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Foreword by John R. Koza 

Genetic programming addresses the problem of automatic program¬ 
ming, namely, the problem of how to enable a computer to do useful 
things without instructing it, step by step, on how to do it. 

Banzhaf, Nordin, Keller, and Francone have performed a remark¬ 
able double service with this excellent book on genetic programming. 

First, they have written a book with an up-to-date overview 
of the automatic creation of computer programs by means of 
evolution. This effort is especially welcome because of the rapid 
growth of this field over the past few years (as evidenced by 
factors such as the more than 800 papers published by some 
200 authors since 1992). 

G Second, they have brought together and presented their own in¬ 
novative and formidable work on the evolution of linear genomes 
and machine code in particular. Their work is especially im¬ 
portant because it can greatly accelerate genetic programming. 

The rapid growth of the field of genetic programming reflects 
the growing recognition that, after half a century of research in the 
fields of artificial intelligence, machine learing, adaptive systems, au¬ 
tomated logic, expert systems, and neural networks, we may finally 
have a way to achieve automatic programming. When we use the 
term automatic programming, we mean a system that 

1. produces an entity that runs on a computer (i.e., either a com¬ 
puter program or something that is easily convertible into a 
program), 

2. solves a broad variety of problems, 

3. requires a minimum of user-supplied problem-specific informa¬ 
tion, 

4. in particular, doesn't require the user to prespecify the size and 
shape of the ultimate solution, 

5. implements, in some way, all the familiar and useful program¬ 
ming constructs (such as memory, iteration, parameterizable 
subroutines, hierarchically callable subroutines, data structures, 
and recursion), 



6. doesn't require the user to decompose the problem in advance, 
to identify subgoals, to handcraft operators, or to tailor the 
system anew for each problem, 

7. scales to ever-larger problems, 

8. is capable of producing results that are competitive with those 
produced by human programmers, mathematicians, and spe¬ 
cialist designers or of producing results that are publishable in 
their own right or commercially usable, and 

9. is well-defined, is replicable, has no hidden steps, and requires 
no human intervention during the run. w 

Genetic programming is fundamentally different from other ap¬ 
proaches to artificial intelligence, machine learning, adaptive systems, 
automated logic, expert systems, and neural networks in terms of 
(i) its representation (namely, programs), (ii) the role of knowledge 
(none), (iii) the role of logic (none), and (iv) its mechanism (gleaned 
from nature) for getting to a solution within the space of possible 
solutions. 

Among these four differences, representation is perhaps the most 
important distinguishing feature of genetic programming. Computers 
are programmed with computer programs - and genetic programming 
creates computer programs. 

Computer programs offer the flexibility to perform computations 
on variables of many different types, perform iterations and recur¬ 
sions, store intermediate results in data structures of various types 
(indexed memory, matrices, stacks, lists, rings, queues), perform al¬ 
ternative calculations based on the outcome of complex calculations, 
perform operations in a hierarchical way, and, most important, em¬ 
ploy parameterizable, reusable, hierarchically callable subprograms 
(subroutines) in order to achieve scalability. 

In attacking the problem of automatic programming, genetic pro¬ 
gramming does not temporize or compromise with surrogate struc¬ 
tures such as Horn clauses, prepositional logic, production rules, 
frames, decision trees, formal grammars, concept sets, conceptual 
clusters, polynomial coefficients, weight vectors, or binary strings. 
Significantly, human programmers do not commonly regard any of 
the above surrogates as being suitable for programming computers. 
Indeed, we do not see computers being ordinarily programmed in the 
language of any of them. 

My view is that if we are really interested in getting computers to 
solve problems without explicitly programming them, the structures 
that we need are computer programs. 



This book will be coming out almost exactly ten years since my 
first run of genetic programming in October 1987 (solving a pair of 
linear equations and inducing the Fibonacci sequence). Certainly 
I could not have anticipated that this field would have grown the 
way it has when I thought of the idea of genetic programming while 
flying over Greenland on my return from the 1987 meeting of the 
International Joint Conference on Artificial Intelligence in Italy. 

We know from Yogi Berra that predictions are risky, particularly 
when they involve the future. But, it is a good guess that genetic 
programming will, in the future, be successfully expanded to greater 
levels of generality and practicality. 

In trying to identify future areas for practical application, the 
presence of some or all of the following characteristics should provide 
a good indication: 

1. areas where the interrelationships among the relevant variables 
are poorly understood (or where it is suspected that the current 
understanding may well be wrong), 

2. areas where finding the size and shape of the ultimate solution 
to the problem is a major part of the problem, 

3. areas where conventional mathematical analysis does not, or 
cannot, provide analytic solutions, 

4. areas where an approximate solution is acceptable (or is the 
only result that is ever likely to be obtained), 

5. areas where small improvements in performance are routinely 
measured (or easily measurable) and highly prized, 

6. areas where there is a large amount of data, in computer read¬ 
able form, that requires examination, classification, and inte¬ 
gration (such as molecular biology for protein and DNA se¬ 
quences, astronomical data, satellite observation data, financial 
data, marketing transaction data, or data on the World Wide 
Web). 
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1 Genetic Programming as Machine Learning 

Evolution is Nature's ijiistake. Intelligence is its insistence on mak¬ 
ing the same mistake. 

S.LEM, GOLEM XIV, 1981 

1.1 Motivation 

Automatic programming will be one of the most important areas 
of computer science research over the next twenty years. Hardware 
speed and capability has leapt forward exponentially.( Yet software 
consistently lags years behind the capabilities of the hardware. The 
gap appears to be ever increasing. Demand for computer code keeps 
growing but the process of writing code is still mired in the modern 
day equivalent of the medieval "guild" days. Like swords in the 15th 
century, muskets before the early 19th century and books before the 
printing press, each piece of computer code is, today, handmade by 
a craftsman for a particular purpose. 

The history of computer programming is a history of attempts 
to move away from the "craftsman" approach - structured program¬ 
ming, object-oriented programming, object libraries, rapid prototyp¬ 
ing. But each of these advances leaves the code that does the real 
work firmly in the hands of a craftsman, the programmer. The ability 
to enable computers to learn to program themselves is of the utmost 
importance in freeing the computer industry and the computer user 
from code that is obsolete before it is released. 

Since the 1950s, computer scientists have tried, with varying de¬ 
grees of success, to give computers the ability to learn. The umbrella 
term for this field of study is "machine learning," a phrase coined 
in 1959 by the first person who made a computer perform a serious 
learning task, Samuel. 

Originally, Samuel used "machine learning" to mean computers 
programming themselves [Samuel, 1963]. That goal has, for many 
years, proven too difficult. So the machine learning community has 
pursued more modest goals. A good contemporary definition of ma¬ 
chine learning is due to Mitchell: "[machine learning] is the study 
of computer algorithms that improve automatically through experi¬ 
ence" [Mitchell, 1996]. 

Genetic programming, GP for short, aspires to do precisely that 
- to induce a population of computer programs that improve au¬ 
tomatically as they experience the data on which they are trained. 
Accordingly, GP is part of the very large body of research called 
machine learning (ML). 

Within the machine learning community, it is common to use "ge¬ 
netic programming" as a shorthand for any machine learning system 



that evolves tree structures. The focus on tree structures is really a 
tribute to the immense influence of Koza. In 1992, he wrote a treatise 
entitled "Genetic Programming. On the Programming of Comput¬ 
ers by Means of Natural Selection." Before this work, a number of 
researchers had used genetic or evolutionary operators to induce com¬ 
puter programs. But these earlier works went largely unrecognized 
because they were, in effect, buried in the mass of genetic algorithm 
research. In his seminal book, Koza was the first to recognize that GP 
was something new and different - he even gave the new discipline its 
name. Koza's results were achieved by evolving tree structures. It is 
not surprising, therefore, that many use the term "genetic program¬ 
ming" to mean the evolution of tree structures, nor is it surprising 
that most of the work in this discipline is with various tree-based 
systems. 

The definition of GP used in this book will be less restrictive than 
the definition referred to above. 

1. First and foremost we will consider the induction of computer 
programs by evolutionary means. Accordingly, in this book, the 
term "genetic programming" shall include systems that con¬ 
stitute or contain explicit references to programs (executable 
code) or to programming language expressions. So, for exam¬ 
ple, evolving LISP lists are clearly GP because LISP lists con¬ 
stitute programming language structures and elements of those 
lists constitute programming language expressions. Similarly, 
the common practice among GP researchers of evolving C data 
structures that contain information explicitly referring to pro¬ 
grams or program language tokens would also be GP. 

2. It is already clear from the GP literature that programs or 
programming language structures may be represented in ways 
other than as trees. Research has already established the effi¬ 
cacy of both linear and graph-based genetic programming sys¬ 
tems. Therefore, we do not limit our definition of GP to include 
only systems that use (expression) trees to represent programs. 
Instead, all means of representing programs will be included. 

3. Not all algorithms running on computers are primarily pro¬ 
grams. For example, neural networks are (learning) algorithms, 
but their implementation is usually of secondary concern. Nev¬ 
ertheless, we shall riot exclude these algorithms from being le¬ 
gitimate members of the GP family. There already exist nu¬ 
merous applications in the algorithmic domain, and excluding 
them would unnecessarily deprive GP of an important source 
of inspiration. 



1 Genetic Programming as Machine Learning 
4. We do not limit our definition of GP to include only systems 

that use certain operators, such as crossover. As long as there 
is a population of programs or algorithms used for the benefit 
of the search, and as long as some kind of indeterminism is 
applied to generate new variants, we think we can legitimately 
call a system a genetic programming system. 

With the above discussion in mind, it is possible to define genetic 
programming as the direct evolution of programs or algorithms for the 
purpose of inductive learning. Thus, in a very real sense, GP returns 
to Samuel's original goal for machine learning in 1959 - teaching 
computers to program themselves. 

Today, we program by telling the computer exactly how to do 
every possible thing that we think it might need to do - how to 
respond to every possible request from a user or a network. Not 
only is this cumbersome, it is impossible for software packages that 
routinely occupy fifty megabytes of hard disk space. The great goal of 
machine learning, and especially GP, is to be able to tell the computer 
what task we want it to perform and to have it learn to perform that 
task. GP would do so by letting the computer program itself or other 
computers. 

Is GP capable of such a feat today? In a general sense, no. That 
is, there is no GP system that will generically accept any problem 
and then automatically generate computer code that addresses that 
problem. It is clearly not a human programmer. Notwithstanding 
this limitation, in only a few short years since the publication of 
Koza's book, GP has already changed the wisdom on the range of 
problems machine learning can solve and has equaled or exceeded 
the performance of other machine learning systems in various stud¬ 
ies. In fact, GP has already evolved programs that are better than 
the best programs written by people to solve a number of difficult 
engineering problems. Finally, GP has introduced a level of freedom 
of representation into the machine learning world that did not previ¬ 
ously exist. That is why we urge the reader to look carefully at this 
exciting and dynamic new branch of computer science. 

This chapter will describe some of the central issues in machine 
learning and will show where genetic programming fits in. Our pur¬ 
pose is not to describe the entire field of ML exhaustively - this 
chapter will paint with a very broad brush. Rather, we intend to 
place GP in the context of the overall field.1 

1A good general discussion of artificial intelligence, machine learn¬ 
ing, and genetic programming's place in machine learning is contained in 
[Angeline, 1994]. «;: „ 



We will begin with a brief history of machine learning from the 
1950s until the present. After that, we will look at machine learning 
as a process. This process is remarkably similar from one machine 
learning paradigm to another. Moreover, understanding this process 
will be essential to understanding GP itself. Finally, we will examine 
some of the details of the machine learning process. It is in the details 
that machine learning paradigms diverge and genetic programming 
becomes quite distinctive. 

1.2 A Brief History of Machine Learning 

Although genetic programming is a relative newcomer to the world of 
machine learning, some of the earliest machine learning research bore 
a distinct resemblance to today's GP. In 1958 and 1959, Friedberg 
attempted to solve fairly simple problems by teaching a computer to 
write computer programs [Friedberg, 1958] [Friedberg et al., 1959]. 

Friedberg's programs were 64 instructions long and were able to 
manipulate, bitwise, a 64-bit data vector. Each instruction had a 
virtual "opcode" and two operands, which could reference either the 
data vector or the instructions. An instruction could jump to any 
other instruction or it could manipulate any bit of the data vector. 
Friedberg's system learned by using what looks a lot like a modern 
mutation operator - random initialization of the individual solutions 
and random changes in the instructions. 

Friedberg's results were limited. But his thinking and vision were 
not. Here is how Friedberg framed the central issue of machine learn¬ 
ing: 

If we are ever to make a machine that will speak, understand 
or translate human languages, solve mathematical problems with 
imagination, practice a profession or direct an organization, either 
we must reduce these activities to a science so exact that we can 
tell a machine precisely how to go about doing them or we must 
develop a machine that can do things without being told precisely 
how... . The machine might be designed to gravitate toward those 
procedures which most often elicit from us a favorable response. 
We could teach this machine to perform a task even though we 
could not describe a precise method for performing it, provided 
only that we understood the task well enough to be able to as¬ 
certain whether or not it had been done successfully. . . . In short, 
although it might learn to perform a task without being told pre¬ 
cisely how to perform it, it would still have to be told precisely 
how to learn. 

R.M. FRIEDBERG, 1958 



Friedberg's analysis anticipated the coming split between the ar¬ 
tificial intelligence community (with its emphasis on expert knowl¬ 
edge) and machine learning (with its emphasis on learning). Just 
a few years after Priedberg's work, ML took a back seat to expert 
knowledge systems. In fact, artificial intelligence (AI) research, the 
study of domain-knowledge and knowledge systems, was the domi¬ 
nant form of computational intelligence during the 1960s and 1970s. 
Expert system domain-knowledge in this era was generally human 
knowledge encoded into a system. For example, an expert system 
might be developed by polling human experts about how they make 
particular kinds of decisions. Then, the results of that polling would 
be encoded into the expert system for use in making real-world deci¬ 
sions. 

The type of intelligence represented by such expert systems was 
quite different from machine learning because it did not learn from 
experience. In paraphrasing Friedberg's terms, AI expert systems 
attempt to reduce performing specific tasks "... to a science so exact 
that we can tell a machine precisely how to go about doing them" 
[Friedberg, 1958]. 

The expert system approach, in the 1960s and thereafter, has had 
many successes, including: 

MYCIN - Diagnosis of Infectious Diseases 

MOLE - Disease Diagnosis 

PROSPECTOR - Mineral Exploration Advice 

DESIGN ADVISOR - Silicon Chip Design Advice 

Rl - Computer Configuration 

Notwithstanding this success, expert systems have turned out 
to be brittle and to have difficulty handling inputs that are novel 
or noisy. As a result, in the 1970s, interest in machine learning 
reemerged. Attention shifted from the static question of how to rep¬ 
resent knowledge to the dynamic quest for how to acquire it. In short, 
the search began in earnest to find a way, in Friedberg's words, to 
tell a computer "precisely how to learn." 

By the early 1980s, machine learning was recognized as a distinct 
scientific discipline. Since then, the field has grown tremendously. 
Systems now exist that can, in narrow domains, learn from experience 
and make useful predictions about the world. Today, machine learn¬ 
ing is frequently an important part of real-world applications such 
as industrial process control, robotics control, time series prediction, 
prediction of creditworthiness, and pattern recognition problems such 



as optical character recognition and voice recognition, to name but a 
few examples [White and Sofge, 1992] [Biethahn and Nissen, 1995]. 

At the highest level, any machine learning system faces a similar 
task - how to learn from its experience of the environment. The 
process of machine learning, that is, the defining of the environment 
and the techniques for letting the machine learning system experience 
the environment for both training and evaluation, are surprisingly 
similar from system to system. In the next section of this chapter, 
we shall, therefore, focus on machine learning as a high-level process. 
In doing so, we will see what many ML paradigms have in common. 

On the one hand, many successful machine learning paradigms 
seem radically dissimilar in how they learn from the environment. 
For example, given the same environment some machine learning 
systems learn by inducing conjunctive or disjunctive Boolean net¬ 
works (see Section 1.5.2). The implicit assumption of such systems is 
that the world may be modeled in formal Aristotelian and Boolean 
terms. On the other hand, connectionist systems such as fuzzy adap¬ 
tive or neural networks create models of the same environment based 
(loosely) on biological nervous systems. They regard the world as 
non-linear, highly complex, and decidedly non-Aristotelian (see Sec¬ 
tion 1.5.3). The variety does not end there because various systems 
also search through possible solutions in different ways. For exam¬ 
ple, blind search, beam search, and hill climbing are principal search 
paradigms (see Section 1.6). Each may be broken into many subdis-
ciplines and each has grown out of different philosophies about how 
learning works, and indeed, what learning is. 

Accordingly, later in this chapter we shall overview the ways in 
which machine learning systems are distinct from each other. In other 
words, we will look at the details of how different machine learning 
systems attack the problem of learning. 

1.3 Machine Learning as a Process 

Machine learning is a process that begins with the identification of 
the learning domain and ends with testing and using the results of 
the learning. It will be useful to start with an overview of how a 
machine learning system is developed, trained, and tested. The key 
parts of this process are the "learning domain," the "training set," the 
"learning system," and "testing" the results of the learning process. 
This overall process of machine learning is very important for the 
reader to understand and we urge special attention in this section if 
the reader is not already familiar with the subject matter. 

Machine learning systems are usually applied to a "learning do-



main." A learning domain is any problem or set of facts where the 
researcher is able to identify "features" of the domain that may be 
measured, and a result or results (frequently organized as "classes") 
the researcher would like to predict. For example, the stock market 
may be the chosen domain, the closing S&P index2 for the past 30 
days may be the features of the domain selected by the researcher, 
and the closing S&P index tomorrow may be the result that the re¬ 
searcher wants to predict. Of course, the features (past index values) 
ought to be related in some manner to the desired result (the future 
index value). Otherwise, a machine learning system based on these 
features will have little predictive power. 

In the GP world, a "feature" would more likely be referred to as 
an "input" and the "class" would more likely be referred to as the 
"output." These are mostly differences of terminology.3 Regardless of 
terminology, once the features (inputs) are chosen from the learning 
domain, they define the overall dimensions of the environment that 
the ML system will experience and from which it will (hopefully) 
learn. 

But the selection of features (inputs) does not completely define 
the environment from which the system will learn. The researcher 
must also choose specific past examples from the learning domain. 
Each example should contain data that represent one instance of 
the relationship between the chosen features (inputs) and the classes 
(outputs). These examples are often referred to as "training cases" 
or "training instances." In GP, they are called "fitness cases." Col¬ 
lectively, all of the training instances are referred to as the "training 
set." Once the training set is selected, the learning environment of 
the system has been defined. 

Machine learning occurs by training. An ML system goes through 
the training set and attempts to learn from the examples. In GP, this 
means that the system must learn a computer program that is able 
to predict the outputs of the training set from the inputs. In more 
traditional machine learning terminology, GP must find a computer 
program that can predict the class from the features of the learning 
domain. 

Finally, the researcher must appraise the quality of the learning 
that has taken place. One way to appraise the quality of learning is 

2 A leading stock market indicator in the United States. 
3The use of the term "class" is actually due to the historic focus of 

mainstream machine learning on classification problems. We will main¬ 
tain that terminology here for simplicity. Both GP and many other ML 
paradigms are also capable of dealing with domains that require numeric 
output for problems that are not classification problems. In this case, the 
terminology would be problem specific. 



to test the ability of the best solution of the ML system to predict 
outputs from a "test set." A test set is comprised of inputs and 
outputs from the same domain the system trained upon. Although 
from the same domain, the test set contains different examples than 
the training set. The ability of a system to predict the outputs of 
the test set is often referred to as "generalization," that is, can the 
learned solution generalize to new data or has it just memorized the 
existing training set? Much of Chapter 8 is devoted to this very 
important issue. There, we shall also see that using a training set 
and a test set only oversimplifies the problem of generalization. 

An example might be useful here: the "Iris data set."4 The Iris 
data set presents a "classification" problem - that is, the challenge 
is to learn to identify the class of Iris to which a photograph of a 
particular iris plant belongs. The set itself is based on a sample of 
150 different photographs of irises. The photos represent irises from 
three different classes - class 0 is Iris Setosa, class 1 is Iris Versicolour, 
and class 2 is Iris Virginica. The data set itself is comprised of 
measurements made from these 150 photos. 

The learning domain is, in this example, all photos of irises of 
these three types. The 150 photos are not the learning domain -
they are just specific examples drawn from the domain. When the 
researcher chose what measurements to make off the photos, he or 
she identified the features of the domain. Here are the inputs (or 
features) that were chosen: 

Q Input 1. Sepal length in cm. 

Q Input 2. Sepal width in cm. 

Q Input 3. Petal length in cm. 

Q Input 4. Petal width in cm. 

There is, of course, a value for each of these inputs in each of the 150 
training instances. 

The 150 instances are then divided into two groups, a training 
set and a test set. At this point, a machine learning system is given 
access to the training data and its training algorithm is executed. 

4 A word of caution: the Iris data set is often referred to in the machine 
learning literature as a "classic." This may imply to the reader that it 
might be a good idea actually to use the Iris data to test an ML system. 
However, the Iris domain is trivially simple, at least for GP, and its use 
as a test of ML systems is discouraged [Francone et al., 1996]. We use 
the example in the text only because it is a simple example of a learning 
domain. 



The goal in training is to take the sepal and petal measurements (the 
features) in the training set and to learn to predict which of the three 
classes a particular iris belongs to. Not only must the system predict 
the class of Iris for the training set, it should also be able to do so 
for the test set in a manner that is statistically significant. 

With this overview of the process of machine learning in place, 
we can now look at some of the details of learning for various machine 
learning paradigms. 

1.4 Major Issues in Machine Learning 

Until this time, the manner in which learning occurs has been ignored 
so that we could focus on issues common to all ML systems. But 
the choices made in designing a learning algorithm are crucial. The 
learning algorithm defines the system in which it is used more than 
any other single factor. Not only that, the learning algorithm is where 
ML systems diverge. GP systems use a learning algorithm based on 
an analogy with natural evolution. "Multilayer feedforward neural 
networks" are based on an analogy with biological nervous systems. 
Bayes/Parzen systems are based on statistics. 

There are many ways to classify learning algorithms. Here, we 
will classify them by how they answer the following four questions 
about the "how to" of learning: 

1. How are solutions represented in the algorithm? 

2. What search operators does the learning algorithm use to move 
in the solution space? 

3. What type of search is conducted? 

4. Is the learning supervised or unsupervised? 

Each of these four questions raises important and sometimes con¬ 
tentious issues for learning algorithm design. In looking at some of 
the different ways in which different ML systems have answered these 
questions, the place of GP in machine learning will become clearer. 

1.5 Representing the Problem 

1.5.1 What Is the Problem Representation? 

An ML system's problem representation is its definition of what pos¬ 
sible solutions to the problem look like - what kinds of inputs do 
the solutions accept, how do they transform the inputs, how do they 



The four authors are to be congratulated on producing a fine 
book and the reader will be rewarded by reading it. 

John R. Koza 
Stanford University 
July 8, 1997 
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Preface 

When we first conceived of this text, we were concerned it might be 
too early for such an undertaking. After all, genetic programming 
(GP) had grown very rapidly in the few years since 1992. Would not 
such a young discipline be much too fluid for being pinned down in 
a text book? The published literature in the field is diverse. Differ¬ 
ent approaches to genetic programming manifest varying degrees of 
complexity. Finally, there are no firmly established paradigms that 
could serve as guide posts. 

At the same time, however, we could not escape the impression 
that genetic programming had accumulated enough real substance for 
a systematic overview to be of use to the student, to the researcher, 
and to engineers interested in real-world applications of this field. So 
we proceeded despite the relative newness of genetic programming. 
The results of our effort can be seen here. 

We have written this text for more than one audience. Accord¬ 
ingly, the book has many entry points, depending on the level of 
knowledge the reader brings to the table (see Figure 1). 

The text's core is divided into three parts with four chapters each. 
Where appropriate, a chapter ends with exercises and recommenda¬ 
tions for further reading. 

Q Part I describes fundamentals we regard as prerequisites to a 
deeper understanding of genetic programming. This part is 
intended to set the groundwork for our main theme without 
actually describing genetic programming in detail. While the 
chapters in this part are recommended for newcomers to genetic 
programming, they should also contain useful information for 
readers who are more familiar with the field. 

As a general introduction we recommend Chapter 1. This chap¬ 
ter should also serve well for those readers who seek a better 
understanding of how genetic programming fits into the overall 
discipline of machine learning. Chapter 2 should be of impor¬ 
tance to readers interested in the connection between genetic 



Figure 1 
Navigating the book. 

Italic text indicates entry 

points. 

programming, evolution, development, and molecular biology. 
Chapter 3 offers background in aspects of mathematics and 
computer science that are important in genetic programming, 
while Chapter 4 provides a general description of the field of 
evolutionary computation, of which genetic programming is a 
part. Each of these chapters may be read separately, depending 
on the background and interests of the reader. 



Preface 
Q Part II is central to this book. Chapter 5 introduces three ba¬ 

sic paradigms of genetic programming - tree, linear and graph 
based systems - while the remaining chapters introduce and 
analyze the important problems in the field. Readers who al¬ 
ready have basic knowledge might want to start with Chapter 
5 directly. 
Chapter 6, 7 and 8 focus on prominent unsolved issues in gene¬ 
tic programming, such as the effect and power of the crossover 
operator, introns, genetic programming as an emergent system, 
and many others. These three chapters should be read sequen¬ 
tially and only by those with a firm understanding of the basics 
of genetic programming described in Chapter 5. In addition, we 
emphasize that the materials in Chapter 6 to Chapter 8 would 
best be understood by a reader well versed in the principles of 
evolution and molecular biology described in Chapter 2. It is, 
however, possible to skip Chapter 6 to Chapter 8 in the first 
pass through the book and nevertheless have the background 
to move on to Part III. 

Q Part III offers material for readers familiar with genetic pro¬ 
gramming and comprises a more subjective selection of topics. 
Chapter 9 provides a detailed look at various genetic program¬ 
ming systems, followed in Chapter 10 by a discussion of ad¬ 
vanced techniques to improve the basic algorithm. Chapter 11 
discusses important implementation issues. As such, it is a pos¬ 
sible starting point for computer scientists who want to explore 
genetic programming from a technical perspective. Chapter 12 
describes an - admittedly subjective and incomplete - spectrum 
of applications to which genetic programming has already been 
applied with at least some degree of success. Engineers familiar 
with genetic programming might want start with this chapter 
and then digest other parts of the book at their leisure. 

Q Four appendices summarize valuable resources available for the 
reader: Appendix A contains printed and recorded resources, 
Appendix B suggests web-related resources, Appendix C dis¬ 
cusses GP software tools, including Discipulus"", the GP soft¬ 
ware developed by the authors, and Appendix D mentions events 
most closely related to the field of genetic programming. URLs 
can be found online at http://www.mkp.com/GP-Intro. 

It took us approximately two years to complete this project. Con¬ 
sidering that two of the authors live in Germany, one in Sweden, and 
one in the United States of America, our collaboration was remark¬ 
ably smooth. During that time, the four of us met only twice in 



person. Instead, we made heavy use of the Internet. Aside from our 
co-authors, our most frequent "professional" companions during the 
past two years were e-mail, FTP, TELNET and the World Wide Web. 
It would be fair to say that this book would probably not exist had 
it not been catalyzed by modern communications technology. 

Cooperating this way is not atypical of what is happening in many 
newly emerging fields in science and technology. We are convinced 
that electronic means for collaboration greatly accelerate the pace of 
progress in the particular fields involved. As for this book, we hope 
that readers from all over the world will find it both useful and enjoy¬ 
able. May genetic programming continue to thrive on international 
cooperation. 

Wolfgang Banzhaf Peter Nordin 
Dortmund, Germany Goeteborg, Sweden 

Robert E. Keller Frank D. Francone 

Dortmund, Germany Oakland, California 

August 1997 
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1 Genetic Programming as Machine Learning 

Evolution is Nature's ijiistake. Intelligence is its insistence on mak¬ 
ing the same mistake. 

S.LEM, GOLEM XIV, 1981 

1.1 Motivation 

Automatic programming will be one of the most important areas 
of computer science research over the next twenty years. Hardware 
speed and capability has leapt forward exponentially.( Yet software 
consistently lags years behind the capabilities of the hardware. The 
gap appears to be ever increasing. Demand for computer code keeps 
growing but the process of writing code is still mired in the modern 
day equivalent of the medieval "guild" days. Like swords in the 15th 
century, muskets before the early 19th century and books before the 
printing press, each piece of computer code is, today, handmade by 
a craftsman for a particular purpose. 

The history of computer programming is a history of attempts 
to move away from the "craftsman" approach - structured program¬ 
ming, object-oriented programming, object libraries, rapid prototyp¬ 
ing. But each of these advances leaves the code that does the real 
work firmly in the hands of a craftsman, the programmer. The ability 
to enable computers to learn to program themselves is of the utmost 
importance in freeing the computer industry and the computer user 
from code that is obsolete before it is released. 

Since the 1950s, computer scientists have tried, with varying de¬ 
grees of success, to give computers the ability to learn. The umbrella 
term for this field of study is "machine learning," a phrase coined 
in 1959 by the first person who made a computer perform a serious 
learning task, Samuel. 

Machine Learning and Genetic Programming 
Originally, Samuel used "machine learning" to mean computers 

programming themselves [Samuel, 1963]. That goal has, for many 
years, proven too difficult. So the machine learning community has 
pursued more modest goals. A good contemporary definition of ma¬ 
chine learning is due to Mitchell: "[machine learning] is the study 
of computer algorithms that improve automatically through experi¬ 
ence" [Mitchell, 1996]. 

Genetic programming, GP for short, aspires to do precisely that 
- to induce a population of computer programs that improve au¬ 
tomatically as they experience the data on which they are trained. 
Accordingly, GP is part of the very large body of research called 
machine learning (ML). 

Within the machine learning community, it is common to use "ge¬ 
netic programming" as a shorthand for any machine learning system 



that evolves tree structures. The focus on tree structures is really a 
tribute to the immense influence of Koza. In 1992, he wrote a treatise 
entitled "Genetic Programming. On the Programming of Comput¬ 
ers by Means of Natural Selection." Before this work, a number of 
researchers had used genetic or evolutionary operators to induce com¬ 
puter programs. But these earlier works went largely unrecognized 
because they were, in effect, buried in the mass of genetic algorithm 
research. In his seminal book, Koza was the first to recognize that GP 
was something new and different - he even gave the new discipline its 
name. Koza's results were achieved by evolving tree structures. It is 
not surprising, therefore, that many use the term "genetic program¬ 
ming" to mean the evolution of tree structures, nor is it surprising 
that most of the work in this discipline is with various tree-based 
systems. 
Our Definition of GP 

The definition of GP used in this book will be less restrictive than 
the definition referred to above. 

1. First and foremost we will consider the induction of computer 
programs by evolutionary means. Accordingly, in this book, the 
term "genetic programming" shall include systems that con¬ 
stitute or contain explicit references to programs (executable 
code) or to programming language expressions. So, for exam¬ 
ple, evolving LISP lists are clearly GP because LISP lists con¬ 
stitute programming language structures and elements of those 
lists constitute programming language expressions. Similarly, 
the common practice among GP researchers of evolving C data 
structures that contain information explicitly referring to pro¬ 
grams or program language tokens would also be GP. 

2. It is already clear from the GP literature that programs or 
programming language structures may be represented in ways 
other than as trees. Research has already established the effi¬ 
cacy of both linear and graph-based genetic programming sys¬ 
tems. Therefore, we do not limit our definition of GP to include 
only systems that use (expression) trees to represent programs. 
Instead, all means of representing programs will be included. 

3. Not all algorithms running on computers are primarily pro¬ 
grams. For example, neural networks are (learning) algorithms, 
but their implementation is usually of secondary concern. Nev¬ 
ertheless, we shall not exclude these algorithms from being le¬ 
gitimate members of the GP family. There already exist nu¬ 
merous applications in the algorithmic domain, and excluding 
them would unnecessarily deprive GP of an important source 
of inspiration. 



4. We do not limit our definition of GP to include only systems 
that use certain operators, such as crossover. As long as there 
is a population of programs or algorithms used for the benefit 
of the search, and as long as some kind of indeterminism is 
applied to generate new variants, we think we can legitimately 
call a system a genetic programming system. 

Genetic Programming 
is a Kind of Program 

Induction 

With the above discussion in mind, it is possible to define genetic 
programming as the direct evolution of programs or algorithms for the 
purpose of inductive learning. Thus, in a very real sense, GP returns 
to Samuel's original goal for machine learning in 1959 - teaching 
computers to program themselves. 

Today, we program by telling the computer exactly how to do 
every possible thing that we think it might need to do - how to 
respond to every possible request from a user or a network. Not 
only is this cumbersome, it is impossible for software packages that 
routinely occupy fifty megabytes of hard disk space. The great goal of 
machine learning, and especially GP, is to be able to tell the computer 
what task we want it to perform and to have it learn to perform that 
task. GP would do so by letting the computer program itself or other 
computers. 

Is GP capable of such a feat today? In a general sense, no. That 
is, there is no GP system that will generically accept any problem 
and then automatically generate computer code that addresses that 
problem. It is clearly not a human programmer. Notwithstanding 
this limitation, in only a few short years since the publication of 
Koza's book, GP has already changed the wisdom on the range of 
problems machine learning can solve and has equaled or exceeded 
the performance of other machine learning systems in various stud¬ 
ies. In fact, GP has already evolved programs that are better than 
the best programs written by people to solve a number of difficult 
engineering problems. Finally, GP has introduced a level of freedom 
of representation into the machine learning world that did not previ¬ 
ously exist. That is why we urge the reader to look carefully at this 
exciting and dynamic new branch of computer science. 

This chapter will describe some of the central issues in machine 
learning and will show where genetic programming fits in. Our pur¬ 
pose is not to describe the entire field of ML exhaustively - this 
chapter will paint with a very broad brush. Rather, we intend to 
place GP in the context of the overall field.1 

1A good general discussion of artificial intelligence, machine learn¬ 
ing, and genetic programming's place in machine learning is contained in 
[Angeline, 1994]. 



We will begin with & brief history of machine learning from the 
1950s until the present. After that, we will look at machine learning 
as a process. This process is remarkably similar from one machine 
learning paradigm to another. Moreover, understanding this process 
will be essential to understanding GP itself. Finally, we will examine 
some of the details of the machine learning process. It is in the details 
that machine learning paradigms diverge and genetic programming 
becomes quite distinctive. 

1.2 A Brief History of Machine Learning 

Although genetic programming is a relative newcomer to the world of 
machine learning, some of the earliest machine learning research bore 
a distinct resemblance to today's GP. In 1958 and 1959, Friedberg 
attempted to solve fairly simple problems by teaching a computer to 
write computer programs [Friedberg, 1958] [Friedberg et al., 1959]. 

Friedberg's programs were 64 instructions long and were able to Early Attempts at 
manipulate, bitwise, a 64-bit data vector. Each instruction had a Program Induction 
virtual "opcode" and two operands, which could reference either the 
data vector or the instructions. An instruction could jump to any 
other instruction or it could manipulate any bit of the data vector. 
Friedberg's system learned by using what looks a lot like a modern 
mutation operator - random initialization of the individual solutions 
and random changes in the instructions. 

