
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 1

Niching Genetic Programming to Learn Actions
for Deep Reinforcement Learning
in Dynamic Flexible Scheduling

Meng Xu, Student Member, IEEE, Yi Mei, Senior Member, IEEE,
Fangfang Zhang, Member, IEEE, and Mengjie Zhang, Fellow, IEEE

Abstract—Dynamic Flexible Job Shop Scheduling (DFJSS)
is a critical combinatorial optimisation problem known for
its dynamic nature and flexibility of machines. Traditional
scheduling methods face limitations in adapting to such dynamic
and flexible environments. Recently, there has been a trend
in employing reinforcement learning (RL) to train scheduling
agents for selecting manual scheduling heuristics at various
decision points for DFJSS. However, the effectiveness of RL is
constrained by the limited efficacy of the manually designed
scheduling heuristics. Additionally, the process of manually
designing diverse scheduling heuristics as the actions demands
significant expert knowledge. In response, this paper proposes
a Niching genetic programming (GP)-assisted RL method that
leverages the evolutionary capabilities of GP to help RL solve
the DFJSS problem effectively. Specifically, instead of using those
manual scheduling heuristics, the RL actions are replaced with
scheduling heuristics evolved by the Niching GP to optimise
and adapt these heuristics based on real-time feedback from the
environment. Experimental results demonstrate the effectiveness
of the proposed method in comparison to the widely used manual
scheduling heuristics and the baseline deep RL method. Further
analyses reveal that the effectiveness of the proposed method
is due to the behavioral differences among heuristics learned
by the Niching GP, serving as actions for the RL. In addition,
the effectiveness of the proposed algorithm benefits from the
comparable percentages of contributions made by these learned
heuristics throughout the long-term scheduling process.

Index Terms—heuristic learning, genetic programming, rein-
forcement learning, dynamic scheduling.

I. INTRODUCTION

Dynamic flexible job shop scheduling (DFJSS) is a com-
plex optimisation challenge that arises in manufacturing and
production environments [1]. It extends the traditional job
shop scheduling (JSS) [2] by incorporating dynamic event(s)
and flexibility of machines, introducing variability in both job
characteristics and machine capabilities [3]. In a typical manu-
facturing setting, a job shop consists of a set of machines, each
with different processing capabilities, and a set of jobs with
operations, each with specific processing requirements [4].
The goal is to determine the operation sequence (sequencing)
and machine assignment (routing), taking into account various
constraints and objectives [5], [6]. The dynamic aspect of

Meng Xu, Yi Mei, Fangfang Zhang, and Mengjie Zhang are with the
Centre for Data Science and Artificial Intelligence & School of Engineering
and Computer Science, Victoria University of Wellington, Wellington 6140,
New Zealand (e-mail: meng.xu@ecs.vuw.ac.nz; yi.mei@ecs.vuw.ac.nz; fang-
fang.zhang@ecs.vuw.ac.nz; mengjie.zhang@ecs.vuw.ac.nz).

Manuscript received April 19, 2021; revised August 16, 2021.

DFJSS introduces uncertainties and changes over time, such
as varying job arrival times, processing times, and machine
breakdowns [7]. The flexibility of DFJSS refers to the ability to
assign jobs to different machines. Each job may have multiple
feasible routes through different machines, and decisions need
to be made regarding the optimal routing and sequencing of
jobs to maximise efficiency and meet various performance
criteria [8].

The dynamic nature of DFJSS makes it necessary to handle
it with an adaptive scheduling strategy that can adapt to real-
time changes in manufacturing [9]. Scheduling heuristics, such
as the shortest processing time as the sequencing rule and the
work in the waiting queue as the routing rule, have been widely
used for solving the DFJSS problem, which can react in real-
time [10]. However, manually designing scheduling heuristics
is a time-consuming process that demands expertise in the
domain [11]. In this case, reinforcement learning (RL) [12]
has gained popularity for automatically learning high-quality
scheduling heuristics/agents in DFJSS.

Currently, some RL-based approaches presume a fixed
and constant number of machines/operations as actions at
decision points and learn an end-to-end strategy to solve
the JSS problems [13]. Consequently, these approaches face
challenges when applied to DFJSS with varying numbers
of machines/operations [13]. In response to this challenge,
researchers have attempted to use indirect ways to overcome
the difficulty of having different numbers of candidate ma-
chines/operations at different decision points. In particular,
the utilisation of manually designed scheduling heuristics as
actions in RL has been adopted for handling the varying
number of machines/operations [14], [15]. In this approach,
when RL selects a specific action (scheduling heuristic), the
chosen scheduling heuristic is subsequently employed to make
decisions regarding the candidate machines and operations.
However, this kind of methods still have limitations. Firstly,
the manually designed scheduling heuristics often exhibit
an average level of quality, thereby constraining the overall
quality of high-level scheduling heuristics learned by RL.
Secondly, the manual design process of a set of diverse
scheduling heuristics is time-consuming and requires a lot
of domain knowledge from experts. Genetic programming
(GP) [16] has been applied with notable success to address
JSS problems [17]. Instead of relying on manually designed
heuristics, GP employs an evolutionary process to iteratively
learn and refine candidate scheduling heuristics over multiple

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2024.3395699

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on May 03,2024 at 00:43:02 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

generations. The key advantage of using GP for JSS lies in
its ability to automatically explore a wide range of potential
scheduling heuristics and adapt to the specific characteristics
of the problem at hand with little domain knowledge [18].
Traditional GP methods typically focus on obtaining the best
scheduling heuristic without emphasising the diversity within
the population. Niching [19] has proven to be an effective
strategy employed in GP to enhance its effectiveness [20].
This is achieved by increasing population diversity, fostering
the presence of multiple diverse scheduling heuristics within
the population.

Drawing on the strengths of GP and the niching strategy,
this paper investigates the enhancement of RL by employing
GP with a niching strategy to autonomously learn effective and
diverse scheduling heuristics as actions to address the DFJSS
problems. The integration of GP aims to empower the RL
method in learning more effective scheduling agents, enabling
intelligent decision-making using specific heuristics across
diverse scheduling scenarios. To be specific, the contributions
of this paper are as follows.

1) This paper proposes a novel two-stage learning method
that integrates the benefits of GP into RL for addressing
the DFJSS problems. To the best of our knowledge, this
is the first attempt to combine these two methods in this
domain. The proposed method enhances RL’s capability
in learning intelligent scheduling agents and provides
valuable insights for future research on the integration
of GP and RL.

2) This paper proposes a Niching GP for the first stage. The
proposed Niching GP can automatically learn a set of
diverse and high-quality scheduling heuristics as actions
for RL. This approach offers several advantages: (1) it
reduces time requirement and dependency on domain-
specific knowledge compared to manual heuristic de-
sign; (2) it yields actions with superior performance
compared to manual heuristics; (3) it offers a variety
of heuristics as actions, capable of addressing diverse
decision-making scenarios.

3) This paper employs RL to utilise the learned high-
quality and diverse scheduling heuristics from Niching
GP as actions in the second stage. This contributes to
intelligently selecting appropriate scheduling heuristics
when encountering different decision points.

4) The proposed method outperforms the baseline RL
method and widely used manually designed scheduling
heuristics for DFJSS. Additionally, the effectiveness of
Niching GP is validated by comparing the proposed
method with a classical GP-assisted RL method. Further
analyses confirm that the effectiveness of the proposed
method is attributed to the contributions made by the
learned heuristics throughout the long-term scheduling
process.

The subsequent sections of this paper are organised as
follows. Section II provides the problem formulation of DFJSS
and an overview of related works, encompassing RL and GP
methods applied to scheduling problems. Section III describes
the proposed method. The experimental design and results

M 1 M 2 M 3

M 1

M 2

M 3

Time

J 1

J 2

J 3 𝑶𝟏,𝟏

𝑶𝟏,𝟐

𝑶𝟏,𝟑𝑶𝟐,𝟏

𝑶𝟐,𝟐

𝑶𝟐,𝟑𝑶𝟑,𝟏

𝑶𝟑,𝟐

𝑶𝟑,𝟑

Fig. 1. An example diagram illustrating the representation of the solution
(schedule) in DFJSS.

are detailed in Sections IV and V, respectively. Additional
analyses are presented in Section VI. Lastly, Section VII offers
conclusions for this paper.

II. BACKGROUND

A. Dynamic Flexible Job Shop Scheduling

In the DFJSS problem, the shop floor comprises a set
of machines denoted by Γ = {Ω1, ...,Ωk}, belonging to
specific workcenters W = {W1, ...,Ww}. Jobs, denoted as
J = {J1, J2, ..., Jn}, dynamically arrive at the shop floor.
Each job Jj is characterised by an arrival time tarrj , a
due date tduej , and a predetermined sequence of operations
OJj = [Oj,1, Oj,2, ..., Oj,qj], each of which must visit a
workcenter to be processed. Each operation Oj,i is processable
only by a subset (kj,i) of machines Γj,i ⊆ Γ belonging to a
specific workcenter. The processing time tproj,i,m of operation
Oj,i depends on the selected machine Ωm ∈ Γj,i.

The scheduling complexity and production performance are
influenced by three important factors, which are described as
follows:

1) Job arrival rate: a higher job arrival rate can result
in busier machine utilisation level and increased system
congestion;

2) Job and machine heterogeneity: variability in the
processing times for operations on different machines
introduces complexity;

3) Tightness of due dates: a tighter due date reduces
operational flexibility and job slack, often leading to
higher tardiness.

In the context of DFJSS, a solution or schedule denotes a
set of allocations for the processing start time tstartj,i of each
operation Oj,i on its assigned machine Ωm for all jobs. Fig.
1 gives an example diagram illustrating the representation of
the solution (schedule) in DFJSS considering 3 jobs and 3
machines.

Total tardiness Ttotal is a crucial objective in practical
industries, and it is the focus of optimisation in this paper.
The definition of Ttotal is outlined as follows.

Ttotal =
∑n

j=1 tard(Jj),

tard(Jj) = max{tcomj − tduej , 0} (1)

where tard(Jj) represents the tardiness of the job Jj . The
tcomj denotes the completion time of the job Jj .

The mathematical model of the DFJSS problem is formu-
lated as follows:

min Ttotal (2)

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2024.3395699

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on May 03,2024 at 00:43:02 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 3

s.t.:

tstartj1,i1
≤ tstartj2,i2

− tproj1,i1,m
+ L · (1− xj1,i1,j2,i2,m),

∀j1, j2 = 1, . . . , n; ∀i1 = 1, . . . , qj1 ;
∀i2 = 1, . . . , qj2 ; ∀m = 1, . . . , k

(3)

tstartj,1 ≥ tarrj , ∀j = 1, . . . , n (4)

tcomj,i ≥ tstartj,i + tproj,i,m · yj,i,m, ∀j = 1, . . . , n;

∀i = 1, . . . , qj ; ∀m = 1, . . . , k
(5)

tstartj,i+1 ≥ tcomj,i , ∀j = 1, . . . , n; ∀i = 1, . . . , qj − 1 (6)∑kj,i

m=1 yj,i,m = 1, ∀j = 1, . . . , n; ∀i = 1, . . . , qj (7)

xj1,i1,j2,i2,m =


1, if Oj1,i1 is processed by Ωm,

before Oj2,i2 ,

0, otherwise.
(8)

yj,i,m =

{
1, if Oj,i is assigned to Ωm,

0, otherwise.
(9)

Constraint (3) specifies that a machine can only process one
operation at a time, with L representing a sufficiently large
constant. Constraint (4) denotes that the processing of each
job’s first operation can commence only after the job is
released. Constraint (5) establishes the relationship between
the processing start time tstartj,i and the processing completion
time tcomj,i for the operation Oj,i. Constraint (6) states that the
operation Oj,i+1 must wait for the completion of its preceding
operation Oj,i before it can be processed on the assigned
machine. Constraint (7) indicates that an operation can be
processed only on one of its candidate machines.

