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RESEARCH ARTICLE

Health prediction for king salmon via evolutionary machine 
learning with genetic programming
Fangfang Zhang a, Yuye Zhanga, Paula Casanovasb, Jessica Schattschneiderb, 
Seumas P. Walkerb, Bing Xuea, Mengjie Zhanga and Jane E. Symondsb

aCentre for Data Science and Artificial Intelligence & School of Engineering and Computer Science, Victoria 
University of Wellington, Wellington, New Zealand; bCawthron Institute, Nelson, New Zealand

ABSTRACT  
King (Chinook) salmon is the only salmon species farmed in Aotearoa 
New Zealand and accounts for over half of the world’s production of 
king salmon. Determining the health status of king salmon 
effectively is important for farming. However, it is a challenging 
task due to the complex biotic and abiotic factors that influence 
health. Evolutionary machine learning algorithms have shown 
their superiority in learning models for challenging tasks. However, 
they have not been investigated for health prediction in king 
salmon farming. This paper focuses on data processing and 
machine learning algorithm design to develop king salmon health 
prediction models in Aotearoa New Zealand. Particularly, this 
paper proposes a king salmon health prediction method based on 
genetic programming which is an evolutionary machine learning 
algorithm. The results show that genetic programming achieves 
the best overall performance among all examined typical machine 
learning algorithms for most trials. Further analyses show that 
genetic programming can automatically detect important features 
for learning classifiers for king salmon health classification tasks 
effectively, and can also learn potentially interpretable models. 
Our results are an important step forward in developing health 
prediction tools to automatically assess health status of farmed 
king salmon in Aotearoa New Zealand.
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Introduction

King (Chinook) salmon (Oncorhynchus tschawytscha) are often heralded as the best 
salmon species in terms of taste, texture and nutritional quality, and Aotearoa New 
Zealand is the largest producer of farmed king salmon in the world (NZKS 2020). 
Health is an important factor for king salmon farming, and the health prediction of 
king salmon during production is a priority for improving farming sustainability 
(Stead and Laird 2002; Buschmann and Muñoz 2019). If farmers can predict the 
health status of king salmon reliably, they can monitor health status during production 
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and implement proactive health management strategies more easily. This can improve 
farming sustainability and resilience, which can bring great benefits for king salmon 
farming, especially under climate change challenges (Feddern et al. 2023). Various fea-
tures such as temperature, feeding frequency, husbandry practices and the presence of 
pathogens can affect the health of king salmon. It is non-trivial for farmers to know 
which measurable set of variables (features) are important for the prediction of king 
salmon health.

The Cawthron Institute in Aotearoa New Zealand works closely with the salmon 
industry and have collected data on king salmon health and growth-related variables, 
as part of different projects, in its Finfish Research Centre (FRC). Figure 1 shows an 
example king salmon from the FRC. This paper uses king salmon data available from 
three trials conducted in the FRC between 2018 and 2020. Each fish sample contains 
different features and a health label, i.e. healthy or unhealthy, which is naturally a 
binary classification task.

Machine learning (Theobald 2017; Zhou 2021), as a subfield of artificial intelligence 
(Winston 1984), focuses on model learning to discover patterns and relationships in 
data, and make predictions based on the learned models. In machine learning, models 
are learnt from training data, and the learned models are then applied to unseen data 
to measure their effectiveness and generalisation ability. Genetic programming (GP) as 
an evolutionary machine learning method (Poli et al. 2008), has been widely used to 
learn classifiers for classification tasks in health (Espejo et al. 2009) such as breast 
cancer diagnosis classification (Dhahri et al. 2019; Devarriya et al. 2020), heart disease 
diagnosis (Reddy et al. 2020) and skin cancer diagnosis (Ain et al. 2022). There are 
three main advantages of using GP for classification. First, GP can implicitly detect 
important features during the classifier learning process. Second, the learned classifiers, 
which are normally with tree-like structures, are easier to be interpreted and understood 
by human. Last, it is efficient to use learned classifiers obtained by GP to predict the class 
label, which is very important for real-world applications. However, GP has not been 
explored for king salmon health predictions.

Figure 1. An example king salmon reared in the Cawthron Institute’s Finfish Research Centre.
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The goal of this paper is to propose a new GP algorithm to predict king salmon health. 
The three main contributions of this paper are: 

(1) The king salmon data for all three trials has been effectively preprocessed, and seven 
unbalanced classification tasks have been generated based on different datasets of 
information on king salmon health prediction for each trial. Furthermore, imputa-
tion has been performed to fill the missing values on the datasets. This lays the foun-
dation for future research on king salmon health with machine learning techniques.

(2) GP has been investigated for king salmon health classification. For comparison, this 
paper has implemented a number of commonly used machine learning algorithms 
such as K-Nearest Neighbour (KNN), Naive Bayes (NB), Support Vector Machine 
(SVM), Decision Tree (DT) and Random Forest (RF), on the extracted king 
salmon health classification tasks. The results show that our proposed GP algorithm 
achieves the best overall performance on the unbalanced classification tasks for most 
trials.

(3) The complexities of the classification tasks and the accuracy difference of the 
different trials are also illustrated with visualisations of the results. In addition, 
important features have been identified for different king salmon health classification 
tasks in different trials, which can significantly help the understanding of king 
salmon health in farming.

The rest of this paper is organised as follows. Section ‘Background and related work’ 
presents the background and related work for this paper. Section ‘Data processing’ pro-
vides the details of data processing and the extracted datasets for three trials. Detailed 
descriptions of the proposed algorithm are given in Section ‘The proposed GP algorithm’. 
The experiment designs are shown in Section ‘Experiment designs’. Results and discus-
sions are presented in Section ‘Results and discussions’ followed by further analyses 
including feature importance for classification tasks in Section ‘Further analyses’. 
Section ‘Conclusions’ concludes this paper.

Background and related work

Background

Unbalanced classification
Unbalanced classification refers to a classification problem in which one class greatly out-
weighs the number of instances belonging to the other class or classes in terms of the 
number of instances (Krawczyk et al. 2016; Kim et al. 2020). Unbalanced classification 
is found in many real-world applications such as disease diagnosis where there are 
often fewer diseased samples than normal samples (Ahsan and Siddique 2022; Liu 
et al. 2023). In unbalanced classification, the majority class known as the negative 
class, and dominates the dataset, while the minority class typically known as the positive 
class is underrepresented. The unbalanced classification tasks are more challenging than 
balanced classification tasks.