Friedberg's results were limited. But his thinking and vision were 
not. Here is how Friedberg framed the central issue of machine learn¬ 
ing: 

If we are ever to make a machine that will speak, understand 
or translate human languages, solve mathematical problems with 
imagination, practice a profession or direct an organization, either 
we must reduce these activities to a science so exact that we can 
tell a machine precisely how to go about doing them or we must 
develop a machine that can do things without being told precisely 
how... . The machine might be designed to gravitate toward those 
procedures which most often elicit from us a favorable response. 
We could teach this machine to perform a task even though we 
could not describe a precise method for performing it, provided 
only that we understood the task well enough to be able to as¬ 
certain whether or not it had been done successfully. . . . In short, 
although it might learn to perform a task without being told pre¬ 
cisely how to perform it, it would still have to be told precisely 
how to learn. 

R.M. FRIEDBERG, 1958 



Artificial Intelligence Priedberg's analysis, anticipated the coming split between the ar-
Rules the Day tificial intelligence community (with its emphasis on expert knowl¬ 

edge) and machine learning (with its emphasis on learning). Just 
a few years after Priedberg's work, ML took a back seat to expert 
knowledge systems. In fact, artificial intelligence (AI) research, the 
study of domain-knowledge and knowledge systems, was the domi¬ 
nant form of computational intelligence during the 1960s and 1970s. 
Expert system domain-knowledge in this era was generally human 
knowledge encoded into a system. For example, an expert system 
might be developed by polling human experts about how they make 
particular kinds of decisions. Then, the results of that polling would 
be encoded into the expert system for use in making real-world deci¬ 
sions. 

The type of intelligence represented by such expert systems was 
quite different from machine learning because it did not learn from 
experience. In paraphrasing Friedberg's terms, AI expert systems 
attempt to reduce performing specific tasks ". . . to a science so exact 
that we can tell a machine precisely how to go about doing them" 
[Friedberg, 1958]. 

The expert system approach, in the 1960s and thereafter, has had 
many successes, including: 

G MYCIN - Diagnosis of Infectious Diseases 

Q MOLE - Disease Diagnosis 

Q PROSPECTOR - Mineral Exploration Advice 

Q DESIGN ADVISOR - Silicon Chip Design Advice 

Q Rl - Computer Configuration 

The Reemergence of Notwithstanding this success, expert systems have turned out 
Learning to be brittle and to have difficulty handling inputs that are novel 

or noisy. As a result, in the 1970s, interest in machine learning 
reemerged. Attention shifted from the static question of how to rep¬ 
resent knowledge to the dynamic quest for how to acquire it. In short, 
the search began in earnest to find a way, in Friedberg's words, to 
tell a computer "precisely how to learn." 

By the early 1980s, machine learning was recognized as a distinct 
scientific discipline. Since then, the field has grown tremendously. 
Systems now exist that can, in narrow domains, learn from experience 
and make useful predictions about the world. Today, machine learn¬ 
ing is frequently an important part of real-world applications such 
as industrial process control, robotics control, time series prediction, 
prediction of creditworthiness, and pattern recognition problems such 



as optical character recognition and voice recognition, to name but a 
few examples [White and Sofge, 1992] [Biethahn and Nissen, 1995]. 

At the highest level, any machine learning system faces a similar 
task - how to learn from its experience of the environment. The 
process of machine learning, that is, the defining of the environment 
and the techniques for letting the machine learning system experience 
the environment for both training and evaluation, are surprisingly 
similar from system to system. In the next section of this chapter, 
we shall, therefore, focus on machine learning as a high-level process. 
In doing so, we will see what many ML paradigms have in common. 

On the one hand, many successful machine learning paradigms 
seem radically dissimilar in how they learn from the environment. 
For example, given the same environment some machine learning 
systems learn by inducing conjunctive or disjunctive Boolean net¬ 
works (see Section 1.5.2). The implicit assumption of such systems is 
that the world may be modeled in formal Aristotelian and Boolean 
terms. On the other hand, connectionist systems such as fuzzy adap¬ 
tive or neural networks create models of the same environment based 
(loosely) on biological nervous systems. They regard the world as 
non-linear, highly complex, and decidedly non-Aristotelian (see Sec¬ 
tion 1.5.3). The variety does not end there because various systems 
also search through possible solutions in different ways. For exam¬ 
ple, blind search, beam search, and hill climbing are principal search 
paradigms (see Section 1.6). Each may be broken into many subdis-
ciplines and each has grown out of different philosophies about how 
learning works, and indeed, what learning is. 

Accordingly, later in this chapter we shall overview the ways in 
which machine learning systems are distinct from each other. In other 
words, we will look at the details of how different machine learning 
systems attack the problem of learning. 

High-Level 
Commonalities among 
ML Systems 

Implementation 
Differences among 
Machine Learning 
Systems 

1.3 Machine Learning as a Process 

Machine learning is a process that begins with the identification of 
the learning domain and ends with testing and using the results of 
the learning. It will be useful to start with an overview of how a 
machine learning system is developed, trained, and tested. The key 
parts of this process are the "learning domain," the "training set," the 
"learning system," and "testing" the results of the learning process. 
This overall process of machine learning is very important for the 
reader to understand and we urge special attention in this section if 
the reader is not already familiar with the subject matter. 

Machine learning systems are usually applied to a "learning do- The Learning Domain 



main." A learning domain is any problem or set of facts where the 
researcher is able to identify "features" of the domain that may be 
measured, and a result or results (frequently organized as "classes") 
the researcher would like to predict. For example, the stock market 
may be the chosen domain, the closing S&P index2 for the past 30 
days may be the features of the domain selected by the researcher, 
and the closing S&P index tomorrow may be the result that the re¬ 
searcher wants to predict. Of course, the features (past index values) 
ought to be related in some manner to the desired result (the future 
index value). Otherwise, a machine learning system based on these 
features will have little predictive power. 

In the GP world, a "feature" would more likely be referred to as 
an "input" and the "class" would more likely be referred to as the 
"output." These are mostly differences of terminology.3 Regardless of 
terminology, once the features (inputs) are chosen from the learning 
domain, they define the overall dimensions of the environment that 
the ML system will experience and from which it will (hopefully) 
learn. 

But the selection of features (inputs) does not completely define 
the environment from which the system will learn. The researcher 
must also choose specific past examples from the learning domain. 
Each example should contain data that represent one instance of 
the relationship between the chosen features (inputs) and the classes 
(outputs). These examples are often referred to as "training cases" 
or "training instances." In GP, they are called "fitness cases." Col¬ 
lectively, all of the training instances are referred to as the "training 
set." Once the training set is selected, the learning environment of 
the system has been defined. 

Machine learning occurs by training. An ML system goes through 
the training set and attempts to learn from the examples. In GP, this 
means that the system must learn a computer program that is able 
to predict the outputs of the training set from the inputs. In more 
traditional machine learning terminology, GP must find a computer 
program that can predict the class from the features of the learning 
domain. 

Finally, the researcher must appraise the quality of the learning 
that has taken place. One way to appraise the quality of learning is 

2 A leading stock market indicator in the United States. 
The use of the term "class" is actually due to the historic focus of 

mainstream machine learning on classification problems. We will main¬ 
tain that terminology here for simplicity. Both GP and many other ML 
paradigms are also capable of dealing with domains that require numeric 
output for problems that are not classification problems. In this case, the 
terminology would be problem specific. 



to test the ability of the best solution of the ML system to predict 
outputs from a "test set." A test set is comprised of inputs and 
outputs from the same domain the system trained upon. Although 
from the same domain, the test set contains different examples than 
the training set. The ability of a system to predict the outputs of 
the test set is often referred to as "generalization," that is, can the 
learned solution generalize to new data or has it just memorized the 
existing training set? Much of Chapter 8 is devoted to this very 
important issue. There, we shall also see that using a training set 
and a test set only oversimplifies the problem of generalization. 

An example might be useful here: the "Iris data set."4 The Iris 
data set presents a "classification" problem - that is, the challenge 
is to learn to identify the class of Iris to which a photograph of a 
particular iris plant belongs. The set itself is based on a sample of 
150 different photographs of irises. The photos represent irises from 
three different classes - class 0 is Iris Setosa, class 1 is Iris Versicolour, 
and class 2 is Iris Virginica. The data set itself is comprised of 
measurements made from these 150 photos. 

The learning domain is, in this example, all photos of irises of 
these three types. The 150 photos are not the learning domain -
they are just specific examples drawn from the domain. When the 
researcher chose what measurements to make off the photos, he or 
she identified the features of the domain. Here are the inputs (or 
features) that were chosen: 

Q Input 1. Sepal length in cm. 

Q Input 2. Sepal width in cm. 

Q Input 3. Petal length in cm. 

Q Input 4. Petal width in cm. 

There is, of course, a value for each of these inputs in each of the 150 
training instances. 

The 150 instances are then divided into two groups, a training 
set and a test set. At this point, a machine learning system is given 
access to the training data and its training algorithm is executed. 

4 A word of caution: the Iris data set is often referred to in the machine 
learning literature as a "classic." This may imply to the reader that it 
might be a good idea actually to use the Iris data to test an ML system. 
However, the Iris domain is trivially simple, at least for GP, and its use 
as a test of ML systems is discouraged [Francone et al., 1996]. We use 
the example in the text only because it is a simple example of a learning 
domain. 



The goal in training is to take the sepal and petal measurements (the 
features) in the training set and to learn to predict which of the three 
classes a particular iris belongs to. Not only must the system predict 
the class of Iris for the training set, it should also be able to do so 
for the test set in a manner that is statistically significant. 

With this overview of the process of machine learning in place, 
we can now look at some of the details of learning for various machine 
learning paradigms. 

1.4 Major Issues in Machine Learning 

Until this time, the manner in which learning occurs has been ignored 
so that we could focus on issues common to all ML systems. But 
the choices made in designing a learning algorithm are crucial. The 
learning algorithm defines the system in which it is used more than 
any other single factor. Not only that, the learning algorithm is where 
ML systems diverge. GP systems use a learning algorithm based on 
an analogy with natural evolution. "Multilayer feedforward neural 
networks" are based on an analogy with biological nervous systems. 
Bayes/Parzen systems are based on statistics. 

There are many ways to classify learning algorithms. Here, we 
will classify them by how they answer the following four questions 
about the "how to" of learning: 

1. How are solutions represented in the algorithm? 

2. What search operators does the learning algorithm use to move 
in the solution space? 

3. What type of search is conducted? 

4. Is the learning supervised or unsupervised? 

Each of these four questions raises important and sometimes con¬ 
tentious issues for learning algorithm design. In looking at some of 
the different ways in which different ML systems have answered these 
questions, the place of GP in machine learning will become clearer. 

1.5 Representing the Problem 

1.5.1 What Is the Problem Representation? 

An ML system's problem representation is its definition of what pos¬ 
sible solutions to the problem look like - what kinds of inputs do 
the solutions accept, how do they transform the inputs, how do they 



produce an output? In short, the problem representation defines the 
set of all possible solutions to a problem that a particular ML system 
can find. We will frequently refer to possible solutions to a problem 
as "candidate solutions." In other words, the representation of the 
problem defines the space of candidate solutions an ML system can 
find for a particular problem. 

A simple example illustrates this point. Suppose we wanted to 
predict the value of variable y from values of variable x. In the terms 
of the previous section, y is the output and x is the input. A very 
simple representation of this problem might take the form of a second 
order polynomial such as: 

y = ax2 + bx + c (1.1) 

The types of solutions this system could find would be very limited 
- all the system could do would be to optimize the parameters a, 6, 
and c. One possible candidate solution in this representation would 
be: 

y = 2.01z2 + 6Ax + 7 (1.2) 

The representation could be made more complex by allowing the sys¬ 
tem to change the order of the polynomial. Then, it could explore 
a solution space that included both higher and lower order polyno¬ 
mials. In other words, the representation of the problem defines and 
limits the space of possible solutions the system is capable of finding. 

There are actually three different levels on which a problem may 
be represented [Langley, 1996]. 

1. Representation of the input and output set 
In the polynomial example above, the training set would be 
pairs of numbers, one value for the input x and another for 
the output y. The representation of the inputs and outputs 
would, therefore, be an integer or real number representation. 
It is also common to represent inputs as Boolean values, real 
numbers between 0 and 1, enumerated sets, or in many other 
ways. 

2. Representation of the set of concepts the computer may 
learn 
This may be referred to as the "concept description language." 
The manner in which learned concepts can be expressed in 
machine learning is diverse. Likewise, the complexity of the 
organization of the learned concepts varies widely. Different 
systems use, among other things, simple conjunctive Boolean 
expressions, disjunctive lists of features, class summaries, case-
based descriptions, inference trees, threshold units, multilayer 



feed forward networks, decision trees, and in GP, computer pro¬ 
grams. 

3. Interpretation of the learned concepts as outputs 
Concepts are important, but they need to be converted to re¬ 
ality. The interpreter does just that. For instance, a medical 
diagnosis system may take as input: whether the patient has 
chest pain, numbness in the extremities, and is more than 20 
pounds overweight. The three inputs may be held in simple 
concepts such as: 

if chest_pain = TRUE then 
high_heart_attack_risk := TRUE 
else 

high_heart_attack_risk := FALSE; 

It is not clear from such concepts how to generate an output 
when the concepts are combined. What should be done, for 
example, where a patient has chest pain and is thirty pounds 
overweight but no numbness is occurring? That is what the 
interpreter would do. An interpreter could predict risk of heart 
attack (that is, generate an output) by requiring that all three 
concepts be true (a Boolean interpretation). On the other hand, 
it could require only that two of the three be true (a threshold 
interpretation). 

It would be impossible to survey even a substantial portion of the 
types of representational schemes that have been implemented in var¬ 
ious machine learning systems.5 A survey would be made even more 
complex by the fact that many systems mix and match types of rep¬ 
resentations. For example, a system could represent the inputs and 
outputs as Boolean while the concepts could be stored as case-based 
instances and the interpretation of the concepts could use threshold 
units. 

We will try to follow the above three threads through the exam¬ 
ples below. 

1.5.2 Boolean Representations 

Some machine learning systems represent problems in Boolean terms. 
By Boolean, we mean that each training instance contains an indica¬ 
tion whether a feature (or input) of the system is true or false. In a 

5 An excellent discussion of the details of these and many other machine 
learning systems and other issues may be found in [Langley, 1996], from 
which this chapter draws heavily. 



1.5 Representing the Problem 

pure Boolean system the inputs (or features) are expressed in Boolean 
terms and the system describes the concepts that it has learned as 
Boolean conjunctions or disjunctions of the input features (the con¬ 
cept description language). We will examine how Boolean systems 
might represent features of the comic strip world of Dick Tracy as a 
machine learning problem. 

We begin by describing a conjunctive Boolean system and how it 
might describe the features of Dick Tracy's world. By conjunctive, 
we mean that the system uses the Boolean AND to join features (or 
inputs) together into concepts and outputs. 

Assume that a researcher wants to be able to predict whether a 
cartoon character in the Dick Tracy comic strip is a "bad guy." The 
researcher carefully examines years of old comic pages and determines 
that the following features might be useful in distinguishing the class 
of "bad guys" from everyone else: 

Feature 

Shifty eyes 
Scarred face 
Skull tattoo 

Slouches while walking 
Hooked nose 

Wears two-way wrist radio 

Value 

True or False 
True or False 
True or False 
True or False 
True or False 
True or False 

Conjunctive Boolean 

Representations 

Table 1.1 
Inputs for classification 

All of these features (inputs for classification) are Boolean (true 
or false) values. A completely Boolean system would also express 
the concepts that could be learned as Boolean values. A conjunctive 
Boolean system might learn the following concepts in classifying good 
guys from bad guys: 

Concept 1 

Concept 2 

Shifty eyes AND Scarred face AND Has skull tattoo | 

Hooked nose AND Wears two-way wrist radio | 
Table 1.2 
Conjunctive concepts 

But the descriptions themselves do not suffice; the concepts have 
to be interpreted into classifications arid the interpretation may be 
represented in different ways. 

Here is an example of how a Boolean Dick Tracy might go about 
classifying the above concepts. Dick Tracy himself would immedi¬ 
ately recognize that a value of TRUE for Concept 1 was indicative 
of criminality from his "crime watchers" guide. On the other hand, 
Concept 2 (hooked nose arid two-way wrist radio) is consistent with 



Table 1.3 
Classification concepts 

& good guy - Dick Tracy himself. So here is how Dick Tracy would 
use the concepts to classify suspects as bad guys: 

Concept 

1 
2 

Value 

True 

True 

Bad guy? 

True 

False 

Disjunctive Boolean 

Representations 

Table 1.4 
Disjunctive concepts 

In Concept 1, there are three factors that indicate criminality -
shifty eyes, scarred face, and skull tattoo. Must all three be true 
before we declare someone a bad guy? In a conjunctive Boolean 
system, the answer is yes. Therefore, without a scarred face, a man 
with shifty eyes and a skull tattoo would not be classified as a bad 
guy. 

Now we may look briefly at a disjunctive Boolean system. By 
disjunctive, we mean that the interpreter joins the simpler concepts 
with the Boolean OR function. In a disjunctive Boolean system, if any 
of the simple learned concepts evaluate as true in a particular training 
instance, the interpreter evaluates the training instance as having an 
output of true also. Three simple concepts from Dick Tracy's world 
might be represented as follows: 

Concept 

Concept 1 
Concept 2 
Concept 3 

Description 

Shifty eyes 
Scarred face 

Has skull tattoo 

Value 

True or False 
True or False 

True or False 

In this example, if any one of the three concepts in the list eval¬ 
uated as true, the system would evaluate the entire training instance 
as true. Of course, disjunctive Boolean systems would ordinarily be 
applied to a list of concepts considerably more complex than those 
in the above table. In that event, the list holds the concepts and it 
dictates the order in which the concepts are evaluated. 

Disjunctive systems can describe more complex learning domains 
using conjunctive concepts and vice versa. For example, in Figure 1.1, 
the two classes A and B are linearly separable - that is, one could 
draw a line (or in three or more dimensions, a plane or a hyperplane) 
that separates all instances of one class from those of the other. 

Both conjunctive and disjunctive systems can fully describe a 
domain that is linearly separable. On the other hand, in Figure 1.2, 
the two classes are not linearly separable. Although this is a more 
difficult task, Boolean systems can completely describe the domain 
in Figure 1.2. 



Figure 1.1 
Two classes (A and B) 
that are linearly separable 

Figure 1.2 
Two classes (A and B) 
that are not linearly 
separable 

1.5.3 Threshold Representations 

Numeric threshold representations are more powerful than Boolean 
representations. A threshold unit produces a value only if its input 
exceeds some threshold. When its outputs are expressed in Boolean 
terms, a threshold unit has a value of TRUE only if the input to that 
unit exceeds a particular value. Note that the use of the term "unit" 
makes the threshold approach very general. A threshold unit may 
appear as an input, a concept, or an interpreter in a machine learning 
system. 

The Dick Tracy example illustrates how a threshold unit may be 
used as an interpreter in the problem representation. In the discussion 
above, the conjunctive Boolean interpreter of concept 1 (shifty eyes 
AND skull tatoo AND scarred face) required that all of the features of 
concept 1 be t rue before the interpreter could evaluate the concept 
itself as being true. In short, if there are n features in a conjunctive 
Boolean concept, n of n features must be true for the expression to 
evaluate as true. In a disjunctive Boolean system, 1 out of n features 
needed to be true. 

Dick Tracy Revisited 



Multilayer Feedforward 

Neural Network 

A simple threshold interpreter unit produces quite a different 
result. Where 1 < m < n, one type of threshold unit requires that 
only m of the n features in a concept be true for the interpreter to 
evaluate the entire concept as being true. Such an m of n interpreter 
would apply to concept 1 from our Dick Tracy example as follows. 
Suppose that m = 2. A threshold unit would assess a suspect with 
shifty eyes AND a skull tattoo as a bad guy, even though the suspect 
did not have a scarred face. In other words, only two of the three 
elements in concept 1 above would have to be t rue for the threshold 
interpreter to evaluate the concept as t rue. 

The previous paragraph discusses a simple threshold interpreter 
for a Boolean concept description language. But as noted above, 
threshold units may be used in any part of a representation, not just 
for the interpreter. In multilayer feedforward neural network, thresh¬ 
old concepts are used in all parts of the problem representation. A 
multilayer feedforward neural network uses "neurons" as its threshold 
units. Figure 1.3 shows a simple example with three input neurons, 
two "hidden" neurons, and one output neuron. 

Figure 1.3 
A multilayer feedforward 
neural network with 
nodes 1 ... 6 and weights 

Wl,4 . - W5,6 

Each neuron sums all of its inputs together and then determines 
whether its total input exceeds a certain threshold. If it does not, the 
output value of the neuron is typically 0. But if the inputs do exceed 
the threshold, the neuron "fires," thereby passing a positive value on 
to another neuron. Multilayer feedforward neural networks can be 
very powerful and can express very complex relationships between 
inputs and outputs. 



1.5.4 Case-Based Representations 

Another type of machine learning stores training instances as repre¬ 
sentations of classes or stores general descriptions of classes by aver¬ 
aging training instances in some way. A very simple instance averag¬ 
ing system for two classes, represented by A and £?, is illustrated in 
Figure 1.4. 

Figure 1.4 

Classification based on 

instance averaging 

Each class has two inputs, the x and y values on the two axes. 
The average of the inputs for the A class is the circle. The average 
of the inputs for the B class is the square. To classify a new set of 
inputs, the system simply calculates how close the new inputs are to 
each of the two averages. The closer of the two averages determines 
the class of the new input. 

While this simple averaging system may be fine for simple learn¬ 
ing domains as shown in Figure 1.4, it would clearly have a difficult 
time dealing with the linearly non-separable classes shown in Fig¬ 
ure 1.2. The problem with using instance averaging on the learning 
domain demonstrated in Figure 1.2 is how to determine a value for 
class A. A simple average is obviously unacceptable for class A. 

Other case-based learning systems handle linear non-separability 
much more gracefully. For example, the K-nearest neighbor approach 
does so by storing the training instances themselves as part of the 
problem representation. A new input is classified by finding the class 
of the input's K nearest neighbors in the stored training instances. 
Then the new input is classified as a member of the class most often 
represented among its K nearest neighbors. For example, suppose a 
particular K-nearest neighbor system looks at the 3 nearest neighbors 
of a new input; if 2 of those 3 neighbors were from class A, then the 
system would classify the new input as being in class A also (this is 
a threshold interpreter combined with a case-based system). 

In Figure 1.5 the training instances for the classes A and B are 
linearly non-separable. A K-nearest neighbor classifier with K = 3 

K-Nearest Neighbor 

Method 



Figure 1.5 
Using K-nearest 
neighbors to classify 
inputs 

would classify the three new inputs / i , 1%, and 1$ as being in classes 
A, B, and A, respectively. However, if K = 5, /i would be classified 
as a member of class B. 

Bayes/Parzen Bayes/Parzen classification is treated at length in many statistics 
Classification textbooks and is loosely related to the ff-nearest neighbor system 

[Masters, 1995a]. Bayes proved that if we know the true probabil¬ 
ity density function for each class, then an optimal decision rule for 
classification may be formulated. 

Of course, the problem is approximating that probability density 
function. In 1962, Parzen determined an excellent method for esti¬ 
mating such functions from random samples. In fact, as the sample 
size increases, Parzen's method converges on the true density func¬ 
tion [Parzen, 1962]. Parzen uses a potential function for each train¬ 
ing instance [Meisel, 1972]. The function is centered on the training 
instance and decreases in value rapidly as it moves away from the 
training instance. Parzen's estimator is simply the scaled sum of the 
potential function for all sample cases from a class. So in a sense, 
Parzen's method is a very sophisticated relative of the K-nearest 
neighbor systems. Parzen's estimator has been extended to multi¬ 
ple variable situations [Cacoullos, 1966] and is the backbone of two 
neural network paradigms, the "probabilistic neural network" and the 
"general regression neural network" [Specht, 1990] [Specht, 1991]. 

1.5.5 Tree Representations 

Many problem space representations are based on decision trees. 
Consequently some of the most popular and successful machine learn¬ 
ing systems use tree representations, including Quinlan's IDS algo¬ 
rithm [Quinlan, 1979] and its variants.6 In the IDS algorithm, the 

6The most recent version of the IDS Algorithm is called C4.5 
[Quinlan, 1993]. 



concepts are represented as a decision tree - a type of directional 
graph. Each internal node in the tree is a feature of the domain. 
Each edge in the graph represents a possible value of an attribute of 
the node above it. Each leaf node of the tree is a classification. 

Let us look again at the Dick Tracy comic book example from 
above. Internal nodes in a decision tree are features of the system. 
So a node could be labeled Shifty eyes. The edges below that node 
would be the attributes of the feature - TRUE or FALSE. The tree 
below each of the attribute edges would represent the path in the 
decision tree consistent with Shifty eyes being true or false. 

The IDS learning algorithm chooses the best feature for each new 
node by sorting the training set by the attributes of each potential 
feature. It measures how much extra information about the training 
set each feature adds. The feature that adds the most useful informa¬ 
tion about the training set is added to the decision tree as the next 
node. 

1.5.6 Genetic Representations 

Genetic or evolutionary representations have been applied in a num¬ 
ber of ways. Here we shall mention only one of them. We shall go 
into more detail about other possible representations in Chapter 4. 

A genetic algorithm (GA) has fixed length binary strings. Each 
bit is assigned a meaning by the researcher. Bits may be freely as¬ 
signed any meaning and this lends great freedom to the representa¬ 
tion. For example, the GA need not have any of the inputs repre¬ 
sented in the bit string - the bit string could also represent a series 
of transformations to perform on the inputs. The bit string can rep¬ 
resent the weights, biases, and structure of a neural network or it can 
represent transformations to be performed for a Boolean multiplexer 
type problem. The bit string is the concept definition language for 
the GA and the meaning assigned to the bits would be analogous to 
the interpreter. 

There are good theoretical reasons for supposing that the low 
cardinality of the bit string representation is optimal for GA search. 
In practice, however, many researchers have used higher cardinalities 
in their GA representations with great success [Goldberg, 1989]. 

Genetic programming, on the other hand, represents its concepts 
and its interpreter as a computer program or as data that may be 
interpreted as a computer program.7 GP systems are capable of rep-

7GP sometimes interprets the output of its evolved solutions. That 
occurs in a wrapper that takes the output of the program and transforms 
it in some manner [Koza, 1992d]. In this case, the interpreter resides, in a 
sense, outside of the program. 

The GA Representation 

The GP Representation 



resenting the solution to a problem with any possible computer pro¬ 
gram. In fact, at least two GP systems evolve programs in languages 
provably Turing complete [Teller, 1994c] [Nordin and Banzhaf, 1995b]. 

All machine learning systems other than GP are or may be run 
on computers. This means that all other systems of machine learning 
may be represented as a computer program. We could say, therefore, 
that GP is theoretically capable of evolving any solution that may be 
evolved by any of the above machine learning representations. 

This is more than a theoretical consideration. For example: 

Q GP systems may (and often do) include Boolean operators. 
Boolean representations are, therefore, easy to evolve in GP. 

Q A threshold function is no more than a particular instantiation 
of an IF/THEN structure. Given the proper form of inputs, 
GP could evolve threshold functions or the researcher could 
make threshold functions an explicit part of the function set 
(see Chapter 5). 

Q Conditional branching structures such as IF/THEN or SWITCH 
statements make it possible for GP to evolve decision trees, or 
the researcher could constrain the GP search space to permit 
only program structures that permit decision trees to evolve. 

Q GP systems may be implemented so that memory is available 
for a solution to store aspects of the training set, as would a 
case-based system. 

The point here is that the GP representation is a superset of all 
other machine learning representations. Therefore, it is theoretically 
possible for a properly designed GP system to evolve any solution that 
any other machine learning system could produce. The advantage of 
this is almost complete freedom of representation - the only limits 
are what a Turing-complete computer can do, and the speed of the 
computer. On the other hand, there are advantages to constrained 
representations when it comes to conducting the search, as we will 
see in the next section. 

One other key aspect of the GP representation is that, unlike 
many other machine learning systems, the programs that GP evolves 
are variable in length. For example, a neural network, while training, 
usually has a fixed size. This feature may be the source of much 
of GP's power. We will spend some time addressing this issue in 
Chapter 7. 

GP Is a Superset of 
Other ML 

Representations 



1.6 Transforming Solutions with 
Search Operators 

The representation issue discussed in the previous section defines the 
set of all candidate solutions that may be evaluated as possible solu¬ 
tions to the problem. It should be clear by now that the number of 
candidate solutions that can be evaluated by most ML systems is huge 
for non-trivial problems. Evaluating the entire space of all candidate 
solutions is, however, usually completely impractical. Therefore, each 
system must define how it will search through a limited portion of 
such large solution spaces. That is, which candidate solution will it 
evaluate first, which next, and next, and when will it stop? 

Search operators define how an ML system chooses solutions to 
test and in what order. Assume that an ML system starts at step 0 
and chooses a candidate solution to evaluate for step 1. It evaluates 
that solution. It then repeats that process n times for n steps or until 
some termination criterion is met. So where 0 < i < n, the search 
operators define what solution will be chosen for each step i + 1 from 
each step i. Search or transformation operators, therefore, define 
and limit the area of the representation space that actually will be 
searched. It should be obvious that a good machine learning system 
would use search operators which take a path through solution spaces 
that tends to encounter good solutions and to bypass bad ones. Some 
of the different types of search operators used in machine learning are 
discussed below. 

1.6.1 Generality/Specificity Operators 

In both Boolean and threshold representations, it is possible to con¬ 
duct a search from the most general possible solution to the most 
specific.8 For example, in a conjunctive Boolean system, every time 
a new conjunctive term is added to a concept, the concept is more 
specific than previously. Likewise, in a threshold system, increasing 
the threshold makes the concept described by the threshold unit more 
specific and vice versa [Langley, 1996]. It is on observations such as 
these that general to specific transformation operators were devised. 

8 Searches may also be conducted from the most specific to the most 
general. However, such searches are of limited interest because they tend 
to overfit with solutions that are far too specific. See Chapter 8. 



In a small problem domain, one could start a general to spe¬ 
cific search with all possible concept expressions that contained one 
feature. The next level of search could add one feature, expressed 
conjunctively, to each expression. Those expressions that were incon¬ 
sistent with the training set could be discarded and then yet another 
term could be added at a third level of search. Effectively, what this 
search is doing is starting very general and becoming more and more 
specific. 

1.6.2 Gradient Descent Operators 

Many neural network systems use gradient descent operators to trans¬ 
form the networks. The weights of the network are adjusted according 
to a gradient descent algorithm such as back propagation or cascade 
correlation until a termination criterion is met [Rao and Rao, 1995]. 

Recall Figure 1.3, the multilayer feedforward neural network with 
three inputs, two hidden neurons, and one output. During training 
of this network, the values of the weights (w^) between the neurons 
would be adjusted in small amounts by a deterministic hill climber 
until improvement stops. To apply this procedure in multilayer feed¬ 
forward neural networks, the error on a training instance is "back-
propagated" through the weights in the network, starting at the out¬ 
put. Because of this, the effect of each adjustment in the weights is 
usually small - the system is taking little steps up the local hill. 

Crossover and the 
Building Block 

Hypothesis 

1.6.3 Genetic Programming Operators 

In GP, the primary transformation operators are "crossover" and 
"mutation" (see Chapter 5). Mutation works by changing One pro¬ 
gram; crossover by changing two (or more) programs by combining 
them in some manner. Both are, to a large extent, controlled by 
pseudo-random number generators. 

The predominant operator used in GP is crossover. In fact, the 
crossover operator is the basis of the GP building block hypothesis. 
That hypothesis is an important part of the basis upon which GP 
makes its claim to be more than a massively parallel hill climbing 
search. In crossover, two parents are chosen and a portion from each 
parent is exchanged to form two children. The idea is that useful 
building blocks for the solution of a problem are accumulated in the 
population and that crossover permits the aggregation of good build¬ 
ing blocks into ever better solutions to the problem [Koza, 1992d]. 
If the building block hypothesis is correct, then GP search should 
be more efficient than other machine learning search techniques (see 
Chapter 6). 



Mutation is the other of the two main transformation operators 
in GP. Although not as popular as crossover, mutation is actually 
quite important. For our purposes here, we shall define mutation as 
being any sort of (random) manipulation that can be performed on 
one program alone. We shall argue later that it is actually mutation 
that brings innovation to GP. 

Elements of general/specific search operators do appear in GP. 
For example, the operators devised by Koza in creating and modifying 
automatically defined functions are expressly based on the general¬ 
ity/specificity approach [Koza, 1994a]. In addition, many of the gene¬ 
tic operators in GP could be viewed as having generality/specificity 
effects. For example, adding an if-conditional at the bottom of a 
subtree is very likely to make that subtree more specific. Remov¬ 
ing it has the opposite effect. Aside from the automatically defined 
functions, however, all such exploration on the basis of generality and 
specificity happens only as a side-effect of the other genetic operators. 
Such exploration has not been deliberately designed into the system. 

1.7 The Strategy of the Search 

While the search operators define what types of jumps a system can 
make through the search space, the extent of the search conducted is 
quite a different matter. There are different types of search used in 
machine learning systems. We will look at only three here: 

Q Blind search, 

Q Hill climbing, 

Q Beam search. 

1.7.1 Blind Search 

Blind search means searching through the solution space and picking 
a solution using no information about the structure of the problem 
or results from previous steps in the search. In other words, blind 
search proceeds without knowledge of the search space or the benefit 
of heuristics (rules of thumb) to direct the search. Often, blind search 
moves through a tree representing the search space. In that tree, 
each node represents a candidate solution and the edges represent 
permissible jumps through the search space among nodes. The edges, 
therefore, represent the effect of the search operators. 

Blind search proceeds through a tree by applying a specific strat¬ 
egy for movement based only on the tree structure and what nodes 
have been previously visited in the search. Two such strategies are 

Mutation 

Other Operators 

Blind Search is Based 
on Structure Only 



breadth-first and depth-first tree search. The former searches each 
level of the tree until a good solution is found. The latter goes to 
the maximum depth of the tree down the first path dictated by the 
tree. If it reaches a dead end (a branch without an acceptable solu¬ 
tion) , depth-first search backtracks up the tree until it finds a branch 
not yet taken. It takes that branch. The process continues until the 
search space is completely explored or the algorithm finds an accept¬ 
able solution. In this form, both depth-first search and breadth-first 
search represent a type of "exhaustive search" because they search 
the tree until it is finished or an acceptable solution has been found.9 

Needless to say, exhaustive search works only where the solu¬ 
tion space is very small. For genetic programming, exhaustive search 
would be completely impractical. GP works in a combinatorial space 
suffering from the so-called curse of dimensionality. That is, the vol¬ 
ume of the solution space increases so quickly with the addition of 
new dimensions that here is no practical way to do an exhaustive 
search of that space. This problem exists for most machine learn¬ 
ing systems. For nearly all interesting learning domains, the search 
space of possible solutions is far too large for exhaustive search to be 
completed in reasonable time frames. 

1.7.2 Hill Climbing 

Hill climbing starts in one spot in the search space, transforms that 
solution, and keeps the new solution if it is a better solution. Oth¬ 
erwise the new solution is often (although not always) discarded and 
the original solution is again transformed, evaluated, and discarded 
or kept until a termination criterion is met. No record is kept of the 
path that has been traversed already. 