B. Related Work

1) Reinforcement Learning for JSS: RL-based approaches
have recently attracted much attention for addressing di-
verse scheduling problems, either through direct or indirect
approaches [21]. In an indirect approach, RL agents are
combined with manually designed scheduling heuristics. Con-
versely, the direct approach involves extracting state features
by observing the environment and generating a scheduling
scheme directly with the agent, often referred to as “end-
to-end”. End-to-end RL approaches are primarily employed
in static scheduling problems or scenarios where the number
of jobs/machines is predetermined. The action space remains
constant, set to the same number as the jobs/machines, across
different decision points. For instance, in [22], the actions
directly represent candidate machines, while in [23], the
actions correspond to candidate jobs. In [24], an innovative
end-to-end deep RL (DRL) framework is designed to tackle
the scheduling problem. It demonstrates promising results in
this context, but it still encounters challenges when applied to
more complex dynamic scenarios. Following [24], the same
authors further propose a new end-to-end DRL method for
solving the DFJSS problem [25]. The main principle is to
divide the DFJSS problem into multiple static scheduling
problems. However, the inherent essence of such an approach
is still to view the dynamic problem as a static problem
to be solved. This does not allow for timely response to

changes in the scheduling environment and real-time decision-
making, which ultimately affects the quality of the solution.
Moreover, such an approach is not efficient. The advantage of
end-to-end methods lies in minimising the need for human-
designed heuristics. This approach allows the model to learn
decision-making directly from raw observations. However,
a limitation of these methods is their inability to handle
problems with dynamically changing action spaces, such as
DFJSS. In DFJSS, the number of jobs can vary in response to
a dynamic environment. Consequently, the number of available
actions of DRL cannot remain constant throughout, as it needs
to adapt to the requirements of changing jobs in the scheduling
system.

In the indirect application of DRL to scheduling problems,
manually designed scheduling heuristics are commonly em-
ployed as the agents’ actions. These DRL methods address the
challenges faced by end-to-end DRL approaches, which en-
counter difficulties with dynamically changing action spaces.
Instead of directly utilising machines/operations as actions,
these methods employ manually designed rules as actions. In
[26], a DRL method with a Deep Q-Network (DQN) network
is proposed for the DJSS problem. This paper specifically
focuses on determining the sequencing rule, and the actions
employed consist of widely used manually designed sequenc-
ing rules. In [27], a DQN model is proposed to solve a multi-
objective flexible JSS problem with crane transportation and
setup times. To tackle the two subproblems within flexible
JSS, operation sequencing and machine routing, this paper
integrates manually designed composite scheduling heuristics,
combining these subproblems into a unified framework. Then
an agent is learned to make decisions among these compos-
ite scheduling heuristics. Several other studies also adopt a
similar approach by manually designing composite scheduling
heuristics as actions for RL to solve the DFJSS problem [14],
[15], [28], [29]. However, it is crucial to acknowledge that, for
these studies, the strategy of combining the two subproblems
is typically not optimal. It cannot fully capture the interaction
between the routing and sequencing rules [30], which could
substantially reduce the search space, potentially constraining
the exploration of superior solutions.

In addition to the aforementioned methods that directly
utilise manually designed composite scheduling heuristics as
actions, some approaches leverage RL to learn the weights
associated with these manually designed composite scheduling
heuristics, resulting in a weighted scheduling heuristic [31].
This method can be effective in adapting to dynamic and
changeable environments, as it does not necessitate consid-
eration of the impact of variations in the number of candidate
machines/operations at different decision points. However, a
notable limitation of this method is the pre-determination of
the aggregation function, which solely relies on a weighted
sum function. This predetermined choice still narrows down
the search space by limiting the range of functions available.
Additionally, no sufficient evidence is provided on explaining
why this particular predetermined aggregation function is able
to yield good results.

In [32], a DRL method with a double DQN model is
proposed to solve the DFJSS problems. Different from the

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2024.3395699

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on May 03,2024 at 00:43:02 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 4

aforementioned studies utilising composite scheduling heuris-
tics as actions to jointly address sequencing and routing
decisions, they employ a distinct training strategy. Specifically,
the sequencing rule and the routing rule are trained separately.
For training the routing rule, the actions directly correspond
to the machines, while for the sequencing rule, manual rules
are used as actions, which can address the challenge posed
by the varying number of jobs in different decision-making
scenarios. This method would not reduce the search space as
much as in the above studies. In such cases, DRL is utilised
to enhance the performance of traditional methods but cannot
fully address their inherent limitations. For instance, if the
manually designed scheduling heuristics lack high quality,
their effectiveness as actions can be constrained, and the in-
corporation of DRL might not yield substantial improvements.

Following the work [32], to overcome its limitation that
needs a lot of domain knowledge of experts to design schedul-
ing heuristics, a possible way is to use heuristic generation
methods to automatically learn some high-quality and diverse
scheduling heuristics as actions. Therefore, it is reasonable and
necessary to explore the combination of heuristic generation
methods and DRL in the DFJSS problem.

2) Genetic Programming for JSS: GP hyper-heuristic is
a powerful heuristic generation method that belongs to the
broader family of evolutionary computation domain [33],
[34]. GP draws inspiration from biological evolution to au-
tomatically evolve populations of heuristics to solve complex
problems. Through a process of fitness evaluation, selection,
and evolution, GP iteratively refines the population of heuris-
tics over multiple generations to improve their performance
on a given problem [35]. In DFJSS, GP has been used to
automatically evolve scheduling heuristics that can adapt to
the dynamic and flexible nature of the problem. Several studies
have explored the effectiveness of GP in evolving heuristics for
DFJSS [10], [36], [37]. GP allows the evolution of scheduling
heuristics in the form of computer programs, typically repre-
sented as trees, where nodes signify functions and terminals
that are abstracted from the scheduling system [38], [39]. Its
ability to discover complex and non-linear relationships makes
it a valuable tool in handling the complexities of the DFJSS
problem where the structure of the solution is not known in
advance [40]. The key advantages of using GP for DFJSS
include its ability to explore a vast search space of scheduling
heuristics, automatically adapt to changing conditions, and
evolve solutions that may be difficult to manually design [41].

Researchers continue to refine GP-based approaches, explor-
ing hybrid methods that combine GP with other optimisation
or machine learning techniques to enhance solution quality
and computational efficiency. Noteworthy examples include
the integration of GP with surrogate models [38], multi-task
optimisation [42], feature selection [43], and ensemble [3],
[44] techniques for addressing the DFJSS problem. Moreover,
GP has the potential to learn a diverse set of scheduling
heuristics by considering phenotypic diversity [45] during the
evolutionary process [46].

3) Summary: Based on the above description, it is evident
that GP and RL share similarities and differences. As for
the similarities, both GP and RL are hyper-heuristic meth-

ods, focusing on exploring the heuristic space and learning
scheduling heuristics/agents through iterative interactions with
the scheduling environment. On the differences, RL typically
serves as a heuristic selection method. It selects from a pool
of manually designed low-level scheduling heuristics (actions)
at decision points. RL primarily concentrates on refining and
optimising a single scheduling heuristic, drawing immediate
feedback from the scheduling environment following each
action, thereby emphasising local information. In contrast,
GP prioritises global information, which is acquired upon
completing an entire instance rather than after processing
each single decision point. Instead of focusing on optimising
a single scheduling heuristic, GP maintains a population of
such heuristics and collectively optimises them through an
evolutionary process involving selection, crossover, mutation,
and reproduction. As a result, GP explores a broader and
more diverse search space, thus reducing the possibility of
falling into local optima. Moreover, GP is a commonly used
heuristic generation method in the DFJSS domain, and can
generate/construct new and sophisticated heuristics. Given
the distinct advantages of GP and RL, investigating their
integration to tackle the DFJSS problem presents a novel
and intriguing approach, previously less explored within this
domain [47], [48]. In this paper, we explore this integration
by harnessing the capabilities of GP to automatically learn a
diverse set of effective scheduling heuristics. These learned
heuristics are then employed as actions within an RL frame-
work to solve the DFJSS problem.

III. THE NICHING GP-ASSISTED DRL METHOD

A. Overall Framework

In this paper, a two-stage framework is proposed, leveraging
the strengths of GP to help RL develop effective scheduling
agents for solving the DFJSS problems. The framework is
denoted as Niching GP-assisted DRL (NichGPDRL). The
overall framework is shown in Fig. 2. In the first stage, a
Niching GP (NichGP) method is presented to autonomously
learn a diverse set of high-quality scheduling heuristics. Sub-
sequently, in the second stage, the learned sequencing rules
by the NichGP are utilised as actions for the DRL method
to adaptively select the most appropriate learned heuristic at
different decision points. The proposed NichGPDRL method
leverages the strengths of evolutionary capabilities and diver-
sity maintenance capabilities of the NichGP to learn a set of
high-quality and diverse scheduling heuristics simultaneously
and automatically. By employing these learned heuristics as
actions for DRL, the proposed NichGPDRL overcomes the
limitations of the baseline DRL method, which typically
requires significant time and domain knowledge to manually
design scheduling heuristics as actions. Additionally, these
manually designed scheduling heuristics might not exhibit
high-quality. The subsequent sections provide detailed insights
into the state features utilised by the proposed NichGPDRL,
how the proposed NichGP method learns a diverse set of high-
quality scheduling heuristics simultaneously, and how the DRL
method leverages these learned scheduling heuristics to further
enhance its effectiveness on DFJSS.

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2024.3395699

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on May 03,2024 at 00:43:02 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 5

State features

Training instance(s)

NichGP

DRL

Diverse scheduling heuristics (Actions)

Routing agent Sequencing agent

Stage 1

Stage 2

learn

learn

Test instance(s)

Fig. 2. The overall framework of the proposed NichGPDRL method.

B. State Features

The state features used for both the NichGP and DRL are
related to the following characterisations. For more details,
please refer to [32].

1) PTj,i,m(t): The processing time of the operation Oj,i

on the machine Ωm at time t.
2) WKRj(t): The work remaining, representing the total

processing time of the job Jj for the remaining opera-
tions at time t.

3) CRj(t): The completion rate, denoting the percentages
of completed operations among all the operations of the
job Jj at time t.

4) TTDj(t): The time until due, meaning the remaining
time of the job Jj until the due date at time t.

5) SLACKj(t): The slack of the job Jj at time t,
SLACKj(t) = tduej − t−WKRj(t).

6) WIQm(t): The remaining work (total processing time
of all the operations) in the waiting queue of machine
Ωm at time t.

7) NIQm(t): The number of operations in the waiting
queue of machine Ωm at time t.

8) MRTm(t): The ready time of machine Ωm at time t,
i.e., when machine becomes idle.

9) MWTm(t): The waiting time of machine Ωm at time t,
MWTm(t) = t−MRTm(t).

10) MBTm(t): The busy time, denoting the total working
time of machine Mm at time t.

11) NPTj,i+1(t): The median of the processing time for the
next operation Oj,i+1 at time t.

12) NORj(t): The number of the remaining operations of
the job Jj at time t.

13) OWTj,i(t): The waiting time of the operation Oj,i at
time t, OWTj,i(t) = t − ORTj,i(t), where ORTj,i(t)
denotes the ready time of the operation Oj,i, which
denotes the time of an operation arrives at the queue
of the machine.