The king salmon health classification data in this paper is a typical case of unbalanced 
classification, where the numbers of healthy fish samples and unhealthy fish samples are 
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different in all the three trials. Identifying the unhealthy king salmon accurately is more 
important for farmers so that farmers can manage the health issues proactively. Thus, 
this paper sets unhealthy king salmon as the positive class for classification algorithms. 
Since the fish health status labels are available (i.e. two labels, healthy and unhealthy) 
for training classifiers with machine learning algorithms, the investigated problem in 
this paper is a supervised unbalanced binary classification task.

K-Nearest neighbours
K-Nearest Neighbours (KNN) is a commonly used classification algorithm, a simple non- 
parametric algorithm that works based on the principle of similarity (Zhang and 
Zhou 2007). KNN predicts the label of an unseen instance by finding similar k instances 
based on the calculated Euclidean distances from training instances, where k is the 
number of nearest neighbours that are considered when making a prediction. For classifi-
cation tasks, KNN normally assigns the class label that is most frequent among the k 
nearest neighbours to an unseen instance.

Naive Bayes
Naive Bayes (NB) is based on Bayes’ theorem, which states that the probability of a 
hypothesis (class) given the observed evidence (features) is proportional to the prob-
ability of the evidence given the hypothesis, multiplied by the prior probability of the 
hypothesis (Salmi and Rustam 2019). Bayes’ theorem states the relationship which can 
be expressed as: P(y|x1, . . . , xn) = P(x1, ..., xn|y)∗P(y)

P(x1, ..., xn) , where y is the class variable and xi indi-
cates a feature value. NB assumes variables are conditionally independent to each other.

Support vector machine
Support Vector Machines (SVMs) aim to find a line, a plane or a hyperplane that linearly 
separates the data into two different classes by increasing the dimensionality of the data 
(Cervantes et al. 2020). Particularly, SVM targets on maximising the distance between the 
decision boundary and the support vectors, i.e. the data points which are the closest to 
the decision boundary.

Decision tree
Decision Tree (DT) is a tree-like model for decision marking, where each node represents 
a decision point, and each branch represents a possible decision/output (Banzhaf 
et al. 1998; Charbuty and Abdulazeez 2021). For constructing a decision tree, it normally 
starts with the root node, and then add nodes and branches as decisions. DT typically 
uses statistical measures including entropy and information gain to determine the best 
splitting criteria for each node in the tree.

Random forest
Random Forest (RF) is an ensemble learning method that uses multiple decision trees to 
make predictions (Speiser et al. 2019). The key idea of RF is to learn an ensemble of 
decision trees, where each tree is trained on a different subset of the training data with 
a random subset of features. RF makes predictions by aggregating the decisions of all 
trees, e.g. voting for classification.

4 F. ZHANG ET AL.



Genetic programming
Genetic Programming (GP) is one of the most popularly used evolutionary algorithms 
(Pei et al. 2021; Santoso et al. 2021). GP starts with a randomly initialised population 
with a number of individuals, and the solutions/individuals are improved generation 
by generation. At the beginning, all individuals will be evaluated with a fitness function, 
e.g. classification accuracy. During the evolutionary process, tournament selection is used 
to select parents and genetic operators such as crossover, mutation and reproduction, are 
used to generate offspring for forming a new population. When the stopping criterion is 
met, GP will output the individual with the best fitness as the final solution for the given 
problem. GP has been successfully used to learn classifiers for unbalanced classification 
in different studies (Bhowan et al. 2012; Kumar et al. 2020; Pei et al. 2022).

An example of a binary classifier learned by GP for classification task is shown in 
Figure 2. The learned classifier of GP is a tree-like model, which can be regarded as a 
function. The expression of the classifier in Figure 2 is 0.1*F3 + (F1–F3)/F8, where F1, 
F3 and F8 are three features. When predicting the label of an instance, the output of 
the GP classifier will be calculated. If the output is less than a threshold, e.g. 0 is a com-
monly used threshold, the instance will be predicted as positive class; Otherwise, it 
belongs to negative class. This is how this paper uses GP to handle classification tasks.

Related work

In a previous study, statistical analyses were conducted to investigate the relationships 
between blood biochemistry and haematological indicators with king salmon sampled 
from freshwater and seawater farms (Casanovas et al. 2021). The results show that 
there are significant differences between the two environments for some parameters, 
including haematocrit and haemoglobin. In addition, the results show that some blood 
parameters are significantly correlated with fish size. The effects of temperature and 
fasting on king salmon at different life stages were studied in Araújo et al. (2022). The 
results show that body weight is not significantly impacted by fasting at 13◦C. 
However, fasting at 17◦C at all three stages has a negative impact on fillet weight and 
total fatty acid daily loss. In Lulijwa et al. (2021), the studies show that temperature 
stress-activated leukocyte apoptosis induces a minor immune response, influencing 
blood ion profiles indicative of osmoregulatory perturbation, regardless of how well a 

Figure 2. An example of a binary classifier learned by Genetic Programming. The expression of the 
classifier here is 0.1*F3 + (F1–F3)/F8, where F is the abbreviation of ‘Feature’, and F1, F3 and F8 
are three features.
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fish grows. Conversely, fish displaying poor growth performance irrespective of tempera-
ture exhibited numerous biomarker shifts including haematology indices and cellular- 
based enzyme activities. A study (Zhao et al. 2021) shows that water temperature and 
feed ration play a minor role in affecting the salmon faecal microbial community, but 
the increased temperature could have affected the fish faecal appearance score. In 
addition, the faecal microbiomes changes are not associated with corresponding 
changes in the microbiota of the water and feed. The investigations by Esmaeili 
et al. (2022) show that growth rate and feed conversion ratio are not significantly 
different between higher food intake and lower food intake fish.

These studies focussed their investigation on a specific aspect of king salmon health, 
such as feeding efficiency, rather than a comprehensive study of multiple aspects of king 
salmon health. They use statistical analyses to compare the experimental groups with the 
purpose of determining the effect of variables on the investigated targets or specific phe-
notypes. The relationship between multiple variables, e.g.fish features, and targets, e.g. 
health, have not be studied.