Simulated annealing (SA) and many neural network training al¬ 
gorithms are typical of this approach. Only one solution is considered 
at a time and only one path through the solution space is explored. 

Simulated annealing [Kirkpatrick et al., 1983] is based on an anal¬ 
ogy with the cooling of metal in a process called annealing. Early in 
the cooling, the molecular structure of the metal changes in large 
steps. By analogy, early in an SA run, the changes are "large" 

9 Blind search techniques need not be exhaustive. For example, iterative 
deepening is a hybrid version of depth-first search and breadth-first search 
that combines the strengths of both search strategies by avoiding the ex¬ 
tensive storage requirements for breadth-first search and the extensive time 
requirements for the depth-first search. In a nutshell, it is a constrained 
depth-first search. As such, it is an example of an entire class of search 
strategies, namely, partial searches that deal with the trade-off between 
search time and search space. 



steps. As the metal cools, the changes in the metal settle down. 
SA makes random changes to an existing solution, retains the trans¬ 
formed solution if it is better than the original solution, and some¬ 
times retains the transformed solution if it is worse. As an SA run 
continues, the temperature parameter is decreased to make the like¬ 
lihood of retaining negative transformations less and less. SA has 
been applied with real success to program induction by O'Reilly 
[O'Reilly and Oppacher, 1994a]. Because simulated annealing does 
not use a crossover-type operator or maintain a population of can¬ 
didate solutions, however, it is usually not classified as genetic pro¬ 
gramming, even though it attacks the same problem as does GP -
program induction from experience of the problem domain. 

Neural networks are frequently trained with search algorithms 
such as back propagation or cascade correlation. Although these 
algorithms seek the bottoms of valleys instead of the tops of hills in 
the fitness landscape, they are properly categorized as hill climbing 
algorithms. Unlike SA, which uses random steps, these algorithms 
use deterministic steps. That is, as soon as the parameters and the 
starting point are chosen, the paths the algorithms take through the 
search space are already determined. 

Back propagation and cascade correlation train the network in 
many dimensions simultaneously by varying the values of the weights 
(wij) of the network (see Figure 1.3) in fixed step sizes. The di¬ 
rection of each step is chosen using derivatives to find the optimal 
direction for the step. When a neural network is trained using such 
an algorithm, the run will start at one point in the solution space 
and proceed along one path through the space to the bottom of the 
nearest valley. 

1.7.3 Beam Search 

All of the foregoing algorithms are single point-to-point searches in 
the search space. GA, GP, and beam search maintain a population 
of search points. Beam search is a compromise between exhaustive 
search and hill climbing. In a beam search, some "evaluation metric" 
is used to select out a certain number of the most promising solutions 
for further transformation. All others are discarded. The solutions 
that are retained are the "beam." In other words, a beam search 
limits the points it can find in search space to all possible transforma¬ 
tions that result from applying the search operators to the individuals 
in the beam. Beam search has been a well-established technique in 
heuristic machine learning systems for many years [Langley, 1996]. 

Angeline recognized in 1993 that GP is a form of beam search 
because it retains a population of candidate solutions that is smaller 

Back Propagation and 
Cascade Correlation 



than the set of all possible solutions [Angeline, 1993] [Tackett, 1994] 
[Altenberg, 1994b]. His insight revealed a fundamental similarity be¬ 
tween GP and machine learning that had previously been concealed 
because of GP's roots in evolutionary algorithms. That is, the evo¬ 
lutionary nomenclature used in GP tended to conceal that GP is a 
flavor of this very popular machine learning method. In particular: 

Q The machine learning evaluation metric for the beam is called 
the "fitness function" in GP. 

Q The beam of machine learning is referred to as the "population" 
inGP. 

Machine learning systems have operators that regulate the size, 
contents, and ordering of the beam. GP of course regulates both the 
contents and ordering of the beam also. The contents are regulated by 
the genetic operators and the ordering is, for the most part, regulated 
by fitness-based selection. Simply put, the more fit an individual, the 
more likely it will be used as a jumping-off point for future exploration 
of the search space.10 

1.8 Learning 

It may suffice here to quickly name three major approaches to learn¬ 
ing that can be used with genetic programming. 

1. Supervised learning 
Supervised learning takes place when each training instance is 
an input accompanied by the correct output. The output of a 
candidate solution is evaluated against that correct answer. 

Many GP applications use supervised learning - the fitness 
function compares the output of the program with the desired 
result. 

2. Unsupervised learning 
Unsupervised learning takes place when the ML system is not 

10GP incorporates a "reproduction" operator, in which an individual is 
allowed to duplicate itself unchanged - so that, after reproduction, there 
would be two copies of the individual in the population. Reproduction 
is not a search operator - it makes no change to the individual. It is 
best viewed as a way of regulating the ordering and contents of the beam. 
It regulates the contents because reproduction doubles the number of a 
particular individual in the beam. It also increases the likelihood that the 
individual will be chosen for future genetic transformations, thus it also 
regulates the ordering of the individuals in the beam. 



told what the correct output is. Rather, the system itself looks 
for patterns in the input data. 

The operation of a Kohonen neural network [Kohonen, 1989] is 
a good example of unsupervised learning. Given a set of train¬ 
ing instances to be classified and a specification of the number of 
classes to be found (note no outputs are given to the network), 
a Kohonen network will devise its own classes and assign the 
training instances to those classes. 

GP is not normally used for unsupervised training. However, 
it would be possible to use it for that purpose. 

3. Reinforcement learning 
Reinforcement learning [Barto et al., 1983] falls between super¬ 
vised and unsupervised learning. Although correct outputs are 
not specified as in supervised learning, a general signal for qual¬ 
ity of an output is fed back to the learning algorithm. Thus, 
there is more information than in unsupervised learning, al¬ 
though it is rather unspecific. 

Many of the fitness functions in GP are more complex than just 
comparing the program output to the desired output. These 
systems could be considered as reinforcement learning systems. 

1.9 Conclusion 

From the above it is apparent that, viewed as just another machine 
learning system, GP may be described as follows: 

Q GP represents a problem as the set of all possible computer pro¬ 
grams or a subset thereof that are less than a designated length. 
This is one of its great strengths. The GP representation is a 
superset of all other possible machine learning representations; 

Q GP uses crossover and mutation as the transformation opera¬ 
tors to change candidate solutions into new candidate solutions. 
Some GP operators explicitly increase or decrease the general¬ 
ity of a solution; 

Q GP uses a beam search, where the population size constitutes 
the size of the beam and where the fitness function serves as 
the evaluation metric to choose which candidate solutions are 
kept in the beam and not discarded; 

G GP typically is implemented as a form of supervised machine 
learning. However, this is no more than convention. It is per-



fectly possible to use GP as a reinforcement or an unsupervised 
learning system. 

GP is therefore most distinctive in its use of variable length pro¬ 
grams to represent candidate solutions during training and in its ex¬ 
plicit use of analogies to evolutionary genetics in its search operators. 
Chapter 2 will look closely at the analogy with biology. Chapter 7 
will discuss the power of variable length problem representation. 



Exercises 

1. Is GP concept representation a superset of conjunctive/disjunctive 
Boolean and threshold concept representations? 

2. Why is GP concept representation a superset of a decision tree 
concept representation? 

3. What is the interpreter in a GP system? 

4. Devise two rules, other than GP populations with natural se¬ 
lection, for maintaining a beam during a search. List the ad¬ 
vantages and disadvantages of each relative to GP. 

5. Would you expect crossover or gradient descent to produce big¬ 
ger jumps (on average) in the quality of a solution. Why? 

6. Design a gradient descent training system for GP. In doing so, 
consider what sort of operators could work on a program along 
a gradient. 

7. Design a constrained syntax for programs so that a GP system 
could only evolve conjunctive Boolean solutions. 

8. Would a switch-statement be a helpful program structure to 
use to constrain GP so that it evolved only threshold represen¬ 
tations? Would it be helpful for evolving a disjunctive Boolean 
system? Why? 

9. Design a generality/specificity mutation operator for genetic 
programming. When would you use it and why? 
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Looking back into the history of biology, it appears that wherever 
a phenomenon resembles learning, an instructive theory was first 
proposed to account for the underlying mechanisms. In every case, 
this was later replaced by a selective theory. Thus the species 
were thought to have developed by learning or by adaptation of 
individuals to the environment, until Darwin showed this to have 
been a selective process. Resistance of bacteria to antibacterial 
agents was thought to be acquired by adaptation, until Luria and 
Delbriick showed the mechanism to be a selective one. Adaptive 
enzymes were shown by Monod and his school to be inducible 
enzymes arising through the selection of preexisting genes. Finally, 
antibody formation that was thought to be based on instruction 
by the antigen is now found to result from the selection of already 
existing patterns. It thus remains to be asked if learning by the 
central nervous system might not also be a selective process; i.e., 
perhaps learning is not learning either. 

N.K. JERNE, 1967 

Genetic programming is the automated learning of computer pro¬ 
grams. GP's learning algorithm is inspired by the theory of evolution 
and our contemporary understanding of biology and natural evolu¬ 
tion. Viewed as a learning process, natural evolution results in very 
long-term learning from the collective experience of generations of 
populations of organisms. In other words, every living creature is the 
result of millions of years of learning by its ancestors about how to 
survive on Earth long enough to reproduce. 

Information learned through biological evolution is regularly stor¬ 
ed in DNA base pairs. Sequences of DNA base pairs act like instruc¬ 
tions or partial instructions in computer programs, mediating the 
manufacture of proteins and the sequence of manufacture [Eigen, 1992]. 
This program-like nature of DNA, together with the variable length 
structure of DNA, explains the appeal of biological evolution as a 
model for computer program induction. 

Our choice of words above was deliberate - GP's learning algo¬ 
rithm was inspired by the theory of evolution and molecular biology. 
No claim is made here or in the GP community that the GP learning 
algorithm duplicates biological evolution or is even closely modeled 
on it. At most we can say that GP learning algorithms have been 
loosely based on biological models of evolution and sexual reproduc¬ 
tion. This chapter touches on some aspects of evolution and biology 
that may help the reader understand GP. 



2.1 Minimal Requirements 
for Evolution to Occur 

Darwin argued that 

. . . if variations useful to any organic being do occur, assuredly 
individuals thus characterized will have the best chance of being 4^} 
preserved in the struggle for life; and from the strong principle of 
inheritance they will tend to produce offspring similarly charac¬ 
terized. This principle of preservation, I have called, for the sake 
of brevity, Natural Selection. 

C. DARWIN, 1859 

In other words, there are four essential preconditions for the occur¬ 
rence of evolution by natural selection: 

1. Reproduction of individuals in the population; 

2. Variation that affects the likelihood of survival of individuals; 

3. Heredity in reproduction (that is, like begets like); 

4. Finite resources causing competition. 

Those factors, Darwin [Darwin, 1859] [Maynard-Smith, 1994] ar¬ 
gued, result in natural selection which changes (evolves) the charac¬ 
teristics of the population over time. To some extent, the remainder 
of this chapter will be about one or more of these factors. 

We begin by looking at evolution at work in a very simple envi¬ 
ronment - laboratory test tubes. 

2.2 Test Tube Evolution — A Study 
in Minimalist Evolution 

Evolution occurs even in simple non-living systems, such as in vitro 
(test tube) environments. For example, evolution may be observed in 
simple experiments using the enzyme Q/3 replicase and RNA. Orgel 
has done a series of such experiments [Orgel, 1979] which are an ex¬ 
cellent starting point for our considerations because they bear many 
similarities to GP systems. The significance of the Qj3 replicase ex¬ 
periments may only be understood with some knowledge of the ex¬ 
perimental setup, hence we shall discuss them here in more detail. 

Q(3 replicase will make an adequate copy of any strand of RNA 
(as long as it has a supply of the monomers from which the new 
RNA may be made). Imagine a series of test tubes. Each tube 



Fast Replicating RNA 

contains a solution of Q(3 replicase and the proper monomer mix. 
Although there are many different types of RNA, an initial RNA 
template containing only one type of RNA is introduced to test tube 
1. The Q/3 replicase immediately begins making copies of the RNA 
template. After 30 minutes, take a drop out of test tube 1 and place 
it into test tube 2. Thirty minutes later, repeat that process from 
test tube 2 to test tube 3 and so on. 

Four features of the Q/3 replicase experiments are noteworthy 
here [Orgel, 1979] [Maynard-Smith, 1994] because genetic program¬ 
ming runs exhibit much the same behavior. 

1. The structure and function of the RNA in the test tubes evolves, 
often dramatically. For example, in one experiment, the size of 
the RNA molecules in test tube 75 were only one-tenth as long 
as the molecules in the original RNA template and the Qf3 
replicase was making new RNA molecules at more than twenty 
times the rate in test tube 1. Clearly, the RNA population had, 
in less than a day, evolved to be much shorter and to replicate 
much faster. 

2. The mix of RNA in the last test tube varies. However, each 
experiment evolves to a stable and repeatable final state that 
depends on the initial conditions of the experiment. Evolution 
ceases when that state has been reached. 

3. Different initial conditions result in a final mix specifically adap¬ 
ted to those conditions. For example: 

Q By reducing the amount of solution transferred from one 
test tube to the next, the experiments isolated a strain of 
RNA that could reproduce successfully even if only one 
RNA molecule was transferred to a new tube. 

Q When the amount of CTP1 in the monomer mix was re¬ 
duced, the final mix contained an RNA strain that repro¬ 
duced rapidly but had relatively low cytosine content. 

Q When an antibiotic was included in the test tubes, the final 
mix contained RNA that was resistent to the antibiotic. 

4. Finally, the RNA that evolves in these test tube experiments 
would have been extremely unlikely to evolve by random chance. 

One common end product in the Q/3 replicase experiments illus-

*CTP (for cytosine triphosphate) is an energy-rich monomer containing 
the nucleotide cytosine. Its energy is consumed when cytosine is added to 
a string of RNA. Similarly, ATP, GTP, and UTP are used to elongate RNA 
strings. . i ., >l:-Ji:n :xj V 



trates these points. This end product (call it "fast RNA") is copied 
very quickly by the Qf3 replicase enzyme for two reasons: 

Q Fast RNA is only 218 bases long and is, therefore, very short 
compared to the original RNA template (> 4000 bases). The 
shorter the RNA, the faster it replicates. 

Q The three-dimensional structure of fast RNA makes it especially 
easy for Q(3 replicase to copy quickly. 

In many of the Q/3 replicase experiments, fast RNA evolves from 
the initial RNA template until it completely dominates the mix, even 
though it was not in the initial RNA template [Maynard-Smith, 1994]. 

RNA is not alive. It cannot copy itself. More important, there is 
little or no variation in the initial RNA template population. If mul¬ 
tiplication and variation are supposedly two necessary preconditions 
for the occurrence of evolution, how is it that fast RNA evolves? 

The key lies in the fact that copies of RNA produced by Q(3 repli¬ 
case are not always perfect copies. About one in every ten thousand 
replications results in errors - bases are inadvertently added, deleted, 
or improperly transcribed. It is these errors that introduce variability 
into the population of RNA. Variants of RNA that reproduce faster 
in a Q/3 replicase solution have an evolutionary advantage - over any 
period of time they will, on average, produce more copies than other 
types of RNA. Although it may take many replication errors to move 
from the initial RNA template (over 4000 base pairs in length) to 
fast RNA (only 218 base pairs in length), natural selection operating 
on tiny variants is able to accomplish such a transition in fairly short 
order. 

Inducing the fast RNA structure in less than geologic time scales 
is, by itself, a remarkable accomplishment. Consider the magnitude 
of the task. There are more than 10128 possible RNA molecules of 
218 base pairs in size. To sample them one by one would take longer 
than the age of the universe. Accordingly, finding the form of fast 
RNA would be very unlikely using random search, even if we knew 
the correct number of base pairs (218) in advance. We may safely 
conclude that evolutionary search can, therefore, learn good solutions 
much more rapidly than random search and with no knowledge about 
what the final product should look like. 

Eigen writes that the power of evolutionary search resides in the 
population. In exploring the search space from many points in paral¬ 
lel, evolutionary search can allocate more trials to superior mutants, 
with the result that: 

The (quantitative) acceleration of evolution that this brings about 
is so great that it appears to the biologist as a surprisingly new 

The Power of Simple 
Evolutionary Search 



"Test Tube" Evolution 
with an Explicit Fitness 

Function 

Lessons for Genetic 
Programming 

quality, an apparent ability of selection to 'see ahead', something 
that would be viewed by classical Darwinians as the purest heresy! 

M. ElGEN, 1992 

Orgel's evolution of fast RNA was an early demonstration of the 
power of simple evolutionary search. Orgel's mechanism was different 
from GP in that Orgel did not use a defined fitness function for selec¬ 
tion. Rather, Orgel's selection mechanism was inherent in the exper¬ 
imental setup, which selected for fast replicating RNA molecules. By 
way of contrast, Tuerk and Gold [Tuerk and Gold, 1990] have devised 
techniques to evolve RNA and protein translation complexes using 
an expressly designed selection mechanism - in GP terms, a "fitness 
function." Tuerk and Gold call their procedure SELEX, which stands 
for "systematic evolution of ligands by exponential enrichment." 

SELEX starts with a diverse population of RNA molecules. This 
brew of RNA molecules is then passed through an "affinity column," 
in which RNA molecules that bind (at least weakly) to a target 
molecule are recovered and then replicated. This procedure is re¬ 
peated by passing the replicated RNA through the affinity column 
again and again. Note: all of the elements for evolution are present 
in Tuerk and Gold's SELEX algorithm - variation and selection, repli¬ 
cation and heredity. Their results were, in retrospect, not surprising. 
After four rounds of selection and replication Tuerk and Gold had 
evolved a population of RNA molecules with strong, selective bind¬ 
ing to the target molecule in the affinity column. 

Bartel and Szostak have used a SELEX approach to evolve ri-
bozymes customized to catalyze a particular chemical reaction. Bar¬ 
tel and Szostak characterize their approach as "iterative in vitro se¬ 
lection." The customized ribozymes were evolved from a random 
population of ribozymes. The evolved ribozymes were very effective 
at catalyzing the chosen reaction - two to three orders of magnitude 
more effective than the most effective ribozyme located by random 
search [Bartel and Szostak, 1993]. 

There are a number of important lessons for genetic programmers 
in these simple but elegant experiments: 

Q A simple system may evolve as long as the elements of multi¬ 
plication, variance, and heredity exist. 

Q Evolutionary learning may occur in the absence of life or of 
se//-replicating entities. 

Q Evolutionary learning may be a very efficient way to explore 
learning landscapes. 



Q Evolution may stagnate unless the system retains the ability to 
continue to evolve. 

Q The selection mechanism for evolutionary learning may be im¬ 
plicit in the experimental setup (Orgel) or may be explicitly 
defined by the experimenter (SELEX). 

The evolution of a simple population of RNA in test tubes is, 
of course, a "toy" model in comparison to the complexity of actual 
evolution occurring in populations of living organisms. But so too 
is genetic programming. In fact, in many ways, these simple RNA 
models are good starting points for studying genetic programming be¬ 
cause they ignore many of the complexities encountered in studying 
evolution in living organisms - the separation of genotype and phe-
notype, the apparatus for reproduction, sexual recombination, and 
ontogeny to name but a few. 

We will, of course, move on and discuss some aspects of the evolu¬ 
tion of living organisms. But it is important to keep in mind that the 
complexity that accompanies natural evolution is not a condition for 
the occurrence of evolution. Biological evolution as we have come to 
understand it is the manner in which evolution expresses itself given 
the complex set of constraints imposed by organic chemistry, DNA 
synthesis and replication, protein manufacture and functionality, and 
the fitness landscape encountered by living organisms. Evolution is 
not the complexity itself. Evolution is a process, an algorithm if 
you will, that occurs spontaneously both in complex populations of 
living organisms and in much simpler systems such as the in vitro 
RNA experiments and genetic programming runs as long as certain 
conditions are met. 

Nevertheless, biological evolution is the single best example we 
have of evolution at work. GP has deliberately imitated its mecha¬ 
nism in a number of ways. So we will now take a look at important 
aspects of natural evolution. Our trip through molecular biology and 
population genetics will necessarily be brief and greatly oversimpli¬ 
fied. 

2.3 The Genetic Code - DNA as a Computer 
Program 

DNA, the principal constituent of the genome, may be regarded as a 
complex set of instructions for creating an organism. Human DNA 
is comprised of approximately three billion base pairs. Many species 
have DNA many times longer than human DNA. While the num¬ 
ber of instructions contained in one strand of DNA probably dwarfs 

Occam's Evolutionary 
Razor 



The Genetic Code in 
Brief 

Figure 2.1 
Base pairs in a DNA 
segment 

the number of instructions in all software ever written by humans, 
the mechanism by which DNA stores instructions for the creation of 
organisms is surprisingly simple. 

In brief overview, the basic unit of the genetic code is the DNA 
base pair. Three DNA base pairs combine to form a codon, which 
codes for the production of an amino acid. Sequences of codons code 
for the assembly of amino acids into RNA, polypeptides (protein 
fragments), proteins, or functional RNA. The products so formed 
mediate the growth and development of organisms. 

2.3.1 The DNA Alphabet 

Base pairs are the low-level alphabet of DNA instructions - each pair 
representing, say, part of an instruction for the creation of a particular 
amino acid. A base pair is comprised of two nucleic acid bases that 
are chemically bonded. 

Only four different bases appear in DNA, adenine, guanine, cy-
tosine, and thymine, abbreviated A, G, C, and T, respectively. The 
rules for base pairings are simply A pairs with T; G pairs with C.2 

Thus, any one of the following four base pair configurations comprises 
a single piece of information in the DNA molecule: 

The base pairs then bond to each other, forming a ladder of base 
pairs that, because of the three-dimensional properties of the strands, 
forms a double helix. A section of DNA of six base pairs in length is 
shown in Figure 2.1. 

Each base (pair) could thus be regarded as the equivalent of a 
bit in the DNA computer. Each DNA information element has a car¬ 
dinality of-fpur because there are four possible base pairs. Note the 

Actually, other pairings are possible, but much less stable. 



elegance of this structure. Each of the strands of DNA is redundant -
for example, if a G appears in one strand, a C must appear in the same 
position in the other strand. The entire DNA molecule could be re¬ 
constructed from just one of the two strands. In fact, DNA has many 
repair mechanisms that exploit this redundancy [Watson et al., 1987, 
pages 347-348]. 

2.3.2 Codons and Amino Acid Synthesis 

In a computer program, a bit is only part of an instruction to the 
CPU. The entire instruction is comprised of a sequence of bits. The 
same is true in DNA. Each low-level instruction in DNA is actually 
comprised of a sequence of three base pairs. Three consecutive RNA 
bases are a "codon." Using the abbreviations for the base pairs above, 
a typical codon would be represented by biologists as "AGA," which 
would symbolize a codon comprised of an adenine, guanine, adenine 
sequence. 

A codon is a template for the production of a particular amino 
acid or a sequence termination codon. A few examples of codons 
and the amino acids for which they code are: ATG which codes for 
methionine; CAA which codes for glutamine; CAG which also codes 
for glutamine. 

In all, there are sixty-four different codons - that is, there are 
sixty-four different ways to order four different bases in three different 
locations. But, there are only twenty amino acids for which DNA 
codes. This means that all amino acids and a stop order codon (a 
codon that says "quit here") could be specified with only twenty 
codons. What happens to the rest of the codons? The answer is that 
there are often several different codons that produce the same amino 
acid. An example is shown above: the codons CAG and CAA both 
code for the production of the amino acid glutamine. 

This redundancy in DNA's coding for the same amino acids may 
be of some importance in GP for two reasons: 

Q The efficiency of different codons in producing the same amino 
acid can vary widely from codon to codon. Multiple codons 
that transcribe for the same amino acid at different rates may 
be of some importance in mutation. Simply put, this effect 
allows random mutation - normally a highly destructive event -
to accomplish a relatively small change in phenotypic behavior. 
When one codon that produces glutamine is mutated to another 
codon that also produces glutamine, the most that changes is 
the rate of production of the protein in which the glutamine is 
included. The protein itself is not changed. 

Codons 

Codon Redundancy 

Small or Neutral 
Mutations 



DNA Instruction 
Sequencing 

Q Kimura has noted the possible importance that neutral muta¬ 
tion plays in evolution [Kimura, 1983]. Where the translation 
rate of two different codons that produce the same amino acid 
is roughly balanced, redundancy in coding for amiiio acids pro¬ 
vides one important route for such neutral mutations. That 
is, if the segment of base pairs that produces a codon for ser-
ine is mutated to produce another one of the serine producing 
codons, the functionality of the DNA is unchanged although 
the structure of the DNA has been changed.3 

If DNA were no more that a collection of codons that amount to 
"instructions," the analogy between DNA and a computer program 
would be weak indeed. A computer program has an additional ele¬ 
ment - the instructions have a sequence of execution. So, too, does 
DNA. This sequence arises from the fact that adjacent base pairs 
bind from a 5 prime site to a 3 prime site. That bond is directional 
from the 5 prime to the 3 prime site. This directional vector is used 
by the organism in protein synthesis. In short, DNA not only has 
instructions with specific meanings, the instructions have an implicit 
order of execution also. 

DNA Transcriptional 
Segments 

2.3.3 Polypeptide, Protein, and RNA Synthesis 

Codons produce amino acids. But the end product of DNA instruc¬ 
tions is not to produce amino acids. Rather, DNA acts on the rest 
of the world by providing the information necessary to manufacture 
polypeptides, proteins, and non-translated RNA (tRNA and rRNA) 
molecules, each of which carry out various tasks in the development 
of the organism. Proteins are complex organic molecules that are 
made up of many amino acids. Polypeptides are protein fragments. 
Non-transcribed RNA is an RNA molecule (similar to DNA but hav¬ 
ing only a single strand) that is not merely an intermediate step in 
the production of a protein or a polypeptide. 

The intricacies of how DNA causes the production of proteins, 
polypeptides, and RNA is far beyond the scope of this chapter and 
this discussion glosses over many complexities such as the synthesis 
of messenger RNA, tRNA, and the like. Generally speaking, DNA 
transcribes RNA molecules, which then translate into one or more 
proteins or polypeptides. The point here is that there are segments 

3In many circumstances, further redundancy lies in the protein struc¬ 
tures that are produced by the sequences of codons. Some amino acids in 
a protein may be replaced by another with little or no change in protein 
functionality. In this case, a mutation ihat switched for coding from amino 
acid 1 to amino acid 2 would be functionally neutral [Watson et al., 1987]. 



of DNA that engage in transcriptional activity. Transcriptional ac¬ 
tivity is necessary, for the direct or indirect synthesis of the brew of 
polypeptides, proteins, and RNA molecules produced by DNA. As 
Watson et al. put it: 

DNA molecules should thus be functionally regarded as linear col¬ 
lections of discrete transcriptional units, each designed for the syn¬ 
thesis of a specific RNA molecule. 

J.D. WATSON ET AL., 1987 

2.3.4 Genes and Alleles 

This brings us to the difficult task of defining genes and alleles. In 
popular literature, a gene is a location on the DNA that decides 
what color your eyes will be. Slight variations in that location make 
your eyes green or brown. The variations are called "alleles." This 
explanation greatly oversimplifies what we know about DNA and 
the manner in which it mediates the creation of an organism. Such a 
notion of a gene is misleading, particularly when it comes to designing 
a GP system around such an explanation. What biologists try to 
express with the concepts of "gene" and "alleles" is more complex: 

Q Adjacent sequences of DNA do act together to affect specific 
traits. But a single gene can affect more than one trait. More¬ 
over, DNA at widely scattered places on the DNA molecule may 
affect the same trait. For example, the synthesis of the amino 
acid arginine is mediated by eight separate enzymes (proteins). 
Each of those enzymes is created by a different gene located in 
a different place on the DNA [Watson et al., 1987, pages 218-
219]. 

Q The portions of the DNA that engage in transcriptional activity 
(the genes) are separated by long sequences of DNA that have 
no apparent function called "junk DNA." Junk DNA is, for all 
we know, just inert. It does not ever activate to transcribe or 
affect the transcription process. Clearly, junk DNA does not 
qualify as a gene.4 

Q The portions of DNA that engage in transcriptional activity are 
located in the regions between the long junk DNA sequences 
referred to above. Genes are, therefore, located in these regions 
also. However, not all of the intragenic DNA sequence engages 

4There is discussion in the biological community whether junk DNA is 
really junk or not; see later sections of this chapter. 



in transcription. These intragenic sequences are comprised in 
part of alternating sections of "exons" and "introns." 

Put simply, exons transcribe for proteins, polypeptides or mRNA. 
Introns, on the other hand, are removed from the RNA before 
translation to proteins. Junk DNA has no apparent effect on 
the organism. It is, apparently, inert. Although it would seem 
that introns should be equally inert (they are not transcribed 
to mRNA and are therefore not expressed as proteins), the is¬ 
sue is not so clear. The presence of and contents of introns 
frequently have a measurable effect on the amount and biolog¬ 
ical effect of proteins produced by the gene in which they oc¬ 
cur [Watson et al., 1987, 867-868] [Maniatis, 1991] [Rose, 1994] 
[McKnight et al., 1994]. It may also be that introns play a role 
in preventing damage to exons during recombination and in en¬ 
abling the evolutionary process to experiment with shuffling and 
combining slightly different variations of the functional parts 
that make up a protein [Watson et al., 1987, 645-646]. We will 
deal with this issue at somewhat greater length in Chapter 7. 

U DNA's functions - even those we know about - are much more 
complex than the translation of polypeptides and proteins. The 
intragenic sequences referred to above also contain "control se¬ 
quences" that turn the translation of proteins and polypep¬ 
tides in other DNA sequences on and off [Watson et al., 1987, 
page 233], almost a "wet" form of conditional branching or of 
GOTO statements. Whether to include these control sequences 
as "genes" is not at all clear. 

Needless to say, these ambiguities have lead to more than one 
definition of a gene among biologists. For example, biologists have at 
various times defined a gene as the segment or segments of DNA that 
produced a single protein - the "one gene-one protein" rule. More 
recently, others have suggested that, in reality, DNA sequences often 
code for less than a protein. They code for polypeptide sequences, 
which may be combined into proteins. This has lead to the "one 
gene-one polypeptide" rule [Watson et al., 1987, page 220]. 

Watson et al. conclude that the best working definition would: 

.. . restrict the term gene to those DNA sequences that code for 
amino acids (and polypeptide chain termination) or that code for 
functional RNA chains (e.g. tRNA and rRNA), treating all tran-
scriptional control regions as extragenic elements. DNA chromo¬ 
somes, so defined, would be linear collections of genes interspersed 
with promoters, operators, and RNA chain termination signals. 

J.D. WATSON ET AL., 1987 

The One Gene-One 
Protein Rule 



The lesson here, with respect to genes, alleles, and other DNA 
structures is to be very careful when applying such concepts to an¬ 
other medium such as digital computers. Biologists are hard pressed 
to agree on a definition. The first question in applying such concepts 
to new media is to define clearly what is meant in the first medium 
and then to determine whether the term has any meaning at all when 
applied to the other medium. As we will see in later chapters, these 
terms may have little or no meaning in a GP population made up of 
randomly generated computer programs. 

2.3.5 DNA without Function - Junk DNA and Introns 

We have been speaking above about sequences of DNA that have 
a function - they create proteins or polypeptides or control their 
creation. But much of the DNA of many organisms apparently just 
sits there and does nothing. This is referred to as junk DNA and as 
introns. The word apparently is important here. We know that junk 
DNA and introns are not "transcriptional segments" of DNA - they 
do not code for proteins. On the other hand, proving that they do 
not code for proteins does not prove that junk DNA and introns do 
not have functions of which we are unaware. 

All but a few percent of the DNA of eukaryotic organisms (all 
higher organisms are eukaryotic) consist of non-coding DNA com¬ 
prising junk DNA, control regions, and introns. On the other hand, 
procaryotes (many of the bacteria species) have no introns at all. 

The reason for the existence of junk DNA and introns is the sub¬ 
ject of debate in the biological community. We have noted above that 
introns have some role in increasing the efficiency of protein transla¬ 
tion. In any event, junk DNA and introns will have some importance 
later as we examine apparent GP analogs of the intron structures 
that emerge spontaneously during GP evolution, in Chapter 7. 

We have spent some time in the molecular world of DNA, polypep¬ 
tides and the like. It is now time to discuss the relationship between 
the tiny-scale world of DNA and the much larger world of the organ¬ 
isms DNA creates. 

2.4 Genomes, Phenomes, and Ontogeny 

In 1909, Johannsen realized that it was important to distinguish be¬ 
tween the appearance of an organism arid its genetic constitution. He 
coined the words phenotype and genotype to label the two concepts 
[Johannsen, 1911]. The distinction is still an important one. Evo¬ 
lution interacts differently with the genotype and the phenotype in 



biological evolution. In GP, the distinction is more elusive. Some GP 
systems explicitly distinguish between the genotype and phenotype 
[Gruau, 1992a] [Banzhaf, 1993a] [Keller and Banzhaf, 1996], whereas 
others [Koza, 1992d] [Nordin et al., 1995] do not. 

The genome or genotype of an organism is the DNA of that or¬ 
ganism.5 Half of the genome (DNA) is passed from parent to child. 
Thus, heredity is passed through the genome. The genome is also the 
principal mechanism for variance within a population because genetic 
changes caused by mutation and recombination are passed with the 
genome. 

The phenome or phenotype is the set of observable properties 
of an organism. In a colloquial sense, the phenotype is the body 
and the behavior of the organism. Natural selection acts on the 
phenotype (not on the genotype) because the phenotype (the body) 
is necessary for biological reproduction. In other words, the organism 
(the phenotype) must survive to reproduce. 

Ontogeny is the development of the organism from fertilization 
to maturity. Ontogeny is the link between the genotype (DNA), the 
phenotype (the organism's body and behavior), and the environment 
in which the organism's development takes place. The organism's 
DNA mediates the growth and development of the organism from 
birth to death. The environment of the organism is frequently an 
important element in determining the path of development dictated 
by the DNA. 

In biological evolution, ontogeny is a one-way street. That is, 
changes in an organism's DNA can change the organism. However, 
except in rare instances [Maynard-Smith, 1994], changes in the organ¬ 
ism do not affect the organism's DNA. Thus, the village blacksmith 
may have a large son. The son is large because his father passed 
DNA for a large body to the son, not because the father built up 
his own muscles through a lot of physical labor before siring his son. 
The blacksmith's acquired trait of large muscles is, emphatically, not 
passed on to the blacksmith's son. Ignoring the complication of sex¬ 
ual reproduction, Figure 2.2 diagrams this mechanism. 

All of the mechanisms of biological heredity (copying the parent's 
DNA and passing it to the child, mutation of the parent's DNA, and 
recombination of the parent's DNA) take place at the genotype (G) 
level. On the other hand, natural selection acts only at the level of the 

5This simple definition glosses over the difference between procaryotic 
and eukaryotic organisms. For eukaryotes, it would be more accurate to 
define the genome as the genes contained in a single representative of all 
chromosome pairs. Because the most important constituent in the chromo¬ 
some pairs is DNA, the definition in the text is sufficient for our purposes\ 



G = Genotype (DNA) 
P = Phenotype (the organism) 

phenotype (P). Therefore, natural selection acts upon the genotype 
only indirectly. 