14) t: The current time of the scheduling system.
15) TISj(t): The time that the job Jj has been in the

scheduling system at time t, TISj(t) = t− tarrj .

C. Stage 1: Niching GP training

Fig. 3 gives the flowchart of NichGP. Different from the
traditional GP method, NichGP uses a Niching strategy [20]

after fitness evaluation to remove duplicated and poor individ-
uals from the population. In this case, NichGP aims to achieve
the coexistence of multiple high-quality and diverse scheduling
heuristics in the population. In the DFJSS domain, phenotypic
diversity is more meaningful than genotypic diversity [1]. In
this paper, phenotypic diversity is considered to manage a
niche. We adopt the phenotypic characterisation (PC) [20],
[49] to measure the phenotypic diversity. PC is defined as
a vector of values. Each value within the vector signifies
the rank by the reference rule assigned to the candidate
machine/operation where the calculated rule designates the
highest priority at a given decision point. This paper uses the
sequencing rule and the routing rule from the best individual
evolved at each generation as the reference sequencing rule
and reference routing rule, respectively. To process a DFJSS
instance, typically comprising thousands of decision points,
we adopt a computational efficiency strategy by focusing
on 20 sequencing decision points and an equivalent number
of routing decision points. Therefore, a PC of a scheduling
heuristic contains 40 values. To be specific, an unseen instance
is used to get all the decisions which involves 7 candidate ma-
chines/operations. Then we shuffle the decisions and randomly
get 20 sequencing decision points and 20 routing decision
points. Table I provides an illustrative example of calculating
the PC of an individual (scheduling heuristic), considering
three points for each type of decision and three candidate
operations/machines at each decision point. In Table I, char-
acters hold different meanings. For instance, 1(O1) signifies
the candidate operation O1 at the first sequencing decision
point, while 2(M1) denotes the candidate machine M1 at
the second routing decision point. The encircled numbers
i⃝, i ∈ [1, 2, 3] indicate that the candidate operation/machine

in the same row holds the first or third rank according to the
reference sequencing/routing rule, while it holds the first rank
according to the sequencing/routing rule. For example, at the
first sequencing decision point, with three candidate operations
[O1, O2, O3] under consideration, the reference rule assigns
rankings as [1, 3, 2]. Conversely, the sequencing rule assigns
rankings as [3, 1, 2], placing operation O2 in the first position,
whereas the reference rule assigns it the third rank. Therefore,
the first value of the PC for this example is 3. Ultimately, the
PC for this instance involves a combination of sequencing and
routing decisions, denoted as [3, 1, 2, 2, 1, 3].

The pseudo-code of NichGP is detailed in Algorithm 1.
NichGP computes the PC, denoted as pci, for each individual
indi within the population at every generation (see line 5).
Subsequently, a clearing strategy [19] is applied, penalising in-
dividuals within a niche that show poor performance in fitness
by assigning them an infinite fitness value (see line 6) [36].
The fitness function utilised in NichGP to compute the fitness
of individuals is the average objective value of the schedules
generated by the GP individual across the training instance(s).
In this paper, it is represented as f(x) = 1

c

∑c
i=1 Ttotal(x),

where c represents the number of training instance(s). The
clearing strategy takes into account two crucial parameters:
the radius δ of each niche, signifying the PC distance between
niches, and the capacity κ of each niche, representing the
number of high-quality individuals in fitness to be retained in

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2024.3395699

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on May 03,2024 at 00:43:02 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 6

TABLE I
AN EXAMPLE OF CALCULATING THE PC OF AN INDIVIDUAL.

Sequencing Routing
Decision points Reference rule Sequencing rule Decision Decision points Reference rule Routing rule Decision

1(O1) 1 3
3

1(M1) 2⃝ 1
21(O2) 3⃝ 1 1(M2) 1 2

1(O3) 2 2 1(M3) 3 3
2(O1) 3 2

1
2(M1) 2 2

12(O2) 1⃝ 1 2(M2) 3 3
2(O3) 2 3 2(M3) 1⃝ 1
3(O1) 1 2

2
3(M1) 1 2

33(O2) 2⃝ 1 3(M2) 3⃝ 1
3(O3) 3 3 3(M3) 2 3

Start

Population initialisation

Fitness evaluation

Evolution

Seed
rotation

No

Iteration stop?
Yes Output top p

scheduling heuristics

Niching

Selection
Crossover
Mutation

Reproduction

Sequencing rule 1
Sequencing rule 2

Sequencing rule p

…

Action 1
Action 2

Action p

…

DRL

Fig. 3. The flowchart of the GP method of stage 1.

the niche. In this paper, we use Euclidean distance to calculate
the distance between PCs. Notably, in contrast to traditional
GP, NichGP employs the clearing strategy each time when
the fitness evaluation process is conducted. Moreover, top p
individuals are output as the actions for DRL. It is important
to highlight that, while DRL only requires sequencing rules
since it can learn an end-to-end routing agent for the DFJSS
problem considered [32], our method involves evolving both
routing and sequencing rules simultaneously using NichGP.
The reason for this lies in our findings: when we experimented
by keeping the routing rule fixed as a manual rule and evolving
only the sequencing rule, we observed that the performance of
the sequencing rules is constrained by the fixed routing rule,
which will affect the effectiveness of the proposed method.

D. Stage 2: DRL training

We adopt the DRL framework presented in [32]. However,
our method differs in that we replace the actions used to train
the sequencing agent with those learned through the proposed
NichGP. The specifics of the DRL framework are presented as
follows. Markov decision process (MDP) [50] is used to model
the process that the DRL for solving the DFJSS problem. The
MDP is a fundamental framework in RL that mathematically
formalises decision-making in an environment where an agent
interacts to achieve a goal. The MDP has a 5-element tuple
representation: < S,A, P, γ,R >. S represents the state space,
which is the set of all possible situations or configurations that
the environment can be in. A denotes the action space, which
is the set of all possible actions that the agent can take. P

Algorithm 1: The pseudo-code of NichGP.
Input: Population size: N ; Generations: G.
Output: A list of top p individuals: ∆ = [ind1, . . . , indp].

1 Initialise population pop with N individuals;
2 g ← 0;
3 while g < G do
4 Fitness evaluation for each individual indi in pop;

// Calculate PC of each individual
5 pop← calculatePC(pop);

// Use clearing strategy to penalize
individuals within a niche that show poor
performance

6 Clearing(pop);
7 Selection;
8 Crossover/Mutation/Reproduction;
9 g ← g + 1;

10 end
11 ∆← ∅;
12 i← 0;
13 while i < p do
14 ∆← ∆ ∪ indi;
15 end
16 return ∆;

is the transition probabilities, the probabilities associated with
transitioning from one state (st) to another (st+1) after taking
a specific action (at). It characterises the dynamics of the
environment. R means the reward function, that specifies the
immediate reward (rt) the agent receives after transitioning. It
is related to the goal or objective of the agent. γ represents
the discount factor which is a parameter between 0 and 1 that
discounts future rewards. It helps in balancing the trade-off
between immediate and future rewards.

Fig. 4 illustrates the flowchart of the DRL method and
showcases an example of the representation of the routing
agent and sequencing agent. In this example, both the routing
agent and the sequencing agent consist of one input layer,
one output layer, and two hidden layers, each consisting of
three nodes represented in circular shapes. The outputs of the
routing agent directly correspond to the candidate machines,
while the outputs of the sequencing agent represent the se-
quencing rules learned by the proposed NichGP represented
in square shapes. The routing agent and sequencing agent serve
as priority functions, guiding routing and sequencing decisions
in the scheduling process. Specifically, the routing agent is
employed to select a machine when an operation becomes
ready for processing, while the sequencing agent is used to
determine which operation will be processed next when a
machine becomes available. This approach enables the assign-

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2024.3395699

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on May 03,2024 at 00:43:02 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 7

Routing agent

𝑠!

𝑟! 𝑎!

…

…

…

…

…

Jobs in system

Completed operation

Ready operation

Not ready operation

… …

Workcenters

Ready operation

 to workcenter

Routing: select machine

Sequencing: select job

Routing: select machine

Sequencing: select job

Sequencing agent

𝑠!!

𝑎!! 𝑟!!

from NichGP

Fig. 4. The flowchart of the RL method of stage 2.

ment of operations to machines and the determination of their
processing start times, ultimately leading to the generation of a
scheduling solution. To mitigate the exponential growth in the
state-action space during multi-agent DRL training [51], the
sequencing agent and the routing agent are trained separately.
This separation is employed to manage the coordination of
exploration efforts, striking a balance between local and global
exploration trade-offs [51]. Additionally, during the training
of the sequencing agent, the routing rule is kept fixed as
the earliest available machine, and the sequencing rules de-
rived from the learned scheduling heuristics are utilised as
actions. When training the routing agent, the sequencing rule
is set as the First-in-First-out operation, and the routing agent
takes end-to-end training, enabling it to make direct decisions
among candidate machines. During the training process, the
routing/sequencing agent observes the current state (st) of
the environment and then selects an action (at) based on
its policy (π). The environment transitions to a new state
(st+1) according to the transition probabilities (P). The agent
receives a reward (rt) from the reward function. The agent
updates its knowledge (Q function and policy) based on the
observed state, action, reward, and the resulting state. The
process repeats over multiple time steps as the agent learns
to maximise cumulative rewards.

In this paper, a double DQN architecture is used to train the
agent. Double DQN is an enhancement of the traditional DQN,
designed to address a common issue known as overestimation
bias in Q-learning [52]. It is developed to improve the stability
and performance of DQN algorithms. Double DQN uses two
separate neural networks: one for action selection (referred to
as the action network) and another for Q-value evaluation (re-
ferred to as the target network). The action-selection network
is responsible for determining the best action, while the target
network is used to estimate the Q-value of that action.

The ultimate goal of the agent is to find an optimal policy

that maximises the expected cumulative reward over time in
the given environment. This is typically achieved through
the DRL method that iteratively improves the agent’s policy
based on its experiences. These experiences play a central
role in the learning process. By exploring different actions
in various states, the agent can gather information about
the environment, which is essential for making informed
decisions. The proposed DRL uses experience replay, where
past experiences are stored in memory and randomly replayed
during learning. This helps the agent learn from a diverse
set of experiences and mitigates the impact of correlated
sequential data. About the action representation, the routing
agent’s actions directly correspond to the selected machine
within the workcenter, given the fixed number of machines in
this study. The sequencing agent’s actions entail the selection
of a NichGP-learned sequencing rule. This approach addresses
the challenge posed by a changing queue, making the direct
selection of operations impractical. More details about the
reward function and other process can be find in [32].

IV. EXPERIMENTAL DESIGN

A. Dataset
This paper explores a dynamic production system with

continuous job arrivals. To assess the performance of the
proposed method and comparison methods, we examine four
scenarios based on the following three critical factors:

1) Job Arrival Rate / System Utilisation level: the job
arrival rate is closely linked to the system’s utilisation
level, denoted as E(u). This metric can be calculated as
follows:

E(u) =
E(t)÷ k

w

E(in)
× 100% =

E(t)× w

E(in)× k
× 100%

where k and w represent the number of machines and
workcenters, respectively. E(t) stands for the expected

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2024.3395699

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on May 03,2024 at 00:43:02 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8

processing time of all operations across all machines,
and E(in) represents the expected time interval between
job arrivals. In this study, we assume a 90% utilisation
level (E(u)) to simulate a busy production environment
[32]. Additionally, we assume that the time interval (X)
between successive job arrivals follows an exponential
distribution [53]: X ∼ Exp(E(in)).

