parameter of
the action network (uA) is updated for each training iteration ith.
At the same time, the update of the parameters (uT ) of the target
network is synchronized with uA based on a low frequency to
ensure stability throughout the learning process. The parame-
trized target value yi used for learning at the training iteration ith
is calculated by (9).

yi ¼ rt þ gQðstþ1; argmaxaQðstþ1; ajuAi ÞjuT Þ (9)

FIGURE 2 Process of the tree swapping crossover in the MTGP.

FIGURE 3 Process of the subtree mutation in the MTGP.
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Then, the parameters uAi are tuned to minimize the loss
(LðuAi Þ) at iteration ith, which is calculated as (10).

LðuAi Þ ¼
2
N

X
ðyi �Qðst; at juAi ÞÞ2 (10)

During the learning process, the action for the routing rule
corresponds to the options of machines within the workcenter.
That is, the size of the output layer (actions) of the network for
learning a routing rule equals the number of machines each
workcenter contains. However, the action space for the
sequencing rule is not so straightforward in DFJSS. The number
of operations in the waiting queue of machines can vary in dif-
ferent states, which makes direct operation selection infeasible.
Hence, four manually designed sequencing rules are used as the
actions for the sequencing rule, which are listed as follows.
1) Shortest processing time (SPT): gives the job with the

shortest processing time the highest priority;
2) Least work remaining (LWR): gives the job with the

smallest remaining processing time the highest priority;
3) Least critical ratio (LCR): gives the job with the smallest

ratio of its time until due versus its remaining processing
time the highest priority;

4) Minimum slack (MS): gives the job with the smallest slack
the highest priority.
In addition, the DRL uses two slack-driven surrogate

reward functions for learning the routing and sequencing rules,
respectively. To learn the routing rule, the reward is calculated
based on the difference between the actual slack and the esti-
mated slack. To learn the sequencing rule, the reward is calcu-
lated as the difference between the slack gain or loss of the
selected job and the average slack gain or loss of the jobs that
are not selected. More details regarding the calculation of
reward functions can be seen in [23].

IV. Experiment Design

A.Dataset
This paper considers a dynamic production system with new
dynamic job arrivals. To measure the performance of the
MTGP and DRL, four scenarios are considered based on three
important factors.
1) Expected job arrival rate/system utilization level: the job arrival

rate is related to the utilization level of the system EðuÞ,
which can be calculated as follows.

EðuÞ ¼ EðtÞ 	 k
w

EðinÞ 
 100% ¼ EðtÞ 
 w
EðinÞ 
 k


 100%;

where k and w mean the number of machines and work-
centers. EðtÞ denotes the expected processing time of all
operations on all machines. EðinÞ represents the expected
time interval between job arrivals. In this paper, the
expected utilization level of the system EðuÞ is assumed to
be 90% to simulate a busy production factory. Also, this
paper assumes that the time interval X between adjacent

job arrivals follows the exponential distribution: X �
ExpðbÞ;b ¼ EðinÞ.

2) Heterogeneity of the processing time: for each operation Oj;i, its
processing time tproj;i;m on the machine Vm is randomly sam-
pled from a uniform distribution U ½Lp;Hp�, where Lp and
Hp denote the low and high limits of the processing time,
respectively. For different scenarios, different average
processing times are considered: (1) High heterogeneity
processing time with tproj;i;m � U ½5; 25�, and (2) Low hetero-
geneity processing time with tproj;i;m � U ½10; 20�.

3) Due date tightness: for each job Jj, the due date tduej is
assigned based on its expected total processing time
and the due date factor aj. This paper considers two
types of tightness range U ½Ld;Hd�: (1) High tension of
due date with aj � U ½1; 2�; (2) Low tension of due
date with aj � U ½1; 3�. The due date is calculated as
follows.

tduej ¼ tarrj þ aj

Xqj
i¼1

Pkj;i
m¼1 t

pro
j;i;m

kj;i

 !
;aj � U ½Ld;Hd�

Based on the above descriptions, the four scenarios used in
this paper are defined as follows:
❏ HH: High heterogeneity of processing time [5,25] and

high tension of due date [1,2];
❏ HL: High heterogeneity of processing time [5,25] and low

tension of due date [1,3];
❏ LH: Low heterogeneity of processing time [10,20] and

high tension of due date [1,2];
❏ LL: Low heterogeneity of processing time [10,20] and low

tension of due date [1,3].
There are three workcenters on the shop floor, each of

which has two machines. Each instance simulates the produc-
tion for 1000 time units, during which about 124 jobs arrive
on the shop floor. The settings for the datasets used in our
paper are the same as [23].

B. Parameter Setting
The features described in Section III-A are used by both the
MTGP and DRL. For the DRL method, the original source
code is downloaded and directly run for the experiments. The
DRL method is implemented in Python based on the package
PyTorch [47]. The parameters for the DRL and the network
structures are listed in Table I [23]. The function set used by
the MTGP is fþ;�;max;min;
;	g, where 	 is protected
and returns 1 if divided by 0. The other parameters of the
MTGP are shown in Table II. The MTGP method is imple-
mented in Python based on the package DEAP [48]. As the
MTGP holds a population and has the advantage of using
multi-processing to evaluate individuals in parallel, the multi-
processing package [49] of Python is used to speed up the
training process of the MTGP.