Data processing

This paper uses king salmon data available from three trials conducted in the FRC 
between 2018 and 2020. The trials were conducted in freshwater (FW, Trial 1 and 
Trial 3) or seawater (SW, Trial 2), and at different temperatures. Rations fed to the 
fish also varied. The experimental trials and the sampling events within each trial are 
summarised in Table 1. The salmon were raised in trials that tested different control vari-
ables such as salinity, feed ration and temperature. The fish were sampled at designated 

Table 1. FRC trial information and details for each sampling event indicated by WT*.
Trial Sampling Event Salinity Satiation Ration(s) Temperature(◦C) Start Date End Date

1 Arrival N/A N/A N/A 21-Aug-18 21-Aug-18
WT2 FW 100 15 11-Sep-18 14-Sep-18
WT4 FW 60, 80, 100 13, 17 15-Oct-18 23-Oct-18
WT7 FW 60, 80, 100 13, 17 26-Nov-18 06-Dec-18

WT10 FW 60, 80, 100 17 21-Jan-19 23-Jan-19
WT14 FW 60, 80, 100 17 12-Mar-19 28-Mar-19

2 Arrival N/A N/A N/A 17-Dec-18 18-Dec-18
WT2 SW 100 17 31-Jan-19 01-Feb-19
WT3 SW 100 17 12-Feb-19 13-Feb-19
WT4 SW 100 17 15-Apr-19 18-Apr-19
WT5 SW 100 17 10-Jun-19 27-Jun-19
WT6 SW 100 17 29-Jul-19 12-Aug-19
WT7 SW 100 17 30-Sep-19 22-Oct-19
WT9 SW 100 17 18-Nov-19 03-Dec-19

WT11 SW 100 17,19 17-Feb-20 27-Feb-20
3 Arrival N/A N/A N/A 06-May-20 25-May-20

WT2 FW 100 14 08-Jun-20 10-Jun-20
WT3 FW 100 14 15-Jun-20 17-Jun-20
WT4 FW 100 8, 12, 16, 20 06-Jul-20 16-Jul-20
WT5 FW 100 8, 12, 16, 20 05-Aug-20 18-Aug-20
WT6 FW 25 8, 12, 16, 20 26-Aug-20 08-Sep-20
WT7 FW 25 8, 12, 16, 20 16-Sep-20 29-Sep-20
WT8 FW 0 8, 12, 16, 20 14-Oct-20 28-Oct-20

Notes: For Satiation Ratio, 100 = fish fed to satiation, 80, 60, 25 = fish fed to 80%, 60% or 25% of the satiation ration 
respectively. 0 satiation ration = fish were not fed.
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time points throughout the trials to collect health information in relation to the different 
experimental conditions and to monitor health over time.

Figure 3 shows the overall data collections and the number of features assessed for 
each dataset. There are nine data collections that indicate different aspects of king 
salmon information, i.e. blood biochemistry and haematology, body chemistry compo-
sition (e.g. fatty acids), feeding (e.g. feed intake), biometrics (e.g. body measurements), 
growth (weight, fork length, girth), sample assessments (e.g. external and internal 
appearance, kidney score, organ indices, spinal anomalies, swim bladder and stomach 
abnormalities), histology (multiple tissues), trial information (e.g. temperature and 
ratio) and health classification. Different collections contain various numbers of obser-
vations for king salmons, i.e. some have more observations than others. In addition, 
each collection is conducted during three different trials, and the number of observations 
of each trial under the same collection is slightly different. The health classification data-
sets highlighted in blue consist of information on whether the king salmon individuals 
examined are presumed healthy or unhealthy, which takes into account different 
aspects of observed fish health variables at the time of sampling (see Table 2). This 
paper considers seven datasets, blood biochemistry and haematology, body chemistry com-
position, feeding, growth, sample assessment, histology and biometrics, with the collection 
health classification, to form seven classification tasks. Collection trial information high-
lighted in orange contains the environment information such as temperature (◦C) and 
the ration the fish were fed (e.g. satiation ration or reduced ration) at the time of 
sampling. This paper adds water temperature celsius and satiation ration as two features 
into the investigated datasets by using the fish ID and event as a key. In general, the 
dataset extractions have four main steps: 

(1) Expand each dataset by using fish ID and event as the key, and the unique set of obser-
vation variables as features. Note that a fish may have health labels at different events, 
to get accurate data for health classification tasks, we only consider the last event to 
construct the classification tasks. In addition, not all the fish are examined by all cri-
teria listed in Table 2. In addition, not all the fish are examined by all criteria listed in 
Table 2 due to different experiment design considerations for various observation 
purposes. To have accurate health labels, this paper only uses king salmon 
samples so that their health is identified according to all criteria listed in Table 2. 

Figure 3. Overall data sets and the number of features assessed for each dataset of king salmon from 
Cawthron Institute.
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In addition, not all the fish are examined by all criteria listed in Table 2. To have 
accurate health labels, this paper only uses data from the salmon that have measured 
with all criteria listed in Table 2. An observation variable can be examined multiple 
times on different body parts such as general health in the kidney and stomach. In 
this case, this paper creates a new feature formatted as observation bodypart such 
as generalhealth kidney and generalhealth stomach to make every instance unique.

(2) Add two new features temperature celsius and satiation ration from collection trial 
information for each dataset. Specifically, this paper utilises fish ID and event as 
the key to find the values of two new features, i.e.temperature celsius and satiation-
ration from the collection trial dates, and combine them with the datasets extracted 

according to step (1).
(3) Add class label for instances. This paper uses the fish ID as the key to finding the class 

label of each sample from collection health classification.
(4) Replace string feature values with numeric numbers. Machine learning algorithms 

typically handle numeric feature values, and this paper needs to convert non- 
numeric values into numeric values. The main replacements are for event variables, 
where in trial 1, this paper sets ‘tag’ to 0, ‘WT2’ to 1, ‘WT4’ to 2, ‘WT7’ to 3, ‘WT10’ 
to 4, ‘WT14’ to 5; in trial 2, there are ‘tag’ to 6, ‘WT2’ to 7, ‘WT3’ to 8, ‘WT4’ to 9, 
‘WT5’ to 10, ‘WT6’ to 11, ‘WT7’ to 12, ‘WT9’ to 13, ‘WT11’ to 14; in trial 3, there are 
‘tag’ to 15, ‘WT2’ to 16, ‘WT3’ to 17, ‘WT4’ to 18, ‘WT5’ to 19, ‘WT6’ to 20, ‘WT7’ to 
21, ‘WT8’ to 22, where WT indicates the sampling period. In addition, this paper 
uses 0 to indicate unhealthy king salmon and 1 to represent healthy king salmon.