2) Heterogeneity of Processing Time: the processing time
(tproj,i,m) for each operation (Oj,i) on machine Ωm is ran-
domly sampled from a uniform distribution (U [Lp, Hp]),
with Lp and Hp denoting the lower and upper limits of
the processing time, respectively. For different scenarios,
we consider different average processing times:

• High heterogeneity: tproj,i,m ∼ U [5, 25]

• Low heterogeneity: tproj,i,m ∼ U [10, 20]

3) Due Date Tightness: the due date (tduej) for each job
(Jj) is assigned based on its expected total processing
time and the due date factor (αj). This paper considers
two types of due date tightness ranges (U [Ld, Hd]):

• High tension: αj ∼ U [1, 2]
• Low tension: αj ∼ U [1, 3]

The due date is calculated as follows:

tduej = tarrj +αj

qj∑
i=1

(∑kj,i

m=1 t
pro
j,i,m

kj,i

)
, αj ∼ U [Ld, Hd]

Based on the above descriptions, the four scenarios used
to evaluate the performance of the comparison methods are
consistent with those presented in [32], as follows:

• HH: the processing time exhibits high heterogeneity
([5, 25]), and high tension in due dates ([1, 2]);

• HL: the processing time exhibits high heterogeneity
([5, 25]), and low tension in due dates ([1, 3]);

• LH: the processing time has low heterogeneity ([10, 20]),
and high tension in due dates ([1, 2]);

• LL: the processing time has low heterogeneity ([10, 20]),
and low tension in due dates ([1, 3]).

Furthermore, the shop floor is equipped with 3 workcenters,
each of which is equipped with 2 machines. Each instance of
the simulation covers a production period of 1000 time units,
during which approximately 124 jobs arrive on the shop floor.
The dataset settings utilised in our paper are consistent with
those outlined in [32].

B. Parameter Setting

The features described in Section III-B are used by both
the NichGP and DRL. NichGP employs a function set
{+,−, ∗, /,max,min}, where / is protected, returning 1 in
case of division by 0. Additional parameters for NichGP are
presented in Table II. The NichGP method is implemented in
Python using the DEAP package [54]. With the advantage
of parallel evaluation, the multiprocessing package [55] in
Python is employed to speed up NichGP’s training process.
The DRL implementation, utilising PyTorch [56] in Python,
is detailed in Table III [32], encompassing parameters and
network structures.

TABLE II
THE PARAMETER SETTINGS OF THE PROPOSED NICHGP METHOD.

Parameter Value
Population size 200

Number of generations 50
Number of instances per generation 2
Method for initialising population Ramped-half-and-half
Initial minimum/maximum depth 2 / 6

Elitism 10
Maximal depth 8
Crossover rate 0.80
Mutation rate 0.15

Reproduction rate 0.05
Terminal/non-terminal selection rate 10% / 90%

Radius δ/capacity κ [0, 1, 2, 3, 4, 5]/1
Parent selection Size-4 tournament selection

Output as actions for DRL Top 4 individuals

TABLE III
THE PARAMETER CONFIGURATION OF THE DRL METHOD.

Parameter Routing Sequencing
Exploration rate (ϵ) 0.3 decays to 0.1 0.3 decays to 0.1
Discount factor (γ) 0.8 0.8

Learning rate 0.01 decays to 0.001 0.01 decays to 0.001
Minibatch size 128 64

Replay memory size 512 256
Input layer size 9 25

Output layer size 2 4
Hidden layer size 16×16×16×8×8 48×36×36×24×24×12

Channels 1 6

C. Comparison Design

To verify the effectiveness of our proposed NichGPDRL
method, we compare our method with the following methods.
This paper incorporates four manually designed routing rules
and four manually designed sequencing rules which are widely
used in industry [15], [25]. These are combined to create
16 scheduling heuristics, forming the basis for comparison
with the learned scheduling heuristics from NichGP and DRL
methods. This comparative analysis with manually designed
rules offers an intuitive perspective on the effectiveness of
the proposed NichGPDRL method, highlighting their strong
generalisation capabilities. The manually designed routing and
sequencing rules taken into comparison are listed as follows.

Routing rules:

1) Earliest completion time (ECT): gives the machine that
has the smallest sum of available time and remaining
processing time the highest priority;

2) Minimum execution time (MET): gives the machine that
has the minimum execution time the highest priority;

3) Earliest available (EA): gives the machine that has the
earliest available time the highest priority;

4) Least work in the queue (LWIQ): gives the machine that
has the least work remaining (total processing time) in
its queue the highest priority.

Sequencing rules:

1) Shortest processing time (SPT): gives the operation that
has the shortest processing time the highest priority;

2) Earliest due date (EDD): gives the operation whose job
has the earliest due date the highest priority;

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2024.3395699

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on May 03,2024 at 00:43:02 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 9

3) Least work remaining (LWR): gives the operation whose
job has the least work remaining (processing time) the
highest priority;

4) First-in-first-out (FIFO): gives the operation that arrives
the first the highest priority.

In addition, the GP-assisted DRL (GPDRL) is used as a
baseline to verify the effectiveness of the proposed NichGP
method. Moreover, the method that NichGPDRL without DRL
training is employed (NichGP#). For NichGP#, the sequenc-
ing rule remains fixed as one of the candidate rules (actions),
serving to validate the efficacy of the DRL learning process.
For each method, 30 independent runs are conducted to train
30 scheduling heuristics. In both NichGP (stage 1) and DRL
(stage 2), the training process involves 100 instances. In the
case of NichGP, two instances are applied per generation, and
the top 4 scheduling heuristics, learned over 50 generations
(totaling 100 instances), are returned. For DRL, the learned
sequencing and routing agents are obtained after completing
the 100 training instances. After training, we evaluate the
objective values generated by the learned scheduling agents
in 30 independent runs across 100 unseen instances for each
of the four scenarios.

1) 16 widely used manual scheduling heuristics;
2) DRL [32]: the routing agent is trained to directly select

from machines/operations while the sequencing agent is
trained to select from manual sequencing rules;

3) GPDRL: the routing agent is trained to directly select
from machines/operations while the sequencing agent is
trained to select from the learned sequencing rules by
the original GP;

4) NichGP# (# ∈ [1, 2, 3, 4]): the routing agent is trained
through DRL [32] using an end-to-end way, directly
selecting from machines/operations. Meanwhile, the se-
quencing agent remains fixed as one of the rules learned
by the proposed NichGP;

5) NichGPDRL (ours): the routing agent is trained to
directly select from machines/operations while the se-
quencing agent is trained to select from the learned
sequencing rules by the proposed NichGP.

By comparing with these methods, we can validate the
effectiveness of the proposed NichGPDRL method, assess
the performance of learned sequencing rules by GP methods
in comparison to manually designed ones, and evaluate the
efficacy of the proposed niching strategy in learning diverse
and high-quality sequencing rules, as opposed to the traditional
GP method.

V. RESULTS AND DISCUSSIONS

A. Influence of the Radius Parameter in NichGP

The parameter radius, denoted as δ, plays a critical role
in NichGP, representing the degree of dissimilarity between
individuals within the NichGP. This dissimilarity level, in turn,
can have an impact on the performance of the learned agent
through RL. To explore this effect, we conduct experiments
using six δ values: 0, 1, 2, 3, 4, and 5. Specifically, when
δ = 0, it signifies that a distance larger than 0 between
scheduling heuristics is considered acceptable, while other

TABLE IV
THE MEAN AND STANDARD DEVIATION TRAINING PERFORMANCE OF 30

INDEPENDENT RUNS OF THE PROPOSED NICHGPDRL METHOD WITH
DIFFERENT δ VALUES.

δ HH HL LH LL Rank
0 537.40(333.24) 173.40(194.79) 1492.33(900.92) 636.03(627.94) 1.25
1 551.82(353.12) 172.60(184.53) 1519.75(885.75) 651.72(648.31) 1.75
2 561.35(344.87) 187.45(194.74) 1540.70(859.74) 664.25(656.11) 3
3 588.73(386.7) 194.70(202.84) 1594.92(937.7) 689.90(676.96) 4
4 616.37(367.32) 205.52(183.95) 1599.77(903.5) 695.33(693.09) 5
5 648.45(384.99) 225.05(257.65) 1667.58(933.76) 730.05(713.3) 6

scheduling heuristics are penalised. The respective training
performance of the proposed NichGPDRL method for each
δ value is shown in Table IV. The results of the Friedman
test [57], revealing a p-value of 0.002 (falling below the
significance threshold of 0.05), indicate significant differences
among different δ values. Considering the average rank of
these methods across all four scenarios, a radius of 0 attains the
highest rank with a value of 1.25. Additionally, we observe
that as the radius value increases, the rank decreases. This
phenomenon suggests that increasing the radius does not lead
to performance improvement but rather degrades it. A radius of
0 yields the best performance. Consequently, for subsequent
experiments and analyses, we use NichGPDRL to represent
the proposed method with a radius of 0.

B. Test Performance

Table V gives the mean and standard deviation test per-
formance of 30 independent runs of the proposed NichGP-
DRL methods and comparison methods. The Friedman test
results, yielding a p-value of 4.28× 10−8 (smaller than 0.05),
indicate significant differences among the methods. Notably,
all scheduling heuristics learned by hyper-heuristic methods
(DRL, NichGP#, GPDRL, and the proposed NichGPDRL)
outperform all the manually designed ones. Among the hyper-
heuristic methods, DRL exhibits the worst performance. The
proposed NichGPDRL obtains the best performance, with
NichGP1 following closely as the second best. NichGP3
secures the third position, while NichGP2 takes the fourth
position. NichGP4 and GPDRL closely follow in the fifth
position.

To be more specific, we employ the Wilcoxon rank sum
test [58] to compare the proposed NichGPDRL method with
each comparison method across the four scenarios. The results,
denoted by significantly better (↑), worse (↓), or statisti-
cally similar (=) compared to other methods, are presented
alongside the results of the comparison method in Table V.
Upon analysing these results, we observe that the proposed
NichGPDRL significantly outperforms DRL and all manually
designed scheduling heuristics across all four scenarios. When
compared with NichGP#, the proposed NichGPDRL performs
better than NichGP1 and NichGP4 on the scenario HL. When
compared with GPDRL, NichGPDRL performs significantly
better than GPDRL on two scenarios (LH and LL) while
performing similarly with GPDRL on the other scenarios
(HH and HL). Importantly, it never performs worse than the
other methods in any other scenarios. These results validate

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2024.3395699

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on May 03,2024 at 00:43:02 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 10

TABLE V
THE MEAN AND STANDARD DEVIATION TEST PERFORMANCE OF 30 INDEPENDENT RUNS OF THE PROPOSED NICHGPDRL METHODS AND COMPARISON

METHODS.