For both the MTGP and DRL, the same 100 training
instances are used to obtain good scheduling heuristics. The
DRL returns the learned scheduling heuristic after
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performing the 100 training instances. For the MTGP, two
instances are applied for each generation, and finally, the
best scheduling heuristic learned after 50 generations (total
100 instances) is returned. After training, 100 unseen instan-
ces are used to measure the test performance, i.e., generali-
zation, of the learned scheduling heuristics. Besides the
MTGP and DRL, this paper considers four manually
designed routing rules and four manually designed sequenc-
ing rules, and combines them into 16 scheduling heuristics
to compare with the learned scheduling heuristics by the
MTGP and DRL methods. The comparison with the man-
ually designed rules provides a more intuitive view of the
effectiveness of the MTGP and DRL methods and reflects
their good generalization ability. The manually designed
routing and sequencing rules are listed as follows.

Routing rules:
1) Earliest completion time (ECT): gives the machine that has

the smallest sum of available time and remaining process-
ing time the highest priority;

2) Minimum execution time (MET): gives the machine
that has the minimum execution time the highest
priority;

3) Earliest available (EA): gives the machine that has the earli-
est available time the highest priority;

4) Least work in the queue (LWIQ): gives the machine that
has the least work remaining (total processing time) in its
waiting queue the highest priority.
Sequencing rules:

1) Shortest processing time (SPT): gives the operation that
has the shortest processing time the highest priority;

2) Earliest due date (EDD): gives the operation whose job has
the earliest due date the highest priority;

3) Least work remaining (LWR): gives the operation whose
job has the least work remaining (processing time) the
highest priority;

4) First-in-first-out (FIFO): gives the operation that arrives
the first the highest priority.

C. Comparison Design
To answer the four questions proposed in Section I, the
experiments are divided into four parts:

1) Test performance comparison: to compare the perfor-
mance of the DRL [23], the MTGP [22], and the manu-
ally designed scheduling heuristics in the four scenarios.

2) Training data influence analysis: to study the relationship
between the number of training instances and the perfor-
mance of the MTGP and DRL on test instances.

3) Performance on more complex scenarios analysis: to study
the generalization ability of the learned scheduling heuris-
tics by the MTGP and DRL on more complex unseen
instances than the training instances.

4) Interpretability analysis: to analyze the sizes and structures
of the learned scheduling heuristics by the MTGP and
DRL to understand the inner mechanism of the learned
scheduling heuristics.

V. Experimental Results

A. Test Performance
This section analyzes the experimental results of the manually
designed scheduling heuristics, the MTGP [22], and the
DRL [23] methods on the DFJSS problem in different scenar-
ios. The objective values obtained by learned scheduling heu-
ristics from each generation of the 30 independent runs of the
MTGP on the 100 unseen instances in the four scenarios are
shown in Figure 4. Meanwhile, the convergence curves of the
sequencing training loss and routing training loss of one run of
the DRL in the scenario HH are shown in Figures 5 and 6,
respectively. The convergence curves from other runs of the
DRL show the same pattern. As can be seen from the conver-
gence curves, for the MTGP algorithm, the convergence rate
is fast in the early stage, which gradually slows down and even-
tually reaches a relatively stable performance. For the DRL,
both the sequencing training loss and the routing training loss
converge quickly in the early stage, and the loss curve fluctu-
ates obviously after convergence. In summary, both the
MTGP and DRL methods ultimately converge, allowing for a
comparison of their converged test performance.

The mean (standard deviation) of the test performance on
100 unseen instances of 30 independent runs of manually
designed scheduling heuristics, the DRL, and the MTGP in

TABLE I Parameter configuration of the DRL method.

PARAMETER ROUTING SEQUENCING

Exploration rate (�) 0.3 decays to 0.1 0.3 decays to 0.1

Discount factor (g) 0.8 0.8

Learning rate 0.01 decays to 0.001 0.01 decays to 0.001

Minibatch size 128 64

Replay memory size 512 256

Input layer size 9 25

Output layer size 2 4

Hidden layer size 16
16
 16
 8
8 48
36
 36
 24
 24
12
Channels 1 6

TABLE II Parameter configuration of the MTGP method.

PARAMETER VALUE

Population size 50

Maximal generations 50

Population initialisation method The ramped-half-and-half

Initial minimum jmaximum tree depth 2 j 6
Number of elitism 10

Maximal tree depth 8

Reproduction probability 0.05

Crossover probability 0.80

Mutation probability 0.15

Selection method Tournament selection
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the four scenarios are shown in Table III, and the box plots of
the test performance on 100 unseen instances of 30 indepen-
dent runs of the MTGP and DRL are shown in Figure 7.
Comparisons are conducted using the Wilcoxon rank sum test
with a significance level of 0.05. The “"” next to the MTGP
in Table III denotes that the corresponding results of MTGP
are significantly better than the results of all the compared
algorithms.

It can be seen from Table III and Figure 7 that the DRL
outperforms, or is competitive with, all manually designed
scheduling heuristics in the four scenarios. The MTGP per-
forms much better than all the manually designed schedul-
ing heuristics and the DRL in all the four scenarios. These
results verify the effectiveness of the MTGP and DRL algo-
rithms. The advantages of the MTGP and DRL methods
over manual scheduling heuristics are consistent with the
existing studies, since they both search the heuristic space to
automatically learn better scheduling heuristics. The reasons
that the MTGP outperforms the DRL might be due to the
following reasons.

Firstly, during the learning process, the MTGP considers
not only the effectiveness of the routing rule and the

sequencing rule itself, but also their cooperation. In the
MTGP, each individual has a routing rule as well as a sequenc-
ing rule. These two rules are evolved and evaluated simulta-
neously. However, the DRL learns these two rules
independently, which might be stuck in poor local optima.