Table 3 shows the sizes represented by the number of instances, the number of features, 
and class unbalanced ratio calculated as the division of the number of unhealthy fish and 
healthy fish of the extracted datasets for each trial. For example, the size (103,37) of the 
blood dataset in trial 1 indicates there are 103 fish samples and 37 features on this 

Table 2. Health classification criteria.
Dataset Parameter Unhealthy classification criteria

Growth Weight loss Lost weight between weight assessments
Condition factor Condition factor less than 1.1

Haematology Blood cell appearance: Leucocytes, 
erythrocytes, thrombocytes

Presence of abnormalities

Percentage of white blood cells Percentages: lymphocytes<87%, neutrophils>10%, 
monocytes>2%

Health 
assessment

Swim bladder Presence of fluid in the swim bladder, abnormal if volume: 
>1 ml (fish < 500 g) or >2 ml (fish>500 g)

Stomach Abnormal based on visual assessment
Stomach width Abnormal if width: >20 mm (fish<500g) or >35 mm 

(fish>500 g)
Kidney Visual nephrocalcinosis score>3
Faecal appearance Faecal appearance score.= 3
Liver index Liver index<0.75

Histology Total histology score, sum of scores for 
all individual tissues

Total score>12

Gastrointestinal tract inflammation 
score

Score>5

Inflammation score Score>10
Comments Observations during external and 

internal visual assessments
Health related abnormalities recorded

8 F. ZHANG ET AL.



dataset. The number of unhealthy king salmon is larger than the number of healthy fish in 
trial 1 and trial 2. On the contrary, trial 3 has less unhealthy fish than healthy fish. The 
dataset presents missing values, and we use KNN (Alianso et al. 2022) with k = 5 to 
impute them, where the parameter k is chosen according to preliminary investigation.

Note that the costs or complexities of obtaining the different features across the datasets 
varied. The feeding, biometrics, growth and assessment data were collected by the Caw-
thron team during the assessment events. The blood analyses, composition and histology 
were the most expensive methods and required samples to be submitted to specialised 
analytical laboratories. The histology scoring was carried out by a trained histopathologist 
(Casanovas et al. 2021). For blood information, blood samples were collected from the 
caudal vein immediately following euthanasia, and tested by International Accreditation 
New Zealand (IANZ), an accredited commercial laboratory (Gribbles Veterinary, 
Christchurch, New Zealand) for a targeted and quantitative analysis of all biochemistry 
and haematology analyses. King salmon food intake was measured by X-radiography 
using feed containing X-ray opaque beads (Esmaeili et al. 2021; Elvy et al. 2022).

The proposed GP algorithm

The flowchart of GP on king salmon health classification

Figure 4 shows the flowchart of GP on king salmon health classification with an example 
of using a GP individual for king salmon healthy classification. GP starts with population 
initialisation, and all GP individuals are represented as trees in the evolutionary process. 
All the individuals are then evaluated to get their fitness during the individual evaluation 
stage. For individual evaluation, an important step is to predict the classification labels of 
king salmon instances, and then classification accuracy can be calculated based on the 
comparison between predicted class labels and the real class labels. For predicting the 
class label of a king salmon instance with a GP individual (F1–F4)/F5, one will calculate 
the output of a GP individual with the feature values of a king salmon instance. In this 
example, GP automatically selects important features F1, F4 and F5 to build the classifier. 
If the output of a GP individual is smaller than or equal to 0, this paper will set the pre-
dicted class label as 0 which indicates an unhealthy fish. For example, for the first instance 
in Figure 4, the output of the classifier (F1–F4)/F5 is (10–20)/2. i.e. −5. Since −5 is 
smaller than 0, the corresponding king salmon of this instance is predicted as an 
unhealthy king salmon. Otherwise, this algorithm will give a label 1 which represents 

Table 3. Sizes of datasets represented by the number of samples and features, and the imbalance 
ratio of unhealthy class and healthy class for different trials.

Trial1 Trial2 Trial3

No. Dataset Size Imbalance Size Imbalance Size Imbalance #Class
Ratio Ratio Ratio

1 blood (103,37) 1.51 (445,38) 2.53 (376,36) 0.29 2
2 composition (103,116) 1.51 (275,115) 3.44 (376,127) 0.29 2
3 feeding (99,7) 1.48 (126,7) 1.14 (113,7) 0.19 2
4 growth (103,5) 1.51 (445,5) 2.53 (376,5) 0.29 2
5 assessment (103,5) 1.51 (445,14) 2.53 (376,18) 0.29 2
6 histology (103,36) 1.51 (445,36) 2.53 (376,36) 0.29 2
7 biometrics (103,14) 1.51 (444,15) 2.55 (376,9) 0.29 2
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healthy fish. If the stopping criterion is not met, e.g. the maximal number of generations, 
the individuals with high classification accuracy will be selected to generate a new popu-
lation during the evolutionary process via genetic operators, i.e. elitism, reproduction, 
crossover and mutation. If the stopping criterion is met, the best individual learned 
will be the output of the GP algorithm.

Fitness function

The fitness function is to evaluate the performance of each tree (i.e. a candidate solution) 
in order to guide the search of GP. Table 4 shows all possible situations of a classification 
task by the predicted class and actual class, i.e. the confusion matrix. According to 
whether the predicted label is the same as the actual one, there are four cases which 
are true positive (TP), false positive (FP), false negative (FN) and true negative (TN). 
This paper uses a commonly used fitness function for unbalanced classification, i.e. F1 
score which is a combination of precision and recall as shown in Equation (1). The cal-
culations of precision and recall are shown in Equations (2) and (3), respectively. The 
precision indicates the ratio of truly predicted positive instances among all instances 
that are predicted as the positive class. The recall represents the ratio of truly predicted 
positive instances among all instances in positive class. A larger F1 score value indicates a 
better performance.

F1 Score =
2 ∗Precision ∗Recall

Precision+ Recall
(1) 

Figure 4. The flowchart of GP on king salmon health classification with an example of using a GP 
individual for king salmon health classification.