Algorithm HH HL LH LL Rank
ECT+SPT 1014.29(0.00)(↑) 611.06(0.00)(↑) 2457.59(0.00)(↑) 1699.70(0.00)(↑) 9
ECT+EDD 1082.88(0.00)(↑) 441.37(0.00)(↑) 2424.66(0.00)(↑) 1265.08(0.00)(↑) 8
ECT+FIFO 1245.73(0.00)(↑) 705.08(0.00)(↑) 2748.60(0.00)(↑) 1727.35(0.00)(↑) 10.5
ECT+LWR 1305.73(0.00)(↑) 791.42(0.00)(↑) 2505.60(0.00)(↑) 1607.48(0.00)(↑) 10.5
MET+SPT 1437.83(0.00)(↑) 960.87(0.00)(↑) 4534.33(0.00)(↑) 3509.15(0.00)(↑) 16.5
MET+EDD 1719.43(0.00)(↑) 782.12(0.00)(↑) 4755.69(0.00)(↑) 3087.73(0.00)(↑) 16.25
MET+FIFO 1965.50(0.00)(↑) 1223.73(0.00)(↑) 5274.61(0.00)(↑) 3800.25(0.00)(↑) 18.5
MET+LWR 2028.35(0.00)(↑) 1345.42(0.00)(↑) 4966.10(0.00)(↑) 3693.70(0.00)(↑) 18.5

EA+SPT 3261.69(0.00)(↑) 2297.7(0.00)(↑) 3409.09(0.00)(↑) 2430.36(0.00)(↑) 15.25
EA+EDD 3824.05(0.00)(↑) 2235.12(0.00)(↑) 3403.57(0.00)(↑) 1901.17(0.00)(↑) 14.5
EA+FIFO 4254.86(0.00)(↑) 2871.10(0.00)(↑) 3930.47(0.00)(↑) 2617.09(0.00)(↑) 19.75
EA+LWR 3937.37(0.00)(↑) 2740.29(0.00)(↑) 3491.85(0.00)(↑) 2352.15(0.00)(↑) 16.75

LWIQ+SPT 3496.10(0.00)(↑) 2461.64(0.00)(↑) 3601.45(0.00)(↑) 2568.60(0.00)(↑) 17.25
LWIQ+EDD 4003.76(0.00)(↑) 2305.48(0.00)(↑) 3524.99(0.00)(↑) 2045.50(0.00)(↑) 16.5
LWIQ+FIFO 4468.28(0.00)(↑) 3022.68(0.00)(↑) 4064.07(0.00)(↑) 2720.61(0.00)(↑) 21
LWIQ+LWR 4219.96(0.00)(↑) 2945.80(0.00)(↑) 3688.77(0.00)(↑) 2505.47(0.00)(↑) 19

DRL 1003.30(43.95)(↑) 463.28(43.48)(↑) 2383.47(70.08)(↑) 1219.51(70.33)(↑) 7.25
NichGP1 929.08(54.08)(=) 385.49(34.95)(↑) 2255.22(83.52)(=) 1125.61(77.46)(=) 3
NichGP2 943.44(77.26)(=) 388.38(46.60)(=) 2285.84(95.21)(=) 1115.44(47.15)(=) 4
NichGP3 932.07(63.95)(=) 381.97(43.54)(=) 2273.90(91.91)(=) 1122.20(79.08)(=) 3.75
NichGP4 944.85(63.73)(=) 390.78(43.78)(↑) 2269.25(100.79)(=) 1119.19(53.11)(=) 4.25
GPDRL 929.84(43.46)(=) 375.08(32.04)(=) 2299.29(88.82)(↑) 1211.13(64.51)(↑) 4.25

NichGPDRL 927.50(42.44) 372.18(19.13) 2263.42(70.21) 1121.14(75.55) 1.75

DR
L

Nic
hG
P1

Nic
hG
P2

Nic
hG
P3

Nic
hG
P4
GP
DR
L

Nic
hG
PD
RL

1000

1200

On dataset HH

DR
L

Nic
hG
P1

Nic
hG
P2

Nic
hG
P3

Nic
hG
P4
GP
DR
L

Nic
hG
PD
RL

400

500

On dataset HL

DR
L

Nic
hG
P1

Nic
hG
P2

Nic
hG
P3

Nic
hG
P4
GP
DR
L

Nic
hG
PD
RL

2200

2400

On dataset LH

DR
L

Nic
hG
P1

Nic
hG
P2

Nic
hG
P3

Nic
hG
P4
GP
DR
L

Nic
hG
PD
RL

1000

1200

1400
On dataset LL

To
ta

l t
ar

di
ne

ss

Fig. 5. The box plots of the test performance of 30 independent runs of the
proposed NichGPDRL, GPDRL, and DRL methods.

the effectiveness of the proposed NichGPDRL method and
highlight the effectiveness of the proposed niching strategy
in aiding GP to generate high-quality and diverse actions for
DRL compared to the original GP.

Fig. 5 visualises the box plots of the test performance
of 30 independent runs of the proposed NichGPDRL and
other hyper-heuristic methods. The box plots highlight the
significant advantages of the proposed algorithm compared to
the DRL algorithm. It illustrates the benefits of combining
GP and DRL over using DRL independently. The demon-
strated advantages emphasise the effectiveness of the proposed
NichGPDRL of integrating GP into DRL. Furthermore, the
effectiveness of the proposed NichGP# is verified through
these results.

VI. FURTHER ANALYSES

A. Action Contribution

In the learning process of RL, the selection process involves
choosing from four scheduling heuristics (actions) at each
decision point. This section focuses on the analysis of action
contribution, defined as the percentage of times each action
is utilised relative to the total number of decision points.
The mean of action contributions is calculated across 30
independent runs for the DRL, GPDRL, and the proposed
NichGPDRL methods across four scenarios. The results are
presented in Fig. 6 using pie plots.

The pie plots reveal that, in the case of the DRL method,
action 1 (A1, SPT) assumes a key role across all four
scenarios, securing the highest percentage in each scenario,
exceeding 50% in three of them. Subsequently, action 3 (A3,
SLACK) secures the second-highest percentage. Action 4 (A4,
CR) attains the third rank, while action 2 (A2, WIQ) ranks
the lowest, constituting about only 1% on all four scenarios.
In contrast to the DRL method, GPDRL, and NichGPDRL
methods exhibit similar action contributions across the four
actions. This shows that the scheduling heuristics evolved by
GP and NichGP can generate key rules that contribute to the
overall performance.

B. Behaviour Difference between Scheduling Heuristics

This paper proposes a NichGP method to iteratively evolve
a set of diverse scheduling heuristics for use as actions in
RL. This section investigates the behaviour difference among
scheduling heuristics evolved through the proposed NichGP.
To ensure a fair comparison, we employ an unseen instance
to generate 100 sequencing decisions. Subsequently, each
scheduling heuristic evolved by NichGP and GP is evaluated
on these 100 decisions, with the Hamming distance utilised
to calculate the behavioral difference between each pair of

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2024.3395699

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on May 03,2024 at 00:43:02 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 11

A1
67.7% A21.0%

A324.2%

A4
7.1%

DRL-HH

A1
22.0%

A2
25.0%

A3
27.0%

A4
26.0%

GPDRL-HH

A1
20.2%

A2
35.4% A322.2%

A4
22.2%

NichGPDRL-HH

A161.0%

A2
2.0%

A327.0%

A4
10.0%

DRL-HL

A1
24.0%

A2
33.0% A320.0%

A4
23.0%

GPDRL-HL

A1
17.0%

A223.0%

A3
38.0%

A4
22.0%

NichGPDRL-HL

A153.0%

A2
0.0%

A330.0%

A4
17.0%

DRL-LH

A1
25.0%

A2
25.0%

A3
26.0%

A4
24.0%

GPDRL-LH

A1
26.0%

A2
28.0% A3

22.0%

A4
24.0%

NichGPDRL-LH

A139.4%

A2
1.0%

A3
32.3%

A4
27.3%

DRL-LL

A1
22.8%

A2
23.8%

A3
29.7%

A4
23.8%

GPDRL-LL

A1
19.2%

A2
29.3%

A3
22.2%

A4
29.3%

NichGPDRL-LL

Ac
ti

on
 c

on
tr

ib
ut

io
n

Fig. 6. The pie plots of the action contribution of 30 independent runs of
the DRL, GPDRL, and the proposed NichGPDRL methods on four scenarios.

TABLE VI
THE MEAN AND STANDARD DEVIATION BEHAVIOUR DIFFERENCE OF 30

INDEPENDENT RUNS OF THE PROPOSED NICHGPDRL AND GPDRL
METHODS.

Scenario GPDRL NichGPDRL
HH 0.051(0.097) 0.161(0.066)(↑)
HL 0.054(0.058) 0.126(0.089)(↑)
LH 0.045(0.080) 0.205(0.074)(↑)
LL 0.045(0.058) 0.119(0.044)(↑)

sequencing rules (a total of 6 pairs for 4 sequencing rules). The
average percentage of behavioral difference across all pairs is
then computed as the behaviour difference ρ. The function to
calculate the behaviour difference is as Eq. (10).

ρ =

∑6
i=1 Hamming(seqa, seqb)

6
(10)

where, seqa and seqb represent different sequencing rules.
Table VI gives the mean and standard deviation behaviour
difference of 30 independent runs of the proposed NichGP-
DRL and GPDRL methods. It can be seen that the proposed
NichGPDRL shows significantly higher behaviour difference
than the GPDRL on all the four scenarios. The NichGPDRL
outperforms the GPDRL about more than 3 times on behaviour
difference. This verifies the effectiveness of the proposed
NichGP in learning diverse scheduling heuristics for DRL.

C. Generalisation to More Complex Scenarios

On one hand, an algorithm’s generalisation ability can be
assessed by examining the performance of its trained heuristics
on unseen test instances at similar scales. In this context,
as demonstrated in the comparison of test performances in
Table V, it is evident that the proposed NichGPDRL exhibits
superior generalisation ability compared to DRL. On the other
hand, generalisation ability can be further validated by extend-
ing the application of trained heuristics to unseen test instances
at more complex scales. To achieve this, scheduling heuristics
learned by the proposed NichGPDRL and comparison methods
are tested on instances featuring a higher number of jobs and
a large number of workcenters. Specifically, the test instances
involve 248 jobs arriving over 2000 units of time and 620
jobs arriving over 5000 units of time. Similar to Table V,
100 unseen instances are employed for testing. Furthermore,
the test performance of 16 manually designed scheduling
heuristics is presented as a baseline for comparison, to verify
the effectiveness of the proposed method.

Tables VII and VIII present the mean and standard de-
viation of test performances for the proposed NichGPDRL
and comparison methods across two sets of scenarios: one
characterised by a substantial number of job arrivals and the
other featuring different numbers of workcenters. The “↑”
next to NichGPDRL in Tables VII and VIII signifies that
the results of NichGPDRL are significantly better than those
of all the compared algorithms. These findings demonstrate
that NichGPDRL outperforms DRL and all manually designed
scheduling heuristics, even when directly applied to more
complex instances without retraining. While DRL outperforms
most manually designed scheduling heuristics in 16 scenarios,
exceptions include ECT+EDD on scenario HL with 248 jobs,
ECT+SPT on scenario HH with 620 jobs, ECT+EDD on
scenario LL with six workcenters, each with two machines,
and ECT+EDD on scenarios HL and LH with nine workcen-
ters, each with two machines. These findings demonstrate that
both NichGPDRL and DRL methods can be applied to more
complex scenarios without retraining. Moreover, NichGPDRL
exhibits superior generalisation ability compared to DRL as it
provides even better performance.

D. Structure Analysis of Sequencing Rules

In this section, we analyse the structure of sequencing rules
evolved by NichGP and used as actions for DRL. We randomly
select a run and the structures of the 4 sequencing rules are
shown in Fig. 7.