Secondly, the fitness (the total tardiness in this paper) of
candidate scheduling heuristics in the MTGP is the same as
the final objective (the total tardiness), while the reward
function in the DRL is different from the final objective.
The DRL learns and searches for candidates by giving feed-
back (reward) immediately after each decision point, and
the accumulated rewards are used to evaluate the policy
(scheduling heuristic). In principle, the DRL would provide
more detailed information than the MTGP which ignores
the intermediate information during the simulation. The
detailed information will be reflected as rewards or penalties
depending on the designed reward function. The reward
function is critical to the DRL and affects the quality of the
final scheduling heuristic learned. However, the design of
the reward function is quite difficult and requires a lot of
domain knowledge. The reward obtained from each deci-
sion point can give a positive effect when the reward func-
tion is well designed, but might have a negative influence
when the reward function gives misleading information. In
other words, a poorly designed reward function might mis-
lead the DRL search process away from the final goal. In
this case, it can be seen that although the DRL is able to
provide more detailed information than the MTGP, it is
hard to design the reward function. With a well-designed
reward function, RL is expected to learn better rules that
are more targeted and effective.

Thirdly, compared to the MTGP, the search space of the
sequencing rule is limited in the DRL. As the number of
actions in the DRL needs to be decided in advance, while the
number of candidate operations at different sequencing deci-
sion points varies, a fixed number of manually designed
sequencing rules are used to form the action space for the
sequencing rule. However, in the MTGP, the sequencing rule
allows for more possibilities, which can be achieved by ran-
domly combining functions and terminals.

FIGURE 4 Objective values obtained by learned scheduling heuristics
from each generation of the MTGP on the 100 unseen instances of 30
independent runs in the four scenarios.

FIGURE 5 Convergence curves of the sequencing training loss of the
DRL of one run in the scenario HH.

FIGURE 6 Convergence curves of the routing training loss of the DRL of
one run in the scenario HH.
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B. Influence of the Number of Training Instances
This section analyzes the impact of the number of training sam-
ples on the effectiveness of the algorithms. An empirical com-
parison is performed by setting three different numbers of
training samples: 50, 100, and 200. In this case, the number of
training instances for the DRL is adjusted to 50 or 200 to facili-
tate the learning of the scheduling heuristic. As for the MTGP,
50 generations remain consistent, with one instance used per
generation when the training set comprises 50 instances and
four instances assigned per generation when the training set
contains 200 instances. The same as the setting in Section V-A,
100 unseen instances are used to measure the performance of

the learned scheduling heuristics. The experimental results are
shown in Table IV. For each scenario and each algorithm, the
results are compared with different numbers of training instan-
ces. For example, for the HH scenario, the (=)(") for the
MTGP with 200 training instances indicates that the MTGP
with 200 training instances has no statistical difference from the
MTGP with 50 training instances and performs significantly
better than theMTGPwith 100 training instances.

From Table IV, it can be seen that, in terms of horizontal
comparison, the MTGP always performs better than the DRL.

TABLE III Test performance of manually designed scheduling heuristics, the DRL, and the MTGP in the four
scenarios.

ALGORITHM HH HL LH LL

ECT+SPT 1210.57(0.00) 777.73(0.00) 2299.63(0.00) 1559.03(0.00)

ECT+EDD 1270.07(0.00) 585.07(0.00) 2230.43(0.00) 1101.67(0.00)

ECT+LWR 1506.56(0.00) 960.29(0.00) 2381.54(0.00) 1525.45(0.00)

ECT+FIFO 1511.46(0.00) 920.72(0.00) 2506.36(0.00) 1538.48(0.00)

MET+SPT 1559.90(0.00) 1046.00(0.00) 4188.50(0.00) 3192.06(0.00)

MET+EDD 1773.54(0.00) 822.71(0.00) 4409.94(0.00) 2776.26(0.00)

MET+LWR 2149.38(0.00) 1426.26(0.00) 4542.56(0.00) 3328.43(0.00)

MET+FIFO 2140.90(0.00) 1339.91(0.00) 4814.27(0.00) 3373.93(0.00)

EA+SPT 3780.44(0.00) 2770.86(0.00) 3268.13(0.00) 2333.47(0.00)

EA+EDD 4211.34(0.00) 2588.23(0.00) 3188.26(0.00) 1785.30(0.00)

EA+LWR 4321.01(0.00) 3084.76(0.00) 3343.75(0.00) 2232.70(0.00)

EA+FIFO 4557.56(0.00) 3175.03(0.00) 3590.99(0.00) 2344.19(0.00)

LWIQ+SPT 3891.32(0.00) 2836.76(0.00) 3372.82(0.00) 2373.74(0.00)

LWIQ+EDD 4367.13(0.00) 2730.62(0.00) 3387.47(0.00) 1877.37(0.00)

LWIQ+LWR 4483.96(0.00) 3218.77(0.00) 3496.32(0.00) 2338.09(0.00)

LWIQ+FIFO 4762.90(0.00) 3351.49(0.00) 3793.20(0.00) 2497.48(0.00)

DRL 1170.68(37.13) 617.22(66.95) 2134.25(54.61) 1089.42(62.75)

MTGP(") 962.94(178.56) 389.28(130.55) 1856.63(216.37) 770.37(102.55)

FIGURE 7 Box plots of test performance on unseen instances of the
MTGP and DRL in the four scenarios.

TABLE IV Comparison results between the DRL and the MTGP
in the four scenarios with different number of training
instances.