The RNA in vitro experiments discussed above have much to 
say about the design of GP systems in regard to separation of the 
genotype and the phenotype and in regard to ontogeny: 

Q Evolution is possible even where there is no physical 
difference between the genotype and the phenotype. 
In biological evolution, the DNA (genotype) is quite distinct 
from the organism's body and behavior (phenotype). By way 
of contrast, the RNA in Orgel's experiments has no phenotype 
that is separate from the genotype (the RNA itself).6 The 
RNA does, however, engage in behavior that could be regarded 
as phenotypical. Similarly, in GP, the genotype is the evolved 
program and, in many systems, there is no separate phenotype. 
But the behavior of the GP program when it executes is, like 
the RNA's behavior after folding, phenotypical behavior. 

While some phenotypical behavior on which natural selection 
can act appears to be a necessary component of evolution, a 
separate structure that may be labeled the "phenotype" is not. 

G Evolution is possible with or without ontogeny. 
The RNA experiments also suggest that ontogeny is not a re¬ 
quirement of evolution. In the Orgel experiments, the RNA 
did not undergo any development process between reproduc¬ 
tion events.7 

6One could argue that the folded RNA strand is physically different 
from the unfolded strand and thus constitutes a phenotype. 

7One could argue that the temperature conditions required for folding 
of RNA are the appropriate environment and the folding process itself is 
ontogeny. 



The lesson here for GP is that it is not necessary to create a 
separate phenotype structure from a genotype by some sort of onto-
logical process. However, ontogeny and a separate phenome are tools 
that may be used by the GP researcher to improve the quality of GP 
search. One example of GP's use of such tools is the cellular encoding 
technique, which explicitly uses the genotype (a tree GP structure) 
to define a process of ontogeny by which a single "primordial" neu¬ 
ron develops into an elegantly complex neural network structure (the 
phenotype) [Gruau, 1992a]. More recently, finite automata have been 
treated in a similar way [Brave, 1996]. 

2.5 Stability and Variability of 

Genetic Transmission 

The way genetic material is passed from the parent to the child is the 
most important factor in determining genetic stability (like begets 
like) and the genetic variability in a population. For evolution to 
occur, genetic transmission must be simultaneously stable and vari¬ 
able. For example, the transmission of genetic material from parent 
to child must, with high probability, pass parental traits to the child. 
Why? Without such stability of inheritance, natural selection could 
select a parent with good traits but the children of that parent would 
not be likely to inherit that good trait. At the same time, there must 
also be a chance of passing useful new or different traits to the child. 
Without the possibility of new or different traits, there would be no 
variability for natural selection to act upon. 

This section explores the mechanisms of stability and variation. 

2.5.1 Stability in the Transmission of Genetic Material 

In natural evolution, reproduction involves copying the parent's DNA 
and transmitting all or part of that DNA to the child. We have 
already pointed to some of the principal mechanisms of stability in 
heredity: / 

Q Redundancy 

The elegant redundancy of the base pair structure of DNA. 

Q Repair 
Complex repair mechanisms reside in the DNA molecule for 
repairing damage to itself and for the correction of copying 
errors. This function is so important that several percent of 
some bacteria's DNA is devoted to instructions for DNA repair 
[Watson et al., 1987, page 339 onward]. 



Q Homologous Sexual Recombination 
Sexual recombination is often regarded as a source of genetic 
variability, and it is. But recombination is also a major factor 
in the genetic stability of a species. It tends to prevent the 
fixing of negative mutations in the population (thereby reducing 
variability) [Maynard-Smith, 1994]. In addition, Watson et al. 
argue that recombination's most vital function is probably the 
repair of damaged DNA [Watson et al., 1987, page 327]. 

2.5.2 Genetic Variability 

Genetic variation in a population is the result of three principal forces. 

Mutation 

Entropy-driven variation, such as mutation, is the principal source of 
variability in evolution. There are many types of mutation, including 
[Watson et al., 1987, pages 340-342]: 

Q Changes from one base pair to another. These often produce 
neutral or useful variations. Although a base pair switch occurs 
about once every ten million replications or less, there are hot 
spots where base pair switching is up to twenty-five times the 
normal rate. 

Q Additions or deletions of one or more base pairs. This is called 
a frameshift mutation and often has drastic consequences on 
the functioning of the gene. 

Q Large DNA sequence rearrangements. These may occur for any 
number of reasons and are almost always lethal to the organism. 

Homologous and Non-Homologous Genetic Transfer 
in Bacteria 

The exchange of genetic material among bacteria through mecha¬ 
nisms such as phages, plasmid conjugation, and transposons is also a 
source of bacterial genetic variability. Of particular interest are: 

Q Hfr Conjugation 
A bacterium in the Hfr state actually injects a copy of part of 
its genetic material into another bacterium, where homologous 
recombination occurs. The bacteria need not be of the same 
species. 



Q Transposons 
A transposon is able to insert entire genes into the genetic se¬ 
quence of the recipient bacterium. Transposons are thought to 
be responsible for conveying the genes for antibiotic resistance 
among bacteria of different species. 

These mechanisms have been mostly ignored by GP programmers 
because of the GP focus on sexual reproduction. The authors believe 
that this is an area ripe for research because these are the methods 
of genetic exchange in the simpler evolutionary pattern of asexual 
production and may be more appropriate to the complexity level of 
a GP run. 

Homologous Sexual Reproduction 

Exchange of genetic material in sexual reproduction happens through 
recombination. The DNA from both parents is recombined to pro¬ 
duce an entirely new DNA molecule for the child. GP crossover mod¬ 
els sexual recombination in the sense that there are two parents and 
that portions of the genetic material of each parent are exchanged 
with portions of the other. On the other hand, GP does not model 
the homologous aspect of natural recombination, as will be discussed 
in detail below. 

2.5.3 Homologous Recombination 

The concept of homologous genetic transfers is clearly an important 
one. Most recombination events seem to be homologous. The reason 
for that will become clear in this section. Homology appears through¬ 
out procaryotic and eukaryotic genetic exchanges and is an important 
element in the stability/variability mix of natural evolution. 

Homologous genetic exchange occurs during "crossover" in sexual 
recombination. It also occurs in bacteria during events such as plas-
mid conjugation. Homology is the teason that genetic exchange is a 
source of both genetic variation ana genetic stability in a population. 

We have seen that mutation causes random changes in DNA -
normally quite damaging changes. Homologous exchange is com¬ 
pletely different - it encourages changes in DNA of a very narrow 
and specified type. Although we will go into more detail later, in ho¬ 
mologous exchange, genetic material is exchanged in a manner that 
preserves the function of the all-important DNA transcription seg¬ 
ments (genes) and the length of both DNA molecules. The result 
of this highly controlled exchange is that sexual recombination has 



a success rate in generating successful variations that is remarkable. 
Most children of sexual recombination are viable.8 

Homologous exchange will not work unless two requirements are 
met: 

1. Homologous exchange can only occur between two identical 
or almost identical DNA segments. In higher organisms, this 
means that horses mate with horses, not dogs. Why? One 
horse's DNA can be matched up closely with another's so that 
recombination preserves gene functionality. In a nutshell, this 
preservation of gene functionality is why clearly defined species 
evolve for organisms that reproduce sexually. 

2. Homologous exchange can occur only if the two DNA segments 
to be exchanged can be matched up so that the swap point 
is at functionally identical points on each strand. In fact, 
DNA strands are able to align themselves where their base 
pairs are identical or almost identical before recombination. 
[Watson et al., 1987] [Maynard-Smith, 1994], 

Figure 2.3 demonstrates the first point - the DNA strands that 
engage in genetic exchange must be identical or nearly identical. Fig¬ 
ure 2.3 shows what happens when the DNA segments are dissimilar. 
Suppose we recombined the DNA from two species, a horse and a 
finch. Short DNA sequences from each species are shown in Figure 
2.3. Before recombination, the horse (species 1) has genes that tran¬ 
scribe for: protein A (Pr A), polypeptide B (Pp B), and protein C (Pr 
C). The finch (species 2) has genes that transcribe for: polypeptide 
D (Pp D), polypeptide E (Pp E), and an rRNA molecule of type F 
(rRNA F). The swap point for recombination is shown in the figure. 

After crossover, the horse's foal would be able to make finch 
polypeptide E and finch mRNA F. But it would likely have lost the 
ability to make horse polypeptide B or protein C. If polypeptide B 
or protein C are at all important to the horse, this non-homologous 
recombination would likely be a disaster for both the horse and the 
finch and is probably a good reason for a horse not to mate with a 
finch. 

In fact, non-homologous recombination is nothing more than a 
massive mutation. It affects not just one or two base pairs but the 
entire strand of DNA from the crossover point on. Thus, it falls into 

With three exceptions (transposons, integrative viruses and agro-
bacterium tDNA) the known forms of genetic exchange among individ¬ 
uals involve homologous exchange. Even these three mechanisms appear 
to involve homologous-like mechanisms. 
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Species 2 DNA After Non-Homologous Exchange 

the category of mutation identified above as a sequence rearrange¬ 
ment, and a massive one. Such mutations are normally fatal. 

Figure 2.4, on the other hand, illustrates how stability and genetic 
variability may be the result of homologous recombination. Note 
that each DNA strand in the figure is a little different. DNA One 
has Variant 1 of the gene to produce Pr A and Pp B. DNA Two 
has Variant 2 of the same genes. The Variant 1 genes are alleles of 
the Variant 2 genes in this example. Before the recombination, the 
two DNA strands have aligned themselves correctly along similar or 
identical base pair sequences. 

When DNA One and DNA Two recombine, the integrity of the 
gene structure is preserved. More important, each DNA strand gets 
a working version of a functional gene to make Pr A and Pp B the 
versions are just a little different. So the children of this recombina¬ 
tion will probably be viable. Finally, the recombination has created a 
small amount of variability. Before the recombination, Variant 1 of Pr 
A may never been combined with Variant 2 of Pp B. This testing of 
different combinations is the essence of genetic variability introduced 
by crossover.9 

Even the process of transposon recombination, a non-homologous 
process in bacteria where entire intact genes are inserted by the trans-

9This example is a little simplistic. The swap in Figure 2.4 is intergenic 
(between genes). Intragenic homologous recombination also occurs but it 
has the same property of preserving essential structure. 
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poson into the DNA of another bacterium, is the exception that 
proves the importance of preserving structure in recombination. An 
entire working gene or set of genes is inserted into the bacterium.10 

We have addressed homology here because it may be found in al¬ 
most all forms of genetic exchange, from the lowest bacteria to sexual 
reproduction in mankind. The ubiquity of homologous exchange and 
the clear importance of structure preservation raise troubling ques¬ 
tions for GP crossover. GP crossover is clearly not homologous. We 
discuss the problems this has led to and solutions in some detail in 
Chapter 6. 

2.6 Species and Sex 

Our treatment of biology will end with a brief discussion of species 
and sex.11 

We classify organisms that reproduce asexually in species. For 
example, we refer to E. coli bacteria and Shigella and the like. But 
in many ways, the concept of species is elusive in asexual organisms. 
We can tell if two sexual organisms are members of the same species 

10This is the process by which bacteria are believed to transfer antibi¬ 
otic immunity among themselves - even among different species. Some 
transposons carry resistence to as many as five strains of antibiotic. 

11For example, we shall not delve into the very interesting question of 
diploidy. 



by mating them and seeing if they have viable offspring - that is 
the definition of a species. On the other hand, absent mating trials, 
our definition of the E. coli "species" is based on appearance and 
function, not on its genetic structure. In fact, there is often more 
genetic variation between two different E. coli bacteria than there 
is between either of them and a completely ''different" species of 
bacteria. Population studies of E. coli suggest that most E. coli 
bacteria are literal clones of successful E. coli variants. In the Q/3 
replicase experiments, was the fast RNA the same "species" as the 
initial RNA template? How would we even begin to answer that 
question? 

In asexual populations, mutation is the primary driving force of 
evolution. But as we have noted above, most mutations are damaging 
to the organism, or worse, lethal. In smaller populations, a strong 
argument may be made that slightly deleterious mutations will tend 
to accumulate, becoming fixed over time, and that the process will 
continue to worsen ad infinitum. This is referred to as "Muller's 
rachet" [Muller, 1932] [Haigh, 1978]. In enormous bacterial popula¬ 
tions this may be of little consequence and this may be why sexuality 
has never evolved for many such species. But in higher animals with 
much smaller populations, Muller's rachet may be an important force. 

By way of contrast, speciation could not be more specific in pop¬ 
ulations of sexually reproducing organisms. Can two organisms mate 
and produce viable offspring? That is the question. Why is a well-
defined species important for sexual reproduction? Sexual recombi¬ 
nation may be of great value to a species for two reasons: 

1. Sexual recombination allows the species to combine numerous 
favorable mutations into one individual much more rapidly than 

asexual reproduction. 

2. Sexual recombination probably ameliorates the effect of Muller's 
rachet. 

But recall our earlier discussion of homology. If the DNA in the 
two parents does not match closely, most matings will result in disas¬ 
ter, as in Figure 2.3. Thus, to get the benefit of sexual reproduction, 
a species must maintain a group of mating individuals that have iden¬ 
tical or close to identical chromosomal and DNA structures. It will 
not work any other way. 

Genetic programming, from the start, has relied principally 011 
the crossover between two parent programs (sexual reproduction) to 
cause evolution (see Chapter 5 and [Koza, 1992d]). The difficulty of 
finding or even defining a homologous species in GP is discussed at 
some length in Chapter 6. 



Exercises 

1. Which molecules carry and store the genetic information in na¬ 
ture? 

2. Which are the two main sources of genetic variation (the equiv¬ 
alent of genetic operators) in nature? 

3. How do bacteria transfer genetic information? 

4. Explain the concept of homology. What is homologous recom¬ 
bination? 

5. Describe the genetic code in nature. How many "letters" does 
it use? What do they code for? 

6. What is a gene? What is an intron? 

7. Explain protein synthesis. Outline the path from gene in DNA 
to protein. 

8. What is a genotype and what is a phenotype? 

9. Explain natural selection. Are there other kinds of selection? 

10. Explain the concept of fitness. 
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Anyone who considers arithmetical methods of producing random 
numbers is, of course, already in a state of sin. 

J. VON NEUMANN, 1951 

In this chapter we shall introduce some fundamental notions of com¬ 
puter science and mathematics necessary for understanding the GP 
approach. The leading question therefore is: What are the mathe¬ 
matical and information-processing contexts of GP, and what are the 
tools from these contexts that GP has to work with? 

3.1 The Importance of Randomness 

in Evolutionary Learning 

As we have seen in the last chapter, organic evolution is one of the 
effective means of "automatic" learning that we observe in nature. 
GP is based on a crude model of what we understand to be the 
mechanisms of organic evolutionary learning. The principle dynamic 
elements of that model are: 

Q Innovation caused by mutation, combined with 

Q Natural selection. 

Together and by themselves, these two dynamics appear to be 
sufficient to cause organic evolution to occur in self-replicating enti¬ 
ties. Asexual single cell reproduction, mutation, and natural selection 
were the sole mechanisms of evolutionary learning for many millions 
of years [Watson et al., 1987]. 

In addition to mutation and natural selection, the model on which 
GP is based also includes sexual reproduction. Sexual reproduc¬ 
tion and the related mechanism of gene crossover obviously confer 
some evolutionary advantage, at least for organisms with diploid gene 
structures - sexual reproduction has been a very successful strategy 
for hundreds of millions of years. 

These different mechanisms of evolutionary learning (mutation 
and sexual recombination) operate in nature and in the computer. 
In nature, mutation is basically free. It is a byproduct of entropy. 
For example, DNA is not always replicated accurately and UV light 
randomly flips nucleotide "bits" and so forth. In short, the tendency 
in nature toward disorder will always tend to cause changes in or¬ 
dered entities and in their offspring. So, random change comes for 
free in organic evolutionary learning. In contrast, a large amount 
of the energy expended in evolutionary learning is used to conserve 
the phenotype despite the entropic tendency toward disorder. This 



learned stability of the phenotype is an extremely important achieve¬ 
ment of evolution. 

Sexual reproduction is another matter altogether. The physical 
mechanisms of biological sexual reproduction are complex and must 
be self-maintained against the pull of entropy. The mechanism of 
sexual selection also imposes great cost on the individual and the 
species. Species evolve "tags" to enable members of the species to 
identify other members of the species. Some of those tags come at 
the expense of certain fitness-related aspects like speed. Bird calls 
can identify the location of a bird to predators. A male peacock's 
tail slows it down. So, sexual reproduction is decidedly not "free." 

In computer programs, on the other hand, stability is an ingrained 
feature, at least for the time frames relevant to us with respect to 
computerized evolutionary learning. In such a time frame, we cannot 
count on entropy causing bits to flip. Of course, if we were willing to 
wait for the actual physical mechanism of the RAM to deteriorate, we 
might achieve this effect. But this would be far too slow with respect 
to our life expectancy. So as a practical matter, computer programs 
will not change in the time scale required unless we explicitly add 
a driving force for evolutionary learning.1 Of course, that separate 
driving force is simulated mutation and perhaps simulated sexual 
reproduction. 

How can we simulate entropic change in the context of a com¬ 
puter program? After all, entropy measures the effects of random 
processes. GP simulates entropic change by using a pseudo-random 
number generator. Increasing order and decreasing entropy (that 
is, causing learning) by randomly changing computer programs may 
look counter-intuitive. But driving a search process by a randomness 
engine is, in a way, the most general procedure that can be designed. 
When random changes are combined with fitness-based selection, a 
computerized system is usually able to evolve solutions faster than 
random search [Eigen, 1992] [Koza, 1992d); see Chapter 2. 

The above argument is independent of whether the search space 
is small enough to allow exhaustive search or so large that only sam¬ 
pling can resonably cover it: on average, it is better to visit locations 
non-deterministically. By "non-deterministic," we mean that the al¬ 
gorithm, after visiting a location, always has a choice where to go 

"'Note, however, the interesting hypothesis put forward by Belady and 
Lehman [Belady and Lehman, 1985] that, in fact, a real but unnoticed 
"natural selection" is acting on computers which results in co-adaptation 
of components (e.g., periphery and system) or of hardware and software to 
the effect that most changes in the configuration cause system failure. 



next. Non-deterministic algorithms are presently being developed in 
different areas of computer science with considerable success. 

In conclusion, GP as a general search process in the space of all 
possible programs/algorithms will depend heavily on randomness in 
different flavors. For this reason, we shall see in the next section how 
random numbers can be generated within a computer. 

3.2 Mathematical Basics 

The mathematical basis for randomness is probability theory. Its ori¬ 
gins go back well into the 17th century. Stimulated by problems of 
gambling, Blaise Pascal and Pierre Fermat were the first to concep¬ 
tualize probability. The field only later developed into an important 
branch of mathematics where the laws of random events are studied. 

Because random events play such a prominent role in GP, we 
shall take a closer look at probability. Before going into details of 
probability, however, we should consider discrete elements and their 
combinations. 

3.2.1 Combinatorics and the Search Space 

In GP, it is often necessary to estimate the size of the search space 
and the difficulty of the problem being solved. The search space is, 
simply put, the set of all programs that could be found by the GP 
algorithm, given a certain programming language. 
* Combinatorics is a mathematical basis for calculating the size of 
the search space. Combinatorics answers the question: Given a set 
of discrete elements - function symbols, for instance - in how many 
different ways can we order them? We are thus concerned, in the 
simplest case, with linear orderings of a set of elements. 

Let us represent elements by lowercase letters, listed in alphabetic 
order. For instance, consider E = {a, b, c}, the set of 3 elements a, 6, c. 

Definition 3.1 A permutation is an arbitrary ordering of the el¬ 
ements of a set E that uses each element once. 

N different elements constituting the set E can be ordered in Nl 
different permutations. 

If we select a subset of K out of N elements from the set we 
consider a combination of order K. 

Definition 3.2 A combination of order K is an arbitrary selec¬ 
tion of K out of N elements from the set E without replacement. 



3.2 Mathematical Basics 

different combinations if we do not consider replacement and order 
of selection. C(K,N) is called the binomial coefficient. 

If, however, the order of those K elements is additionally consid¬ 
ered, there is a factor K! between the former combinations and what 
we call variations. 

Definition 3.3 A variation of order K is an ordered selection of 
K out of N elements from a set E. 

There are 

variations and 

combinations if repetition of elements is allowed. 
Combinatorics is important for GP when we want to compute 

the size of a search space and, therefore, the difficulty of a search 
problem. How we can use combinatorics to gain information will 
be shown after we have introduced some basic concepts of computer 
science. 

3.2.2 Random Numbers 

As mentioned before, randomness is of utmost importance in genetic 
programming. This section is devoted to a discussion of the essentials 
of random numbers and their generation through algorithms. We are 
interested here in mechanisms which lead to a distribution of numbers 
within a given interval that looks as much as possible like the outcome 
of a random process. Since we shall employ deterministic algorithms 
to generate those numbers, we are in fact not dealing with random 
numbers but with quasi-random or pseudo-random numbers. Knuth 
[Knuth, 1981] has studied in detail what we need to consider if we 
wish to generate random numbers. 

The first message from Knuth is that a complicated and random-
looking algorithm does not guarantee the generation of good se¬ 
quences of random numbers. Instead, very simple algorithms perform 
surprisingly well in generating random numbers. The simplest is the 
linear congruential method with suitably chosen parameters. 

The linear congruential method of generating a sequence of equally 
distributed numbers between 0 and 1 goes back to Lehmer 

There are 

(3.1) 

(3.2) 

(3.3) 



3.3 Computer Science Background 
and Terminology 

All computers are created equal. 

UNKNOWN 

This section provides basic computer science concepts and terminol¬ 
ogy relevant to genetic programming. 

3.3.1 The Turing Machine, Turing Completeness, and 
Universal Computation 

Although the Turing machine (TM) is one of the best known types of 
computing machines, no one has ever built one.2 The Turing machine 
is an extremely simple computer, and the surprising fact is that a TM 
can simulate the behavior of any computer. So, any computer that 
can simulate a TM can also simulate any other computer. However, 
the TM is a very inefficient computer, and it is generally not useful 
for calculations. Rather, the concept of a Turing machine has been 
an invaluable tool for mathematicians analyzing computers and what 
they can and cannot do. 

The TM was introduced by the British mathematician 
Turing in his milestone 1936 paper "On computable numbers, with an 
application to the Entscheidungsproblem" [Turing, 1936]. His simpli¬ 
fied computer consists of only four parts (see Figure 3.2): 

J A long tape of paper where symbols can be read, written and 
changed (overwritten). The tape is divided into squares that 
contain exactly one symbol or that are empty. 

Q A read/write device for reading one symbol from the tape or 
writing/changing one symbol on the tape. The device can move, 
one step at a time, over the tape to read the contents of other 
squares, illustrated with the box in Figure 3.2. 

Q A finite set of states. 

Q A set of state transition rules. This set can be interpreted as the 
"program" of the Turing machine that defines a certain action 
the TM must perform depending on the symbol it is currently 
reading and on what state it is in. An action is a state change 
along with either a change of the device position or a write on 
the tape. 

2 However, a well-meaning clerk at the Library of Congress has set aside 
a whole category number for books on "marketing of Turing machines." 



3 Computer Science and Mathematical Basics 

Figure 3.2 
Schematic view of a 
Turing machine 

Turing Completeness 

Structure and Function 
of a Turing Machine 

Each rule specifies a combination of state and tape square content 
and an action to perform if this combination matches the current 
state and tape square content. Some authors assume the tape to be 
of infinite length, but all that is needed is that the tape can grow to 
an arbitrary length by addition of new squares to either end. 

A programming language is said to be Turing complete if it allows 
to write a program that emulates the behavior of a certain arbitrary 
TM. A Turing complete language is the most powerful form of a pro¬ 
gramming language. All commercial programming languages, such 
as FORTRAN or C, are Turing complete languages. In fact, only a 
few simple program constructs are needed to make a language Turing 
complete. 

On the one hand, a too-simple language (such as one containing 
addition and no other operator) is not Turing complete. It cannot 
simulate a Turing machine and is, therefore, unable to represent an 
arbitrary algorithm. On the other hand, a program language with 
addition and a conditional jump operator is Turing complete. The 
expressiveness of a language is an important property to consider 
when choosing functions for the function set of a GP experiment. In 
general, it seems desirable to work with a Turing complete language 
when doing genetic programming. 

Teller proved in 1994 [Teller, 1994b] [Teller, 1994c] that a GP sys¬ 
tem using indexed memory and arithmetic operators is Turing com¬ 
plete Note that the equivalence of different Turing complete languages 
only holds for functionality, not for efficiency or time complexity of 
the words from the languages. Languages may also have different 
properties with respect to evolution of algorithms in a GP system. 

Formally, a Turing machine T can be defined as 

(3.22) 



where I is an input alphabet, O is an output alphabet with I C O, 
Q is a finite set of all states of T, qo £ Q is the initial state, F C Q 
is the set of finite states, and 

(3.23) 

is a state transition function. S may be a partial function, in which 
case there is at least one (q, a) £ (Q — F) x O not mapped on any 
(r,c) £ Q x (O U {l,r}). l,r ^ O denote a move of the read/write 
device - also called the head - by one tape square to the left or right. 
There is a blank b £ O — I. Each tape square is considered to be 
initialized with b. 

Given the structure of T, we now consider its function. At the 
outset, the initial word w £ I*,w = So..sn, is on the tape. All tape 
squares not used by w contain b. T has state 50 > and the head is on 
«o- Each processing step of T works as follows. T has state q\ 0 F. 
The current square, the square the head is on, contains symbol GI. 
If <5(<7i,aj) is defined and gives (<?2,02), T makes a transition into q% 
and processes a^ as follows. If 02 £ O, then T replaces ai by a?. 
If a2 £ {l,r}, then the head moves one square in the corresponding 
direction. If 8(qi, ai) is not defined, or if q\ £ F, then T terminates. 

A universal Turing machine U can emulate any Turing machine 
T. To that end, U is given an initial w £ /* that defines T and 
x, which is T's initial word. In this sense, U is said to be able to 
perform universal computation. Obviously, in the case of £/, there is 
no need to change U in order to perform a different computation. 
Thus, a universal Turing machine is a mathematical model for a 
modern computer. The working memory is analogous to a TM's 
tape, a program is analogous to the emulated Turing machine T, and 
the program's input is analogous to x. Note, however, that a real 
computer may not have enough memory for some programs, while a 
Turing machine always has enough tape squares. 

3.3.2 The Halting Problem 

The motivation for Turing's work with respect to the TM was not 
so much to find a universal computing machine that could be shown 
to be as powerful as any other machine. Instead, he wanted to clar¬ 
ify whether such machines had limitations and whether there were 
problems computers could not solve. Turing's objective in his fa¬ 
mous paper mentioned above was to show that there are functions 
that cannot be computed by a Turing machine. 

An important example of a problem that cannot be solved by 
a TM is the halting problem. It asks if there is a program that 
can determine whether another program halts or not. One result of 

Universal Turing 
Machine and Universal 
Computation 



Turing's work is that there is no program that can determine the 
termination properties of all programs. There are many programs 
whose halting property can be decided with a mechanized procedure, 
but the halting problem is unsolvable in the general case. 

The halting theorem also has important implications for the evo¬ 
lution of programs with a GP system. If we are evolving programs 
with a terminal set and function set that make the underlying pro¬ 
gramming language Turing complete, then we cannot know before¬ 
hand which programs will terminate and which will not. For a GP 
run, we must therefore use one of the methods available for ensur¬ 
ing time bounded execution of an evolved program. Time bounded 
execution is further described in Section 10.2.8. 

3.3.3 Complexity 

The size of a computer program in GP is often referred to as the 
program's complexity.3 There are various measures of complexity or 
size in the GP literature. One of the most natural and commonly used 
is simply the number of nodes in a tree-based genetic programming 
system. Other definitions of complexity that have been used are the 
number of bits needed to express a program in linear form, or the 
number of instructions, for example, in machine code; see Figure 3.3. 

The complexity of a computer program is arguably related to the 
capability of the program to generalize from a set of given data. A 
shorter program is more likely to show a feasible behavior with data 
it has not been explicitly trained on than a longer program would. 
Chapter 8 will discuss the generalization issue for programs in more 
depth. 

Kolmogorov Complexity and Generalization 

It has been argued that a short program with low complexity has a 
higher probability of generalizing well. In general, the mathemati¬ 
cal property "complexity of a computable object" can be said to be 
the shortest program that produces the object upon execution. Note 
that this complexity concept differs from the complexity definition 
discussed above for programs. The complexity of a chunk of infor¬ 
mation is a property of this information regardless of the type of 
information, and it is applicable to many other kinds of objects than 
computer programs. We call this complexity property of an object 
the Kolmogorov complexity of the object. Synonyms for Kolmogorov 
complexity are algorithmic information, algorithmic complexity, or 
Kolmogorov-Chaitin complexity. 

3Very often, a logarithmic function of the size is used. 



Figure 3.3 
Different complexity 
measures: number of 
nodes, instructions, or 
bits 

In GP, we are interested in selecting a program - which can be 
viewed as a model or hypothesis - that fits the data we have ob¬ 
served. For instance, we might want to predict the next number in 
a data series given the presently known data points. Or, in symbolic 
regression, we might like to fit a function to a set of fitness cases such 
that the function - with high probability - accurately models the 
underlying problem outside of the domain of the given fitness cases. 

It can be shown that the probability of guessing a program that 
correctly models some fitness cases or other observed data is domi¬ 
nated by the probabilities of the shortest programs consistent with 
these data. In other words, if two programs model the same data, the 
shorter one can be argued to have a higher probability of being gen¬ 
eral with respect to the underlying problem. However, this subject 
is still in debate in the scientific community [Li and Vitanyi, 1997]. 

An interesting question is the relation between the complexity 
of a program and that of its environment. In nature, the complex¬ 
ity of phenotypes seems to draw heavily on the complexity of the 
environment. The genome, in other words, seems to "harness" the 
complexity of the environment to generate an organism. Can a simi¬ 
lar process help to produce complex programs in GP? 



Figure 3.4 
Schematic view of a 
computer's RAM memory 

3.4 Computer Hardware 

3.4.1 Von Neumann Machines 

A von Neumann machine is a computer where the program resides 
in the same storage as the data used by that program. This ma¬ 
chine is named after the famous Hungarian-American mathematician 
von Neumann, and almost all computers today are of the von Neu¬ 
mann type. 

The group of which von Neumann was a member at the time 
of this invention4 was pondering ways to facilitate programming of 
computers. They considered it too tedious to reconnect banks of 
cables and to reset myriads of switches to reprogram a computing 
device. By contrast, input of data via punched cards or paper tapes 
was much easier. So the idea was born of simply inputting and storing 
programs in the same way as data. 

The fact that a program can be regarded as just another kind of 
data makes it possible to build programs that manipulate programs 
and - in particular - programs that manipulate themselves. The 
memory in a machine of this type can be viewed as an indexed array 
of integer numbers, and thus a program is also an array of integers 
as depicted in Figure 3.4. 

This approach has been considered dangerous in the history of 
computing. A contemporary book on computer hardware explains: 

The decision of von Neumann and his collaborators to represent 
programs and data the same way, i.e. interchangeable, was of 
captivating originality. Now a program was allowed to modify 
itself, which caused speculations about learning, self-reproducing 
and, therefore, "living" systems. Although these ideas were en¬ 
ticing and still are, their consequences are dangerous. Not only . 
are programs that modify themselves unfathomable (incompre¬ 
hensible), but they also lead to an unpredictable behavior of the 
computer. Fortunately, at least when the output is being printed, 
this regularly ends in a chaos of confusing columns of numbers 
and erroneous data which can be thrown away immediately. This 

4The ENIAC project at Moore School, with J.P. Eckert, J.W. Mauchly, 
and H.H. Goldstine. 



chaos is, of course, not acceptable in large and sensitive technical 
systems. Already when programming these systems, manifold se¬ 
curity measures have to be taken such that the system does not 
become autonomous. 

H. LIEBIG AND T. FLIK, 1993, translated from German 

It is not unreasonable to hope that genetic programming will 
change this attitude completely. 

Different machines use integers of different maximal sizes. Cur¬ 
rently, 32-bit processors are the most common type of processor avail¬ 
able commercially. The memory of such a machine can be viewed as 
an array of integers, each with a maximal size of 232 — 1, which is 
equal to 4294967295, and a program in such a machine is nothing 
more than an array of numbers between zero and 4 294 967 295. A 
program that manipulates another program's binary instructions is 
just a program that manipulates an array of integers. This is an im¬ 
portant fact for manipulating binary machine code in GP and will 
be taken up again in Chapter 9 and in more detail in Chapter 11. 
Figure 3.5 illustrates the principle of a von Neumann machine and 
also how it can be used for meta-manipulation. 

The Processor 

The processor is the black box doing all the "intelligent" work in 
a computer. The principles of different present-day processors are 
surprisingly similar. To simplify somewhat we can say that the pro¬ 
cessor consists of three parts. First, it has a device for storing and 
retrieving integers from the memory array. Then it has a number of 
registers for internal storage of integers and a unit for arithmetic and 
logic operation between the registers, the ALU, as shown in Figures 
3.5 and 3.6. 

Figure 3.5 
The CPU and what it 
does 

A register is a place inside the processor where an integer can be 
stored. Normally, a register can store an integer with the same size 



as the word size of the processor. For instance, a 32-bit processor has 
registers that can store integers between 0 and 4294967295. The 
most important register is the program counter (PC) which gives the 
index to the next instruction to be executed by the processor. The 
processor looks at the contents of the memory array at the position 
of the program counter and interprets this integer as an instruction, 
which might be to add the contents of two registers or to place a 
value from memory into a register. An addition of a number to the 
program counter itself causes transfer of control to another part of 
the memory, in other words, a jump to another part of the program. 
After each instruction the program counter is incremented by one 
and another instruction is read from memory and executed. 

The ALU in the processor performs arithmetic and logic instruc¬ 
tions between registers. All processors can do addition, subtraction, 
logical and, logical or, etc. More advanced processors do multiplica¬ 
tion and division of integers and some have a floating point unit with 
corresponding floating point registers. 

In Figure 3.5 we can see the overall activity of the processor 
working on memory cells. Integers in memory become instructions to 
the processor when the CPU reads and interprets them as commands. 
Figure 3.6 shows more details. The memory retrieval device uses a 
register or some arithmetic combination of registers to get an index 
number. The contents of the memory array element with this index 
number are then placed in one of the registers of the processor. 

Figure 3.6 
Schematic view of the 
central processing unit 
(CPU) 



All the behavior we see in today's computers is based on these 
simple principles. Computers doing graphics or animations, control¬ 
ling a washing machine, or monitoring a car's ignition system all do 
the same memory manipulations and register operations. 

RISC/CISC 

At present, both CISC processors (Pentium) and RISC processors 
(SPARC or PowerPC) are used in commercial computers. CISC is 
an acronym for Complex Instruction Set while RISC is an acronym 
for Reduced Instruction Set. As indicated by the acronym, RISC 
processors have fewer and less complex instructions than CISC pro¬ 
cessors. This means that a RISC processor can be implemented with 
less complex hardware and that it will execute its instructions faster. 
The RISC approach follows some advice on instruction set design 
given by von Neumann: 

The really decisive consideration in selecting an instruction set is 
simplicity of the equipment demanded by the [instruction set] and 
the clarity of its application to the actual important problems, 
together with [its] speed in handling those problems. 