Table 4. Possible prediction and actual class for a classification task.
Actual Class

1 0

Predicted Class 1 True Positive (TP) False Positive (FP)
0 False Negative (FN) True Negative (TN)
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Precision =
TP

TP + FP
(2) 

Recall =
TP

TP + FN
(3) 

Evolution

GP is an evolutionary machine learning algorithm that mimics the evolution in nature to 
improve the quality/adaption of its individuals/solutions generation by generation. The 
output of the GP algorithm is the best classifier/tree at the last generation. Crossover 
and mutation are two main genetic operators for generating new solutions or offspring 
during the evolutionary process for GP. For crossover, two parents are selected, and sub-
trees from them are randomly swapped to generate two offspring. An example can be 
found in Figure 5. The generated offspring have genetic materials from both parents. 
For mutation, one parent is selected, and one subtree is randomly chosen and replaced 
with a newly generated subtree. An example can be found in Figure 6. Except for crossover 

Figure 5. An example of crossover to generate offspring, where Fi indicates feature/variable i.

Figure 6. An example of mutation to generate offspring, where Fi indicates feature/variable i.
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and mutation, GP also uses reproduction and elitism operators to keep good individuals 
into the next generation. Reproduction operator keeps the selected parents to the next gen-
eration. Elitism keeps the best individual(s) which is(are) chosen according to their 
fitnesses obtained with the fitness function, from the current generation to the next gen-
eration to avoid losing good found individuals.

Experiment designs

Training and test

Each dataset is divided into a training set and a test set. The training data are used to learn 
a model which is a classifier for a classification task, and the test data are used to measure 
the performance of the learned classifiers. Cross-validation is a resampling procedure 
used to evaluate machine learning models on a limited data sample (Fushiki 2011). 
The procedure has a single parameter called k that refers to the number of groups that 
a given data set is to be split into. Specifically, this paper uses 5-fold cross-validation 
to split the data into 5 folds, and use 4 folds as training data to calculate the training accu-
racy (80% of data for training) and the classification accuracy of the rest fold as the test 
accuracy (20% of remaining data for test). The test fold is unseen during the training 
process. This process will repeat give times so that each fold will be used once only, 
the average of the five test accuracies will be used as the overall test performance. This 
process will repeat give times so that each fold will be used once only, the average of 
the five test accuracies will be used as the overall test performance. Figure 7 shows 
how to use 5-fold cross-validation to obtain the final test classification accuracy as the 
performance. This paper uses the average test accuracy in each split as the final test accu-
racy of the learned classifiers.

All the data are standardised before applying machine learning algorithms, and the 
standard score of a sample x is calculated as:

z =
x − u

s
(4) 

where u is the mean of the training samples, and s is the standard deviation of the training 
samples. The same mean and standard deviation obtained from training are then used to 
normalise test data.

Figure 7. Fivefold cross-validation for getting the final test classification accuracy.
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Parameter settings

GP individuals consist of terminals and functions. The terminal set contains all features 
for each dataset, and this paper uses arithmetic functions, i.e. +, −, ∗, protected /, as the 
function set. For the protected /, when the denominator is 0, it returns 1. Other main 
parameter settings of GP including population size and number of generations, are 
shown in Table 5, and are typically used for GP (Poli et al. 2008). Crossover, mutation 
and reproduction rates are the probabilities of applying different genetic operators, 
which are 0.6, 0.3 and 0.1, respectively. The best individual at each generation, i.e. the 
number of elite equals 1, will be kept to the next generation as elite. Ramped half and 
half method is used to initialise the population with individuals that have a depth 
between 2 and 4. During the evolution process, the depths of individuals should not 
exceed 6. This paper uses tournament selection with a size of 7 to select parents for gen-
erating new offspring.

For KNN algorithm, the k is set as 5, which means KNN depends on the closest 5 
neighbours to predict the label of an instance. SVM uses radial basis function kernel. 
DT and RF set the maximum depth of tree to 3, the minimum number of samples 
required to split an internal node to 10, and the minimum number of samples required 
to be at a leaf node to 3. In addition, RF sets the number of trees in the forest to 80, and 
criterion to ‘entropy’. These settings have shown good performance based on our pre-
liminary investigations.

Performance metrics

Considering that detecting unhealthy king salmon as unhealthy fish (rather than identi-
fying healthy king salmon as healthy fish) is more valuable for farming, this paper sets the 
unhealthy class as the positive class. F1 score as shown in Equation (1) in Section ‘Fitness 
function’ is provided as an overall performance information. In addition, with a focus on 
detecting the true unhealthy king salmon samples accurately, this paper uses recall shown 
in Equation (3) in Section ‘Fitness function’, as metrics for measuring the performance of 
the involved machine learning algorithms.

Results and discussions

The average accuracy of 5-fold crossover-validation is reported as the results for each 
run, and this paper runs each algorithm for 30 independent runs. The performance of 
the algorithms based on the 30 independent runs is ranked using Friedman’s test with 
a significance level of 0.05. The ‘Rank’ represents the algorithm’s average ranking on 
all examined datasets. A smaller rank value indicates better performance. The best 

Table 5. Parameter settings of GP.
Parameter Value Parameter Value

Population size 1000 Number of generations 50
Crossover rate 0.6 Mutation rate 0.3
Reproduction rate 0.1 Number of elites 1
Initial minimal/maximal tree depth 2/4 Maximal tree depth 6
Initialisation method Ramped half and half Tournament size 7

JOURNAL OF THE ROYAL SOCIETY OF NEW ZEALAND 13



classification accuracy for detecting the unhealthy fish (i.e.recall) achieved on each 
dataset is highlighted in bold.

Trial 1

Test performance
Table 6 shows the mean and standard deviation of test F1 score of KNN, NB, DT, RF, 
SVM and GP in trial 1 according to the 30 independent runs on the seven datasets. 
For trial 1, GP achieves the best performance with a rank of 2.2 among all compared 
algorithms followed by SVM with a rank of 3.15. Further looking at the test recall in 
trial 1 of all involved algorithms as shown in Table 7, the results show that GP has the 
best overall accuracy with a rank of 1.65 among all involved algorithms, and achieves 
the best accuracy on five out of the seven datasets.

Figure 8 shows the violin plots of test recall of KNN, NB, DT, RF, SVM and GP 
according to the 30 independent runs in trial 1. In general, GP is superior to the other 
algorithms in determining the king salmon health classification in trial 1 for 5 out of 
the 7 datasets, i.e.〈blood〉, 〈feeding〉, 〈growth〉, 〈assessment〉 and 〈histology〉 with 
higher test recall value distributions. Although GP is not the best one on datasets 〈com-
position〉 and 〈biometrics〉, GP performs the second best.