SCENARIO TRAINING
INSTANCES

DRL MTGP

HH 50 1188.48(71.32) 969.09(228.44)

100 1170.68(37.13)(=) 962.94(178.56)(=)

200 1187.48(54.26)(=)(=) 897.81(123.01)(=)(")

HL 50 620.42(57.36) 408.88(133.03)

100 617.22(66.95)(=) 389.28(130.55)(=)

200 598.51(55.48)(=)(") 378.06(111.49)(=)(=)

LH 50 2188.08(71.64) 1887.95(310.79)

100 2134.25(54.61)(") 1856.63(216.37)(=)

200 2150.21(67.97)(")(=) 1794.28(186.70)(=)(=)

LL 50 1115.14(100.1) 854.17(246.05)

100 1089.42(62.75)(=) 770.37(102.55)(")
200 1100.31(80.74)(=)(=) 768.27(110.50)(")(=)
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In the vertical comparison, using a relatively smaller or larger
number of training instances does not affect the test perfor-
mance of the MTGP and DRL dramatically. For the DRL, in
the HH and LL scenarios, training with 50 instances and 200
instances obtain similar test performance with training on 100
instances. In the HL and LH scenarios, with more training
instances (200 instances), the DRL performs significantly bet-
ter than that with fewer training instances. For the MTGP, in
the HL and LH scenarios, training with 50, 100, and 200
instances can obtain similar test performance. In the HH and
LL scenarios, with more training instances (200 instances), the
MTGP performs significantly better than that with fewer
training instances.

In addition, (11) is used to calculate the improvement per-
centage � of the test performance in the four scenarios of the
MTGP and DRL as the number of training instances increases.

�a;b ¼ 1� Ttotala
Ttotalb

� �

 100%;

ða; bÞ 2 fð50; 100Þ; ð50; 200Þ; ð100; 200Þg
(11)

The results are shown in Table V. It can be seen that as the
number of training instances increases, the DRL sometimes
gives negative improvement percentages (less than 0), while
the MTGP always gives positive improvement percentages
(larger than 0). This suggests that MTGP outperforms DRL by
producing higher improvement percentages across all scenar-
ios. The negative improvement percentages of DRL can be
attributed to the fact that it makes decisions based on a mini-
batch of experiences (a number of decisions), which may not
encompass all possible decisions of the training instances. As a
result, DRL may not respond effectively to changes in the
number of training instances. Nonetheless, this property high-
lights the advantage of DRL in producing relatively stable
results with limited training data, particularly in real-world
applications. However, improving performance with adequate

training data can be challenging. MTGP exhibits significantly
higher improvement percentages than DRL, indicating that it
can learn more effective scheduling heuristics with enough
training data. However, the MTGP is significantly impacted
by training data and is less stable than DRL.

In summary, it is evident that as the number of training
instances increases, the MTGP consistently outperforms DRL
and derives significantly greater benefits from the additional
training data. However, it is worth noting that the DRL is
more stable (i.e., smaller standard deviation) and less sensitive
to changes in training data. This insight could assist industries
in selecting an appropriate method based on the specific prob-
lem and available resources.

C. Generalization to More Complex Scenarios
Generalization ability is a key criterion for measuring the qual-
ity of an algorithm. On one hand, the generalization ability of
an algorithm can be verified by the performance of its trained
heuristics on unseen test instances at the same scales. In this
case, according to the comparison of the test performance in
Section V-A, it is evident that the MTGP has better generali-
zation ability than the DRL. On the other hand, the generali-
zation ability can be further proven by extending the use of
the trained heuristics on unseen test instances at more complex
scales. For this purpose, the scheduling heuristics learned by
the MTGP and DRL are tested on more complex instances
with three workcenters, and each containing two machines, or
with more jobs. To be specific, the test instances are with 248
jobs arrival (2000 unit time), 620 jobs arrival (5000 unit time),
six workcenters, and nine workcenters. The same as
Section V-A, 100 unseen instances are used for testing. Addi-
tionally, the test performance of 16 manually designed sched-
uling heuristics is also shown as the baseline for comparison for
verifying the effectiveness of the MTGP and DRL.

Tables VI and VII give the mean (standard deviation) of
the test performance on 100 unseen instances of the 30 inde-
pendent runs of manually designed scheduling heuristics and
the learned scheduling heuristics by the MTGP and DRL on
the 16 complex scenarios. It can be seen that the learned
scheduling heuristics by the MTGP and DRL can outperform
the manually designed ones, even when applied directly to
more complex instances without retraining. Specifically, the
DRL outperforms most of the manually designed scheduling
heuristics across all 16 scenarios, except for ECT+SPT and
ECT+EDD. However, the DRL performs worse than ECT
+SPT and ECT+EDD on a few scenarios, such as scenarios
HH with 248 jobs and 620 jobs, scenario HL with six work-
centers, and scenario LH with nine workcenters. On the other
hand, the MTGP significantly outperforms all manually
designed scheduling heuristics and the DRL, with a statistically
superior performance across all 16 scenarios. These results illus-
trate that both the MTGP and DRL can be applied to more
complex scenarios without the need for retraining. Further-
more, the MTGP demonstrates an even better generalization
ability than the DRL.

TABLE V Improvement percentages of the test performance
in the four scenarios of the MTGP and DRL as the number of
training instances increases.