J. VON NEUMANN, 1944 

One of the central ideas of RISC architectures is the extensive use 
of registers in the code. The late Seymour Cray, one of the pioneers 
of high performance computing, made the following remark: 

[Registers] made the instructions very simple.... That is somewhat 
unique. Most machines have rather elaborate instruction sets in¬ 
volving many more memory references than the machines I have 
designed. Simplicity, I guess, is a way of saying it. I am all for 
simplicity. If it's very complicated, I can't understand it. 

S. CRAY, 1975 

3.4.2 Evolvable Hardware 

Recently, interest has grown rapidly in a research field that has evo¬ 
lution of electronic hardware as its topic. With the advent of in¬ 
creasingly cheaper freely programmable gate array chips (FPGAs), a 
whole new area for evolutionary algorithms is opening up. 

For the first time it seems feasible to actually do trials in hard¬ 
ware, always with the possibility in mind that these trials have to 
be discarded due to their failure. Evolvable hardware (EHW) is one 
important step, because with it, there is no need to discard the entire 
hardware; instead one simply reprograms the chip. The EHW field is 
developing quickly, and the interested reader should consult original 
literature [DeGaris, 1993] [Hirst, 1996]. 



3.5 Computer Software 

Of all the elements that make up the technology of computing, 
none has been more problematic or unpredictable than software. 
... The fundamental difficulty in writing software was that, until 
computers arrived, human beings had never before had to prepare 
detailed instructions for an automaton - a machine that obeyed 
unerringly the commands given to it, and for which every possible 
outcome had to be anticipated by the programmer. 

M. CAMPBELL-KELLY AND W. ASPRAY, 1996 

With the exception of EHW, hardware is too rigid to represent chang¬ 
ing needs for computer functionality. Use of software is the only way 
to harvest the universality of computers. In this section we discuss 
the most basic aspects of software. 

First, we take a look at the most elementary representation of 
software: machine language, the "native language" of a processor, 
which it speaks fast. Also, we shall introduce assembly language. 
Second, we shall look at classes of higher languages. They are easier 
to use for humans, but they have to be translated into a machine 
language program. Third, elementary data structures - structures 
that allow the storing, reading, and writing of data in certain logical 
ways - will be presented. Fourth, we shall air some thoughts on 
manual versus genetic programming. 

3.5.1 Machine Language and Assembler Language 

A program in machine language is a sequence of integers. These 
integers are often expressed in different bases - decimal, octal, hex¬ 
adecimal, or binary - in order to simplify programming and reading 
machine language programs. By binary machine code, we mean the 
actual numbers stored in binary format in the computer. 

However, it is often impractical to use numbers for instructions 
when programming in or discussing machine language. Remember¬ 
ing, for instance, that the addition instruction is represented by 
2 416 058 368 in the SUN SPARC architecture is not natural to the hu¬ 
man mind (what was that number again?). If we represent the same 
instruction in hexadecimal base (90022000), it will be more compact 
and easier to reason about, but it is still not natural to remember. For 
that purpose, assembly language was developed. Assembly language 
uses mnemonics to represent machine code instructions. Addition is 
represented by the three letters ADD. The grammar for assembly lan¬ 
guage is very simple, and the translation from assembly language to 
machine code is simple and straightforward. But assembly language 



is not machine language, and cannot be executed by the processor 
directly without the translation step. 

It is worth noting that different processors implement different 
word sizes, instructions, and coding of the instructions, but the dif¬ 
ferences between instructions for processors of different families are 
surprisingly small. 

3.5.2 Higher Languages 

Both machine language and assembler are called low-level language 
because hardware aspects are important when writing a program. 
Low-level languages are machine-oriented languages. In contrast, 
high-level languages or problem-oriented languages do not require de¬ 
tailed knowledge about the underlying hardware. A problem-oriented 
language, like FORTRAN [Morgan and Schonfelder, 1993], allows for 
modeling by use of abstract representations of operators and operands. 

We can further distinguish between general-purpose and special-
purpose high-level languages. The former provide problem-indepen¬ 
dent language elements, while the latter supply elements that are tai¬ 
lored for modeling situations from a certain problem domain. For in¬ 
stance, Pascal [Sedgewick, 1992] is a general-purpose language, while 
SQL [Celko, 1995] is a special-purpose language used in the database-
query domain. All general-purpose languages are Turing complete, 
of course. 

High-level languages can be classified by the differing sets of prin¬ 
ciples they obey. We mention a few prominent language classes in 
the chronological order of their development. Table 3.1 summarizes 
the situation. 

General and Special 

Purpose 

Class 

imperative 
functional 
predicative 

object-oriented 

Entity 

variable 
function 

predicate inference rule 
instance, class, state, method 

Principle | 

von Neumann architecture 
lambda calculus 

logic 
object-oriented reality 

Ada [Barnes, 1982], BASIC, C [Kernighan et al., 1988], FOR¬ 
TRAN, Pascal, or SIMULA [Kirkerud, 1989] are examples of impera¬ 
tive languages. Program statements explicitly order (Latin impemre) 
the computer how to perform a certain task. Since imperative lan¬ 
guages are the oldest high-level languages, they are closest to low-level 
languages. 

Table 3.1 
Language classes 
Imperative Languages 



Functional, Applicative 

Languages 

Predicative Languages 

Object-Oriented 

Languages 

Principles underlying the von Neumann computer architecture 
influenced the design of imperative languages. For instance, an es¬ 
sential entity of any imperative language is a variable, and typical 
statements semantically look like: 

put value 42 into variable universalAnswer 

The existence of variables results from the von Neumann principle 
of dividing memory into equal-sized cells, one or more of which may 
represent a variable. 

LISP, LOGO, ML, and BETA are examples of functional or ap¬ 
plicative languages. Program statements define a certain task. In 
mathematics, a function is a relation between a set A and a set B 
such that each element in A is associated with exactly one element 
in B. In other words, a function maps A onto B. 

A program represents a function that maps input data and in¬ 
ternal data into output data. This is the main point of a functional 
language. Its essential entity is called a function. Using a function 
on its arguments is called application, so a functional language is also 
called applicative. Functions can be combined into composed func¬ 
tions. A value can be a function, too. The lambda calculus is the 
mathematical foundation of functional languages. 

Like a functional language, a predicative language is based on 
mathematical principles. PROLOG is such a language. Program¬ 
ming means describing to the computer what is wanted as result. It 
does not mean saying how to get to the result. An example from 
[Stansifer, 1995] should illustrate this. 

mortal (X) :- man (X) /* if X i s a man then X i s mortal */ 
man (socra tes) . /* Socrates i s a man. */ 

mortal (socrates)? /* question to system */ 
yes /* system answer */ 

The basic idea of predicative languages is to represent a program 
by valid statements (predicates) and inference rules. The rules de¬ 
scribe how to deduce predicates from predicates. Getting a certain 
result r from a predicative program implies asking a question like: 
"for which value(s) of r is a certain predicate true?" 

SMALLTALK-80, C++, and JAVA are examples of object-orien¬ 
ted programming languages. The principle behind these languages 
is modeling a system by objects. An object represents a certain 
phenomenon. It may have states. Objects may communicate by 
sending messages to each other. An object receiving a message may 
react to this event by executing a method. As a result of a method 



execution, the receiving object may, for example, send an object to 
the other object. 

Each object is an instance of a class that defines states and meth¬ 
ods of each of its instances. A subclass of a class defines its instances 
as special cases of the corresponding superclass. Instances of a sub¬ 
class inherit all methods and states of all corresponding superclasses. 

Table 3.2 shows some instances of high-level languages and how 
they have been used in connection with genetic programming. 

Language 

C 
C++ 

FORTRAN 
LISP 

PROLOG 

Individual 
• 

• 

• 

• 

Implementation 
• 

• 

• 

• 

Source | 

[Keller and Banzhaf, 1996] 
[Keith and Martin, 1994] 

[Banzhaf, 1994] 
[Koza, 1992d] 

[Osborn et al., 1995] 

3.5.3 Data Structures 

Any stupid boy can crush a bug. However, all the professors in 
the world cannot make one. 

UNKNOWN 

Table 3.2 
GP systems that allow for 
evolving high-level 
language individuals 
and/or are implemented 
in a high-level language 

Maybe artifical evolution will be able to come up with a structure 
as complex as a hemipterous insect some day. Currently, GP is al¬ 
ready challenged when trying to manipulate comparatively primitive 
data structures in a meaningful way. This section discusses some 
prominent data structures offered by many common programming 
languages. 

A data structure is either a value range or a structure of data 
structures and a set of constructors. In the former case, the data 
structure is called simple; in the latter case, composed. A constructor 
constructs a composed data structure from other data structures. 

From the point of view of the von Neumann architecture, program 
code and data are binary sequences. The primitive organization of 
eight bits giving a byte and of a machine-dependent byte number 
giving a memory word are the only forms of structure in this se¬ 
quence. Most real-world situations, however, are phenomena with 
complex structure. Data structures for use in modeling these situ¬ 
ations should be problem oriented. Just as mathematical concepts 
underlie high-level languages, data structures in particular are drawn 



from mathematical structures and operators. Figure 3.7 shows a hi¬ 
erarchy of data structures. An arrow running from a structure A to 
a structure B means that B is a special case of A. 

Figure 3.7 
Data structure hierarchy. 
An arrow running from a 
structure A to a 
structure B means that 
B is a special case of A. 

Typical simple concrete structures are integer, real, Boolean, 
character, enumerated, and subranges of these. The kinds of values 
contained in integer, real, and character are obvious. Boolean 
contains just two values: true and false. True denotes that a certain 
condition is given, false the opposite. Enumerated is a simple ab¬ 
stract structure. It contains a finite linear-ordered set of values. For 
instance, red, yellow, green with order red > yellow > green is 
an enumerated structure color. A subrange is a contiguous interval 
of a value range. For instance, red, yellow is a subrange of color. 

There are many potential constructors and composed structures. 
Five prominent constructor classes and the corresponding structure 
classes are discussed next. Many high-level languages offer instances 
of these classes as language elements. 



Aggregation builds a Cartesian product of structures, called a 
record. For instance, (1, 3.14) is an element in the record IN x H. If all 
structures of a record are identical, the record is called an array. For 
instance, (2.718, 3.141,1.414) is an element in the array R x I I x B,. 

A person profile like 

f i r s t name: Smith 
surname: John 
age (yrs) : 32 
height (meters): 1.95 
weight (kg) : 92 

is an element from a record NxNxAxHxW. N is an array of 
twenty characters, A is a subrange from 0 to 150 of integer, H is a 
subrange from 0.3 to 2.72 of real,5 W is a subrange from 0 to 300. 

Generalization unites structures. (2.718,3.141,1.414) and 10, for 
instance, are elements in the united structure 1R x ]R x H U IN. Re¬ 
cursion constructs a structure consisting of an infinite discrete value 
range. Recursive structures can be constructed in several high-level 
languages, like LISP or C. 

A structure can be modeled by a structure called a graph. A graph 
is a set of nodes and a set of edges that connect certain nodes with 
each other. A node represents a part of an instance of the structure. 

For example, consider the record R := IN x R, or R := N. This 
is a - potentially infinite - recursive structure IN x IN x IN x .... An 
instance of this structure is (1,836,947,37, 7959739793457,...). Such 
a linear recursive structure can be modeled as a list. A list is a special 
case of a graph: it is cycle-free and each node is connected, at most, 
to two different other nodes. In the example, each integer value can 
be represented by a node. 

For another instance, consider the expression a + b * c. Let us 
represent each symbol in this expression by a specific node. Now, 
connect the PLUS node with the a-node and the MULT node. Then, 
connect the MULT node with the 6-node and the c-node. Finally, 
explicitly mark exactly one node as a special node. What you get 
is a tree, which is a very important special case of a graph: it is 
cycle-free, and one of its nodes is explicitly marked as the root node. 

Thus, a tree is a hierarchical graph: all nodes connected to the 
root node are called the children of the root node. Of course, these 
children can be seen as root nodes of their own children, and so on. 
Obviously, a tree may be composed of subtrees. That is, a tree is a 
recursive structure. In particular, a list is a special case of a tree. 

5Memorializing Robert P. Wadlow 1918-1940, whose attested height 
defines the upper range limit. 

Aggregation 

Generalization, 
Recursion 

Graph, Tree, List 



In the example of the arithmetic expression, the PLUS node may 
be the root node. Then, the subtrees a and b*c model subexpressions. 

In general, graphs can be used as models of structures and pro¬ 
cesses from real-world applications. For instance, certain complex 
industrial processes may be modeled as Petri nets, which are power¬ 
ful instances of general graphs. A tree can model a decision process: 
each node represents an option set, and depending on the chosen op¬ 
tion, the process branches to a child node. A list may model a stack 
of engine parts that are successively being popped from the stack by 
an engine-building robot. 

A power set of a set 5 is the set of all subsets of S. The 
power set constructor gives the power set of a structure as a new 
structure. For instance, the power set of {red, yellow, green} 
is {0}, {red}, {yellow}, {green}, {red, yellow}, {red, green}, 
{yellow, green}, {red, yellow, green}. A power set can help 
in modeling an archetype that implies combinations of entities. For 
instance, consider a set of chess players. In order to compute all pos¬ 
sible player combinations, one simply constructs the power set and 
isolates all subsets of size 2. 

A function space is a set of mathematical functions. The function 
set constructor gives a corresponding structure. For instance, the set 
of all continuous functions is a function space. 

A selector selects a value of a component of a composed structure. 
For instance, the selector [i] selects component i in an array and 
answers z's value. 

Data structures are an essential topic in computer science, and 
it remains to be seen how GP can make use of them. Some studies 
already indicate that a connection can be made (see Chapter 10). 

3.5.4 Manual versus Genetic Programming 

Programming by hand is the traditional method of generating useful 
programs - it is what we call the craftsman approach to programming. 
After the invention of the von Neumann machine, this programming 
method was greatly facilitated by allowing programs to be input in 
the same way as data were handled. By this time, programs consisted 
of numbers symbolizing machine instructions to be executed directly 
by the processor. 

A first step in abstraction took place, when instead of machine 
instruction bits, assembler code could be written to instruct the pro¬ 
cessor. A translation step had to be added to the processing of pro¬ 
grams that transformed the memo code of assembler into machine-
understandable sequences of instructions. 



Later, high-level languages were used for writing programs, e.g., 
ALGOL - a language for defining algorithms - or COBOL and FOR¬ 
TRAN, all of them particularly suited to specific applications of the 
computers available at that time. Also, LISP appeared at this time, 
but, for some time, remained a language to be interpreted instead of 
compiled. Compilation was a technique developed with the arrival of 
high-level languages. 

The introduction of high-level languages was a big step in making 
programmers more efficient, since writing an abstract program that 
could later be compiled into machine language allowed an average 
manual programmer to produce more lines of code per time unit in 
terms of machine language. 

An even more abstract language level is provided by tools for 
algebraic specification. Using algebraic specification, the program¬ 
mer does not even have to write high-level code. Instead, he or she 
specifies the desired behavior in an abstract behavioral description 
system which then generates source code to be compiled by a regular 
compiler. 

One might reasonably ask whether GP could be applied to alge¬ 
braic specification. In other words: Would it be possible to evolve 
programs on the level of an algebraic specification that only later on 
would be translated into code? To our knowledge, nobody has tried 
GP on this level yet, but it might be a fruitful area to work in. 

If we now confront the manual method of writing programs with 
an automatic one like GP, the similarities are striking. 

Consider, for instance, the method programmers use who do not 
have a good command of a certain programming language. As an 
example of such a language, let us imagine a macro-assembler lan¬ 
guage that, without insulting anyone, we can consider to be nearly 
obsolete in the late 1990s. Nevertheless, suppose that many appli¬ 
cations in a certain domain, say databases, are written with this 
macro-assembler language. In order to adapt such an application -
a program - to a new environment, say another query type or other 
content and user type, the code segments written in macro-assembler 
have to be rewritten. 

How do programmers do this job? The most productive way 
to do it is by what is known as "cut and paste." They will take 
useful segments from older applications and put them together for 
the new one. They will also change those segments slightly in order to 
make them viable in the new application. Slight changes might mean 
using different variables or changing a very few lines of subroutines 
already in existence. Sometimes it might be necessary to write a new 
subroutine altogether, but those events will be kept to a minimum. 



Some older subroutines will get copied over to the new appli¬ 
cation, but the corresponding calls will never be made since their 
functionality has ceased to be important in the new environment. 
Programmers will either see this by analyzing the code, and cut the 
routines out, or they will comment these routines out, or they will 
not dare to decide and will simply leave them in for the application 
to choose whether or not to use them. 

After everything has been put together, a programmer will com¬ 
pile the resulting code, debug it. and test whether the new function¬ 
ality has been reached or not. Typically, this is an iterative process 
of adding and deleting segments as well as testing different aspects 
of the application, moving from easy to hard ones. 

The last few paragraphs have described in terms of a database 
programmer [Ludvikson, 1995] a procedure that may be identified 
with actions taken by a genetic programming system. Cut and paste 
translates into crossover of applications, generation of new segments 
or lines of code translates into mutations, and debugging and testing 
correspond to selection of those programs that function properly. On 
the other hand, one would hope that a good programmer would take 
more informed steps through the search space than would random 
mutation. 

Incidentally, the fact that much code is unused or commented out 
finds its correspondence in so-called introns automatically evolving in 
GP programs. 

The main difference between programming by hand in this way 
and automatic tools like a GP system is that GP can afford to evolve 
a population of programs simultaneously, which is something a single 
programmer could not do. 

One major point to understand from this example is that a pro¬ 
grammer would only work in this way if 

Q the environments changed only slightly between applications, 
or 

Q the programming language was hard to handle. 

We can conclude that it must be very hard for a GP system to gen¬ 
erate code without any idea of what a given argument or function 
could mean to the output. 



Exercises 

1. Give two elementary components of evolutionary learning. 

2. How many permutations of the list of natural numbers smaller 
than 10 are there? 

3. Give the number of programs represented as binary trees with 
L terminals and K functions. 

4. What is the best-known method for generating random num¬ 
bers? How does it work? 

5. What is conditional probability? 

6. Explain the term probability distribution. Define two different 
probability distributions. 

7. What is a Turing machine, and in what sense is it similar to a 
modern computer? 

8. Is it always possible to decide if an individual in a GP system 
will end execution? Explain. 

9. Give an example of a computer language that is Turing com¬ 
plete and of one that is not. 

10. What is a tree data structure, and what are its basic compo¬ 
nents? 

11. What is the difference between assembly language and binary 
machine code? 

12. Give at least two different computer language paradigms. 
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A process which led from amoeba to man appeared to philosophers 
to be obviously a progress, though whether the amoeba would 
agree with this opinion is not known. 

B. RUSSELL, 1914 

The idea of evolving computer programs is almost as old as the com¬ 
puter itself. Pioneering computer scientist Turing envisioned it al¬ 
ready in the early 1950s, but the field was not systematically explored 
for another 40 years. We have already briefly looked at Friedberg's 
work from the late 1950s [Friedberg, 1958] [Friedberg et al., 1959], 
and this work can be considered the embryonic stage of program evo¬ 
lution, or genetic programming. Friedberg's work at this time was 
only one of many efforts toward automatic program induction. 

The idea of automatic programming is natural, once you have 
learned how complex and tedious manual programming is. It has 
been a part of the artificial intelligence and machine learning fields 
ever since. The quest has searched down many different roads. One 
track has lead to the creation of the "art" of compiler writing. In 
this chapter, however, we will focus on the background of genetic 
programming in the light of other techniques for simulating evolution. 
But first a few words on the name GP. 

The term genetic programming was coined independently by Koza 
and de Garis, who both started using the term in papers in 1990 to 
label their own, different techniques. When Koza's definition of the 
term started to dominate after his important 1992 book, de Garis 
switched to "evolutionary engineering" and after that GP - to many 
people - represented the evolution of program structures in tree or 
LISP form. However, as should be clear by now, in this book we use 
genetic programming as an umbrella term for all forms of evolutionary 
program induction. 

4.1 The Dawn of Genetic Programming — 
Setting the Stage 

Genetic programming is one of many techniques for computer simu¬ 
lation of evolution. Lately the general term evolutionary algorithms 
(EA] has emerged for these techniques. EAs mimic aspects of natural 
evolution, natural selection, and differential reproduction. In Chap¬ 
ter 2 we have seen how Darwin's principle of natural selection is used 
to explain the evolution of all life forms on Earth. Various aspects 
of this principle have been simulated in computers, beginning with 
Friedberg's work. 



Until recently, most efforts have been in areas other than pro¬ 
gram induction, often as methods for optimization. Evolutionary 
algorithms work by denning a goal in the form of a quality criterion 
and then use this goal to measure and compare solution candidates 
in a stepwise refinement of a set of data structures. If successful, an 
EA will return an optimal or near optimal individual after a number 
of iterations. In this sense, the algorithms are more similar to breed¬ 
ing of, let us say. dogs than to natural selection, since breeding also 
works with a well-defined quality criterion. 

When dogs are bred to have, for example, long hair and short legs, 
the breeder selects - from a group of individuals - the best individuals 
for reproduction according to this quality criterion. In this case, he or 
she selects the ones with the longest hair and shortest legs for mating. 
The process is repeated with the offspring over many generations of 
dogs until a satisfying individual is found - and a Siberian Husky has 
been turned into an Angora Dachshund. The same method has given 
our pigs an extra rib in only 30 years. 

This approach is very similar to the basic principle of all evolu¬ 
tionary techniques. The process of selecting the best individuals for 
mating is simply called selection or, more accurately, mating selec¬ 
tion. It will be discussed in detail in the next chapter. The quality 
criterion is often referred to as fitness in EAs and it is with this 
standard we determine which individuals shall be selected. We also 
need a technique for mating and reproduction. In the reproduction 
process it is important to have a mechanism for variation - to gen¬ 
erate a differential and to make sure that children do not become 
identical copies of their parents, which would render improvements 
impossible. 

The two main variation operators in EAs - and in nature - are 
mutation and exchange of genetic material between individuals. Mu¬ 
tation changes a small part of an individual's genome while crossover 
(recombination and sexual reproduction) exchanges genetic material 
usually between two individuals, to create an offspring that is a com¬ 
bination of its parents. Different EA techniques usually emphasize 
different variation operators - some work mostly with mutation while 
others work mostly with crossover. An illustration of a basic EA can 
be seen in Figure 4.1. 

Sometimes the boundaries between EAs and other search algo¬ 
rithms are fuzzy. This is also true for the boundaries between EAs 
that are GP and those that are not. In any case, Friedberg in 1958 
can be considered one of the pioneers of EAs and GP, even though 
his work lacks some of the presently more common EA and GP in¬ 
gredients and even though he was hampered by the constraints of the 
computer power available at that time. 



Figure 4.1 
Basic evolutionary 
algorithm 

The Bremermann Limit 

The objective of Friedberg's system was to induce an assembler 
language on a virtual one-bit register machine. Due to the limited 
computer resources in his day, the induced structures - his programs -
could only tackle modest problems like adding two bits. 

But the situation was not as bad as one might think. At least, 
this was the argument of another pioneer at the time, Bremermann. 
Bremermann asked himself whether there is a principal limit to com¬ 
putation that computers will never be able to break through. In his 
seminal paper [Bremermann, 1962], he noted that no data processing 
system, whether artificial or living, can process more than 2 x 1047 

bits per second per gram of its mass. He arrived at that surprising 
conclusion by an energy consideration, taking into account Heisen-
berg's uncertainty principle in combination with Planck's universal 
constant and the constant speed of light in vacuum. Bremermann's 
argument continued that if we'd had a computer the size and mass of 
the Earth at our disposal computing from the Earth's birth, we would 
anyway not be able to process more than 1093 bits of information. 
Considering combinatorial problems, this so-called Bremermann limit 
is actually riot very large. Concluding his paper, Bremermann wrote: 

The experiences of various groups who work on problem solving, 
theorem proving, and pattern recognition all seem to point in the 
same direction: These problems are tough. There does not seem 
to be a royal road or a simple method which at one stroke will 
solve all our problems. My discussion of ultimate limitations on 
the speed and amount of data processing may be summarized like 
this: Problems involving vast numbers of possibilities will not be 
solved by sheer data processing quantity. We must look for quality, 
for refinements, for tricks, for every ingenuity that we can think 



of. Computers faster than those of today will be of great help. We 
will need them. However, when we are concerned with problems 
in principle, present day computers are about as fast as they will 
ever be. 

H. BREMERMANN, 1962 

Returning to Friedberg, his structures were fixed-size virtual as¬ 
sembler programs. His algorithm was started like most EAs with 
random creation of one or more random structures. As a variation 
operator he used mutation - a random change in a bit of his program 
structure. 

Priedberg's approach has a serious drawback: he employs "bi¬ 
nary" fitness, that is, a program is either perfect or it is not. The 
feedback information from a certain program cannot be used for guid¬ 
ing the subsequent search process. Thus, the process has similarities 
to simple random search. 

Though the results from his system were modest, it definitely 
represents great pioneering work in the field of EAs, GP, and ML. He 
even considered topics that advanced genetic programming research 
is concerned with today, like parsimony of programs; see Chapter 10 
of this book. 

In the next decade - the 1960s - several of today's best known 
EAs were created. In this chapter we will take a look at three of 
them: genetic algorithms, evolutionary programming, and evolution 
strategies. But first we dig deeper into the concept of evolutionary 
algorithms. 

4.2 Evolutionary Algorithms: 

The General View 

Natural evolution has been powerful enough to bring about biologi¬ 
cal phenomena as complex as mammalian organisms and human con¬ 
sciousness. In addition to generating complexity, biological systems 
seem so well adapted to their environments and so well equipped 
with sensory and motor "devices" that the impression of purposeful 
optimization is evoked. This has caused an ongoing controversy in 
biology about whether evolution is indeed optimizing structures or 
not [Dupre, 1987]. 

For millennia, engineers have been inspired to learn from nature 
and to apply her recipes in technology. Thus, evolution stimulated 
two questions: 

Gleaning Recipes from 
Evolution 



1. Does copying evolution help in the optimization of technical 
devices, such as airplane wings, car motors, or receptors and 
sensors for certain physical signals? 

2. Does copying evolution provide us with the creativity to gen¬ 
erate new and complex solutions to well-known difficult prob¬ 
lems? 

Brought into the realm of computer science, these questions could 
read as: 

1. Does simulating evolution (with "evolutionary algorithms") pro¬ 
vide us with a tool to optimize problem solutions? 

2. Does it provide a tool to build solutions by generating complex¬ 
ity through combination of program constructs? ' 

Evolutionary algorithms are aimed at answering these questions. 
Based on very simple models of organic evolution, these algorithms 
aim to catch the basic success ingredients of natural evolutionary 
processes. Equipped with those basic ingredients, EAs are applied to 
various problems in computer science that are not easy to solve by 
conventional methods, such as combinatorial optimization problems 
or learning tasks. 

Different flavors of EAs have been developed over the years, but 
their main ingredients can be summarized as: 

Q Populations of solutions 

Q Innovation operations 

CJ Conservation operations 

Q Quality differentials 

Q Selection 

Consider an optimization problem. The first decision to be made 
is how to represent a solution. In EAs, solutions are represented by 
genotypes, genomes, or chromosomes.1 Once a representation for a 
solution has been fixed, a judgment of a solution candidate should 
be possible, based on the problem to be solved. The representation 
allows us to encode the problem, e.g., by a set of parameters that are 
to be chosen independently from each other. A particular instantia¬ 
tion of this representation should be judged, giving a quality of the 
solution under consideration. The quality might be measured by a 

1Note that genotypes and solutions often are not identical! 



physical process, by an evaluation function to be specified in advance, 
or even by a subjective juror, sitting in front of the computer screen. 

Usually, EAs work with a population of solutions, in order to 
enable a parallel search process. Indeed, the right choice for the 
size of a population is sometimes decisive, determining whether a 
run completes successfully or not. We shall learn more about this in 
the context of genetic programming. Population size is generally an 
important parameter of EAs. 

Once a representation has been chosen that can be plugged into 
a decoder, resulting in a rating of individual solutions, corresponding 
operators have to be defined that can generate variants of the solu¬ 
tion. We have mentioned two classes of operators above, innovation 
operators and conservation operators. 

Innovation operators ensure that new aspects of a problem are 
considered. In terms of our optimization problem above, this would 
mean that new parameter values are tried, in either one or more of 
the different parameter positions. The innovation operator in EAs is 
most often called mutation, and it comes with three EA parameters 
determining: 

Q its strength within a component of a solution, 

Q its spread in simultaneous application to components within a 
solution, 

Q and its frequency of application within the entire algorithm. 

A very strong mutation operator would basically generate a ran¬ 
dom parameter at a given position within a solution. If applied to all 
positions within a solution, it would generate a solution completely 
uncorrelated with its origin, and if applied with maximum frequency, 
it would erase all information generated in the population during the 
EA search process so far. 

Conservation operators are used to consolidate what has already 
been "learned" by various individuals in the population. Recombi¬ 
nation of two or more solutions is the primary tool for achieving this 
goal. Provided the different parameters in our solution representation 
are sufficiently independent from each other, combinations of useful 
pieces of information from different individuals would result in better 
overall solutions. Thus, in the ideal case, a mixing of the informa¬ 
tion should take place that will accelerate the search for the globally 
optimal solution. 

There are different ways to achieve a mixing of solutions. For the 
sake of simplicity, here we shall concentrate on two individuals recom-
bining their information, although multi-recombinant methods also 
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exist in the literature. Well-known recombination methods are one-
point, two-point, or n-point crossover for binary (discrete) parameter 
values between two individuals, as well as discrete and intermediate 
recombination for n-ary or continuous parameter values. Depend¬ 
ing on these features, these operators carry a set of EA parameters 
governing: 

Q type of recombination 

Q its frequency of application within the entire algorithm 

Given these two means of exploring the search space, a solution 
should be found quite efficiently. Unfortunately, reality is not usually 
so simple, and there are many interrelationships between various com¬ 
ponents of a problem solution. This is called linkage and prohibits 
efficient search, since the variation of one parameter might have a 
negative influence on overall fitness due to its linkage with another. 
In effect, we are dealing with non-linear problems here, with an in¬ 
teraction between components. In the literature, this phenomenon is 
sometimes called epistasis. 

With the generation of genotypic variants one would expect dif¬ 
ferences in phenotypic behavior to appear in the population. As 
Priedberg's work has demonstrated, however, this is not necessarily 
the case. If there was only a binary fitness function (stating a solu¬ 
tion by "1" and no solution by "0"), then there would not be enough 
difference between individuals in the population to drive an evolu¬ 
tionary search process. An algorithm of this kind would degenerate 
into a multi-membered blind search. Thus, a very important aspect 
of EAs is a graded fitness function that distinguishes a better solution 
from a good one. 

It is on these differentials that selection can work on. Due to 
the finiteness of a population, not all the variants generated by the 
means mentioned above can be stored. This forces us to select from 
the variants both the candidates to be included and the individuals 
from the population that are due for replacement. Following Darwin, 
this process is called selection. 

From a dynamical systems point of view, the operators of an EA 
work to destabilize a population, and the selection operator works 
to stabilize it. Thus, if one is looking for good solutions to an opti¬ 
mization problem, good solutions should tend to be stable whereas 
bad solutions should tend to be unstable. The art of choosing an ap¬ 
propriate representation and an appropriate set of operators is often 
a matter of experience and intuition, and can only be mastered by 
working with the algorithms. 



4.3 Flavors of Evolutionary Algorithms 

Even if the basic ingredients of EAs are quite similar, there are hun¬ 
dreds of variants to EAs. In this section, we look at three early 
approaches that were most influential and illustrate the climate in 
which GP was born. 

4.3.1 Genetic Algorithms 

One of the best known EAs is the genetic algorithm (GA) devel¬ 
oped by Holland, his students, and his colleagues at the University 
of Michigan [Holland, 1992], The GA is an important predecessor of 
genetic programming, from which the latter derived its name. GAs 
have proved useful in a wide variety of real-world problems. 

The original GA has two main characteristics: it uses a fixed 
length binary representation and makes heavy use of crossover. The 
simple representation of individuals as fixed length strings of zeros 
and ones (Figure 4.2) puts the spotlight on an important issue of all 
EAs mentioned in Chapter 1 - the encoding of the problem. In GAs 
we must find a suitable way to code a solution to our problem as a 
binary string. Finding good coding schemes is still an art, and the 
success of a GA (and EA) run often depends on the coding of the 
problem. 

Figure 4.2 
Problem representation in 
the binary string of a GA 

The commonest form of crossover is called one-point crossover 
and is illustrated in Figure 4.3. Two parent individuals of the same 
length are aligned with each other and a crossover point is chosen at 
random between any of their component positions. The tails of the 
two individuals from this point onward are switched, resulting in two 
new offspring. 

Like many GP systems, GAs focus on the crossover operator. In 
most applications of GAs, 95% of operations are either reproduction, 
i.e., copying strings, or crossover. Usually, only a small probability is 
used for mutations. 

Another key ingredient to GAs, at least until the late 1980s, was 
fitness-proportional selection. Fitness-proportional selection assigns 
reproduction opportunities to individuals based on their relative fit¬ 
ness in the present population. Thus, it is a stochastic process of 

Fitness- Proportional 
Selection 



Figure 4.3 
The one-point crossover 
operator in genetic 
algorithms 

selection, which will draw individuals on the basis of their perfor¬ 
mance as compared to other individuals. It is also called roulette 
wheel selection. Each individual gets a part of a roulette wheel in 
proportion to its fitness and the average fitness of all other individ¬ 
uals. The roulette wheel spins, and if an individual has the lucky 
number it is allowed to reproduce itself into the next generation. 
This simple selection mechanism contains one of the basic principles 
of EA selection - more individuals than the best one have a chance 
to reproduce. This principle has been shown to be essential in guar¬ 
anteeing genetic diversity and helps keep the search away from local 
optima. 

After reproduction has taken place, a certain percentage of the 
population is allowed to vary by crossover (mostly) and mutation 
(rarely); see Section 4.3. Different forms of selection are discussed in 
more depth in the next chapter. 

Schemata 

Theoretical Aspects 

Fitness-proportional selection is also a key ingredient in one of the 
main theoretical achievements of GAs: the notion of building blocks 
and schemata. 

The idea is that, given a certain problem representation, the GA 
is able through repeated crossover and reproduction to combine those 
parts of a solution that are necessary to form a globally optimal 
solution. The argument is that each individual in the population 
participates in numerous ways in the search process in every given 
generation by exposing different schemata to the evaluation process. 

A schema is a string that contains 0, 1, and * (i.e., "don't care") 
symbols. In fact, * symbols are the characteristic feature of schemata, 
coming about by projections into different subspaces of the entire 
search space. Clearly, each individual is always moving in many sub-



spaces at the same time. Holland argued [Holland, 1975] that the 
GA actually progresses by this sampling of subspaces. 

Holland formulated a theorem, the schema theorem of GAs, stat¬ 
ing that, provided fitness-proportional selection is used, the probabil¬ 
ity of certain schemata to appear in the population shifts over time in 
such a way as to approach the overall fitness optimum. The schema 
theorem is even more specific in giving a lower bound on the speed 
for selecting better schemata over worse. 

The schema theorem has, among other things, motivated the use 
of binary representation in GAs. It can be argued from this theorem 
that the alphabet in a GA should be as small as possible. Naturally, 
the binary alphabet with only two members is the smallest. This 
principle is disputed, but we can note that nature uses a quite small 
alphabet of four letters in its DNA code. 