Training vs test
This section investigates the generalisation ability of involved algorithms by looking at 
their training recall and test recall. Figure 9 shows the scatter plots of the recall on train-
ing and test in trial 1. Most algorithms have a good generalisation ability that their 

Table 6. The mean (standard deviation) of test F1 score of KNN, NB, DT, RF, SVM and GP in trial 1 over 
the 30 independent runs on the seven datasets.
Dataset KNN NB DT RF SVM GP

blood 64.20(3.10) 60.97(2.85) 52.78(5.32) 58.64(3.15) 59.92(2.81) 66.03(3.69)
composition 61.00(2.86) 72.33(3.24) 57.19(4.02) 62.95(1.98) 63.47(2.95) 67.37(5.15)
feeding 64.67(3.43) 64.58(3.38) 58.81(5.37) 67.45(1.41) 70.57(1.97) 69.22(2.99)
growth 60.97(2.83) 69.51(1.68) 65.63(4.65) 56.58(2.94) 55.41(3.08) 67.47(3.81)
assessment 62.87(3.02) 32.84(3.08) 49.61(7.79) 60.93(4.72) 64.31(3.14) 69.11(3.59)
histology 64.40(2.94) 33.52(4.18) 59.37(5.07) 66.57(2.49) 63.86(3.40) 64.48(3.36)
biometrics 68.62(3.39) 61.99(2.99) 58.30(5.73) 66.11(1.64) 67.29(2.75) 66.65(3.44)
Rank 3.22 3.9 4.92 3.6 3.15 2.2

Table 7. The mean (standard deviation) of recall of KNN, NB, DT, RF, SVM and GP in trial 1 over the 30 
independent runs on the seven datasets.
Dataset KNN NB DT RF SVM GP

blood 66.07(4.51) 55.21(3.58) 48.32(6.55) 55.42(3.75) 56.03(3.45) 74.68(6.92)
composition 65.02(3.58) 84.24(5.43) 53.92(5.35) 59.49(2.46) 60.12(3.25) 74.06(8.11)
feeding 65.10(4.55) 62.27(4.22) 58.28(6.97) 65.07(1.98) 71.76(2.52) 75.93(4.98)
growth 64.80(3.74) 77.26(2.45) 68.15(8.01) 55.25(4.22) 50.67(4.68) 78.71(6.23)
assessment 64.93(4.02) 27.74(2.91) 45.19(9.73) 59.44(5.87) 65.82(4.72) 77.96(5.27)
histology 69.88(4.13) 24.58(5.91) 56.45(7.18) 68.25(3.63) 64.24(4.61) 71.59(5.71)
biometrics 73.41(4.43) 58.79(3.33) 53.12(7.72) 62.59(2.30) 66.37(3.29) 70.92(5.94)
Rank 2.69 4.08 4.95 4.25 4.06 1.65

Bold numbers indicate the highest recall for a given dataset.
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training and test recall values have high correlations. However, some algorithms have 
poor generalisation ability, i.e. a high training accuracy but a low test accuracy, such 
as DT on datasets 〈blood〉, 〈composition〉, 〈feeding〉 and 〈biometrics〉. This might also 
be the reason why DT performs the worst in trial 1. Overall, GP has a good generalisation 
ability, and performs the best on training and test on most of the datasets.

Trial 2

Test performance
Table 8 shows the mean and standard deviation of test F1 score of KNN, NB, DT, RF, 
SVM and GP in trial 2 according to the 30 independent runs on the seven datasets. 

Figure 8. Violin plots of test recall of KNN, NB, DT, RF, SVM and GP in trial 1.

Figure 9. Scatter plots of the recall on training and test in trial 1.
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The results show that GP achieves the best classification accuracy with a rank of 1.09 in 
trial 2 followed by KNN with a rank of 2.01. Table 9 shows the mean and standard devi-
ation of recall of KNN, NB, DT, RF, SVM and GP in trial 2 according to the 30 indepen-
dent runs on the seven datasets. The results show that GP performs the best among all 
algorithms with a rank of 1, followed by KNN with a rank of 2.1. In addition, GP per-
forms the best on all datasets.

Figure 10 shows the violin plots of test recall of KNN, NB, DT, RF, SVM and GP 
according to the 30 independent runs in trial 2. Although other algorithms may have 
different performance on different datasets, GP is consistently significantly better than 
all other compared algorithms on all datasets.

Training vs test
Figure 11 shows the scatter plots of the recall on training and test in trial 2. Overall, all 
algorithms perform consistently between training and test on all datasets, and clearly GP 
performs the best (in the very right top position) on all datasets than other algorithms.

Trial 3

Test performance
Table 10 shows the mean and standard deviation of test F1 score of KNN, NB, DT, RF, 
SVM and GP in trial 3 according to the 30 independent runs. Overall, the results show 
that SVM is the best among all involved algorithms with a rank of 1.59 followed by GP 
with a rank of 3.07, which is different from our observations in trial 1 and trial 2. The 
reason might be that the current GP algorithm cannot cope with highly unbalanced 

Table 8. The mean (standard deviation) of test F1 score of KNN, NB, DT, RF, SVM and GP in trial 2 over 
the 30 independent runs on the seven datasets.
Dataset KNN NB DT RF SVM GP

blood 78.77(0.99) 56.18(0.96) 73.95(2.33) 69.75(0.75) 77.18(1.08) 83.48(0.15)
composition 82.35(1.12) 64.14(3.84) 63.72(3.60) 69.13(2.11) 74.49(1.26) 86.68(0.63)
feeding 67.50(3.32) 58.38(2.21) 54.48(4.85) 56.07(2.81) 54.01(2.86) 66.05(3.18)
growth 78.29(0.92) 65.95(1.25) 61.49(3.23) 62.91(2.44) 55.87(0.87) 82.91(0.57)
assessment 76.46(1.07) 76.14(5.02) 55.65(2.56) 61.42(1.46) 59.30(1.02) 83.09(0.53)
histology 74.63(1.37) 39.24(1.59) 56.44(3.63) 62.31(0.69) 68.70(0.98) 82.71(0.49)
biometrics 75.40(0.95) 66.18(1.22) 63.27(4.68) 66.48(1.47) 68.09(1.11) 83.51(0.25)
Rank 2.01 4.45 5.03 4.36 4.06 1.09