SCENARIO (a,b) DRL MTGP

HH (50,100) �1.52% 0.63%

(50,200) 0.08% 7.36%

(100,200) 1.41% 6.76%

HL (50,100) �0.52% 4.79%

(50,200) 3.51% 7.54%

(100,200) 3.13% 2.88%

LH (50,100) �2.52% 0.02%

(50,200) �1.76% 4.96%

(100,200) 0.74% 3.36%

LL (50,100) �2.36% 9.81%

(50,200) �1.35% 10.06%

(100,200) 0.99% 0.27%
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These results demonstrate the strong generalization ability
of the scheduling heuristics learned by both the MTGP and
DRL, especially the MTGP. Additionally, these findings sug-
gest that both the MTGP and DRL have the potential to

efficiently train on small-scale instances and obtain effective
heuristics to be used on larger-scale instances. This can be very
helpful in practical applications as it enhances efficiency and
provides satisfactory performance.

TABLE VII Test performance of the DRL, the MTGP, and comparison methods on eight scenarioswith more workcenters.

ALGORITHM 6W2M 9W2M

HH HL LH LL HH HL LH LL

ECT+SPT 2064.13(0.00) 1188.56(0.00) 4306.75(0.00) 2641.58(0.00) 3277.57(0.00) 1809.18(0.00) 7037.32(0.00) 4213.86(0.00)

ECT+EDD 2072.81(0.00) 677.98(0.00) 3871.73(0.00) 1535.96(0.00) 3040.24(0.00) 745.99(0.00) 5951.53(0.00) 1957.94(0.00)

ECT+LWR 2546.12(0.00) 1442.97(0.00) 4191.03(0.00) 2424.05(0.00) 3865.55(0.00) 2117.95(0.00) 6666.17(0.00) 3779.77(0.00)

ECT+FIFO 2721.87(0.00) 1477.21(0.00) 4740.88(0.00) 2667.71(0.00) 4385.92(0.00) 2321.10(0.00) 8000.07(0.00) 4436.86(0.00)

MET+SPT 2869.70(0.00) 1770.18(0.00) 7644.24(0.00) 5347.11(0.00) 4136.47(0.00) 2424.18(0.00) 11181.16(0.00) 7409.28(0.00)

MET+EDD 3139.20(0.00) 1030.69(0.00) 7382.28(0.00) 3676.64(0.00) 4083.20(0.00) 1071.75(0.00) 10175.79(0.00) 4323.78(0.00)

MET+LWR 3879.36(0.00) 2350.19(0.00) 7869.49(0.00) 5237.75(0.00) 5278.78(0.00) 3039.67(0.00) 11270.29(0.00) 7098.79(0.00)

MET+FIFO 4029.84(0.00) 2325.42(0.00) 8739.26(0.00) 5601.48(0.00) 5866.33(0.00) 3197.48(0.00) 12894.30(0.00) 6166.80(0.00)

EA+SPT 6502.85(0.00) 4262.83(0.00) 5867.10(0.00) 3741.67(0.00) 9584.38(0.00) 5997.11(0.00) 9473.10(0.00) 5881.28(0.00)

EA+EDD 7059.43(0.00) 3499.17(0.00) 5417.55(0.00) 2432.45(0.00) 9469.86(0.00) 4171.22(0.00) 8171.37(0.00) 3174.08(0.00)

EA+LWR 7375.26(0.00) 4807.66(0.00) 5731.48(0.00) 3446.52(0.00) 10132.08(0.00) 6133.37(0.00) 8826.54(0.00) 5163.08(0.00)

EA+FIFO 8421.70(0.00) 5340.45(0.00) 6600.26(0.00) 3901.09(0.00) 12133.88(0.00) 7222.11(0.00) 10668.17(0.00) 7907.79(0.00)

LWIQ+SPT 6920.89(0.00) 4569.00(0.00) 6165.40(0.00) 3903.02(0.00) 9898.59(0.00) 6143.23(0.00) 9654.39(0.00) 5944.05(0.00)

LWIQ+EDD 7375.49(0.00) 3745.04(0.00) 5786.08(0.00) 2594.14(0.00) 9854.07(0.00) 4394.14(0.00) 8483.86(0.00) 3427.61(0.00)

LWIQ+LWR 7584.30(0.00) 4922.64(0.00) 6009.81(0.00) 3639.31(0.00) 10495.00(0.00) 6390.71(0.00) 9140.49(0.00) 5346.25(0.00)

LWIQ+FIFO 8848.62(0.00) 5657.50(0.00) 6869.03(0.00) 4060.71(0.00) 12318.73(0.00) 7370.78(0.00) 10888.21(0.00) 6300.68(0.00)

DRL 1904.02(109.91) 674.67(156.46) 3694.60(133.67) 1356.30(176.97) 2822.25(199.02) 823.76(281.27) 5765.97(189.94) 1846.93(346.94)

MTGP(") 1590.04(421.11) 366.24(181.32) 3339.09(449.99) 937.45(137.56) 2441.90(996.12) 388.37(203.67) 5314.27(771.25) 1219.37(191.55)

TABLE VI Test performance of the DRL, the MTGP, and comparison methods on eight scenarioswith a large number of jobs arrival.