The schema theorem has been criticized heavily in recent years for 
not being able to explain why GAs work. One of the main reasons 
was its extrapolation of fitness developments from generation n to 
generation n + k. It is generally not possible to apply a difference 
equation recursively k times and have an accurate measure of the 
probabilities of schemata occurrence in the long term without very 
restrictive assumptions about the underlying process. 

Representation of Individuals and Genetic Operators 

The usefulness of binary strings as representations of optimization 
problems has been challenged over the years. Within the last decade, 
more and more variants of genetic algorithms have been put forward 
that do not use binary representations. For example, constraint opti¬ 
mization problems as they appear in most practical applications have 
shown a tendency to favor other representations [Michalewicz, 1994]. 

A representation should always reflect fundamental facts about 
the problem at hand. This not only makes understanding of the 
search easier but it is often a precondition of successful GA runs. 

Correspondingly, genetic operators have to be chosen that allow 
unrestricted movement in the problem space spanned by the chosen 
representation. 

Classifier Systems 

In his 1975 book [Holland, 1975], Holland mentioned AI as one of the 
main motivations for the creation of genetic algorithms. He did not 
experiment with direct use of GAs to evolve programs but contributed 
to the creation of another research field with the invention of the 



classifier systems. Holland and Reitman proposed this type of system 
in 1978 [Holland and Reitman, 1978]. 

A classifier system induces a general-purpose Turing complete 
algorithm comprising three components: a rule-based programming 
language, a simulated market economy, and a genetic algorithm. The 
rules are the individuals in the genetic algorithm. Together, all the 
rules can be seen as a program performing a task. When certain rules 
fire in response to some input, the system generates some output. 
Any "reward" for the output gets accredited a fitness proportional 
to the contributing rules, which are the individuals. The genetic al¬ 
gorithm then operates on the rules. Rules resulting from the genetic 
algorithm build the next potentially modified classifier system. The 
metaphor is borrowed form a market economy where many individ¬ 
uals co-operate and compete to achieve higher efficiency in solving a 
goal and each individual is rewarded for its part in the success. 

A classifier system is not regarded as evolutionary program in¬ 
duction since the complete program is not evolved in the individuals 
of the population. The individual rules in a classifier system are not 
capable of solving the task by themselves. 

However, in 1980, Smith [Smith, 1980] invented a variant of a 
classifier systems introducing variable-size strings as individuals. In 
his approach an individual is a complete rule-based program that can 
solve the task defined by the fitness function. Since his system uses 
variable length representation of Turing complete individuals, each 
aiming alone at solving a problem, his approach can be considered 
an important step toward genetic programming.2 Smith applied his 
technique to the objective of finding good poker playing strategies 
and rules, with some success. 

4.3.2 Evolutionary Strategies 

Evolutionary strategies (ES), developed in the 1960s, are another 
paradigm in evolutionary computation. Newer accounts of the work 
of its pioneers, Rechenberg and Schwefel, can be found in 
[Rechenberg. 1994] [Schwefel, 1995]. 

The idea of using evolution as a guiding principle and thus of de¬ 
veloping evolutionary strategies arose from problems in experimental 
optimization. Rechenberg and Schwefel were working with hydrody-
namic problems when they hit upon the idea of using random events 
by throwing dice to decide the direction of an optimization process. 
Thus, discrete mutations were the first evolutionary variations to be 
applied within evolutionary strategies. Due to the limitations of the 

We shall call those systems "early genetic programming." 



basic experimental setup, only one object could be considered at a 
time, so the population consisted of one individual only. But the 
selection process was already in place, keeping track of the "fitness" 
of an experimental configuration and its variation due to the random 
mutations applied. 

Soon afterwards, digital computers became valuable tools and 
evolutionary strategies were devised that were able to operate with 
continuous variables. Following closely the trains of thought al¬ 
ready established, individuals were represented as real-valued vectors, 
and mutation was performed by adding normally distributed random 
numbers with expectation value 0. In this approach, small variations 
are much more frequent than large variations, expressing the state of 
affairs on the phenotypic level in nature. 

In fact, it was always considered a hallmark of evolutionary strate¬ 
gies to emphasize causality, i.e.. the fact that strong causes would 
generate strong effects. Translated into evolutionary strategies, large 
mutations should result in large jumps in fitness, and small mutations 
should result in small changes in fitness. 

In later years, the benefit of using populations of individuals was 
recognized in evolutionary strategies by introducing different sorts of 
recombination operators. Discrete recombination selects the (contin¬ 
uous) features from different parents alternatively, with an additional 
parameter for the specification of 1-, 2-, or n-point recombination. 
Intermediate recombination, on the other hand, involves mixing the 
features stemming from the parents in a different way, shuffling sin¬ 
gle features component-wise, by taking either the arithmetic mean 
or other kinds of weighting. Recently, multi-recombinant strategies 
have been studied as well [Beyer, 1995]. 

Although selection will be discussed in more detail later (Sec¬ 
tion 5.5), a short remark is in order here: In evolutionary strategies, 
selection is a deterministic operator, which chooses the /z < A individ¬ 
uals to constitute the population in the next generation. // denotes 
the number of (present and future) parents; A denotes the number 
of offspring. Thus, selection in ESs is over-production selection, not 
mating selection as in GAs. As such, it is nearer to what Darwin 
called "natural selection" [Schwefel and Rudolph, 1995]. 

One other key aspect of advanced ESs is to allow a learning pro¬ 
cess on the level of "strategy parameters" of the algorithm. Whereas 
so far evolutionary strategies have concerned themselves with adapt¬ 
ing phenotypic variables (object variables), it is possible to assign 
strategy parameters, like mutation rate(s) or recombination method, 
to each individual. Doing this results, over time, in a selection of 
better adapted individuals, in both the domain of object variables 
and the domain of strategy parameters. 



By extending the representation of individuals to include strat¬ 
egy parameters, however, a distinction has been introduced between 
phenotype and genotype. And although the strategy parameters are 
subjected to the same variation policy (mutation and recombination) 
as are the object parameters, information in the domain not expressed 
in the phenotype does evolve differently than in the other domain. 
Selection indirectly favors the strategy parameter settings that are 
beneficial to make progress in the given problem domain, thus de¬ 
veloping an internal model of the environment constituted by the 
problem. 

In the realm of evolutionary strategies, structure evolution has 
been considered by Lohmann [Lohmann, 1992]. 

4.3.3 Evolutionary Programming 

Another important EA and predecessor of GP is evolutionary pro¬ 
gramming (EP) also created in the early 1960s by Fogel, Owens, and 
Walsh [Fogel et al , 1965] [Fogel et al., 1966], EP uses the mutation 
operator to change finite state machines (FSM). A finite state ma¬ 
chine or finite automaton is a very simple computer program that con¬ 
sists of a machine moving around in a graph of nodes called states. 
The state automaton has many similarities with a Turing machine 
and under the right circumstances an FSM program may be con¬ 
sidered to be Turing complete. EP uses a collection of mutations 
that manipulate specific components of the representation. It op¬ 
erates more directly on the representation than GAs. Evolutionary 
programming employs random creation, mutation, and fitness-based 
reproduction: on average, a better individual gets reproduced more 
often. 

In its original form, EP was used to solve sequence prediction 
problems with the help of finite state machines. The FSMs - repre¬ 
sented by transition tables and initial states - were allowed to vary 
through mutation in various aspects, e.g., number of states, initial 
state, state transition, or output symbol. We can see here that EP 
has realized a symbolic representation of computer programs, for¬ 
mulated as automata. It has successfully applied the evolutionary 
principles of variation and selection to a problem from artificial in¬ 
telligence. 

More specifically, EP started with a population of FSMs that 
were allowed to change state according to input and present state, 
and were then evaluated according to whether the output symbols 
produced by the FSMs agreed with the following input symbol or 
not. In this way, the entire symbol sequence was run and a fitness 
was assigned to each FSM. Offspring FSMs were generated by copy-



ing machines and applying mutations with uniform probability dis¬ 
tribution to these copies. Gaussian mutations were used to modify 
numeric components similar to how it is done in ES. The Poisson 
distribution was used to select how many mutations will be applied 
to create a new FSM. The mutations to FSMs manipulated the avail¬ 
able representational components, like, e.g., add state, delete state, 
change transition, change initial state, change output symbol. In a 
typical run, the better performing half of the population was kept 
and the rest was substituted by variants of the better half. 

One specific feature of mutation in EP is that, as the optimal 
value for fitness is approached, the mutation rate is decreased. This 
is achieved by letting the fitness influence the spread of mutations, for 
example, by tying it to the variance of the Gaussian distribution. The 
nearer the optimum, the sharper the distribution becomes around 0. 

In recent years, EP has expanded in scope and has taken up other 
methods, e.g., tournament selection, and has allowed other, different 
problem domains to be addressed by the algorithm, but still refrains 
from using recombination as a major operator for generating variants 
[Fogel, 1995]. Self-adaptation processes are put into place by allowing 
meta-algorithmic variation of parameters. 

4.3.4 Tree-Based GP 

With Smith's development of a variant of Holland's classifier systems 
where each chromosome (solution candidate) was a complete program 
of variable length we might have had the first real evolutionary system 
inducing complete programs, even though this approach was still built 
on the production rule paradigm. 

Two researchers, Cramer [Cramer, 1985] and Koza [Koza, 1989], 
suggested that a tree structure should be used as the program rep¬ 
resentation in a genome. Cramer was inspired by Smith's cross¬ 
over operator and published the first method using tree structures 
and subtree crossover in the evolutionary process. Other innova¬ 
tive implementations followed evolving programs in LISP or PRO¬ 
LOG with similar methods for particular problems [Hicklin, 1986] 
[Fujiki and Dickinson, 1987] [Dickmanns et al., 1987]. 

Koza, however, was the first to recognize the importance of the 
method and demonstrate its feasibility for automatic programming in 
general. In his 1989 paper, he provided evidence in the form of several 
problems from five different areas. In his 1992 book [Koza, 1992d], 
which sparked the rapid growth of genetic programming, he wrote: 

In particular, I describe a single, unified, domain-independent ap¬ 
proach to the problem of program induction - namely, genetic 



programming. I demonstrate, by example and analogy, that ge¬ 
netic programming is applicable and effective for a wide variety 
of problems from a surprising variety of fields. It would proba¬ 
bly be impossible to solve most of these problems with any one 
existing paradigm for machine learning, artificial intelligence, self-
improving systems, self-organizing systems, neural networks, or 
induction. Nonetheless, a single approach will be used here - re¬ 
gardless of whether the problem involves optimal control, plan¬ 
ning, discovery of game-playing strategies, symbolic regression, 
automatic programming, or evolving emergent behavior. 

J. KOZA, 1992 

4.4 Summary of Evolutionary Algorithms 

| Year 

1958 
1959 
1965 
1965 
1975 
1978 
1980 
1985 
1986 
1987 
1987 

1992 

Inventor 

Friedberg 
Samuel 

Fogel. Owens and Walsh 
Rechenberg, Schwefel 

Holland 
Holland and Reitmann 

Smith 
Cramer 
Hicklin 

Fujiki and Dickinson 
Dickmanns, Schmidhuber 

and Winklhofer 
Koza 

Technique 

learning machine 
mathematics 

evolutionary programming 
evolutionary strategies 

genetic algorithms 
genetic classifier systems 

early genetic programming 
early genetic programming 
early genetic programming 
early genetic programming 
early genetic programming 

genetic programming 

Individual | 

virtual assembler 
polynomial 
automaton 

real-numbered vector 
fixed-size bit string 

rules 
var-size bit string 

tree 
LISP 
LISP 

assembler 

tree 

Table 4.1 
Phytogeny of genetic 
programming GP has many predecessors, and above we have looked at the most 

influential ones. Table 4.1 summarizes the history that led up to the 
present situation. Today there exists a large set of different genetic 
programming techniques which can be classified by many criteria, 
such as abstracting mechanisms, use of memory, genetic operators 
employed, and more [Langdon and Qureshi, 1995]. 

In the following chapters we will take a closer look at the com¬ 
monest GP algorithm, Koza's tree-based system, but will also look 
into GP's many variants in existence today, each of them with its 
own specific benefits and drawbacks. 



Exercises 

1. Which evolutionary algorithms other than GP exist? What was 
their respective original application area? 

2. Which evolutionary algorithm uses only mutation? 

3. Give a basic example of a mutation operator in ES. 

4. Describe the representation of a GA. 

5. What is fitness-proportional selection? 

6. What is a schema, and what does the schema theorem state? 

7. What is a classifier system? Which are its main components? 

8. Explain self-adaptation of parameters in EAs. What does it 
have to do with the mapping between genotypes and pheno-
types? 

9. What is epistasis? 

10. What would you consider to be the main differences between 
GP and other EAs? 
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But Natural Selection, as we shall hereafter see, is a power inces¬ 
santly ready for action, and is as immeasurably superior to man's 
feeble efforts as the works of Nature are to those of Art. 

C. DARWIN, 1859 

In the short time since the publication of Koza's 1992 book, over eight 
hundred GP papers have been published. Researchers have devised 
many different systems that may fairly be called genetic programming 
- systems that use tree, linear, and graph genomes; systems that use 
high crossover rates; and systems that use high mutation rates. Some 
even blend genetic programming with linear regression or context free 
grammars while others use GP to model ontogeny, the development 
of a single cell into an organism. 

The purpose of this chapter is to boil this diversity down to the 
essential common themes. The important features shared by most 
GP systems are: 

G Stochastic decision making. GP uses pseudo-random num¬ 
bers to mimic the randomness of natural evolution. As a result, 
GP uses stochastic processes and probabilistic decision mak¬ 
ing at several stages of program development. The subjects of 
randomness, probability, and random number generation were 
discussed in Chapter 3 and we use them here. 

Q Program structures. GP assembles variable length program 
structures from basic units called functions and terminals. Func¬ 
tions perform operations on their inputs, which are either ter¬ 
minals or output from other functions. The actual assembly of 
the programs from functions and terminals occurs at the begin¬ 
ning of a run, when the population is initialized. 

G Genetic operators. GP transforms the initial programs in 
the population using genetic operators. Crossover between two 
individual programs is one principal genetic operator in GP. 
Other important operators are mutation and reproduction. Spe¬ 
cific details and more exotic operators will be discussed in Chap¬ 
ters 6, 9, and 10. 

G Simulated evolution of a population by means of fitness-
based selection. GP evolves a population of programs in par¬ 
allel. The driving force of this simulated evolution is some form 
of fitness-based selection. Fitness-based selection determines 
which programs are selected for further improvements. 

This chapter will look at these common themes at some length, 
both theoretically and practically. By the end of the chapter, the 
reader should have a good idea of how a typical GP run works. 



5.1 Terminals and Functions - The Primitives 
of Genetic Programs 

The functions and terminals are the primitives with which a pro¬ 
gram in genetic programming is built. Functions and terminals play 
different roles. Loosely speaking, terminals provide a value to the 
system while functions process a value already in the system. To¬ 
gether, functions and terminals are referred to as nodes. Although 
this terminology stems from the tree representation of programs, its 
use has spread to linear and graph structures as well. 

5.1.1 The Terminal Set 

Definition 5.1 The terminal set is comprised of the inputs to the 
GP program, the constants supplied to the GP program, and the zero-
argument functions with side-effects executed by the GP program. 

It is useful to think for just a moment about the use of the word 
terminal in this context. Input, constant and other zero-argument 
nodes are called terminals or leafs because they terminate a branch 
of a tree in tree-based GP. In fact, a terminal lies at the end of every 
branch in a tree-structured genome. The reason is straightforward. 
Terminals are inputs to the program, constants or function without 
argument. In either case, a terminal returns an actual numeric value 
without, itself, having to take an input. Another way of putting this 
is that terminal nodes have an arity of zero. 

Definition 5.2 The arity of a function is the number of inputs to 
or arguments of that function. 

The terminal set is comprised, in part, of inputs. Chapter 1 
spoke at length about the learning domain and the process of select¬ 
ing features (inputs) from the learning domain with which to conduct 
learning. Recall that the selected features (inputs) became the train¬ 
ing set - that is, the data upon which the system learns. Viewed 
this way, GP is no different from any other machine learning sys¬ 
tem. When we have decided on a set of features (inputs), each of 
these inputs becomes part of the GP training and test sets as a GP 
terminal. 

Genetic programming is quite different from other machine learn¬ 
ing systems in how it represents the features (inputs). Each feature 
(input) in the training set becomes part of the terminal set in a GP 
system. Thus, the features of the learning domain are just one of the 
Primitives GP uses to build program structures. The features are not 



Constants as Terminals 

represented in any fixed way or in any particular place. In fact, the 
GP system can ignore an input altogether. 

The terminal set also includes constants. In typical tree-based 
GP, a set of real-numbered constants is chosen for the entire popula¬ 
tion at the beginning of the run. These constants do not change their 
value during the run. They are called random ephemeral constants, 
frequently represented by the symbol 5R. Other constants may be con¬ 
structed within programs by combining random ephemeral constants 
using arithmetic functions. 

By way of contrast, in linear GP systems, the constant portion 
of the terminal set is comprised of numbers chosen randomly out of 
a range of integers or reals. In these systems, the constants may 
be mutated just like any other part of the program. Thus, linear 
constants can change, unlike typical tree system random ephemeral 
constants. 

Function Set 

The Range of Available 

Functions 

5.1.2 The Function Set 

Definition 5.3 The function set is composed of the statements, 
operators, and functions available to the GP system. 

The function set may be application-specific and be selected to fit 
the problem domain. The range of available functions is very broad. 
This is, after all, genetic programming. It may use any program¬ 
ming construct that is available in any programming language. Some 
examples follow: 

Q Boolean Functions 

For example : AND, OR, NOT, XOR. 

U Arithmetic Functions 

For example : PLUS, MINUS, MULTIPLY, DIVIDE. 

Q Transcendental Functions 

For example: TRIGONOMETRIC and LOGARITHMIC FUNCTIONS. 

Q Variable Assignment Functions 

Let a be a variable available to the GP system, a := 1 would 
be a variable's assignment function in a register machine code 
approach. The same function would appear in a tree-based 
system with an S-expression that looked something like this: 
( ASSIGN a 1 ) 

where 1 is an input to the ASSIGN node. Of course, there would 
have to be a corresponding READ node, which would read what¬ 
ever value was stored in a and pass it along as the output of 
the READ node. 



Q Indexed Memory Functions 
Some GP systems use indexed memory, i.e., access to memory 
cells via an index. Chapter 11 will provide details. But note 
that it is straightforward to manipulate indexed memory in GP. 

Q Conditional Statements 
For example: IF , THEN, ELSE; CASE or SWITCH statements. 

Q Control Transfer Statements 
For example: GO TO, CALL, JUMP. 

Q Loop Statements 
For example: WHILE . . . D O , REPEAT . . . U N T I L , FOR . . .DO. 

Q Subroutines 
The range of functions is considerably broader than the pre¬ 
ceding list. Any function that a programmer can dream up 
may become a part of the function set in GP. For example, 
in a robotics application, primitives could be created by the 
programmer that were specific to the problem, such as read 
sensor, turn lef t , turn r ight , and move ahead. Each of 
those primitives would become part of the function set or of 
the terminal set, if its arity were 0. The freedom to choose the 
function set in GP often reduces the need for pre- and postpro¬ 
cessing. 

5.1.3 Choosing the Function and Terminal Set 

The functions and terminals used for a GP run should be powerful 
enough to be able to represent a solution to the problem. For ex¬ 
ample, a function set consisting only of the addition operator will 
probably not solve many very interesting problems. On the other 
hand, it is better not to use too large a function set. This enlarges 
the search space and can sometimes make the search for a solution 
harder. An approximate starting point for a function set might be 
the arithmetic and logic operations: 

PLUS, MINUS, TIMES, DIVIDE, OR, AND, XOR. 

The range of problems that can be solved with these functions is 
astonishing. Good solutions using only this function set have been 
obtained on several different classification problems, robotics control 
problems, and symbolic regression problems. This set of primitives 
does not even include forward or backward conditional jumps! In 
conclusion: A parsimonious approach to choosing a function set is 
often wise. 

Sufficiency and 

Parsimony 



Choosing the Constants 

Closure of the Function 
and Terminal Set 

Some Practical Advice 

A similar parsimonious approach is also effective in choosing the 
constants. For example, many implementations use 256 nodes for 
encoding functions and terminals. If there are 56 node labels used for 
functions that leaves a maximum of 200 nodes for constants. In many 
cases, this number of constants has proven to be able to solve difficult 
problems. GP has a remarkable ability to combine the constants at its 
disposal into new constants. It is not necessary, therefore, to include 
all constants that may be needed. 

Another important property of the function set is that each func¬ 
tion should be able to handle gracefully all values it might receive 
as input. This is called the closure property. The most common 
example of a function that does not fulfill the closure property is 
the division operator. The division operator cannot accept zero as 
an input. Division by zero will normally crash the system, thereby 
terminating a GP run. This is of course unacceptable. Instead of 
a standard division operator one may define a new function called 
protected division. Protected division is just like normal division ex¬ 
cept for zero denominator inputs. In that case, the function returns 
something else, i.e., a very big number or zero.1 All functions (square 
root and logarithms are other examples) must be able to accept all 
possible inputs because if there is any way to crash the system, the 
boiling genetic soup will certainly hit upon it. 

One final piece of practical advice about the function and termi¬ 
nal set might be helpful. At the beginning of a project, one should 
not spend too much time designing specific functions and terminals 
that seem perfectly attuned to the problem. The experience of the 
authors is that GP is very creative at taking simple functions and 
creating what it needs by combining them. In fact, GP often ignores 
the more sophisticated functions in favor of the primitives during 
evolution. Should it turn out that the simpler set of functions and 
terminals is not working well enough, then it is time to begin crafting 
vour terminals and functions. 

5.2 Executable Program Structures 

The primitives of GP - the functions and terminals - are not pro¬ 
grams. Functions and terminals must be assembled into a structure 
before they may execute as programs. The evolution of programs is, 
of course, common to all genetic programming. Programs are struc¬ 
tures of functions and terminals together with rules or conventions 
for when and how each function or terminal is to be executed. 

If one works with certain floating point instruction sets, manufacturers 
have sometimes already built in the protection. 



The choice of a program structure in GP affects execution order, 
use and locality of memory, and the application of genetic operators 
to the program. There are really two very separate sets of issues 
here. Execution and memory locality are phenomic issues - that is, 
issues regarding the behavior of the program. On the other hand, 
mutation and crossover are genomic issues - that is, how the "DNA" 
of the program is altered. In most tree-based GP systems, there is no 
separate phenotype. Therefore, it appears that structural issues of 
execution, memory, and variation are the same. But that similarity 
exists only because of an implicit choice to blend the genome and the 
phenome. Chapters 9 and 12 shall treat other approaches in detail. 

The three principal program structures used in GP are tree, lin¬ 
ear, and graph structures. However, GP program structures are often 
virtual structures. For example, tree and graph structures are exe¬ 
cuted and altered as i/they were trees or graphs. But how a program 
executes or is varied is a completely different question from how it 
is actually held in computer memory. Many tree-based systems do 
not actually hold anything that looks like a tree in the computer 
(see Chapter 11). Here, we will examine the manner in which the 
virtual program behaves. Of the three fundamental structures, tree 
structures are the commonest in GP. Beginning with trees, we shall 
describe all three in some detail now. 

5.2.1 Tree Structure Execution and Memory 

Figure 5.1 is a diagram of a tree-based phenome.2 It has many dif¬ 
ferent symbols that could be executed in any order. But there is a 
convention for executing tree structures. 

The standard convention for tree execution is that it proceeds by 
repeatedly evaluating the leftmost node for which all inputs are avail¬ 
able. This order of execution is referred to as postfix order because 
the operators appear after the operands. Another convention for exe¬ 
cution is called prefix order. It is the precise opposite of postfix order 
and executes the nodes close to the root of the tree before it executes 
the terminal nodes. The advantage of prefix ordering is that a tree 
containing nodes like IF/THEN branches can often save execution time 
by evaluating first whether the THEN tree must be evaluated. Apply¬ 
ing postfix order to Figure 5.1, the execution order of the nodes is: d 
->e->OR-» a ->-b- ) -c ->- + - » x - > - - . 

This same tree structure also constrains the usage of memory on 
execution. Figure 5.1 uses only local memory during execution. Why? 

2When using arithmetic operators we shall variously use mul, MUL, x, * 
to mean multiplication. 



Figure 5.1 
A tree structure phenome 

Local memory is built into the tree structure itself. For example, the 
values of b and c are local to the + node. The values of b and c 
are not available to any other part of the tree during execution. The 
same is true for every value in the tree. 

5.2.2 Linear Structure Execution and Memory 

A linear phenome is simply a chain of instructions that execute from 
left to right or - depending on how the picture is drawn - from top 
to bottom. The particular example of a linear genome discussed here 
is a machine code genome of our AIMGP (for "Automatic Induction 
of Machine Code with Genetic Programming") system.3 Figure 5.2 
shows such a linear phenome in operation. 

The linear program in Figure 5.2 is identical in function to the 
tree program in Figure 5.1. But unlike a tree structure, the linear 
phenome has no obvious way for a function to get its inputs. For 
example, a node in a linear phenome that contained just a + function 
would be a plus with nothing to add together. What is missing here 
is memory - a place to hold the inputs to the + and other functions. 

There are many ways to give memory to the instructions, but the 
most prominent in GP is to make the genome a two- or three-address 
[Nordin, 1994] [Banzhaf and Friedrich, 1994] [Huelsbergen, 1996] reg¬ 
ister machine. A register machine uses a linear string of instructions 
operating on a small number of memory registers. The instructions 
read and write values from and to the registers. The reason a reg-

3AIMGP was formerly known as Compiling Genetic Programming Sys¬ 
tem (CGPS). . -



Figure 5.2 
AIMGP type linear 
phenome and five CPU 
registers. The registers 
are shown as holding 
integer values. 

ister machine is an excellent way to implement linear phenomes is 
that every commercial computer in existence contains a CPU that 
has memory registers operated upon by linear strings of instructions. 
A register machine represents the most basic workings of a CPU 
executing machine code instructions. Since we are doing genetic pro¬ 
gramming, it makes sense to try to use a system that makes direct 
use of the basic operation of the computer. 

In Figure 5.2 the first instruction is b=b+c. The effect of this 
instruction is to add the values in registers b and c together and to 
place the sum in register b. 

The linear program begins execution at the top instruction and 
proceeds down the instruction list, one at a time. The only exception 
to this rule is if the program includes jump instructions. Then the 
execution order becomes very flexible. At the end of the execution, 
the result is held in register a. 

There is one other big difference between the linear and the tree 
approach. The memory in the tree system is, as we said, local. But 
in a register machine, any of the instructions may access any of the 
register values. So the values of b and c, which, as we saw above, are 
local values in a tree structure, may be accessed by any instruction. 
Therefore, registers contain global memory values. 



5.2.3 Graph Structure Execution and Memory 

Of the fundamental program structures, graphs are the newest arrival. 
PADO [Teller and Veloso, 1995b] is the name of the graph-based GP 
system we shall discuss here. Curiously enough, the name PADO 
does not have anything to do with the fact that graphs are used for 
evolution. Graphs are capable of representing very complex program 
structures compactly. A graph structure is no more than nodes con¬ 
nected by edges. One may think of an edge as a pointer between two 
nodes indicating the direction of the flow of program control.4 

PADO does not just permit loops and recursion - it positively 
embraces them. This is not a trivial point; other GP systems have 
experimented with loops and recursion only gingerly because of the 
great difficulties they cause. 

Figure 5.3 
A small PADO program 

Figure 5.3 is a diagram of a small PADO program. There are 
two special but self-explanatory nodes in every program. Execution 
begins at the Start node. When the system hits the End node or an¬ 
other preset condition, execution is over. Thus, the flow of execution 

4It is well known that tree and linear genomes are also graphs. That is, 
both have edges and nodes. But trees and linear genomes are graphs with 
very particular constraints for the edges. 



is determined by the edges in the graph. More will be said about 
that later. 

Like all GP systems, PADO needs memory to give its nodes the 
data upon which to operate. Here, data is transferred among nodes 
by means of a stack. Each of the nodes executes a function that 
reads from and/or writes to the stack. For example, the node A in 
Figure 5.3 reads the value of the input A from RAM and pushes it 
onto the stack. The node 6 pushes the value 6 onto the stack. The 
node x pops two values from the stack, multiplies them, and pushes 
the result onto the stack. Thus, the system has localized memory. 
The process may be found in more detail in Chapter 11. 

Data may also be saved by PADO in indexed memory. The node 
labeled Write pops two arguments from the stack. It writes the value 
of the first argument into the indexed memory location indicated 
by the second argument. The Read node performs much the same 
function in reverse. The indexed memory is global memory. 

There are two things each node in the graph must do: 

1. It must perform some function on the stack and/or the indexed 
memory; and 

2. It must decide which node will be the next node to execute. 

This latter role is what determines program execution order in a 
graph. The program itself determines order of execution by choosing 
between the outgoing edges from the node each time a node is exe¬ 
cuted. Consider Figure 5.3 again. The x node may transfer control 
to the Write node, the Read node or the 4 node. The system has a 
decision logic which tests a memory or stack value and, based upon 
that value, chooses the next node. 

5.2.4 Structure as Convention 

On the phenomic level, program structure in a virtual tree is just a 
convention for ordering execution of the nodes and for localizing or 
globalizing memory. Conventions may be changed as long as they are 
recognized as conventions. This is a great area of potential flexibility 
of genetic programming. 

This issue is quite different with the register machine system dis¬ 
cussed above. That system evolves actual machine code - the pro¬ 
gram structure is not virtual, nor are the conventions regarding order 
of execution. The phenomic structure and the execution order are 
dictated by the CPU. The register machine system is much faster 
than tree or graph systems. But to get that extra speed, it sacrifices 

Stack Memory in 
PADO 

PADO Indexed Memory 



the ability to experiment with changes in the conventions regarding 
order of execution.5 

The issue is also resolved quite differently by the PADO system. 
It has discarded traditional GP order of execution conventions. There 
is no tree or linear structure at all saying "go here next and do this." 
A PADO program evolves its own execution order. This is another 
example of the freedom of representation afforded by GP. 

5.3 Initializing a GP Population 

The first step in actually performing a GP run is to initialize the 
population. That means creating a variety of program structures for 
later evolution. The process is somewhat different for the three types 
of genomes under consideration. 

Maximum Program One of the principal parameters of a GP run is the maximum 
Size size permitted for a program. For trees in GP, that parameter is 

expressed as the maximum depth of a tree or the maximum total 
number of nodes in the tree. 

Depth Definition 5.4 The depth of a node is the minimal number of 
nodes that must be traversed to get from the root node of the tree to 
the selected node. 

The maximum depth parameter (MDP) is the largest depth that 
will be permitted between the root node and the outermost terminals 

j in an individual. For the commonest nodes of arity 2, the size of 
the tree has a maximum number of 2MDP nodes. For linear GP, 
the parameter is called maximum length and it simply means the 
maximum number of instructions permitted in a program. For graph 
GP, the maximum number of nodes is effectively equivalent to the 
size of the program.6 

. , ,^.v:- f? 

5.3.1 Initializing Tree Structures 

The initialization of a tree structure is fairly straightforward. Recall 
that trees are built from basic units called functions and terminals. 
We shall assume, now, that the terminals and functions allowable in 
the program trees have been selected already: 

T={a,b,c,d,e] (5.1) 
5This system can evolve order of execution but not by changing high-

level conventions regarding order of execution. It must do so by including 
low-level branching or jump instructions [Nordin and Banzhaf, 1995b], 

6 For comparison purposes it might be better to use the maximum num¬ 
ber of nodes in a tree as the size parameter. 
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There are two different methods for initializing tree structures in 
common use. They are called full and grow [Koza, 1992d]. 

Figure 5.4 shows a tree that has been initialized using the grow 
method with a maximum depth of four. Grow produces trees of ir¬ 
regular shape because nodes are selected randomly from the function 
and the terminal set throughout the entire tree (except the root node, 
which uses only the function set). Once a branch contains a terminal 
node, that branch has ended, even if the maximum depth has not 
been reached. 

The Grow Method 

Figure 5.4 
Tree of maximum depth 
four initialized with grow 
method 

In Figure 5.4, the branch that ends with the input d has a depth 
of only three. Because the incidence of choosing terminals is random 
throughout initialization, trees initialized using grow are likely to be 
irregular in shape. 

Instead of selecting nodes randomly from the function and the 
terminal set, the full method chooses only functions until a node is 
at the maximum depth. Then it chooses only terminals. The result 
is that every branch of the tree goes to the full maximum depth. 

The tree in Figure 5.5 has been initialized with the full method 
with a maximum depth of three. 

If the number of nodes is used as a size measure, growth stops 
when the tree has reached the preset size parameter. 

5.3.2 The Ramped Half-and-Half Method 

Diversity is valuable in GP populations. By itself, the above method 
could result in a uniform set of structures in the initial population 

The Full Method 



Figure 5.5 
Tree of maximum depth 
three initialized with full 
method 

because the routine is the same for all individuals. To prevent this, 
the "ramped-half-and-half" technique has been devised. It is in¬ 
tended to enhance population diversity of structure from the outset 
[Koza, 1992c]. 

In trees the technique is like this. Suppose the maximum depth 
parameter is 6. The population is divided equally among individuals 
to be initialized with trees having depths 2, 3, 4, 5, and 6. For each 
depth group, half of the trees are initialized with the full technique 
and half with the grow technique. 

5.3.3 Initializing GP Linear Structures 

Initializing linear GP structures is somewhat different than the ini¬ 
tialization of tree structures. Again, we shall look at the AIMGP 
system for illustration purposes. AIMGP represents programs as a 
linear sequence of machine code instructions that operate on CPU 
registers, as we have seen in Figure 5.2. 

Machine code GP individuals have four parts, described as fol¬ 
lows: 

The Header 

The Body 

The Footer 

The Return Instruction 

For the purpose of this section, the header and the footer may be 
regarded as housekeeping segments that do not undergo evolution. 
The return instruction is quite different. Although it, too, may not 
undergo evolution, it provides the crucial point, for each program, 



where that program ends. This section will deal primarily with the 
initialization of the body of the GP individual. 

Figure 5.6 shows the basic setup of four registers and one AIMGP 
individual. The four CPU registers r0,ri, r2, r^ have been selected for 
use. These registers are the equivalent of the terminals in trees and 
might hold either variables (r0 , r i , r2) or constants (73). The range 
of constants has to be denned as well. Generally, register TO is chosen 
as the output register. This means that the value that appears in 
register TQ at the end of execution is the output of the program. 

Figure 5.6 

Linear AIMGP genome 

operating on CPU 

registers. Registers 

TO, r i , . . . ,rs are used 

here. 

Each node in the body of the program is a machine code instruc¬ 
tion. Again we shall assume that the number and sort of instructions 
which are the equivalent of functions in trees have been fixed be¬ 
forehand. The machine code instructions in the sample program of 
Figure 5.6 act on three of the four registers. The constant register r% 
is not used in this example program. 

The task of initialization in AIMGP now is to choose initial, ran¬ 
dom instructions that operate on an appropriate subset of the CPU's 
registers. A AIMGP individual is initialized as follows: 

1. Randomly choose a length between two and the maximum length 
parameter; 

2. Copy the predefined header to the beginning of an individual; 

3. Initialize and add instructions to the individual until the num¬ 
ber of instructions added equals the length chosen in step 1. 