For the sequencing rule 1, it comprises four terminals:
PT, SLACK, NIQ, and WKR. Notably, SLACK emerges
as the predominant terminal within this rule, having been
utilised four times. Following SLACK, both PT and WKR
are employed twice, while NIQ is employed only once. The
simplified representation of the sequencing rule 1 is denoted
as S1 and is expressed in Eq. (11). Given that NIQ, repre-
senting the number of operations in the waiting queue for a
machine, remains constant for all candidate operations, it can
be disregarded. This rule prioritises jobs that have a shorter
processing time for the current operation, a smaller slack, and

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2024.3395699

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on May 03,2024 at 00:43:02 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 12

TABLE VII
THE MEAN AND STANDARD DEVIATION TEST PERFORMANCE OF THE DRL, THE NICHGPDRL, AND COMPARISON METHODS ON EIGHT SCENARIOS

WITH A LARGE NUMBER OF JOBS ARRIVAL.

Algorithm 2000 unit time (248 jobs) 5000 unit time (620 jobs)
HH HL LH LL HH HL LH LL

ECT+SPT 2175.22(0.00) 1353.44(0.00) 5257.93(0.00) 3698.47(0.00) 5670.90(0.00) 3540.29(0.00) 14346.88(0.00) 10342.80(0.00)
ECT+EDD 2441.94(0.00) 1026.63(0.00) 5246.53(0.00) 2806.27(0.00) 6479.19(0.00) 2924.44(0.00) 14474.19(0.00) 8065.42(0.00)
ECT+LWR 2830.33(0.00) 1763.24(0.00) 5510.60(0.00) 3653.18(0.00) 7733.09(0.00) 4849.61(0.00) 15235.86(0.00) 10315.41(0.00)
ECT+FIFO 2730.64(0.00) 1588.24(0.00) 5938.43(0.00) 3806.03(0.00) 7528.22(0.00) 4450.15(0.00) 16426.80(0.00) 10918.11(0.00)
MET+SPT 3342.30(0.00) 2278.09(0.00) 10838.54(0.00) 8710.86(0.00) 8741.83(0.00) 6000.12(0.00) 30705.00(0.00) 25227.22(0.00)
MET+EDD 4088.80(0.00) 2065.01(0.00) 12083.85(0.00) 8248.97(0.00) 10906.19(0.00) 5394.65(0.00) 34920.13(0.00) 25013.67(0.00)
MET+LWR 4830.47(0.00) 3282.75(0.00) 12079.90(0.00) 9342.84(0.00) 12775.60(0.00) 8787.98(0.00) 35324.91(0.00) 28118.48(0.00)
MET+FIFO 4726.93(0.00) 3020.21(0.00) 12819.83(0.00) 9601.56(0.00) 12569.91(0.00) 8111.35(0.00) 37149.28(0.00) 28687.94(0.00)

EA+SPT 8602.50(0.00) 6419.72(0.00) 7761.20(0.00) 5715.40(0.00) 25364.02(0.00) 19582.27(0.00) 22400.26(0.00) 17089.66(0.00)
EA+EDD 10251.10(0.00) 6596.72(0.00) 8042.18(0.00) 4788.28(0.00) 31222.59(0.00) 22163.05(0.00) 23034.26(0.00) 14708.75(0.00)
EA+LWR 10526.01(0.00) 7767.38(0.00) 8125.91(0.00) 5670.46(0.00) 33417.17(0.00) 25770.86(0.00) 23429.87(0.00) 16962.71(0.00)
EA+FIFO 11028.04(0.00) 7884.14(0.00) 8895.89(0.00) 6108.21(0.00) 33899.75(0.00) 25385.47(0.00) 25530.17(0.00) 18210.69(0.00)

LWIQ+SPT 8955.59(0.00) 6648.55(0.00) 8133.55(0.00) 5960.71(0.00) 26428.54(0.00) 20302.60(0.00) 23554.17(0.00) 17867.04(0.00)
LWIQ+EDD 10569.78(0.00) 6836.88(0.00) 8335.29(0.00) 5063.08(0.00) 31893.24(0.00) 22543.42(0.00) 24278.45(0.00) 15397.05(0.00)
LWIQ+LWR 10975.34(0.00) 8123.35(0.00) 8442.37(0.00) 5864.28(0.00) 33286.78(0.00) 25493.15(0.00) 24435.33(0.00) 17631.24(0.00)
LWIQ+FIFO 11560.02(0.00) 8316.44(0.00) 9231.12(0.00) 6336.31(0.00) 34631.34(0.00) 25898.14(0.00) 26808.94(0.00) 19191.36(0.00)

DRL 2154.31(96.78) 1041.14(86.75) 4996.29(157.03) 2599.83(153.23) 5781.12(253.85) 2834.20(214.81) 14065.40(448.60) 7773.84(431.70)
NichGPDRL(↑) 2027.05(100.62) 882.36(45.47) 4813.97(234.03) 2415.20(147.26) 5386.88(231.38) 2397.40(144.05) 13534.79(609.15) 7333.81(578.69)

TABLE VIII
THE MEAN AND STANDARD DEVIATION TEST PERFORMANCE OF THE DRL, THE NICHGPDRL, AND COMPARISON METHODS ON EIGHT SCENARIOS

WITH A LARGE NUMBER OF WORKCENTERS.

Algorithm 6W2M 9W2M
HH HL LH LL HH HL LH LL

ECT+SPT 1771.04(0.00) 988.88(0.00) 4323.62(0.00) 2646.83(0.00) 3171.25(0.00) 1742.07(0.00) 7411.42(0.00) 4459.58(0.00)
ECT+EDD 1780.71(0.00) 522.47(0.00) 3983.73(0.00) 1503.14(0.00) 2918.00(0.00) 712.32(0.00) 6182.24(0.00) 2045.61(0.00)
ECT+LWR 2205.35(0.00) 1229.67(0.00) 4187.14(0.00) 2440.70(0.00) 3603.28(0.00) 1942.15(0.00) 6829.04(0.00) 3862.74(0.00)
ECT+FIFO 2244.21(0.00) 1183.49(0.00) 4860.78(0.00) 2749.25(0.00) 4209.50(0.00) 2199.16(0.00) 8202.33(0.00) 4522.05(0.00)
MET+SPT 2674.45(0.00) 1637.45(0.00) 7225.88(0.00) 5022.53(0.00) 4191.48(0.00) 2422.35(0.00) 11246.05(0.00) 7509.85(0.00)
MET+EDD 2803.78(0.00) 853.85(0.00) 7005.63(0.00) 3453.68(0.00) 4084.71(0.00) 935.13(0.00) 10013.13(0.00) 4300.95(0.00)
MET+LWR 3499.82(0.00) 2085.59(0.00) 7596.67(0.00) 5030.36(0.00) 5312.86(0.00) 3000.78(0.00) 11339.11(0.00) 7204.76(0.00)
MET+FIFO 3668.17(0.00) 2067.90(0.00) 8573.12(0.00) 5477.07(0.00) 5872.18(0.00) 3139.97(0.00) 12896.23(0.00) 7883.16(0.00)

EA+SPT 6080.39(0.00) 3915.84(0.00) 6100.94(0.00) 3922.60(0.00) 9681.76(0.00) 6014.37(0.00) 9606.73(0.00) 5984.38(0.00)
EA+EDD 6625.08(0.00) 3117.37(0.00) 5667.42(0.00) 2458.70(0.00) 9566.29(0.00) 4112.08(0.00) 8376.61(0.00) 3331.55(0.00)
EA+LWR 6573.10(0.00) 4097.93(0.00) 5811.79(0.00) 3534.29(0.00) 10398.22(0.00) 6304.28(0.00) 9149.84(0.00) 5372.83(0.00)
EA+FIFO 7772.72(0.00) 4799.38(0.00) 6756.52(0.00) 4019.94(0.00) 12197.22(0.00) 7209.15(0.00) 10862.16(0.00) 6261.37(0.00)

LWIQ+SPT 6253.02(0.00) 3993.08(0.00) 6205.48(0.00) 3972.28(0.00) 10156.43(0.00) 6274.87(0.00) 10104.80(0.00) 6250.91(0.00)
LWIQ+EDD 6862.33(0.00) 3397.43(0.00) 5896.02(0.00) 2732.58(0.00) 10142.49(0.00) 4272.82(0.00) 8779.17(0.00) 3587.16(0.00)
LWIQ+LWR 7100.61(0.00) 4486.30(0.00) 5999.24(0.00) 3637.71(0.00) 10680.63(0.00) 6479.56(0.00) 9455.17(0.00) 5539.43(0.00)
LWIQ+FIFO 8034.78(0.00) 4975.42(0.00) 6958.58(0.00) 4174.30(0.00) 12520.61(0.00) 7477.10(0.00) 11321.88(0.00) 6575.32(0.00)

DRL 1597.57(97.59) 570.07(103.14) 3841.77(142.62) 1401.16(165.89) 2695.19(199.71) 863.03(223.10) 6249.33(271.75) 1970.43(352.45)
NichGPDRL(↑) 1460.45(72.37) 375.57(23.01) 3709.01(137.02) 1244.96(64.20) 2446.60(149.44) 462.48(34.11) 5976.72(244.07) 1613.10(89.89)

a higher percentage of the current processing time relative to
the remaining processing time of the job.

S1 = PT +NIQ+ SLACK +
SLACK

1 + PT
WKR

+ 1 (11)

Regarding the sequencing rule 2, it comprises five terminals:
PT, SLACK, NPT, WKR, and TIS. Notably, SLACK emerges
as the most frequently used terminal in this rule, having
been employed four times. Subsequently, PT is used twice,
while NPT, WKR, and TIS are each used only once. The
simplified representation of the sequencing rule 2 is denoted
as S2 and is expressed in Eq. (12). The interpretation of this
rule varies depending on specific scenarios. When the SLACK
time of a job surpasses the sum of the remaining processing
time and the time the job has spent in the system, the rule
gives preference to jobs with shorter processing times, shorter
slack time, and smaller processing times for their subsequent
operations. Conversely, if the SLACK time of a job is less

than the sum of its remaining processing time and the time
it has stayed in the system, the rule favors jobs with shorter
processing times, shorter slack time, smaller processing times
for their next operations, shorter remaining processing time,
and shorter time spent in the system.

S2 =2× PT + 3× SLACK +NPT

+max{SLACK,WKR+ TIS}
(12)

Concerning the sequencing rule 3, it comprises five termi-
nals (PT, SLACK, NPT, NIQ, and TIS), with SLACK being
the predominant terminal, utilised twice. PT, NPT, NIQ, and
TIS are each used only once. The simplified representation
of the sequencing rule 3 is denoted as S3 and is illustrated
in Eq. (13). Since NIQ represents the number of operations
in the waiting queue of the machine and remains constant
for all candidate operations, it can be disregarded. This rule
prioritises jobs with shorter slack time, smaller processing time

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2024.3395699

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on May 03,2024 at 00:43:02 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 13

+

+ /

PT SLACK SLACK

NIQ +

SLACK *
SLACK /

WKR +

WKR PT

+

(a) Sequencing rule 1.

+

+ max

SLACK SLACK +

PT WKR TIS

SLACK +

PT +

SLACK NPT

+

+

(b) Sequencing rule 2.

+

+ /

+ SLACK PT

SLACK NPT TIS NIQ

/

(c) Sequencing rule 3.

+

max SLACK

NPT *
max

SLACK max max

TIS SLACK SLACK PT PT

SLACK max

TIS SLACK

+

+

+

(d) Sequencing rule 4.

Fig. 7. The tree structures of four sequencing rules evolved by a NichGP run.

for their next operation, shorter time spent in the system, and
longer processing time.