ALGORITHM 2000 UNIT TIME (248 JOBS) 5000 UNIT TIME (620 JOBS)

HH HL LH LL HH HL LH LL

ECT+SPT 2464.57(0.00) 1558.93(0.00) 4942.07(0.00) 3404.59(0.00) 5969.10(0.00) 3812.28(0.00) 14422.81(0.00) 10306.29(0.00)

ECT+EDD 2878.21(0.00) 1276.25(0.00) 4949.30(0.00) 2531.80(0.00) 6827.39(0.00) 3132.33(0.00) 14960.80(0.00) 8253.09(0.00)

ECT+LWR 3303.35(0.00) 2093.25(0.00) 5112.70(0.00) 3305.92(0.00) 8060.41(0.00) 5138.47(0.00) 15466.49(0.00) 10421.32(0.00)

ECT+FIFO 3160.73(0.00) 1878.98(0.00) 5597.03(0.00) 3539.85(0.00) 7869.59(0.00) 4710.19(0.00) 16516.99(0.00) 10852.17(0.00)

MET+SPT 3578.21(0.00) 2464.59(0.00) 9833.27(0.00) 7769.08(0.00) 9053.58(0.00) 6306.01(0.00) 31785.62(0.00) 26223.25(0.00)

MET+EDD 4306.56(0.00) 2115.43(0.00) 10695.20(0.00) 7072.82(0.00) 11294.89(0.00) 5777.62(0.00) 36363.18(0.00) 26181.51(0.00)

MET+LWR 5146.58(0.00) 3530.01(0.00) 10920.32(0.00) 8303.70(0.00) 13080.94(0.00) 9020.55(0.00) 36642.67(0.00) 29298.13(0.00)

MET+FIFO 5052.42(0.00) 3258.08(0.00) 11479.69(0.00) 8405.46(0.00) 12779.05(0.00) 8278.97(0.00) 38504.44(0.00) 29800.63(0.00)

EA+SPT 9392.86(0.00) 7094.31(0.00) 7337.65(0.00) 5382.54(0.00) 27894.03(0.00) 21983.59(0.00) 22581.28(0.00) 17167.73(0.00)

EA+EDD 11266.56(0.00) 7981.20(0.00) 7387.13(0.00) 4494.71(0.00) 34779.28(0.00) 24906.38(0.00) 23012.79(0.00) 15024.19(0.00)

EA+LWR 12052.81(0.00) 9070.10(0.00) 7729.31(0.00) 5357.62(0.00) 36889.03(0.00) 28995.71(0.00) 23935.82(0.00) 17209.25(0.00)

EA+FIFO 12406.51(0.00) 9076.90(0.00) 8511.21(0.00) 5807.89(0.00) 36628.47(0.00) 27975.50(0.00) 25817.25(0.00) 18274.63(0.00)

LWIQ+SPT 9873.21(0.00) 7433.28(0.00) 7719.68(0.00) 5601.55(0.00) 28959.28(0.00) 22673.19(0.00) 23732.51(0.00) 17938.37(0.00)

LWIQ+EDD 11688.17(0.00) 7834.65(0.00) 7886.95(0.00) 4816.37(0.00) 35462.49(0.00) 25863.40(0.00) 24400.87(0.00) 15709.88(0.00)

LWIQ+LWR 12190.28(0.00) 9170.81(0.00) 7993.81(0.00) 5488.46(0.00) 37225.87(0.00) 29091.99(0.00) 24730.12(0.00) 17785.42(0.00)

LWIQ+FIFO 13266.50(0.00) 9801.66(0.00) 8827.58(0.00) 6035.38(0.00) 38590.33(0.00) 29681.75(0.00) 26933.27(0.00) 19196.87(0.00)

DRL 2553.03(90.83) 1309.18(138.31) 4666.21(187.39) 2416.71(154.72) 6126.96(241.12) 3136.38(321.79) 13745.5(609.96) 7540.53(442.77)

MTGP(") 2043.05(425.56) 822.33(350.60) 3826.65(508.94) 1590.13(231.43) 4927.87(1100.08) 1988.61(928.22) 10911.87(1458.69) 4843.17(688.88)
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D. Interpretability Analysis
The interpretability of a model affects people’s trust in its real-
world applications, especially for problems with serious ethical
concerns [50]. In [51], interpretability is defined as the capabil-
ity to offer explanations in a comprehensible manner to
humans. Additionally, it has been observed that smaller rules
(with fewer nodes within the tree) generally exhibit better
interpretability [52]. This section analyzes the interpretability
of the scheduling heuristics learned by the MTGP and DRL.

Firstly, a comparison is conducted regarding the sizes of the
routing rule and sequencing rule learned by MTGP and DRL.
Table VIII presents the mean and standard deviation of the
routing rule size and sequencing rule size obtained from 30
independent runs of MTGP and DRL across four different
scenarios. For the DRL, the rule size is determined by count-
ing the number of hidden nodes in the neural network associ-
ated with it. For the MTGP, the rule size is determined by
counting the number of nodes in the corresponding tree. To
compare the two approaches, a Wilcoxon rank-sum test is
conducted with a significance level of 0.05. In Table VIII, the
symbol “"” following the results of the MTGP method indi-
cates that the corresponding rule sizes of the MTGP are sig-
nificantly smaller than those of the DRL algorithm. The
results demonstrate that the MTGP method consistently
yields significantly smaller routing and sequencing rule sizes
compared to the DRL method in all four scenarios. In con-
clusion, the MTGP can learn significantly smaller schedul-
ing heuristics than the DRL. However, it should be noted
that the network structure of the DRL, directly related to

the rule size, is usually designed in advance and fixed during
the learning process, and that the DRL only learns the
parameters. So the rule size is known and fixed during the
learning process. It is possible that a small network (with a
few nodes) can be used as a basic structure. For the MTGP,
it allows different scheduling heuristics to have different
sizes depending on the tree depth.