Table 9. The mean (standard deviation) of recall of KNN, NB, DT, RF, SVM and GP in trial 2 over the 30 
independent runs on the seven datasets.
Dataset KNN* NB DT RF SVM GP

blood 80.80(1.61) 39.98(0.84) 64.70(3.32) 56.98(1.05) 70.89(1.41) 99.84(0.53)
composition 85.46(1.93) 55.98(4.70) 52.67(4.71) 59.82(2.83) 67.93(1.72) 98.44(1.35)
feeding 68.74(3.83) 58.03(2.49) 54.84(6.32) 48.65(2.77) 47.21(3.13) 77.71(5.65)
growth 81.17(1.28) 56.66(1.48) 50.61(4.62) 51.08(2.90) 40.54(1.06) 98.11(1.40)
assessment 80.25(1.80) 84.85(7.05) 42.55(3.23) 49.05(1.74) 46.73(1.15) 97.58(1.05))
histology 73.23(1.90) 25.16(1.19) 44.11(4.80) 48.88(0.89) 59.16(1.08) 97.96(1.03)
biometrics 77.10(1.49) 56.08(1.40) 53.34(6.42) 55.59(1.91) 57.39(1.27) 99.70(0.62)
Rank 2.1 4.3 4.82 4.59 4.19 1

Bold numbers indicate the highest recall for a given dataset.
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classification tasks well, i.e. trial 3 has a high imbalance ratio. Table 11 shows the mean 
and standard deviation of recall of KNN, NB, DT, RF, SVM and GP in trial 3 over the 30 
independent runs on the seven datasets. It shows that SVM is the best algorithm among 
all algorithms with the best rank of 1.68. GP with a rank of 2.76 has similar performance 
with DT which is ranked as 2.72. GP performs the best on the dataset 〈blood〉, and DT 
performs the best on the dataset 〈composition〉.

Figure 12 shows the violin plots of test recall of KNN, NB, DT, RF, SVM and GP on 
the seven datasets. It shows that that the obtained 30 test objective values of SVM indicate 
a better performance than all other algorithms on 4 out of 7 datasets, i.e.〈growth〉, 
〈assessment〉, 〈histology〉 and 〈biometrics〉.

Figure 11. Scatter plots of the recall on training and test in trial 2.

Figure 10. Violin plots of test recall of KNN, NB, DT, RF, SVM, and GP in trial 2.

JOURNAL OF THE ROYAL SOCIETY OF NEW ZEALAND 17



Training vs test
Figure 13 shows the scatter plots of the recall on training and test in trial 3. Although 
SVM has the best overall performance, SVM does not generalise well on dataset 
〈blood〉 and 〈composition〉. In addition, KNN does not have a good generalisation 
ability between training and test, where KNN performs slightly better on training than 
on test on datasets 〈blood〉, 〈composition〉, 〈feeding〉, 〈growth〉, 〈histology〉 and 

Table 10. The mean (standard deviation) of test F1 score of KNN, NB, DT, RF, SVM and GP in trial 3 over 
the 30 independent runs on the seven datasets.
Dataset KNN NB DT RF SVM GP

blood 51.51(2.62) 44.06(2.08) 40.83(3.56) 45.20(1.90) 49.51(1.80) 46.10(2.87)
composition 39.74(3.65) 40.32(3.36) 43.19(3.46) 40.44(3.99) 46.44(2.40) 41.25(4.14)
feeding 4.58(3.80) 14.97(6.99) 26.15(3.90) 34.31(3.69) 28.02(4.32) 23.83(6.16)
growth 35.20(2.11) 23.98(2.64) 42.44(2.78) 37.88(3.57) 47.39(1.93) 44.81(2.91)
assessment 58.36(3.34) 25.82(2.21) 54.70(3.39) 56.00(2.46) 60.32(2.03) 58.61(2.58)
histology 36.09(4.31) 43.35(3.89) 50.19(2.92) 55.67(2.49) 62.22(1.60) 56.41(2.90)
biometrics 43.49(2.36) 37.69(3.52) 48.33(2.36) 40.87(3.96) 52.28(2.13) 45.63(3.58)
Rank 4.12 5.16 3.61 3.45 1.59 3.07

Table 11. The mean (standard deviation) of recall of KNN, NB, DT, RF, SVM and GP in trial 3 over the 30 
independent runs on the seven datasets.
Dataset KNN NB DT RF SVM GP

blood 46.00(2.36) 39.76(2.13) 51.02(6.11) 48.00(2.30) 51.92(2.33) 56.04(4.55))
composition 34.59(3.50) 48.63(3.26) 56.51(7.74) 34.47(3.06) 53.65(3.29) 49.29(6.20)
feeding 4.28(3.30) 13.72(6.41) 48.67(7.45) 58.61(4.97) 46.67(6.89) 34.56(9.11)
growth 29.49(1.80) 17.14(2.18) 62.16(8.16) 43.96(5.75) 67.73(3.63) 56.16(5.50)
assessment 48.82(3.07) 15.80(1.44) 45.69(2.49) 51.65(3.16) 68.82(2.69) 52.20(2.34)
histology 25.73(3.63) 41.76(4.15) 59.61(5.33) 61.77(2.47) 66.67(1.73) 60.27(4.67)
biometrics 35.22(2.43) 32.08(3.31) 61.49(6.36) 38.78(4.07) 66.82(2.72) 54.71(5.63)
Rank 5.06 5.29 2.72 3.47 1.68 2.76

Bold numbers indicate the highest recall for a given dataset.

Figure 12. Violin plots of test recall of KNN, NB, DT, RF, SVM and GP in trial 3.
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〈biometrics〉. Although GP does not perform the best, i.e. the second best, GP has a good 
generalisation ability on all datasets.

Discussions on performance across different trials

In general, GP performs the best in most trials. This shows the effectiveness of using GP 
to learn classifiers for king salmon health classification tasks, and our proposed GP algor-
ithm has a promising ability to detect unhealthy king salmon. Different algorithms might 
have different performances in different trials, and the obtained classification accuracy in 
trial 2 is the best followed by trial 1. The obtained classification accuracy in trial 3 is the 
lowest among all trials. This section takes the dataset 〈blood〉 across different trials to 
investigate the task difficulties in different trials.