S3 = SLACK +NPT +
TIS

NIQ
+

SLACK

PT
(13)

Regarding the sequencing rule 4, it consists of four terminals
(PT, SLACK, NPT, and TIS), with SLACK being the most
frequently utilised terminal, employed six times. PT follows
with two occurrences, while NPT and TIS are each used only
once. The simplified representation of the sequencing rule 4
is denoted as S4 and is expressed in Eq. (14). This rule has
different meanings in distinct situations. When the processing
time of the next operation significantly exceeds the slack time,
the current processing time, and the duration the job has spent
in the system, it favors jobs with shorter processing times for
the next operation and shorter slack times. Alternatively, under
different circumstances, the rule prioritises jobs with shorter
processing times, shorter slack times, and shorter durations
spent in the system.

S4 =max{NPT, (SLACK +max{TIS, SLACK})
×max{SLACK + PT,max{SLACK,

max{TIS, SLACK}, PT}}}+ SLACK

(14)

Based on the above analyses of various sequencing rules,
it is evident that both slack time and current processing time
are crucial features that hold significant importance in their
decision-making criteria. Additionally, the processing time of
the next operation and the time spent in the system are also
important factors in selecting a candidate job for processing
as the next task. Despite these similarities, there are notable
differences. For instance, the sequencing rules 1 and 2 consider
the remaining processing time of the job, while sequencing
rules 3 and 4 do not take this into account. Furthermore, the
sequencing rule 3 exhibits a preference for jobs with longer
processing times, while all other rules favor jobs with shorter
processing times. This observation indicates that these rules
focus on distinct situations during the long-term scheduling
process and exhibit different behaviours. The variations among
these rules empower the proposed NichGPDRL algorithm to

make informed decisions in selecting an expert rule at specific
decision points, thereby facilitating intelligent scheduling.

VII. CONCLUSIONS

This paper presents a Niching GP-assisted DRL method for
learning sequencing and routing agents to address the DFJSS
problem. Specifically, the Niching GP method is employed
to learn a diverse set of high-quality scheduling heuristics.
Subsequently, the sequencing rules derived from these learned
scheduling heuristics serve as actions for the DRL method.
This method tackles the challenge of adapting to altered
operations at various decision points, enabling the learning
of intelligent agents capable of making optimal selections
among these actions to generate effective schedules. Com-
parative results against baseline DRL and widely used man-
ually designed scheduling heuristics validate the effectiveness
of the proposed method. Additionally, comparisons against
traditional GP-assisted DRL confirm the effectiveness of the
proposed Niching GP method. Furthermore, contrasting results
against the proposed method without the DRL training process,
where the sequencing rule is fixed as one of the candidate
actions, verify the efficacy of the DRL learning process.
Further analysis of action contribution demonstrates that the
scheduling heuristics learned by the Niching GP method
contribute similar percentages to the overall performance.
The behavioral analysis reveals that the proposed Niching
GP method can learn diverse scheduling heuristics compared
to traditional GP methods. Structural analysis indicates that
the learned scheduling heuristics by the Niching GP exhibit
similarities but also show distinct performances at different
decision points. In summary, this paper shows that the Niching
GP-assisted DRL method contributes to the development of
effective agents for solving the DFJSS problem.

Future work could focus on proposing more effective strate-
gies to integrate GP into RL to take full advantage of both
for solving the DFJSS problem. Additionally, it would be
interesting to explore the adaptation of the proposed method
for solving other complex problems.

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2024.3395699

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on May 03,2024 at 00:43:02 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 14

REFERENCES

[1] M. Xu, Y. Mei, F. Zhang, and M. Zhang, “Genetic programming
with lexicase selection for large-scale dynamic flexible job shop
scheduling,” IEEE Transactions on Evolutionary Computation, 2023,
DOI:10.1109/TEVC.2023.3244607.

[2] H. Xiong, S. Shi, D. Ren, and J. Hu, “A survey of job shop scheduling
problem: The types and models,” Computers & Operations Research,
vol. 142, p. 105731, 2022.

[3] M. Xu, Y. Mei, F. Zhang, and M. Zhang, “Genetic programming for
dynamic flexible job shop scheduling: Evolution with single individuals
and ensembles,” IEEE Transactions on Evolutionary Computation, 2023,
DOI:10.1109/TEVC.2023.3334626.

[4] ——, “Genetic programming with diverse partner selection for dynamic
flexible job shop scheduling,” in Proceedings of the Genetic and
Evolutionary Computation Conference Companion. ACM, jul 2022,
pp. 615–618.

[5] W. Ren, Y. Yan, Y. Hu, and Y. Guan, “Joint optimisation for dynamic
flexible job-shop scheduling problem with transportation time and
resource constraints,” International Journal of Production Research,
vol. 60, no. 18, pp. 5675–5696, 2022.

[6] J. Xie, L. Gao, K. Peng, X. Li, and H. Li, “Review on flexible job shop
scheduling,” IET Collaborative Intelligent Manufacturing, vol. 1, no. 3,
pp. 67–77, 2019.

[7] M. Xu, F. Zhang, Y. Mei, and M. Zhang, “Genetic programming
with multi-case fitness for dynamic flexible job shop scheduling,” in
Proceedings of the IEEE Congress on Evolutionary Computation, jul
2022, pp. 1–8.

[8] F. Zhang, Y. Mei, S. Nguyen, and M. Zhang, “Survey on genetic
programming and machine learning techniques for heuristic design in
job shop scheduling,” IEEE Transactions on Evolutionary Computation,
vol. 28, no. 1, pp. 147–167, 2023.

[9] F. Zhang, Y. Mei, S. Nguyen, K. C. Tan, and M. Zhang, “Task relatedness
based multitask genetic programming for dynamic flexible job shop
scheduling,” IEEE Transactions on Evolutionary Computation, vol. 27,
no. 6, pp. 1705–1719, dec 2023.

[10] H. Fan, H. Xiong, and M. Goh, “Genetic programming-based hyper-
heuristic approach for solving dynamic job shop scheduling problem
with extended technical precedence constraints,” Computers & Opera-
tions Research, vol. 134, p. 105401, 2021.

[11] F. Zhang, Y. Mei, S. Nguyen, and M. Zhang, “Multitask multiobjective
genetic programming for automated scheduling heuristic learning in dy-
namic flexible job shop scheduling,” IEEE Transactions on Cybernetics,
vol. 53, no. 7, pp. 4473–4486, 2023.

[12] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement
learning: A survey,” Journal of Artificial Intelligence Research, vol. 4,
pp. 237–285, 1996.

[13] V. Huang, C. Wang, H. Ma, G. Chen, and K. Christopher, “Cost-
aware dynamic multi-workflow scheduling in cloud data center using
evolutionary reinforcement learning,” in International Conference on
Service-Oriented Computing. Springer, 2022, pp. 449–464.

[14] J. Chang, D. Yu, Y. Hu, W. He, and H. Yu, “Deep reinforcement learning
for dynamic flexible job shop scheduling with random job arrival,”
Processes, vol. 10, no. 4, p. 760, 2022.

[15] S. Luo, “Dynamic scheduling for flexible job shop with new job
insertions by deep reinforcement learning,” Applied Soft Computing,
vol. 91, p. 106208, 2020.

[16] J. R. Koza et al., Genetic programming II. MIT press Cambridge,
1994, vol. 17.

[17] R. Braune, F. Benda, K. F. Doerner, and R. F. Hartl, “A genetic program-
ming learning approach to generate dispatching rules for flexible shop
scheduling problems,” International Journal of Production Economics,
vol. 243, p. 108342, 2022.

[18] J. C. Tay and N. B. Ho, “Evolving dispatching rules using genetic
programming for solving multi-objective flexible job-shop problems,”
Computers & Industrial Engineering, vol. 54, no. 3, pp. 453–473, 2008.

[19] Y. Zakaria, Y. Zakaria, A. BahaaElDin, and M. Hadhoud, “Niching-
based feature selection with multi-tree genetic programming for dynamic
flexible job shop scheduling,” in Proceedings of the International Joint
Conference on Computational Intelligence. Springer, 2021, pp. 3–27.

[20] Y. Mei, S. Nguyen, B. Xue, and M. Zhang, “An efficient feature selection
algorithm for evolving job shop scheduling rules with genetic pro-
gramming,” IEEE Transactions on Emerging Topics in Computational
Intelligence, vol. 1, no. 5, pp. 339–353, 2017.

[21] J.-P. Huang, L. Gao, and X.-Y. Li, “An end-to-end deep reinforcement
learning method based on graph neural network for distributed job-shop

scheduling problem,” Expert Systems with Applications, vol. 238, p.
121756, 2024.

[22] Y. Zhang, H. Zhu, D. Tang, T. Zhou, and Y. Gui, “Dynamic job shop
scheduling based on deep reinforcement learning for multi-agent man-
ufacturing systems,” Robotics and Computer-Integrated Manufacturing,
vol. 78, p. 102412, 2022.

[23] C. Zhang, W. Song, Z. Cao, J. Zhang, P. S. Tan, and X. Chi, “Learning
to dispatch for job shop scheduling via deep reinforcement learning,”
Proceedings of the Advances in Neural Information Processing Systems,
vol. 33, pp. 1621–1632, 2020.

[24] K. Lei, P. Guo, W. Zhao, Y. Wang, L. Qian, X. Meng, and L. Tang,
“A multi-action deep reinforcement learning framework for flexible job-
shop scheduling problem,” Expert Systems with Applications, vol. 205,
p. 117796, 2022.

[25] K. Lei, P. Guo, Y. Wang, J. Zhang, X. Meng, and L. Qian, “Large-
scale dynamic scheduling for flexible job-shop with random arrivals of
new jobs by hierarchical reinforcement learning,” IEEE Transactions on
Industrial Informatics, vol. 20, no. 1, pp. 1007–1018, 2023.

[26] Y. Zeng, Z. Liao, Y. Dai, R. Wang, X. Li, and B. Yuan, “Hybrid
intelligence for dynamic job-shop scheduling with deep reinforcement
learning and attention mechanism,” arXiv preprint arXiv:2201.00548,
2022, DOI:10.1109/10.48550/arXiv.2201.00548.

[27] Y. Du, J. Li, C. Li, and P. Duan, “A reinforcement learning approach for
flexible job shop scheduling problem with crane transportation and setup
times,” IEEE Transactions on Neural Networks and Learning Systems,
2022, DOI:10.1109/TNNLS.2022.3208942.

[28] L. Zhang, Y. Feng, Q. Xiao, Y. Xu, D. Li, D. Yang, and Z. Yang, “Deep
reinforcement learning for dynamic flexible job shop scheduling prob-
lem considering variable processing times,” Journal of Manufacturing
Systems, vol. 71, pp. 257–273, 2023.

[29] Z. Wu, H. Fan, Y. Sun, and M. Peng, “Efficient multi-objective optimiza-
tion on dynamic flexible job shop scheduling using deep reinforcement
learning approach,” Processes, vol. 11, no. 7, p. 2018, 2023.

[30] F. Zhang, Y. Mei, and M. Zhang, “Genetic programming with multi-tree
representation for dynamic flexible job shop scheduling,” in Proceedings
of the Australasian Joint Conference on Artificial Intelligence, 2018, pp.
472–484.

[31] Y. Gui, D. Tang, H. Zhu, Y. Zhang, and Z. Zhang, “Dynamic scheduling
for flexible job shop using a deep reinforcement learning approach,”
Computers & Industrial Engineering, vol. 180, p. 109255, 2023.

[32] R. Liu, R. Piplani, and C. Toro, “Deep reinforcement learning for
dynamic scheduling of a flexible job shop,” International Journal of
Production Research, vol. 60, no. 13, pp. 4049–4069, 2022.