Apart from the rule size, this paper also analyzes the
structures of the learned scheduling heuristics by the MTGP
and DRL. The network structures of the routing rule and
sequencing rule learned by the DRL of a single run on the
scenario HH are shown in Figures 8 and 9. Note that there
are more than four nodes in the input layers and hidden
layers of the network structures of both the routing rule
and sequencing rule. However, to save space and make it
easier to demonstrate and analyze, the maximum number of
nodes on each layer is restricted to four. The value along
each edge represents the learned weights. The selected
scheduling heuristics have promising test performance. It
can be seen that the structures of both the routing rule and
sequencing rule exhibit a significant level of complexity,
with numerous nodes and weights comprising their struc-
tures. The routing rule comprises an input layer, an output
layer, and five hidden layers, with each hidden layer con-
taining a substantial number of nodes. Similarly, the
sequencing rule comprises an input layer, an output layer,
and six hidden layers, with even more nodes than the rout-
ing rule. These structures are predetermined. Understanding
the rationale behind the initial design of these structures, as
well as the reasoning behind decision-making based on the
complex networks and learned weights, can be challenging.

Different from the DRL, the MTGP needs not only to
tune the parameters but also to build the structures of the heu-
ristics [53]. Taking a learned scheduling heuristic by the
MTGP for scenario HH as an example, Figure 10 illustrates
the tree structures of a promising routing rule and a promising
sequencing rule derived from this scheduling heuristic.

As observed, the routing rule is determined by three ter-
minals: TIS, PT, and WIQ, with PT being the most fre-
quently utilized terminal, appearing five times in the rule.
The WIQ is used three times, and the TIS is only used

TABLE VIII Test routing rule and sequencing rule sizes by
the MTGP and DRL in the four scenarios.

SCENARIO ROUTING SEQUENCING

DRL MTGP DRL MTGP

HH 64(0.0) 47.53(53.07)(") 180(0.0) 42.87(83.38)(")
HL 64(0.0) 44.67(59.27)(") 180(0.0) 65.80(93.95)(")
LH 64(0.0) 40.73(47.02)(") 180(0.0) 58.73(59.61)(")
LL 64(0.0) 52.67(57.83)(") 180(0.0) 58.67(70.84)(")

FIGURE 8 Network structure of routing rule from one scheduling
heuristic learned by the DRL.

FIGURE 9 Network structure of sequencing rule from one scheduling
heuristic learned by the DRL.

30 IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | MAY 2024

Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on April 07,2024 at 00:45:53 UTC from IEEE Xplore.  Restrictions apply. 



once. Since TIS is a feature associated with the operation, it
remains consistent across all candidate machines. In this
case, the routing rule can be expressed as a simplified form,
denoted as R0 and shown in (12).

R0 ¼ ðPT �WIQÞ 
 ð1� PT 
 ðPT þWIQÞÞ þ TIS
(12)

Based on the range of processing time (PT) and remaining
work in the waiting queue (WIQ), 1� PT 
 ðPT þWIQÞ
must be smaller than 0. Thus, this rule suggests that if the
remaining work in the waiting queue (WIQ) is larger than the
processing time (PT) of the ready operation, then this routing
rule prefers machines with faster processing rates (i.e., smaller
PT) and larger work remaining in the queue (i.e., larger
WIQ). On the other hand, if the WIQ of the machine is
smaller than the PT of the current ready operation, then this
routing rule favors machines that have a slower process rate
(larger PT) and less work remaining in the queue (smaller
WIQ). This ensures that the selected machines are best suited
to handle the current workload.

The sequencing rule consists of three terminals: NIQ, PT,
and SLACK, with PT being the most commonly used termi-
nal, appearing four times in the rule. The SLACK is used
twice, while the NIQ is used only once. This sequencing rule
can be simplified as S0, as depicted in (13).

S0 ¼ 2
NIQ
 ðPT þ SLACKÞ (13)

Since NIQ represents the number of operations in the
waiting queue, it is constant for all candidate operations.
Therefore, this sequencing rule primarily focuses on the opera-
tion’s processing time (PT) and slack (SLACK). It tends to pri-
oritize operations with smaller processing time (PT) and
tighter slack.

On the basis of the above analysis of the scheduling heuris-
tic learned through the MTGP, it is evident that attributes of

the machine, such as processing time and work remaining in
the waiting queue play crucial roles in routing decisions. With
respect to the sequencing decision, information about the
operation, such as processing time and time remaining before
the due, play decisive roles. This observation is consistent with
our intuition that machines with shorter processing times are
better for processing ready operations, while operations that
are about to be due should be completed first. Also, the objec-
tive in this paper is tardiness, and SLACK is a very important
terminal related to tardiness. Based on the visual presentation
of the tree structure of the routing rule and the sequencing
rule and the feature analysis, it becomes possible to distinguish
the importance of different terminals for each rule and thus
have a more comprehensive and intuitive understanding of the
scheduling heuristics learned through the MTGP method.
This shows the good interpretability of the MTGP.

In conclusion, it is observed that the MTGP is able to pro-
vide a more intuitive scheduling heuristic compared to the
DRL. The scheduling heuristic learned by the MTGP is easier
for humans to comprehend, providing greater confidence for
real-world applications.

E. Further Discussions
According to the results and analyses presented in the previous
sections, for the present stage, the following conclusions can
be drawn for the research questions investigated in this paper.

RQ1: Which of the MTGP and the DRL is better for solving the
DFJSS problem?

The experimental results demonstrate that the learned
scheduling heuristics by the MTGP outperform those learned
by the DRL method and manually designed scheduling heu-
ristics. The superior performance of the MTGP over the DRL
approach may be attributed to several factors. Firstly, the
MTGP considers the cooperation between routing rules and
sequencing rules, which is not taken into account in the DRL
approach. Secondly, designing an appropriate reward function
in DRL is challenging, while the MTGP does not require the
design of a reward function. Finally, the sequencing action
space in DRL is limited, whereas the MTGP can explore a
more extensive search space, potentially leading to better
scheduling heuristics.