The instructions are initialized by randomly choosing an in¬ 
struction type and then randomly filling out the instruction 
with references to randomly chosen registers from the register 
set arid/or randomly chosen constants from the constant range; 

4. Copy the predefined footer to the end of the individual; 

5. Copy the predefined return instruction to the end of the indi¬ 
vidual. 

In this way, the entire population can be initialized. The method 
described here is used instead of the full and grow methods in trees. 
An equivalent to those methods might be applied as well. 

5.4 Genetic Operators 

An initialized population usually has very low fitness. Evolution pro¬ 
ceeds by transforming the initial population by the use of genetic 
operators. In machine learning terms, these are the search operators. 
While there are many genetic operators, some of which will appear 
in Chapter 10, the three principal GP genetic operators are: 

G Crossover; 

Q Mutation; and 

Q Reproduction. 

This section will give an introduction to the three basic genetic 
operators. 

5.4.1 Crossover 

The crossover operator combines the genetic material of two parents 
by swapping a part of one parent with a part of the other. Once 
again, tree linear and graph crossover will be discussed separately. 

Tree-Based Crossover Tree-based crossover is described graphically in Figure 5.7. The 
parents are shown in the upper half of the figure while the children 
are shown in the lower half. 

More specifically, tree-based crossover proceeds by the following 
steps: 

Q Choose two individuals as parents, based on mating selection 
policy.7 The two parents are shown at the top of Figure 5.7. 

7Like, e.g., fitness-proportional selection. 



Figure 5.7 
Tree-based crossover 

Q Select a random subtree in each parent. In Figure 5.7, the se¬ 
lected subtrees are shown highlighted with darker lines. The 
selection of subtrees can be biased so that subtrees constitut¬ 
ing terminals are selected with lower probability than other 
subtrees. 

Q Swap the selected subtrees between the two parents. The re¬ 
sulting individuals are the children. They are shown at the 
bottom of Figure 5.7. 

Linear crossover is also easily demonstrated. Instead of swapping 
subtrees, linear crossover, not surprisingly, swaps linear segments of 
code between two parents. Linear crossover is shown graphically in 
Figure 5.8. The parents are in the left half of the figure while the 
children are in the right half of the figure. 

The steps in linear crossover are as follows: 

Q Choose two individuals as parents, based on mating selection 
policy. 

Linear Crossover 



G Select a random sequence of instructions in each parent. In 
Figure 5.8, the selected instructions are shown highlighted with 
light gray. 

Q Swap the selected sequences between the two parents. The 
resulting individuals are the children. They are shown at the 
right of Figure 5.8. 

Graph Crossover Graph crossover is somewhat more complicated. The following 
procedure is employed by Teller [Teller, 1996]: 

LJ Choose two individuals as parents, based on mating selection 
policy. 

ij Divide each graph into two node sets. 

Q Label all edges (pointers, arcs) internal if they connect 
nodes within a fragment, label them otherwise as external. 

Q Label nodes in each fragment as output if they are the 
source of an external edge and as input if they are the 
destination of an external edge. 

Q Swap the selected fragments between the two parents. 

Q Recombine edges so that all external edges in the fragments 
now belonging together point to randomly selected input nodes 
of the other fragments. 

Figure 5.8 
Linear crossover 



With this method, all edges are assured to have connections in 
the new individual and valid graphs have been generated. 

This brief treatment of crossover demonstrates the basics. More 
advanced crossover topics will be treated in Chapter 6. 

5.4.2 Mutation 

Mutation operates on only one individual. Normally, after crossover 
has occurred, each child produced by the crossover undergoes muta¬ 
tion with a low probability. The probability of mutation is a param¬ 
eter of the run. A separate application of crossover and mutation, 
however, is also possible and provides another reasonable procedure. 

When an individual has been selected for mutation, one type of 
mutation operator in tree GP selects a point in the tree randomly 
and replaces the existing subtree at that point with a new randomly 
generated subtree. The new randomly generated subtree is created in 
the same way, and subject to the same limitations (on depth or size) 
as programs in the initial random population. The altered individual 
is then placed back into the population. There are other types of 
mutation operators which will be discussed in Chapter 9. 

In linear GP, mutation is a bit different. When an individual is 
chosen for mutation, the mutation operator first selects one instruc¬ 
tion from that individual for mutation. It then makes one or more 
changes in that instruction. The type of change is chosen randomly 
from the following list: 

Q Any of the register designations may be changed to another 
randomly chosen register designation that is in the register set. 

Q The operator in the instruction may be changed to another 
operator that is in the function set. 

Q A constant may be changed to another randomly chosen con¬ 
stant in the designated constant range. 

Suppose the instruction 
ro = ri + r2 

has been selected for mutation. Here are samples of acceptable mu¬ 
tations in this instruction: 

n = ri + r2 

fa — r-i + r2 

TO = 7"i OR T2 

ro = ri + r0 

Many of the apparent differences between tree and linear muta¬ 
tion are entirely historical. Tree mutation can alter a single node as 

Mutation in Tree 
Structures 

Mutation in Linear 
Structures 

Tree vs. Linear 
Mutation 



linear mutation alters a single instruction. Linear mutation can re¬ 
place all instructions that occur after a randomly chosen instruction 
with another randomly chosen sequence of instructions - a procedure 
similar to replacing a subtree introduced above. Graph mutation is 
possible as well, but is not treated here. 

5.4.3 Reproduction 

The reproduction operator is straightforward. An individual is se¬ 
lected. It is copied, and the copy is placed into the population. There 
are now two versions of the same individual in the population. 

5.5 Fitness and Selection 

As noted in Chapter 1, genetic programming neither is a hill climb¬ 
ing system (which searches only one path through the search space) 
nor does it conduct an exhaustive search of the space of all possible 
computer programs. Rather, GP is a type of beam search. The GP 
population is the beam - the collection of points in the search space 
from which further search may be conducted. 

Of course, GP must choose which members of the population 
will be subject to genetic operators such as crossover, reproduction, 
and mutation. In making that choice, GP implements one of the most 
important parts of its model of organic evolutionary learning, fitness-
based selection. Fitness-based selection affects both the ordering of 
the individuals in the beam and the contents of the beam. 

GP's evaluation metric is called a fitness function and the manner 
in which the fitness function affects the selection of individuals for 
genetic operators may be referred to as the GP selection algorithm. 
Fitness functions are very problem specific. There are a number of 
different selection algorithms used in GP. 

5.5.1 The Fitness Function 

Definition 5.5 Fitness is the measure used by GP during simu¬ 
lated evolution of how well a program has learned to predict the out-
put(s) from the input(s) - that is, the features of the learning domain. 

The goal of having a fitness evaluation is to give feedback to the 
learning algorithm regarding which individuals should have a higher 
probability of being allowed to multiply and reproduce and which 
individuals should have a higher probability of being removed from 
the population. The fitness function is calculated on what we have 
earlier referred to as the training set. 



Continuous Fitness 

Function 

The fitness function should be designed to give graded and con¬ 
tinuous feedback about how well a program performs on the training 
set. 

Definition 5.6 A continuous fitness function is any manner 
of calculating fitness in which smaller improvements in how well a 
program has learned the learning domain are related to smaller im¬ 
provements in the measured fitness of the program, and larger im¬ 
provements in how well a program has learned the learning domain 
are related to larger improvements in its measured fitness. 

Such continuity is an important property of a fitness function because 
it allows GP to improve programs iteratively. Two more definitions 
will be useful before we go into more detail about fitness functions. 

Definition 5.7 Standardized fitness is a fitness function or a 
transformed fitness function in which zero is the value assigned to 
the fittest individual. 

Standardized fitness has the administrative feature that the best 
fitness is always the same value (zero), regardless of what problem 
one is working on. 

Definition 5.8 Normalized fitness is a fitness function or a trans 
formed fitness function where fitness is always between zero and one. 

With these definitions in hand, let us look at an example. Sup¬ 
pose we want to find a function satisfying the fitness cases in Ta¬ 
ble 5.1. Each input/output pair constitutes a training instance or 
fitness case. Collectively, all of the fitness cases constitute the train¬ 
ing set. 

Standardized Fitness 

Input Output 
Fitness Case 1 
Fitness Case 2 
Fitness Case 3 
Fitness Case 4 
Fitness Case 5 

1 
2 
4 
7 
9 

2 
6 
20 
56 
90 

Table 5.1 
Input and output values 
in a training set 

Suppose that GP was to evolve a program that learned the pat¬ 
terns in the Table 5.1 training set - that is, a program that could 
predict the output column by knowing only the value in the input 
column. The reader will probably note that this example is trivially 
simple and that a program representing the function f(x) — a;2 + x 
would be a perfect match on this training set. 

Normalized Fitness 



Error Fitness Function 

One simple and continuous fitness function that we could use for 
this problem would be to calculate the sum of the absolute value of 
the differences between actual output of the program and the output 
given by the training set (the error). More formally, let the output of 
the z'th example in the training set be DJ. Let the output from a GP 
program p on the z'th example from the training set be pi. In that 
case, for a training set of n examples the fitness fp of p would be: 

(5.3) 

This fitness function is continuous. As pi gets a little closer to 
Oi, the fitness gets a little better. It is also standardized because any 
perfect solution, like f(x) = x2 + x, would have zero fitness. 

Squared Error Fitness A common alternative fitness function is to calculate the sum of 
Function the squared differences between pi and o,, called the squared error. 

Scaled Fitness In some applications a squared or otherwise scaled fitness mea-
Functions surement can result in better search results. Scaling refers to the 

fact that one can amplify or damp smaller deviations from the target 
output. A square function damps small deviations, whereas a square 
root or inverse function amplifies them. 

How do these different fitness functions affect the fitness calcula¬ 
tion? Suppose that one individual, Q, in a GP population is equiv¬ 
alent to x2. Table 5.2 shows the output values of Q for the same 
training instances used in Table 5.1. The last two columns of Table 
5.2 are the fitness for Q calculated by the error and the squared error 
methods, respectively. 

J 
Fitness Case 1 
Fitness Case 2 
Fitness Case 3 
Fitness Case 4 
Fitness Case 5 

| Total fitness 

Input 

1 
2 
4 
7 
9 

-

Output 

2 
6 
20 
56 
90 

-

Q Output 

1 
4 
16 
49 
81 
-

Error fitness 

1 
2 
4 
7 
9 

23 

Squared error fitness | 

2 
4 
16 
49 
81 

151 | 

Table 5.2 
Two different fitness 
calculations Where the learning domain is comprised of numeric inputs and 

outputs, the process of inducing programs that have learned the nu-
Symbolic Regression meric examples is called symbolic regression. Many GP applications 

(5.4) 



can be reformulated as instances of symbolic regression. The above 
problem is an example of symbolic regression. 

There are many other ways to cast a fitness function. Examples 
of fitness functions similar to symbolic regression are: 

G The number of matching pixels in an image matching applica¬ 
tion. 

Q The number of wall hits for a robot controlled by GP and learn¬ 
ing obstacle avoidance. 

Q The number of correctly classified examples in a classification 
task. 

Q The deviation between prediction and reality in a prediction 
application. 

Q The money won by a GP-controlled agent in a betting game. 

Q The amount of food found and eaten by an artificial agent in 
an artificial life application. 

There are also other methods for calculating fitness. In co-ev¬ 
olution methods for fitness evaluation [Angeline and Pollack, 1993] 
Hillis, 1992], individuals compete against each other without an ex¬ 
plicit fitness value. In a game-playing application, the winner in a 
game may be given a higher probability of reproduction than the 
loser. In some cases, two different populations may be evolved si¬ 
multaneously with conflicting goals. For example, one population 
might try to evolve programs that sort lists of numbers while the 
other population tries to evolve lists of numbers that are hard to 
sort. This method is inspired by arms races in nature where, for 
example, predators and prey evolve together with conflicting goals. 

In some cases, it might be advantageous to combine very different 
concepts in the fitness criteria. We could add terms for the length 
of the evolved programs or their execution speed, etc. Such a fitness 
function is referred to as a multiobjective fitness function. 

5.5.2 The Selection Algorithm 

After the quality of an individual has been determined by applying a 
fitness function, we have to decide whether to apply genetic operators 
to that individual and whether to keep it in the population or allow it 
to be replaced. This task is called selection and assigned to a special 
operator, the selection operator. 

There are various different selection operators, and a decision 
about the method of selection to be applied under particular circum¬ 
stances is one of the most important decisions to be made in a GP 



The GA Scenario 

The ES Scenario 

run. Selection is responsible for the speed of evolution and is often 
cited as the culprit in cases where premature convergence stalls the 
success of an evolutionary algorithm. 

We shall discuss selection in a very general context here, including 
some details of what has been developed in the ES community. Selec¬ 
tion in general is a consequence of competition between individuals 
in a population. This competition results from an overproduction of 
individuals which can withstand the competition to varying degrees. 
The degree to which they can withstand the competition is regulated 
by the selection pressure, which depends on the ratio of offspring to 
individuals in the population. 

Two main scenarios for generational selection have been estab¬ 
lished since evolutionary algorithms were first studied in the 1960s: 
(i) the GA scenario, and (ii) the ES scenario. 

The GA scenario starts with a population of individuals with 
known fitness and performs a selection of individuals based on their 
fitness. These are then subjected to variation operations like cross¬ 
over and mutation or passed on untouched via reproduction into the 
next generation. In this way, the pool of the following generation 
is filled with individuals. The next generation usually consists of 
the same number of individuals as the former one, and fitness com¬ 
putation follows in preparation for another round of selection and 
breeding. Figure 5.9a outlines the procedure, also known as mating 
selection. 

The ES scenario is different. Starting from a given population, 
a usually larger set of offspring is generated by randomly selecting 
parents. After fitness evaluation, this population is then reduced 
by selection to the size of the original population. Thus, a smaller 
population can be used, as the selection is applied to the pool of 
offspring (possibly including even the parents). Figure 5.9b outlines 
the procedure, also known as overproduction selection. 

The difference between the two generational scenarios may be 
seen in the ability in the ES type scenario to tune selection pressure 
by adjusting the ratio of the number of offspring to the number of 
parents. The larger this ratio, the higher the selection pressure. A 
corresponding pressure can be introduced into GAs if the require¬ 
ment is relaxed that an equal number of offspring be produced after 
selection. If the size of the offspring pool is larger than the size of 
the parent pool, then again a larger selection pressure is exerted. 

Fitness-Proportional Selection 

Fitness-proportional selection is employed in a GA scenario for gener¬ 
ational selection and specifies probabilities for individuals to be given 



a chance to pass offspring into the next generation. An individual i 
is given a probability of 

Figure 5.9 
Different selection 
schemes in EAs of type 
A GA and B ES 

(5.5) 

for being able to pass on traits. Depending on the variation operator 
used, this might result (i) in a copy of that individual, or (ii) in a 
mutated copy, or (iii) in case two individuals have been selected in 
the way mentioned, two offspring with mixed traits being passed into 
the next generation. 

Following Holland [Holland, 1975], fitness-proportional selection 
has been the tool of choice for a long time in the GA community. It 
has been heavily criticized in recent times for attaching differential 
probabilities to the absolute values of fitness [Blickle and Thiele, 1995]. 
Early remedies for this situation were introduced through fitness scal¬ 
ing, a method by which absolute fitness values were made to adapt 
to the population average [Grefenstette and Baker, 1989], and other 
methods [Koza, 1992d]. 



Truncation or (//, A) Selection 

The second most popular method for selection comes from ES-type 
algorithms [Schwefel, 1995] where it is known as (/z, A) selection. A 
number n of parents are allowed to breed A offspring, out of which the 
H best are used as parents for the next generation. The same method 
has been used for a long time in population genetics and by breeders 
[Crow and Kimura, 1970] [Bulmer, 1980] under the name truncation 
selection [Miihlenbein and Schlierkamp-Voosen, 1994]. 

A variant of ES selection is (p, + A) selection [Rechenberg, 1994] 
where, in addition to offspring, the parents participate in the selection 
process. 

Neither (/u, A) / truncation selection nor the following selection 
procedures are dependent on the absolute fitness values of individuals 
in the population. The n best will always be the best, regardless of 
the absolute fitness differences between individuals. 

Ranking Selection 

Ranking selection [Grefenstette and Baker, 1989] [Whitley, 1989] is 
based on the fitness order, into which the individuals can be sorted. 
The selection probability is assigned to individuals as a function of 
their rank in the population. Mainly, linear and exponential ranking 
are used. For linear ranking, the probability is a linear function of 
the rank: 

where p /N is the probability of the worst individual being selected, 
and p+ /N the probability of the best individual being selected, and 

with 0 <c<l. 

Tournament Selection 

Tournament selection is not based on competition within the full 
generation but in a subset of the population. A number of individu¬ 
als, called the tournament size, is selected randomly, and a selective 

(5.6) 

(5.7) 

should hold in order for the population size to stay constant. 
For exponential ranking, the probability can be computed using 

a selection bias constant c, 

(5.8) 



competition takes place. The traits of the better individuals in the 
tournament are then allowed to replace those of the worse individ¬ 
uals. In the smallest possible tournament, two individuals compete. 
The better of the two is allowed to reproduce with mutation. The 
result of that reproduction is returned to the population, replacing 
the loser of the tournament. 

The tournament size allows researchers to adjust selection pres¬ 
sure. A small tournament size causes a low selection pressure, and a 
large tournament size causes high pressure. 

Tournament selection has recently become a mainstream method 
for selection, mainly because it does not require a centralized fitness 
comparison between all individuals. This not only accelerates evo¬ 
lution considerably, but also provides an easy way to parallelize the 
algorithm. With fitness-proportional selection, the communication 
overhead between evaluations would be rather large. 

5.6 The Basic GP Algorithm 

It is now possible to assemble all of the individual elements (functions, 
terminals, fitness-based selection, genetic operators, variable length 
programs, and population initialization) into an overall algorithm 
for a basic GP run. There are two ways to conduct a GP run, a 
generational approach and a steady-state approach. In generational 
GP, an entire new generation is created from the old generation in 
one cycle. The new generation replaces the old generation and the 
cycle continues. In steady-state GP, there are no generations. We 
will present an algorithm for each approach. 

First, however, we will review the preparatory steps for making 
a GP run. Then we will discuss the two basic ways to approach the 
GP run algorithm itself. 

Summary of Preparatory Steps 

Here are the preliminary steps in a GP run, which we have already 
described in detail in this chapter. 

1. Define the terminal set. 

2. Define the function set. 

3. Define the fitness function. 

4. Define parameters such as population size, maxiirmm individual 
size, crossover probability, selection method, and termination 
criterion (e.g., maximum number of generations). 



Once these steps are completed, the GP run can commence. How 
it proceeds depends on whether it is generational or steady state. 

Generational GP Algorithm 

Traditionally, genetic programming uses a generational evolutionary 
algorithm. In generational GP, there exist well-defined and distinct 
generations. Each generation is represented by a complete popula¬ 
tion of individuals. The newer population is created from and then 
replaces the older population. The execution cycle of the generational 
GP algorithm includes the following steps: 

1. Initialize the population. 

2. Evaluate the individual programs in the existing population. 
Assign a numerical rating or fitness to each individual. 

3. Until the new population is fully populated, repeat the following 
steps: 

Q Select an individual or individuals in the population using 
the selection algorithm. 

Q Perform genetic operations on the selected individual or 
individuals. 

Q Insert the result of the genetic operations into the new 
population. 

4. If the termination criterion is fulfilled, then continue. Other¬ 
wise, replace the existing population with the new population 
and repeat steps 2-4. 

5. Present the best individual in the population as the output from 
the algorithm. 

Steady-State GP Algorithm 

The steady-state or tournament selection model is the principal al¬ 
ternative to generational GP. In this approach there are no fixed 
generation intervals. Instead, there is a continuous flow of individu¬ 
als meeting, mating, and producing offspring. The offspring replace 
existing individuals in the same population. The method is simple 
to implement and has some efficiency benefits together with benefits 
from parallelization. Good general convergence results have been re¬ 
ported with the method, and it is currently gaining ground in the 
research community. Here is an example of a basic GP algorithm 
using the steady-state method and a small tournament size for selec¬ 
tion. 



1. Initialize the population. 

2. Randomly choose a subset of the population to take part in the 
tournament (the competitors). 

3. Evaluate the fitness value of each competitor in the tournament. 

4. Select the winner or winners from the competitors in the tour¬ 
nament using the selection algorithm. 

5. Apply genetic operators to the winner or winners of the tour¬ 
nament. 

6. Replace the losers in the tournament with the results of the 
application of the genetic operators to the winners of the tour¬ 
nament. 

7. Repeat steps 2-7 until the termination criterion is met. 

8. Choose the best individual in the population as the output from 
the algorithm. 

The approach is called steady state because the genetic opera¬ 
tors are applied asynchronously and there is no centralized mecha¬ 
nism for explicit generations. Nevertheless, it is customary in pre¬ 
senting results with steady-state GP to talk about generations. In 
fact, steady-state generations are the intervals during training which 
can be said to correspond to generations in a generational GP al¬ 
gorithm. These intervals are often when fitness is evaluated for the 
same number of individuals as the population size. For experiments 
and detailed references on generational versus steady-state GP see 
[Kinnear, Jr., 1993b]. 

5.7 An Example Run 

This section demonstrates some examples of individuals and mea¬ 
surements from a typical GP run. The task was a function regression 
with the simple function: 

(5.9) 

Ten fitness cases were used for this function regression task, taken 
from the x-interval [0,1] and shown in Table 5.3. 

Following the steps of Section 5.6 we prepare the run by first 
deciding on the following issues: 

1. Terminal set: Variable x, integer constants between -5 and +5. 



Table 5.3 
Fitness cases (input and 
output values) in the 
training set 

1 
Fitness Case 1 
Fitness Case 2 
Fitness Case 3 
Fitness Case 4 
Fitness Case 5 
Fitness Case 6 
Fitness Case 7 
Fitness Case 8 
Fitness Case 9 
Fitness Case 10 

Input 

0.000 
0.100 
0.200 
0.300 
0.400 
0.500 
0.600 
0.700 
0.800 
0.900 

Output [ 

0.000 
0.005 
0.020 
0.045 
0.080 
0.125 
0.180 
0.245 
0.320 
0.405 

2. Function set: Arithmetic functions+, - , *, '/,. 

3. Fitness function: Standardized fitness, based on root mean 
square error over 10 fitness cases. 

4. Parameters of individual and population, the initialization and 
selection method, operator probabilities. 

Koza has introduced a very lucid form of listing parameters in 
the tableau of Table 5.4 named after him. From there, we can read 
off that P — 600 individuals were used for this GP run in a tree-
based system. Crossover probability was pc — 0.9. Fitness was based 
on the error that an individual produced when fed with the input of 
these fitness cases. More details are listed in the table. 

Let us inspect some selected individuals from a GP run. In initial 
generation 0, the distribution of fitness values was broad. Figure 5.10 
shows the best individual in generation 0. We shall call the function 
resulting from the best individual in generation i fi(x). So /o reads: 

(5.12) 

Figures 5.11-5.15 show best individuals from subsequent genera¬ 
tions 1, 2, 3, and from generation 5. So / i reads: 

(5.10) 

(5.11) 

As we can see, the tree size first expands on its way to an optimal 
solution and then shrinks again. /2 reads: 



Table 5.4 
Koza Tableau 

Figure 5.10 
Best individual in 
generation 0. % is 
protected division. 
/o(x) = f 

In generation 3, the best individual has found the correct solution 
iu its simplest form. 

(5.13) 

Subsequent generations start to combine this correct solution 
with others, with the consequence that the size of the best individual 
increases again. Because we did not always conserve the best indi¬ 
vidual found so far (a strategy that is called elitist and could be used 
in a GP run), quality fell again in later generations. 

Table 5.5 shows how the function of the best individual program 
approaches desired outputs over the course of generations 0-3. Fig-

| Parameters 

objective: 

terminal set: 
function set: 
population size: 
crossover probability: 
mutation probability: 
selection: 
termination criterion: 
maximum number of generations: 
maximum depth of tree after crossover: 
maximum mutant depth: 
initialization method: 

Values 

evolve function fitting the values 
of the fitness case table 
x, integers from -5 to +5 
ADD, SUB, MUL, DIV 
600 
90 percent 
5 percent 
tournament selection, size 4 
none 
100 
200 
4 
grow 



Figure 5.11 
Best individual in 
generation 1. Tree has 
expanded considerably. 

Figure 5.12 
Best individual in 
generation 2. Tree has 
expanded again. (See 
text) 

ure 5.16 shows the corresponding behavior of the functions for the 
best individuals. 



Figure 5.13 
Best individual in 
generation 2 continued: 
Subtree Sub 1 

Figure 5.14 
Best individual in 
generation 3. Perfect 
individual of simplest 
form found. f(x) = ^-

Fitness Case 1 
Fitness Case 2 
Fitness Case 3 
Fitness Case 4 
Fitness Case 5 
Fitness Case 6 
Fitness Case 7 
Fitness Case 8 
Fitness Case 9 
Fitness Case 10 

Target output 

0.000000 
0.005000 
0.020000 
0.045000 
0.080000 
0.125000 
0.180000 
0.245000 
0.320000 
0.405000 

Gen. 0 

0.000000 
0.033333 
0.066667 
0.100000 
0.133333 
0.166667 
0.200000 
0.233333 
0.266667 
0.300000 

Gen. 1 

0.000000 
0.017544 
0.037037 
0.058824 
0.083333 
0.111111 
0.142857 
0.179487 
0.222222 
0.272727 

Gen. 2 

0.000000 
0.002375 
0.009863 
0.023416 
0.044664 
0.076207 
0.122140 
0.188952 
0.287024 
0.432966 

Gen. 3 

0.000000 
0.005000 
0.020000 
0.045000 
0.080000 
0.125000 
0.180000 
0.245000 
0.320000 
0.405000 

The above individuals are from a single GP run - a dynamic 
process that changes profoundly during its execution. Figure 5.17 

Table 5.5 
Target output and best 
individual output for 
generations 0 to 3 



Figure 5.15 
Best individual in 
generation 5. Length 
increases again. Fitness 
score is still perfect. 

Figure 5.16 
Behavior of best 
individuals of generations 
0, 1, 2, 3. Generation 3 
individual is identical to 
function itself. 

shows how the average fitness of the entire population and the fitness 
of the best individual change as the run progresses. 

As we shall discuss in Chapter 7, it is instructive to observe the 
development of program complexity during a run. We have therefore 
included a complexity measure in Figure 5.17 for illustrative pur¬ 
poses. We can see that average length of programs begins to increase 
quickly after the best fitness has arrived at its optimal value. 



Figure 5.17 
Development of fitness 
over generations. Best 
individual, average 
fitness, average length of 
individuals, scaled 

What is interesting is how the simple process of a GP run - some 
terminals, some functions, crossover, mutation, and iteration - could 
have such a profound effect. This dynamic nature of the GP process 
and the many ways in which it manifests itself will prove to be a 
recurring theme in this book. 



Exercises 

1. Mention three important features shared by most GP systems. 

2. What are the two different basic components of a GP program 
structure? 

3. Give two different types of terminals. 

4. What is the arity of a function? 

5. Describe three different types of GP genomes. 

6. Describe two methods for initialization of a tree structure indi¬ 
vidual. 

7. Name the principal operations of a GP system. 

8. How does a basic crossover operator work in a tree structure? 

9. Describe three different selection algorithms. 

10. Which are the preparatory steps before a GP experiment? 

11. What is the difference between generational GP and steady-
state GP? 

12. Why do we not use only the best individuals as a source for the 
next generation? 

13. Design a terminal and function set in order to classify dogs as 
terriers, standard poodles, toy poodles, or German shepherds. 
Which terminals and functions would you not include and why? 

14. Design a terminal and function set to derive one of Kepler's 
laws. Did you consider and reject the inclusion of any terminals 
or functions? 

15. Formulate the grow method of initialization in linear GP. 
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Crossover and Building 
Blocks 

Crossover -The 

Controversy 

Search operators are among the most important parts of any machine 
learning system - they define the manner in which the system moves 
through the space of candidate solutions (see Chapter 1). In most GP 
systems, crossover is the predominant search operator. For example, 
in [Koza, 1992d] the crossover operator is applied 90% of the time. 
Most GP researchers have followed suit. 

GP's heavy use of crossover is more than just a preference. Chap¬ 
ter 2 analyzed the mechanism of biological sexual reproduction, in¬ 
cluding crossover, at some length. The remarkable amount of bi¬ 
ological energy that goes into maintaining species and homologous 
crossover suggests that crossover may well be an effective search op¬ 
erator in population-based machine learning systems like GP. The 
analogy with biological crossover is, of course, the original inspiration 
for the use of crossover in machine learning systems. Simply put, GP 
crossover attempts to mimic the process of sexual reproduction. 

The crossover operator has been used as basis for the claim that 
GP search is more effective than systems based on random transfor¬ 
mations (mutations) of the candidate solutions, like simulated an¬ 
nealing. Essentially, Koza has argued that a GP population contains 
building blocks. Simply put, a building block could be any GP tree or 
subtree that shows up in a fraction of the population. The building 
block hypothesis of GP follows the same line of argument as does the 
building block hypothesis from genetic algorithms [Holland, 1975]. 
Good building blocks improve the fitness of individuals that include 
them. Therefore, individuals with good building blocks are more 
likely to be selected for reproduction or breeding. Hence, good build¬ 
ing blocks are likely to multiply and spread as they are duplicated 
and exchanged among individuals. 

GP works faster than systems just based on mutations, according 
to this hypothesis, because good building blocks get combined into 
ever larger and better building blocks to form better individuals. 
This argument is based on the schema theorem, which is one of the 
theoretical underpinnings of genetic algorithms [Goldberg, 1989]. 

The argument about the effectiveness of crossover has generated 
a good deal of controversy in other parts of the machine learning com¬ 
munity [Lang, 1995] and has also provoked some thoughtful analysis 
in the GP community about just what a building block in GP is and 
whether we can realistically expect good GP building blocks to be se¬ 
lected by the crossover operator and to be combined into larger and 
better solutions [Altenberg, 1994b] [O'Reilly and Oppacher, 1992]. 

This chapter will focus on the central dispute regarding the cross¬ 
over operator by posing the following two questions: 



6.1 The Theoretical Basis for the Building Block Hypothesis in GP 

Q Does the GP crossover operator outperform mutation-based 
systems by locating and combining good building blocks or is 
GP crossover, itself, a form of macromutation? 

Q What sorts of improvements may be made to the crossover op¬ 
erator to improve its performance? 

Our discussion of other important aspects of the crossover oper¬ 
ator, such as its role in creating so-called introns will be deferred to 
later chapters. 

This chapter will focus at length on the undoubted shortcom¬ 
ings of the GP crossover operator. It is important, nevertheless, to 
remember that something is going on with GP crossover. GP has 
amassed an impressive record of achievements in only a few years. 
Whether crossover acts as a macromutation operator or whether it 
can, in addition, locate good schemata and combine them into better 
schemata, GP crossover already has a substantial record of accom¬ 
plishment. 

The next several sections of this chapter will be devoted to a 
critical analysis of GP crossover. First, we will look at the theoretical 
bases for both the building block hypothesis and the notion that 
GP crossover is really a macromutation operator. Second, we will 
survey the empirical evidence about the effect of crossover. Third, 
we will compare and contrast GP crossover with biological crossover. 
Finally, we will look at several promising directions for improving GP 
crossover. 

6.1 The Theoretical Basis for the 
Building Block Hypothesis in GP 

The schema theorem of Holland [Holland, 1975] is one of the most in¬ 
fluential and debated theorems in evolutionary algorithms in general 
and genetic algorithms in particular. The schema theorem addresses 
the central question of why these algorithms work robustly in such 
a broad range of domains. Essentially, the schema theorem for fixed 
length genetic algorithms states that good schemata (partial building 
blocks that tend to assist in solving the problem) will tend to multiply 
exponentially in the population as the genetic search progresses and 
will thereby be combined into good overall solutions with other such 
schemata. Thus, it is argued, fixed length genetic algorithms will 
devote most of their search to areas of the search space that contain 
promising partial solutions to the problem at hand. 

Recently, questions have been raised about the validity of the 
schema theorem for fixed length genetic algorithms. Nevertheless, 



Koza's Schema 

Theorem Analysis 

O'Reilly's Schema 

Theorem Analysis 

the schema theorem remains the best starting point for a mathemat¬ 
ically based analysis of the mechanisms at work in genetic algorithms 
using crossover. There have been several attempts to transfer the 
schema theorem from genetic algorithms to GP. However, the GP 
case is much more complex because GP uses representations of vary¬ 
ing length and allows genetic material to move from one place to 
another in the genome. 

The crucial issue in the schema theorem is the extent to which 
crossover tends to disrupt or to preserve good schemata. All of the 
theoretical and empirical analyses of the crossover operator depend, 
in one way or another, on this balance between disruption and pre¬ 
servation of schemata. 

Koza was the first to address the schema theorem in GP. In his 
first book [Koza, 1992d, pages 116-119], Koza provides a line of rea¬ 
soning explaining why the schema theorem applies to variable length 
GP. In his argument, a schema is a set of subtrees that contains 
(somewhere) one or many subtrees from a special schema defining 
set. For example, if the schema defining set is the set of S-expressions 
HI = {(- 2 y), (+ 2 3)} then all subtrees that contain (— 2 y) or 
(+ 2 3) are instances of HI. Koza's argument is informal and he does 
not suggest an ordering or length definition for his schemata. 

Koza's statement that GP crossover tends to preserve, rather 
than disrupt, good schemata depends crucially on the GP reproduc¬ 
tion operator, which creates additional copies of an individual in the 
population. Individuals that contain good schemata are more likely 
to be highly fit than other individuals. Therefore, they are more likely 
to be reproduced. Thus, good schemata will be tested and combined 
by the crossover operator more often than poorer schemata. This 
process results in the combination of smaller but good schemata into 
bigger schemata and, ultimately, good overall solutions. 

These ideas are formalized and extended considerably in 
[O'Reilly and Oppacher, 1995b] [O'Reilly and Oppacher, 1994b] by 
defining a schema as a multiset of subtrees and tree fragments under 
fitness-proportional selection and tree-based crossover. Fragments of 
trees are defined with a method similar to Holland's original schema 
theorem using a don't care symbol (#). O'Reilly defines her schemata 
similarly to Koza but with the presence of a don't care symbol in one 
or more subtrees, HI = {(— # y), (+ 2 #)}. Thus, if the defining set 
for HI contains several identical instances of a tree fragment, then 
the tree must contain the same number of matching subtrees in order 
to belong to the schema HI. 

O'Reilly's use of the don't care symbols is a major contribution to 
GP schema theory. It makes it possible to define an order and a length 
of the schemata. The order of a schema is the number of nodes which 



are not •#• symbols and the length is the number of links in the tree 
fragments plus the number of links connecting them. The sum of all 
links in a tree is variable and the probability of disruption depends on 
the size and shape of the tree matching a schema. O'Reilly therefore 
estimates the probability of disruption by the maximum probability 
of disruption, Pd(H,t), producing the following schema theorem: 

(6.1) 

f(H, t) is mean fitness of all instances of a certain schema H and f(i) 
is average fitness in generation t, while E[m(H, t + 1)] is the expected 
value of the number of instances of H and pc is crossover probability. 