[33] W. B. Langdon and M. Harman, “Optimizing existing software with ge-
netic programming,” IEEE Transactions on Evolutionary Computation,
vol. 19, no. 1, pp. 118–135, 2014.

[34] M. Ðurasević, D. Jakobović, and K. Knežević, “Adaptive scheduling on
unrelated machines with genetic programming,” Applied Soft Computing,
vol. 48, pp. 419–430, 2016.

[35] W. B. Langdon and R. Poli, Foundations of genetic programming.
Springer Science & Business Media, 2013.

[36] M. Xu, F. Zhang, Y. Mei, and M. Zhang, “Genetic programming with
archive for dynamic flexible job shop scheduling,” in Proceedings of the
IEEE Congress on Evolutionary Computation, jul 2021, pp. 2117–2124.

[37] Y. Zhou, J. Yang, and Z. Huang, “Automatic design of scheduling
policies for dynamic flexible job shop scheduling via surrogate-assisted
cooperative co-evolution genetic programming,” International Journal
of Production Research, vol. 58, no. 9, pp. 2561–2580, 2020.

[38] Y. Zeiträg, J. R. Figueira, N. Horta, and R. Neves, “Surrogate-assisted
automatic evolving of dispatching rules for multi-objective dynamic
job shop scheduling using genetic programming,” Expert Systems with
Applications, vol. 209, p. 118194, 2022.

[39] K. Jaklinović, M. Ðurasević, and D. Jakobović, “Designing dispatching
rules with genetic programming for the unrelated machines environment
with constraints,” Expert Systems with Applications, vol. 172, p. 114548,
2021.

[40] M. Ðurasević and D. Jakobović, “Comparison of schedule generation
schemes for designing dispatching rules with genetic programming in
the unrelated machines environment,” Applied Soft Computing, vol. 96,
p. 106637, 2020.

[41] S. Shady, T. Kaihara, N. Fujii, and D. Kokuryo, “A novel feature selec-
tion for evolving compact dispatching rules using genetic programming
for dynamic job shop scheduling,” International Journal of Production
Research, vol. 60, no. 13, pp. 4025–4048, 2022.

[42] F. Zhang, Y. Mei, S. Nguyen, K. C. Tan, and M. Zhang, “Multitask
genetic programming based generative hyper-heuristics: A case study in

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2024.3395699

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on May 03,2024 at 00:43:02 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TEVC.2023.3244607
http://dx.doi.org/10.1109/TEVC.2023.3334626
http://dx.doi.org/10.48550/arXiv.2201.00548
http://dx.doi.org/10.1109/TNNLS.2022.3208942

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 15

dynamic scheduling,” IEEE Transactions on Cybernetics, vol. 52, no. 10,
pp. 10 515–10 528, oct 2022.

[43] F. Zhang, Y. Mei, S. Nguyen, and M. Zhang, “Evolving schedul-
ing heuristics via genetic programming with feature selection in dy-
namic flexible job-shop scheduling,” IEEE Transactions on Cybernetics,
vol. 51, no. 4, pp. 1797–1811, 2020.

[44] M. Ðurasević and D. Jakobović, “Comparison of ensemble learning
methods for creating ensembles of dispatching rules for the unrelated
machines environment,” Genetic Programming and Evolvable Machines,
vol. 19, pp. 53–92, 2018.

[45] D. Jackson, “Promoting phenotypic diversity in genetic programming,”
in Proceedings of International Conference on Parallel Problem Solving
from Nature. Springer, 2010, pp. 472–481.

[46] E. K. Burke, S. Gustafson, and G. Kendall, “Diversity in genetic
programming: An analysis of measures and correlation with fitness,”
IEEE Transactions on Evolutionary Computation, vol. 8, no. 1, pp. 47–
62, 2004.

[47] M. Xu, Y. Mei, F. Zhang, and M. Zhang, “Genetic programming and
reinforcement learning on learning heuristics for dynamic scheduling: A
preliminary comparison,” IEEE Computational Intelligence Magazine,
vol. 19, no. 2, pp. 18–33, 2024.

[48] X. Chen, R. Bai, R. Qu, J. Dong, and Y. Jin, “Deep reinforcement
learning assisted genetic programming ensemble hyper-heuristics for
dynamic scheduling of container port trucks,” IEEE Transactions on
Evolutionary Computation, 2024, DOI:10.1109/TEVC.2024.3381042.

[49] T. Hildebrandt and J. Branke, “On using surrogates with genetic pro-
gramming,” Evolutionary Computation, vol. 23, no. 3, pp. 343–367,
2015.

[50] J. Filar and K. Vrieze, Competitive Markov decision processes. Springer
Science & Business Media, 2012.

[51] H. Bai, R. Cheng, and Y. Jin, “Evolutionary reinforcement learning: A
survey,” Intelligent Computing, vol. 2, p. 0025, 2023.

[52] Z. Ren, G. Zhu, H. Hu, B. Han, J. Chen, and C. Zhang, “On the
estimation bias in double q-learning,” Proceedings of the Advances in
Neural Information Processing Systems, vol. 34, pp. 10 246–10 259,
2021.

[53] H. Xiong, H. Fan, G. Jiang, and G. Li, “A simulation-based study
of dispatching rules in a dynamic job shop scheduling problem with
batch release and extended technical precedence constraints,” European
Journal of Operational Research, vol. 257, no. 1, pp. 13–24, 2017.

[54] F. M. De Rainville, F. A. Fortin, M. A. Gardner, M. Parizeau, and
C. Gagné, “Deap: A python framework for evolutionary algorithms,” in
Proceedings of the Genetic and Evolutionary Computation Conference
Companion, 2012, pp. 85–92.

[55] Z. A. Aziz, D. N. Abdulqader, A. B. Sallow, and H. K. Omer, “Python
parallel processing and multiprocessing: A review,” Academic Journal
of Nawroz University, vol. 10, no. 3, pp. 345–354, 2021.

[56] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” Proceedings
of the Advances in Neural Information Processing Systems, vol. 32,
2019.

[57] D. W. Zimmerman and B. D. Zumbo, “Relative power of the wilcoxon
test, the friedman test, and repeated-measures anova on ranks,” Journal
of Experimental Educational, pp. 75–86, 1993.

[58] F. Wilcoxon, S. Katti, R. A. Wilcox et al., “Critical values and probabil-
ity levels for the wilcoxon rank sum test and the wilcoxon signed rank
test,” Selected Tables in Mathematical Statistics, vol. 1, pp. 171–259,
1970.

Meng Xu received the B.Sc. and M.Sc. degrees
from the Beijing Institute of Technology, Beijing,
China, in 2017 and 2020, respectively. She is cur-
rently pursuing a Ph.D. degree in computer sci-
ence with the Centre for Data Science and Ar-
tificial Intelligence & School of Engineering and
Computer Science, Victoria University of Welling-
ton, Wellington, New Zealand. Her current research
interests include evolutionary computation, hyper-
heuristic learning/optimisation, job shop scheduling,
and workflow scheduling.

Yi Mei received the B.Sc. and Ph.D. degrees from
the University of Science and Technology of China,
Hefei, China, in 2005 and 2010, respectively. He
is an Associate Professor at the Centre for Data
Science and Artificial Intelligence & School of En-
gineering and Computer Science, and an Associate
Dean (Research) at the Faculty of Engineering,
Victoria University of Wellington, Wellington, New
Zealand. His research interests include evolutionary
computation for combinatorial optimisation, genetic
programming, automatic algorithm design, explain-

able AI, multi-objective optimisation, transfer/multitask learning, and optimi-
sation. He has published in top journals in evolutionary computation and oper-
ations research such as IEEE TEVC, IEEE TCYB, EJOR, IEEE Transactions
on Services Computing, and ACM Transactions on Mathematical Software. He
won an IEEE Transactions on Evolutionary Computation Outstanding Paper
Award 2017. He is an Associate Editor of IEEE Transactions on Evolutionary
Computation and an Editorial Board Member/Associate Editor of four other
international journals. He is the Chair of the IEEE Taskforce on Evolutionary
Scheduling and Combinatorial Optimisation. He serves as a Vice-Chair of
the IEEE CIS Emergent Technologies Technical Committee and a member of
three IEEE CIS Task Forces and two IEEE CIS Technical Committees. He is
a Fellow of Engineering New Zealand and an IEEE Senior Member.

Fangfang Zhang received the B.Sc. and M.Sc.
degrees from Shenzhen University, China, and the
Ph.D. degree in computer science from Victoria
University of Wellington, New Zealand, in 2014,
2017, and 2021, respectively. She is currently a
lecturer with the Centre for Data Science and Ar-
tificial Intelligence & School of Engineering and
Computer Science, Victoria University of Welling-
ton, New Zealand. She has over 65 papers in refereed
international journals and conferences. Her research
interests include evolutionary computation, hyper-

heuristic learning/optimisation, job shop scheduling, surrogate, and multitask
learning. Dr. Fangfang is an Associate Editor of Expert Systems With
Applications, and Swarm and Evolutionary Computation. She is a member of
the IEEE Computational Intelligence Society and Association for Computing
Machinery and has been serving as a reviewer for top international journals.
She is the secretary of the IEEE New Zealand Central Section and was the
Chair of the IEEE Student Branch at Victoria University of New Zealand, and
the chair of the Professional Activities Coordinator. She is a Vice-Chair of the
IEEE Taskforce on Evolutionary Scheduling and Combinatorial Optimisation.

Mengjie Zhang received the B.E. and M.E. degrees
from the Artificial Intelligence Research Center,
Agricultural University of Hebei, Hebei, China, and
the Ph.D. degree in computer science from RMIT
University, Melbourne, VIC, Australia, in 1989,
1992, and 2000, respectively. He is a Professor of
Computer Science and head of the group of the
Centre for Data Science and Artificial Intelligence &
School of Engineering and Computer Science. His
research interests include evolutionary computation,
genetic programming, multi-objective optimisation,

and job shop scheduling. He has published over 700 papers in refereed
international journals and conferences. Prof. Zhang is a Fellow of the Royal
Society of New Zealand, a Fellow of Engineering New Zealand, a Fellow
of IEEE, and an IEEE CIS Distinguished Lecturer. He was the chair of
the IEEE CIS Intelligent Systems and Applications Technical Committee,
the chair of the IEEE CIS Emergent Technologies Technical Committee and
the Evolutionary Computation Technical Committee, and a member of the
IEEE CIS Award Committee. He is a vice-chair of the IEEE CIS Task
Force on Evolutionary Feature Selection and Construction, a vice-chair of
the Task Force on Evolutionary Computer Vision and Image Processing, and
the founding chair of the IEEE Computational Intelligence Chapter in New
Zealand.

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2024.3395699

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on May 03,2024 at 00:43:02 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TEVC.2024.3381042

	Introduction
	Background
	Dynamic Flexible Job Shop Scheduling
	Related Work
	Reinforcement Learning for JSS
	Genetic Programming for JSS
	Summary

	The Niching GP-assisted DRL Method
	Overall Framework
	State Features
	Stage 1: Niching GP training
	Stage 2: DRL training

	Experimental Design
	Dataset
	Parameter Setting
	Comparison Design

	Results and Discussions
	Influence of the Radius Parameter in NichGP
	Test Performance

	Further Analyses
	Action Contribution
	Behaviour Difference between Scheduling Heuristics
	Generalisation to More Complex Scenarios
	Structure Analysis of Sequencing Rules

	Conclusions
	References
	Biographies
	Meng Xu
	Yi Mei
	Fangfang Zhang
	Mengjie Zhang