RQ2: How does the amount of training data affect the perfor-
mance of the MTGP and the DRL?

FIGURE 10 Tree structures of routing rule and sequencing rule
from one scheduling heuristic learned by the MTGP on scenario
HH.

MTGP is able to provide more
interpretable scheduling heuristics
compared to the DRL. The scheduling
heuristic learned by the MTGP is easier
for humans to comprehend, providing
greater confidence for real-world
applications.

MAY 2024 | IEEE COMPUTATIONAL INTELLIGENCEMAGAZINE 31

Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on April 07,2024 at 00:45:53 UTC from IEEE Xplore.  Restrictions apply. 



The DRL approach is less reliant on training data than the
MTGP for learning scheduling heuristics, which demonstrates
the stability advantage of the DRL. However, the MTGP can
learn better scheduling heuristics with an increasing amount of
training data. This is likely due to the fact that the DRL makes
decisions based on a minibatch of experience, focusing on local
decisions, while the MTGP considers its performance on the
entire instances, focusing on global decisions. Therefore, the
choice between the MTGP and DRL for learning scheduling
heuristics should be based on the specific problem at hand and
available resources. This finding provides valuable insights for
selecting the appropriate algorithm for real-world applications.

RQ3: How well can the MTGP and the DRL be generalized to
solve more complex instances (i.e., considering more jobs and more
workcenters)?

Both the MTGP and DRL have the ability to generalize to
solve complex instances without retraining. This indicates that
effective scheduling heuristics learned in small-scale instances
can be applied to large-scale instances. This feature makes both
the MTGP and DRL valuable tools in real-world applications.
Furthermore, the MTGP has shown better generalization abil-
ity than the DRL, highlighting its potential advantage in solv-
ing complex scheduling problems.

RQ4: Which of the MTGP and the DRL can achieve better
interpretability for learning scheduling heuristics?

The scheduling heuristics learned by theMTGP demonstrate
better interpretability, which is attributed to the smaller rule size
and the ability to visualize its individual representations. The
superior interpretability of learned scheduling heuristics by the
MTGP provides users with greater confidence in using them for
practical applications. Additionally, the MTGP is capable of per-
forming parameter and structure learning simultaneously. In
contrast, the DRL requires experts to design the structure in
advance, only tuning the parameters during the learning process.
However, determining an optimal structure for complex sched-
uling problems in advance can be challenging, requiring different
structures for different problems or scenarios. Consequently, the
MTGP, at the present stage, not only offers superior interpret-
ability but is also easier to use than the DRL.

To summarize, both the MTGP and DRL have their
strengths and weaknesses, and the choice between them for
learning scheduling heuristics depends on the specific problem
and available resources. If the problem is complex, the reward
function is difficult to define, or high interpretability is required,

then the MTGP is a better choice. On the other hand, if the
amount of training data is limited and stable results are expected,
then the DRL is preferable. Additionally, the MTGP is better
suited for optimizing global performance, while the DRL excels
at local decision-making. Combining the two approaches could
be a promising solution, allowing for effective coordination
between global and local decision-making.

VI. Conclusion
The aim of this paper is to fill the research gap in comparing GP
and RL methods that learn scheduling heuristics for dynamic
scheduling problems. In order to achieve this goal, this paper
investigated and conducted a comparison of a recently proposed
and representative GP (i.e., MTGP)method and a recently pro-
posed and representative RL (i.e., DRL) method to automati-
cally learn scheduling heuristics for the DFJSS problem in terms
of performance, the influence of training data, generalization
ability, and interpretability. Extensive experiments are con-
ducted on different scenarios to compare the effectiveness of
the MTGP and DRL methods. The results and analyses dem-
onstrate that both the MTGP and DRL methods have their
strengths and weaknesses. In terms of test performance on
unseen instances, both the MTGP and DRL outperform the
widely used manually designed scheduling heuristics. The
MTGP method performs better than the DRL method in the
investigated scenarios. The DRL method offers good stability
and is less sensitive to the training data, whereas the MTGP
method has the potential to learn better scheduling heuristics
with an increase in training data. Additionally, both the MTGP
and DRL methods show good generalization ability. Finally,
the MTGP method exhibits significant advantages over the
DRLmethod in terms of interpretability.

Although this paper shows that the DRL method performs
worse than the MTGP method on the DFJSS problem at the
present stage, RL-based methods have their unique advantages
and are expected to be potentially improved by, for example,
using well-designed reward functions. For future work, the
plan includes conducting further investigations on GP and RL
and exploring different combinations of these two algorithms.
This could be achieved by incorporating different strategies
and mechanisms, such as feature selection, surrogate, and
multi-task, to improve the performance of both GP and RL.
Moreover, it would be interesting to explore the potential of
using RL to train a policy that selects suitable scheduling heu-
ristics at different decision points, where the candidate schedul-
ing heuristics are learned by GP. Another promising direction
would be to design a new evaluation strategy by combining
the immediate feedback of RL and the long-term feedback of
GP, which could be helpful in learning good scheduling heu-
ristics. Furthermore, it is interesting to incorporate RL to per-
form smarter mutation or crossover for GP or adaptively
decide the functions for GP. The investigation will focus on
whether exploring these combinations could potentially
enhance the efficiency and effectiveness of learning scheduling
heuristics for dynamic scheduling problems.

Future work could delve into
investigating whether exploring the
combinations of GP and RL could
potentially enhance the efficiency and
effectiveness of learning scheduling
heuristics for dynamic scheduling
problems.
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