The t-distributed stochastic neighbour embedding (t-SNE) is a statistical method for 
visualising high-dimensional data by giving each data point a location in a two or three- 
dimensional map. This section uses t-SNE to visualise the dataset 〈blood〉 in the three 
different trials (Figure 14). The number of unhealthy instances is larger than healthy 
ones in trial 1 and 2, while the number of unhealthy instances is smaller than healthy 

Figure 13. Scatter plots of the recall on training and test in trial 3.

Figure 14. t-SNE visualisation of blood dataset for the three trials.
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ones in trial 3. Compared with trial 1 and trial 2, trial 3 has a more complex mixture of 
healthy and unhealthy instances. This is a possible reason that the classifier taking the 
unhealthy class as the positive class, predicting unhealthy fish as unhealthy fish, in 
trial 3 is smaller than in trial 1 and trial 2. Compared with trial 1 and trial 3, trial 2 
has a larger number of unhealthy instances, which makes it easier than trial 1 and trial 
3 to achieve higher classification accuracy that takes unhealthy class as the positive 
class. This is consistent with other findings of the experiment comparisons in this 
Section.

Further analyses

Performance of GP on different folds

This paper uses 5-fold cross-validation to learn classifiers for king salmon health classifi-
cation tasks, and this section investigates the variances of fitness obtained by GP in 
different folds. Figure 15 shows the curves of training fitness, i.e. F1 score, along with 
generations of GP for different folds in trial 1. The fitnesses of GP along with generations 
on all datasets are similar. This indicates that there are no large variations among the GP 
performance within different folds. This shows the stability of the performance of GP. 
The same pattern is observed on all datasets in all three trials. Due to the page limit, 
this paper does not show the curves of the training fitness in trial 2 and trial 3.

Feature importance

This section investigates which features are important for particular datasets by using the 
feature importance score. GP is chosen for this investigation since it has overall good per-
formance for king salmon health classification. For GP, the feature importance score is 
defined as the frequency of features appeared in the best learned classifiers (Qi 
et al. 2019). This section chooses the dataset 〈blood〉 in trial 1 with 37 features to 
show the feature importance. Table 12 shows the details of features on the dataset 
〈blood〉 in trial 1.

Figure 15. Curves of fitness, i.e. F1 score, along with generations of GP for different folds in trial 1.
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Figure 16 shows the average feature importance score on the dataset 〈blood〉 accord-
ing to the 30 independent runs obtained by GP. GP considers F30 (triglycerides), F33 
(temperature celsius), F10 (cholesterol), F5 (bilirubin) and F11 (cortisol) as the top 
five important features in trial 1. In addition, we can see that important features do 
not necessary to appear for all best learned classifier, which indicates that the effective-
ness of classifiers learned by GP is not only dependent on the important features, but 
also related to feature construction, i.e. how features are used with functions. This 
shows that GP can detect important features automatically to generate classifiers for 
king salmon healthy classification tasks.

Figure 17 shows the boxplots of feature values of the three top important features in 
Figure 16, i.e.triglycerides (F30), cholesterol (F10) and cortisol (F11) grouped by 
healthy and unhealthy fish of blood dataset in trial 1. It is clear that the detected impor-
tant feature values have different distributions in the unhealthy and healthy fish groups 
according to triglycerides, cholesterol and cortisol. Specifically, unhealthy king salmon 
have lower triglycerides, cholesterol and cortisol than healthy fish. This reflects the 
effectiveness of GP to detect important features to learn classifiers. Note that Figure 
17 does not include temperature celsius (F33) and bilirubin (F5), since these two fea-
tures have the same values between unhealthy and healthy king salmon on blood 
dataset in trial 1. We can see that GP may choose features with constant values as 
important features to build classifiers, however, features with constant values is not 
helpful to distinguish classes. We will further investigate this to improve the effective-
ness of GP in our future work.

Learned classifier by GP

To investigate the learned classifier, Figure 18 shows one of the best classifiers learned by 
GP on the blood dataset in trial 1. Regarding the top five features for the blood dataset in 
trial 1 as shown in Figure 16, F30 appears three times, and F10 and F11 appear twice in 
the classifier. This shows the importance of these three features, which is consistent with 
the observations in Figure 16. The classifier shown in Figure 18 can be simplified as 
Equation (5). This classifier can be used to make a king salmon health prediction in 

Figure 16. Feature importance on the blood dataset of GP in trial 1 where Fi indicates the ith feature.
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less than a second, which is important for large scale real-world applications.

classifier = F10 − F11 ∗ F30 −
F10 ∗ F19 ∗ F30 ∗ (F19 − F11) ∗ (F30 − F25)

F14
(5) 

Conclusions

The goal of this paper was to investigate if GP would be a good approach to predict king 
salmon health, i.e. determining if a fish is healthy or unhealthy. The goal has been suc-
cessfully achieved by a designed GP algorithm and its comparison with other machine 
learning techniques.

The results show that GP is a promising algorithm to learn classifiers for predicting the 
king salmon health tasks. GP achieves the best overall performance in most trials. This 
paper observes that different trial data have various difficulties to handle, and the 
achieved classification performance varies. Specifically, high classification accuracy is 
achieved in trial 2 followed by trial 1, and the achieved accuracy in trial 3 is the 
lowest. A further investigation shows that this is caused by different characteristics of 
the datasets such as the instances distributions. Regarding the robustness of GP for 
different folds on each dataset, GP has stable training performance across folds with 
low variance. In addition, this paper investigated the feature importance for fish health 
prediction, which can provide a future guidance for farming. The learned classifiers 
learned by GP also show that GP can successfully learn effective classifiers for king 
salmon health classification tasks automatically. This study builds the foundation of 
using GP for king salmon health prediction in terms of dataset building and GP 

Figure 17. Boxplots of feature values of the top important features, i.e. triglycerides (F30), cholesterol 
(F10), and cortisol (F11) grouped by healthy and unhealthy fish of the blood dataset in trial 1.

Figure 18. One of the best learned classifiers for the blood dataset in trial 1.
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algorithm design for king salmon health prediction. The provided feature importance 
information is an important step forward in designing effective tools for king salmon 
farms to improve farming effectiveness.

Some interesting directions can be further studied in future. We plan to design 
effective feature selection algorithms to only use important features for king salmon 
health classification. We will start working on how the health information of different 
organs such as heart and liver can affect the overall health status of king salmon. In 
addition, we plan to design effective sampling methods for classification tasks with 
high imbalance ratios.
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