The disadvantage of using the maximum probability is that it 
may produce a very conservative measure of the number of schemata 
in the next generation. Even the maximum probability of disrup¬ 
tion varies with size, according to O'Reilly's analysis. While this is 
not a surprising result in variable length GP, it makes it very diffi¬ 
cult to predict whether good schemata will tend to multiply in the 
population or will, instead, be disrupted by crossover. 

Whigham has formulated a definition of schemata in his grammar-
based GP system (see Chapter 9) [Whigham, 1995c]. In Whigham's 
approach, a schema is defined as a partial derivation tree. This ap¬ 
proach leads to a simpler equation for the probability of disruption 
than does O'Reilly's approach. However, like O'Reilly's derivation, 
Whigham's predicted probability of disruption also depends on the 
size of the tree. 

Recently, Poll and Langdon [Langdon and Poll, 1997] have for¬ 
mulated a new schema theorem that asymptotically converges to the 
GA schema theorem. They employed 1-point crossover and point mu¬ 
tation as GP operators. The result of their study suggests that there 
might be two different phases in a GP run: a first phase completely 
depending on fitness, and a second phase depending on fitness and 
structure of the individual (e.g., schema defining length). Whereas 
this work has introduced new operators to make schema dynamics 
more transparent, Rosca has concentrated on the structural aspect 
[Rosca, 1997]. He recently derived a version of the schema theorem 
for rooted-tree schemata. A rooted-tree schema is a subset of the 
set of program trees that matches an identical tree fragment which 
includes the tree root. 

None of the existing formulations of a GP schema theorem pre¬ 
dicts with any certainty that good schemata will propagate during 
a GP run. The principal problem is the variable length of the GP 
representation. In the absence of a strong theoretical basis for the 
claim that GP crossover is more than a macromutation operator, it 
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Theorem Analysis 
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Theorems 

Inconclusive Schema 
Theorem Results for 
GP 



is necessary to turn to other approaches. In the next two sections, we 
will first look at the probability of disruption issue with a gedanken 
experiment and then analyze the empirical studies of the crossover 
operator. 

6.2 Preservation and Disruption of Building 
Blocks: A Gedanken Experiment 

We begin with an intuitive discussion of the difficulties of the cross¬ 
over operator. First, we observe that the crossover operator is a 
destructive force as well as a constructive one. We have discussed 
the inconclusive theoretical basis for crossover's possible role in as¬ 
sembling good building blocks into complete solutions. This section 
describes a way to think about the balance of the constructive and 
destructive aspects of crossover. 

Figure 6.1 
A tree assembling 
building blocks 

6.2.1 Crossover as a Disruptive Force 

Consider Figure 6.1. It may serve to illustrate what happens when 



GP assembles good building blocks into a good program. We will 
look at the assembly of a good program block by block. 

Let us first assume that the dark nodes (7-9) constitute a good 
building block. At this point there are 19 crossover points in the indi¬ 
vidual in Figure 6.1. If crossover is distributed randomly among these 
nodes, the probability of our good building block being disrupted by 
crossover is 2/19 or about 10.5%. 

Now let us assume that crossover finds a new, good building block 
containing our original good block. That larger block is designated 
in Figure 6.1 by the black and dark gray nodes (nodes 6—11). The 
probability that this new block will be disrupted by a crossover event 
is 5/19 or 26.3%. 

Now assume that the light gray nodes are part of a newly found 
good building block that has been assembled by GP crossover (nodes 
1-11). What happens when this larger but better building block 
faces the crossover operator again? The answer is straightforward. 
The probability that this new block will be disrupted by a crossover 
event is 10/19 or 52.6%. 

As the reader can see, as GP becomes more and more successful 
in assembling small building blocks into larger and larger blocks, the 
whole structure becomes more and more fragile because it is more 
prone to being broken up by subsequent crossover. In fact, assume 
that our building block (now, all of the colored nodes) is almost a 
perfect program. All that needs to be done now is to get rid of the 
code represented by the white nodes in Figure 6.1. The individual 
in Figure 6.1 is crossed over and the resulting individual is shown in 
Figure 6.2. This solution is almost there. There is only one node to 
get rid of before the solution is perfect. But in this case, just before 
success, the probability that the perfect solution will be disrupted by 
crossover is 10/11 or 90.9%. 

Crossover can damage fitness in ways other than breaking up 
good building blocks. Assume that our good building block in Figure 
6.2 survives crossover. It may, nevertheless, be moved into a new 
individual that does not use the good building block in any useful 
way - in other words, it may be moved to an inhospitable context. 

Consider the numbers. If constructive crossover occurs between 
10% and 15% of the time, this means that, on average, a good building 
block that is large must be involved in many crossover events before 
it is involved in a crossover event that does not break it up. 

But that is not the end of the story. In the one event where the 
good block is not disrupted by crossover, what are the chances that 



Figure 6.2 
A tree that has a/most 

assembled a perfect 

solution to a problem 

it will be inserted into another individual where it is used to good 
effect and where other code does not cancel out the effect of this good 
block? The insertion is context dependent. 

The conclusion is inevitable; crossover is a disruptive force as 
well as a constructive force - putting building blocks together and 
then tearing them apart. The balance is impossible to measure with 
today's techniques. It is undoubtedly a dynamic equilibrium that 
changes during the course of evolution. We note, however, that for 
most runs, measured destructive crossover rates stay high until the 
very end. 

6.2.2 Reproduction and Crossover 

In standard GP the reproduction operator takes the fittest individuals 
in the population and duplicates them. Thus, the argument goes, the 
good building blocks in those duplicated individuals will have many 
chances to try to find crossovers that are not disruptive. 

This argument depends, of course, on the assumption that the 
high quality of the building block shown by the darkened nodes in 
Figure 6.1 will somehow be reflected in the quality of the individual 



in which it appears. But if the nodes around the good code ignore it 
or transform it in an unacceptable way, that will not be the case. 

It also depends on the balance between the reproduction operator 
and the destructive effects of crossover at any given time in a run. 
Sometimes good blocks will improve the fitness of the individual they 
are in. Other times not. So the balance between the constructive and 
the destructive aspects of crossover is still the dominant theme here. 
Knowing the correct reproduction parameter and how to adjust it 
during a run to deal with the dynamic aspects of this problem is 
something on which no research exists. 

After theoretical considerations and this gedanken experiment, 
our analysis is still inconclusive. It is impossible to predict with any 
certainty yet whether GP crossover is only a macromutation opera¬ 
tor or something more. Therefore, it is time to consider empirical 
measurements of the crossover operator. 

Schema Theorem 
Analysis Is Still 
Inconclusive 

6.3 Empirical Evidence of Crossover Effects 

Two sets of empirical studies bear on the effect of crossover. The 
first suggests that crossover normally results in severe damage to 
the programs to which it is applied. The second suggests that well-
designed hill climbing or simulated annealing systems, which do not 
use population-based crossover, are very competitive with GP sys¬ 
tems. We shall have a look at them both in turn. 

6.3.1 The Effect of Crossover on the Fitness 
of Offspring 

We began measuring the effect of crossover on the relative fitness 
of parents and their offspring in 1995 [Nordin and Banzhaf, 1995a] 
[Nordin et al., 1995]. There are two important issues in this regard: 

J How can we measure the effect of crossover? 
Measuring the effect of crossover is not as straightforward as it 
might seem. The problem is that there are always at least two 
parents and one or more children. So GP systems are never 
measuring a simple one-to-one relationship. 

Q Likewise, it is not entirely clear what should be measured. 

Figure 6.3 shows a graph of the effect of crossover on fitness of 
offspring during the course of a run in symbolic regression in 
linear GP. Fitness change A/p e r c e n t is defined as 

(6.2) 



Figure 6.3 
Effects of crossover are of 
different kinds 

with /before fitness before crossover and fajter after crossover 
under the assumption of a standardized fitness function, fbeat = 
0, fworst — 00-

Individuals with a fitness decrease of more than 100% are accu¬ 
mulated at the left side. Note that throughout training, there 
are two dominant forms of crossover - very destructive crossover 
(left) and neutral crossover (middle). There is also a low level 
of constructive crossover. Although it is possible to measure 
positive and negative crossover effects exactly, we have found 
it beneficial to do categorizing measurements. A substantial 
amount of information may be gleaned already from measuring 
neutral crossover as a separate category.1 

Two basic approaches to measuring the effect of crossover have 
been used in the literature: 

The average fitness of all parents has been compared with the 
average fitness of all offspring [Nordin and Banzhaf, 1995a]. 
Note that the effect of this is that both parents and offspring 
are counted as one crossover event. Thus no special cases, like 
2 parents and 3 children versus 3 parents and 2 children, need 
to be treated separately. 

1 Neutral crossover in existing studies has been defined as any crossover 
event where the fitness of the children is within ± 2.5% of the fitness of 
the parents. 



Q The fitness of children and parents is compared on an individual 
basis [Teller, 1996] [Francone et al., 1996]. In this approach, 
one child is assigned to one parent. 

Therefore, each such pairing is counted as one crossover event. 
In this case, a further specialization is necessary. Do we com¬ 
pare offspring to the best or worst parent? Do we compare 
them one by one (only possible if numbers are equal)? 

Regardless how the measurement is conducted, it is important to 
separate destructive, neutral, and constructive crossover and to pro¬ 
vide a separate measurement for each. The resulting measurements 
are very informative no matter what technique is used for measure¬ 
ment. 

The effect of crossover has been measured for tree-based GP, lin¬ 
ear (machine code) GP [Nordin and Banzhaf, 1995a], and graph GP 
[Teller, 1996]. In all three cases, crossover has an overwhelmingly 
negative effect on the fitness of the offspring of the crossover. For ex¬ 
ample, in linear genomes, the fitness of the children is less than half 
the fitness of the parents in about 75% of all crossover events. Simi¬ 
lar measurements apply to tree-based crossover [Nordin et al., 1996]. 
Recently, Teller has measured similar figures for crossover in the 
graph-based system PADO. Although his measurements were not 
precisely equivalent to the tree and linear measurements of cross¬ 
over cited above, his findings are quite consistent - less than 10% 
of crossover events in graph-based GP result in an improvement in 
the fitness of offspring relative to their parents. Note that these are 
global numbers over entire runs. There is certainly a change over the 
course of a run that cannot be reflected in these numbers at all. 

What is remarkable is that three very different ways of measuring 
crossover on three completely different representations have yielded 
such similar results. The conclusion is compelling: crossover routinely 
reduces the fitness of offspring substantially relative to their parents 
in almost every GP system. This stands in stark contrast to biological 
crossover. 

The Results of 
Measuring the Effect of 
Crossover 

6.3.2 The Relative Merits of Program Induction via 
Crossover versus Hill Climbing or Annealing 

Lang [Lang, 1995] launched a controversial attack on GP crossover 
in 1995. Lang's study argued that crossover in a population did not 
perform nearly as well as a macromutation operator that has been 
whimsically dubbed headless chicken crossover. 

In headless chicken crossover, only one parent is selected from 
preexisting learned solutions. An entirely new individual is created 

Headless Chicken 

Crossover 



randomly. The selected parent is then crossed over with the new 
and randomly created individual. The offspring is kept if it is better 
than or equal to the parent in fitness. Otherwise, it is discarded. 
Thus, headless chicken crossover is a form of hill climbing. In one 
genetic algorithm study, headless chicken crossover slightly outper¬ 
formed both traditional genetic algorithms and hill climbing using 
bit-flipping mutations [Jones, 1995]. 

Lang's study went considerably further in its conclusion. Lang 
argued that headless chicken crossover was much better than GP 
crossover. However, his study was based on one small problem (3-
argument Boolean functions) and the broad interpretation of his lim¬ 
ited results is dubious [O'Reilly, 1995]. 

Lang's results are of questionable usefulness because of the single 
problem he chose to show that hill climbing outperformed genetic 
programming. Every machine learning technique has a bias - a ten¬ 
dency to perform better on certain types of problems than on others. 
Lang picked only one test problem, the Boolean 3-multiplexer prob¬ 
lem. Boolean multiplexer problems have the property that there are 
no strict local minima. That is [Juels and Wattenberg, 1995]: 

... from any point in the search space, the graph denning the 
neighborhood structure contains a path to some optimal solution 
such that every transition in the path leads to a state with an 
equal or greater fitness. A. JUELS AND M. WATTENBERG, 1995 

In other words, Boolean multiplexer problems like the simple one 
Lang used are well suited to be solved by hill climbing algorithms 
like headless chicken crossover. That is, the bias of a hill climbing 
algorithm is particularly well suited to solving Boolean multiplexer 
problems. 

However, other more thorough studies have raised significant 
questions about whether the crossover operator may be said to be 
better than mutation-oriented techniques. One set of those studies is 
discussed above - crossover is highly destructive to offspring. Other 
studies suggest that mutation techniques may perform as well as and 
sometimes slightly better than traditional GP crossover. 

For example, O'Reilly measured GP crossover against several 
other program induction algorithms that did not rely on population-
based crossover. Two were of particular interest to her, mutate-
simulated annealing and crossover-hill climbing. Each algorithm 
starts with a current solution. This is then changed to generate a 
new solution. For example, the crossover-hill climbing algorithm 
changes the current candidate solution by crossing it over with a ran¬ 
domly generated program, a form of headless chicken crossover. If 
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the new solution has higher fitness, it replaces the original solution.2 

If the new solution has lower fitness, it is discarded in crossover-hill 
climbing but kept probabilistically in mutate-simulated annealing. 

O'Reilly found [O'Reilly and Oppacher, 1994a] that the mutate-
simulated annealing and crossover-hill climbing algorithms performed 
as well as or slightly better than standard GP on a test suite of six 
different problems; see also [O'Reilly and Oppacher, 1995a]. 

In another recent study, O'Reilly extended her results by com¬ 
paring GP with other operators, most notably a hierarchical variable 
length mutation, which is an operator explicitly constructed for keep¬ 
ing distances between parent and offspring low.3 She concluded that 
crossover seems to create children with large syntactic differences be¬ 
tween parents and offspring, at least relative to offspring generated 
by hierarchical variable length mutation. This adds weight to the 
crossover-is-macromutation theory. 

More recently, Angeline tested population-based and selection-
driven headless chicken crossover against standard GP subtree cross¬ 
over (see Chapters 5 and 9). He compared the two types of operators 
over three different problem sets. His conclusion: macromutation of 
subtrees (headless chicken crossover in GP) produces results that are 
about the same or possibly a little better than standard GP subtree 
crossover [Angeline, 1997]. 

6.3.3 Conclusions about Crossover as Macromutation 

The empirical evidence lends little credence to the notion that tra¬ 
ditional GP crossover is, somehow, a more efficient or better search 
operator than mutation-based techniques. On the other hand, there 
is no serious support for Lang's conclusion that hill climbing outper¬ 
forms GP. On the state of the evidence as it exists today, one must 
conclude that traditional GP crossover acts primarily as a macromu¬ 
tation operator. 

That said, several caveats should be mentioned before the case 
on crossover may be closed. To begin with, one could easily conclude 
that traditional GP crossover is an excellent search operator as is. 
What is remarkable about GP crossover is that, although it is lethal to 
the offspring over 75% of the time, standard GP nevertheless performs 
as well as or almost as well as techniques based on long established 
and successful algorithms such as simulated annealing. 

2In evolutionary strategies, this is known as a (1 + 1) strategy. 
3This, of course, requires a measure of distance in trees, which 

O'Reilly took from [Sankoff and Kruskal, 1983]. The same measure was 
used earlier in connection with the measurement of diversity in GP 
[Keller and Banzhaf, 1994]. 



Furthermore, the failure of the standard GP crossover operator 
to improve on the various mutation operators discussed above may 
be due to the stagnation of GP runs that occurs as a result of what 
is referred to as "bloat" - in other words, the exponential growth of 
GP "introns." In Chapter 7, we will discuss the exponential growth 
of GP introns at some length. One of our conclusions there will be 
that the destructive effect of standard GP crossover is the principal 
suspect as the cause of the GP bloating effect. By way of contrast, 
the studies comparing crossover and macromutation operators use 
macromutation operators that are much less likely to cause bloat 
than standard subtree crossover. So it may be that by avoiding or 
postponing bloat, macromutation permits a GP run to last longer 
and, therefore, to engage in a more extensive exploration of the search 
space [Banzhaf et al., 1996]. 

Finally, the evidence suggests there may be room for substantial 
improvement of the crossover operator. Crossover performs quite well 
even given its highly disruptive effect on offspring. If it were possible 
to mitigate that disruptive effect to some degree, crossover would 
likely perform a faster and more effective search. A reexamination 
of the analogy between biological crossover and GP crossover and 
several recent studies on crossover suggest various directions for such 
improvements in crossover. 

6.4 Improving Crossover - The Argument 
from Biology 

Although there are many differences between the GP crossover op¬ 
erator and biological crossover in sexual reproduction, one difference 
stands out from all others. To wit, biological crossover works in 
a highly constrained and highly controlled context that has evolved 
over billions of years. Put another way, crossover in nature is itself an 
evolved operator. In Altenberg's terms [Altenberg, 1994b], crossover 
may be seen as the result of the evolution of evolvability. 

There are three principal constraints on biological crossover: 

1. Biological crossover takes place only between members of the 
same species. In fact, living creatures put much energy into 
identifying other members of their species - often putting their 
own survival at risk to do so. Bird songs, for example, attract 
mates of the same species . . . and predators. Restricting 
mating to intraspecies mating and having a high percentage of 
viable offspring must be very important in nature. 



2. Biological crossover occurs with remarkable attention to pre¬ 
servation of "semantics." Thus, crossover usually results in the 
same gene from the father being matched with the same gene 
from the mother. In other words, the hair color gene does not 
get swapped for the tallness gene. 

3. Biological crossover is homologous. The two DNA strands are 
able to line up identical or very similar base pair sequences 
so that their crossover is accurate (usually) almost down to the 
molecular level. But this does not exclude crossover at duplicate 
gene sites or other variations, as long as very similar sequences 
are available. 

In nature, most crossover events are successful - that is, they 
result in viable offspring. This is a sharp contrast to GP crossover, 
where over 75% of the crossover events are what would be termed in 
biology "lethal." 

What causes this difference? In a sense, GP takes on an enormous 
chore. It must evolve genes (building blocks) so that crossover makes 
sense and it must evolve a solution to the problem all in a few hundred 
generations. It took nature billions of years to come up with the 
preconditions so that crossover itself could evolve. 

GP crossover is very different from biological crossover. Crossover 
in standard GP is unconstrained and uncontrolled. Crossover points 
are selected randomly in both parents. There are no predefined build¬ 
ing blocks (genes). Crossover is expected to find the good building 
blocks and not to disrupt them even while the building blocks grow. 

Let's look more closely at the details: 

Q In the basic GP system, any subtree may be crossed over with 
any other subtree. There is no requirement that the two sub¬ 
trees fulfill similar functions. In biology, because of homol-
ogy, the different alleles of the swapped genes make only minor 
changes in the same basic function. 

Q There is no requirement that a subtree, after being swapped, is 
in a context in the new individual that has any relation to the 
context in the old individual. In biology, the genes swapped are 
swapped with the corresponding gene in the other parent. 

Q Were GP to develop a good subtree building block, it would be 
very likely to be disrupted by crossover rather than preserved 
and spread. In biology, crossover happens mostly between sim¬ 
ilar genetic material. It takes place so as to preserve gene func¬ 
tion with only minor changes. 



G There is no reason to suppose that randomly initialized indi¬ 
viduals in a GP population are members of the same species -
they are created randomly. 

Given these differences, why should we expect crossover among 
GP individuals to have anything like the effect of biological crossover? 
Indeed, crossing over two programs is a little like taking two highly 
fit word processing programs, Word for Windows and WordPerfect, 
cutting the executables in half and swapping the two cut segments. 
Would anyone expect this to work? Of course not. Yet the indis-
putible fact is that crossover has produced some remarkable results. 
So each difference between biological and GP crossover should be re¬ 
garded as a possible way to improve GP crossover - some of which, 
as we will see below, have already been implemented. 

6.5 Improving Crossover — New Directions 

Our critique of crossover suggests areas in which the crossover oper¬ 
ator might be improved. We regard the most basic and promising 
approach to be modification of GP crossover so that it acts more like 
homologous crossover in nature. Nature has gone to great lengths to 
avoid macromutation in crossover (see Chapter 2). There is likely to 
be a reason for the energy nature devotes to avoiding macromutation. 
We submit, therefore, that homology should be the central issue in 
redefining the crossover operator. 

However, most of the efforts to improve crossover to date have 
focussed on the preservation of building blocks, not the preserva¬ 
tion of homology. Some of those efforts have been successful, others 
have intriguing empirical implications regarding the building block 
hypothesis, and others represent a first look by the GP community 
at the issue of homology. The remainder of this section will look at 
these studies. 

6.5.1 Brood Recombination 

Drawing on work by Altenberg [Altenberg, 1994a], Tackett devised a 
method for reducing the destructive effect of the crossover operator 
called brood recombination [Tackett, 1994]. Tackett attempted to 
model the observed fact that many animal species produce far more 
offspring than are expected to live. Although there are many different 
mechanisms, the excess offspring die. This is a hard but effective way 
to cull out the results of bad crossover. 

Tackett created a "brood" each time crossover was performed. 
One of the key parameters of his system was a parameter called brood 



Figure 6.4 
Brood recombination 
illustrated 

size N. Figure 6.4 shows the creation and evaluation of a brood where 
N = 4, which took place in the following steps: 

1. Pick two parents from the population. 

2. Perform random crossover on the parents AT times, each time 
creating a pair of children as a result of crossover. In this case 
there are eight children resulting from N = 4 crossover opera¬ 
tions. 

3. Evaluate each of the children for fitness. Sort them by fitness. 
Select the best two. They are considered the children of the 
parents. The remainder of the children are discarded. 

There is one big problem with this approach. GP is usually slow 
in performing evaluations. Instead of having two children to evalu¬ 
ate, as in standard crossover, brood recombination appears to make 

Time-Saving Evaluation 

Methods 



Is Brood 
Recombination 

Effective? 

it necessary to evaluate 27V children. Will this not slow down GP 
tremendously? The answer is no, because of a clever approach Al-
tenberg and Tackett take to evaluation. Tackett reasons that it is only 
important that the selection on the brood selects children that are 
"in the ballpark" - not that they are certainly the best of the brood. 
So he evaluates them on only a small portion of the training set. Be¬ 
cause the entire brood is the offspring of one set of parents, selection 
among the brood members is selecting for effective crossovers - good 
recombinations. 

Brood recombination is similar to ES-style selection (see Section 
4.3.2). There, immediately after applying the genetic operators to 
H parents, a selection step chooses the best offspring. However, the 
number of offspring in (//, A) selection, A, is greater than //, whereas 
in brood recombination the number of offspring is an integer multiple 
of/x.4 

In Chapter 1 we looked at GP as a type of beam search. The 
beam is the population. Viewed another way, the beam is the genetic 
material in the population, not just the individuals. In this light, 
crossover combined with selection could be viewed as part of the 
evaluation metric to select genetic material from the beam as the next 
search point. Brood recombination would then be a discriminating 
addition to the evaluation metric for the beam. 

However we view it, we would expect brood recombination to 
be less disruptive to good building blocks than ordinary crossover 
because the children of destructive crossover events would tend to be 
discarded when the brood is evaluated. Therefore, we would predict 
that GP could build larger building blocks with brood recombination 
before disruptive forces began to break them up. That being the 
case, we would expect GP with brood recombination to search for 
solutions more efficiently than regular GP. That is, for each unit of 
CPU time, brood recombination should produce a better result. 

In fact, that is exactly what happened. Tackett found that brood 
recombination performed significantly better than standard GP on 
a suite of problems. Indeed, he found that there was only a small 
reduction in performance by using 30 out of the 360 training instances 
to evaluate the brood. In all cases measured, the results achieved by 
particular amounts of computation and diversity in the population 

4The trick of not using all fitness cases for program evaluation has 
been applied successfully completely independent of brood recombination. 
Gathercole used this technique in 1994 [Gathercole and Ross, 1994]. We 
refer to the technique as "stochastic sampling" because it uses a stochasti¬ 
cally selected subset of all the training cases. In an extreme case, stochastic 
sampling can be used to train a population on only a single member from 
the training set at a time[Nordin and Banzhaf, 1995c]. 



both improved when brood recombination was added. He also found 
that it was possible to reduce the population size when he used brood 
recombination. 

Brood recombination raises two interesting questions. Does brood 
recombination work by not disrupting building blocks or by adding 
a different form of search process to the GP algorithm - in machine 
learning terms, giving the GP algorithm the ability to look ahead 
when adjusting the beam? Tackett's results may be regarded as con¬ 
sistent with either premise. 

All that we would expect the brood recombination operator to 
do is to change the balance between destructive crossover and con¬ 
structive crossover. In short, we would predict that, with brood re¬ 
combination, GP would be able to maintain larger building blocks 
against destructive crossover. Eventually, as the building blocks got 
larger, the probability of destructive crossover would increase and we 
would predict that bloat would set in to protect the larger building 
blocks. This suggests that a dynamic form of brood recombination, 
where the size of the brood grows as evolution proceeds, may yield 
best results. 

6.5.2 "Intelligent" Crossover 

Recently, researchers have attempted to add intelligence to the cross¬ 
over operator by letting it select the crossover points in a way that 
is less destructive to the offspring. 

The PADO system was discussed (Section 5.2.3) as a prototypic 
graph-based GP system. Simple crossover in GP systems is rather 
straightforward. But it is far from obvious how to cause intelligent 
crossover, especially in a graph GP system. Teller has devised a 
complex but surprisingly effective technique for improving the rate 
of constructive crossover in PADO by letting an intelligent crossover 
operator learn how to select good crossover points. Teller gives his in¬ 
telligent crossover operator access to information about the execution 
path in an evolved program, among other things. This information is 
then used to guide crossover [Teller and Veloso, 1995b] [Teller, 1996]. 

Teller's intelligent recombination operator significantly improved 
the performance of traditional GP crossover. The percentage of re¬ 
combination events that resulted in offspring better than the parents 
approximately doubled. Zannoni used a cultural algorithm (a more 
traditional machine learning algorithm) to select crossover points 
with similar results [Zannoni and Reynolds, 1996]. 

Iba [Iba and de Garis, 1996] has proposed a form of intelligent 
heuristic guidance for the GP crossover operator. Iba computes a so-
called performance value for subtrees. The performance value is used 
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to decide which subtrees are potential building blocks to be inserted 
into other trees, and which subtrees are to be replaced. This heuristic 
recombinative guidance improves the effect of crossover substantially. 

These results are quite consistent with the building block theory. 
The intelligent operators discussed here obviously found regularities 
in the program structures of very different GP systems and devised 
rules to exploit those regularities. As a result, the systems were 
able to choose better crossover sites than systems based on standard 
GP crossover, which chooses crossover sites randomly. These studies 
therefore suggest that in GP: 

Q There are blocks of code that are best left together - perhaps 
these are building blocks. 

Q These blocks of code have characteristics that can be identified 
by heuristics or a learning algorithm. 

Q GP produces higher constructive crossover rates and better re¬ 
sults when these blocks of code are probabilistically kept to¬ 
gether. 

These points are not a statement of the building block hypothesis 
in its strong form - they do not prove that the blocks of code are as¬ 
sembled into better combinations. However, the points are certainly 
strong support for a weak building block hypothesis, namely, that 
there are blocks of code evolved in GP that are best not disrupted. 

Both of the above techniques, brood recombination and smart 
crossover, attack the crossover problem as a black box. In essence, 
they take the position that it does not matter how you get better 
crossover. What is important is to improve the final overall result. 
The next few techniques we will discuss are based on attempting to 
model biological crossover so that better results from crossover will 
emerge from the evolutionary process itself. Although the results of 
this approach to date are less impressive than brood recombination 
and smart crossover in the short run, they may hold the most promise 
in the long run. 

6.5.3 Context-Sensitive Crossover 

D'haeseleer [D'haeseleer, 1994] took an emergent approach to improv¬ 
ing crossover. His work was based on the idea that most crossover 
does not preserve the context of the code - yet context is crucial to 
the meaning of computer code. He devised an operator called strong 
context preserving crossover (SCPC) that only permitted crossover 
between nodes that occupied exactly the same position in the two 



parents. D'haeseleer found modest improvements in results by mix¬ 
ing regular crossover and SCPC. 

In a way, this approach introduced an element of homology into 
the crossover operator. It is not strong homology as in the biological 
example, but requiring crossover to swap between trees at identical 
locations is somewhat homologous. 

6.5.4 Explicit Multiple Gene Systems 

Evolution in nature seems to proceed by making small improvements 
on existing solutions. One of the most ambitious attempts to create 
an emergent system in which crossover is more effective is Altenberg's 
constructional selection system [Altenberg, 1995]. He proposes a sys¬ 
tem in which fitness components are affected by all or some of the 
genes. Altenberg's system is highly theoretical because the fitness of 
the individual is just the sum of the fitness components. Figure 6.5 
is a stylized diagram of the system. 

Figure 6.5 
Altenberg's 
constructional selection 
in operation (adopted 
from [Altenberg, 1995]) 

During evolution, a gene is periodically added. If it improves the 
fitness of the individual, it is kept; otherwise, it is discarded. Between 
gene additions, the population evolves by intergene crossover. Having 
multiple fitness functions allows the genes to be more independent or, 
in biological terms, to be less epistatic. Altenberg's results suggest 
that the population maintains its evolvability because of the selection 
when adding a new gene. Also, his results clearly suggest that the 
system is less epistatic with constructional selection. 

Altenberg's work was extended and applied to real-world model¬ 
ing of industrial processes by Hiiichliffe [Hinchliffe et al., 1996], who 
used multiple trees to create a multiple gene model. 

Let T represent the output of a GP tree. Hinchliffe's model cal- Using Regression 



where T1, T2, . . . , Tn are outputs of separate trees which are his genes. 
Hinchliffe calculates the parameters a,b,c,... ,n using pseudo-inverse 
linear regression. There is, in a sense, a hill climbing step between the 
GP results and the calculation of the output. The linear regression 
tends to reduce the impact of negative crossover by assigning higher 
values to trees that are highly correlated with the actual output. 

In this multiple gene system, crossover occurs in two ways: 

Q As high-level crossover. Only T̂ s would be exchanged with T;s 
in the other individual. 

Q As low-level crossover. Subexpressions may be exchanged from 
anywhere in either parent. 

This algorithm clearly outperformed standard GP. It is unclear, 
however, whether the multiple gene structure or the addition of hill 
climbing was the cause of the improved performance. Nevertheless, 
Hinchliffe's high-level crossover operator bears a strong resemblance 
to base-pair matching in biological homologous crossover. 

6.5.5 Explicitly Defined Introns 

Recently, we introduced explicitly denned introns (EDI) into GP.5 An 
integer value is stored between every two nodes in the GP individ¬ 
ual. This integer value is referred to as the EDI value (EDIV). The 
crossover operator is changed so that the probability that crossover 
occurs between any two nodes in the GP program is proportional 
to the integer value between the nodes. That is, the EDIV integer 
value strongly influences the crossover sites chosen by the modified 
GP algorithm during crossover [Nordin et al., 1996]. 

The idea behind EDIVs was to allow the EDIV vector to evolve 
during the GP run to identify the building blocks in the individual 
as an emergent phenomenon. Nature may have managed to identify 
genes and to protect them against crossover in a similar manner. 
Perhaps if we gave the GP algorithm the tools to do the same thing, 
GP, too, would learn how to identify and protect the building blocks. 
If so, we would predict that the EDIV values within a good building 
block should become low and, outside the good block, high. Our 
results were modestly positive in linear genomes and inconclusive in 
tree-based genomes. 

5Why we used the term intron will become clear in the next chapter. 

culates its output as follows: 

(6.3) 



Despite our modest results [Nordin et al., 1995], the EDI tech¬ 
nique seems to be a promising direction for GP research. Emergent 
learning is powerful and, if designed properly, permits learning that 
reflects as few of the biases of the user as possible. 

Angeline devised a much better implementation of EDIs in 1996 
using real-valued EDIVs and constraining changes in the EDIVs by a 
Gaussian distribution of permissible mutation to the EDIVs 
[Angeline, 1996]. The result of applying this new form of EDIs to 
GP crossover was a substantial improvement in GP performance. 

The conclusion that may be drawn about crossover from Ange-
line's EDI results is that crossover may be improved substantially 
by allowing the GP algorithm to protect some groups of code from 
crossover preferentially over other groups of code. This suggests that 
there are building blocks in GP individuals, that their existence in 
the solution, on average, does create better fitness in the individual, 
and that protecting such blocks of code helps crossover to propagate 
the better building blocks throughout the population. 

6.5.6 Modeling Other Forms of Genetic Exchange 

So far we have discussed variants of the crossover operator that were 
inspired by biological sexual recombination. These variants dominate 
both genetic algorithms and genetic programming.6 However, there 
are several ways in which individuals exchange genetic material in 
nature. These forms include conjugation, transduction, and transfor¬ 
mation (see the discussion in Chapter 2). Certainly, in the future it 
will be important to do research on GP operators inspired by such 
forms of genetic exchange. 

Conjugation is used to describe the transfer of genetic information 
from one bacterial cell to another. Smith has proposed a conjugation 
operator for GAs he deems useful for GP as well [Smith, 1996]. Sim¬ 
ple conjugation in GAs works like this: two genotypes are selected 
for conjugation. One of them is the donor, the other one is the re¬ 
cipient. A starting point (with identical position in each genotype) 
and an end point (again with identical position) are chosen. Then 
the donor's selected substring is copied from beginning to end to the 
recipient, replacing the corresponding substring in the recipient. 

In GP, we need to distinguish between different representations. 
In a tree-based GP system, start and end points are nodes in the 
trees with the same position. In a linear representation, start and 
end points are the position of an instruction in the programs. In 
graph-based GP, they are the coordinates of a node in the graphs. 

6Often, operators of this kind are called recombination operators, al¬ 
though in nature recombination is a much more general term. 



To foster the spread of potentially advantageous genetic informa¬ 
tion, conjugation might be combined with tournament selection. In a 
2-tournament scheme, the winner would become the donor, the loser 
the recipient of genetic material. Multiple conjugation could be done 
by several different donors copying genetic information to the same 
recipient. Multiple conjugation involving n donors could be combined 
preferentially with n + 1-tournament selection. 

6.6 Improving Crossover — A Proposal 

In the course of the discussion of GP crossover, we have seen its main 
weaknesses. To remedy the situation, we present here a homologous 
crossover operator for tree-based GP that shares what we identified 
as important advantages of natural crossover. 

When we say we want to achieve "homologous" crossover in GP, 
we could be speaking about one of two things: 

1. The mechanism by which biology causes homology, i.e., spe-
ciation, almost identical length or structure of DNA between 
parents, and strict base pairing during crossover; or 

2. The reason that mechanism of homology has evolved. The 
reason the mechanism has evolved makes the actual mecha¬ 
nism somewhat irrelevant when changing the medium. In other 
words, new media like GP may imply new mechanisms. 

Our proposal will fall into category 2. That is, we would like to 
propose a mechanism for crossover that fits the medium of GP and 
that may achieve the same results as homologous crossover in biology. 

So the question is what result does homologous crossover have? 

Q Two parents have a child that combines some of the genome of 
each parent. 

Q The exchange is strongly biased toward experimenting with ex¬ 
changing very similar chunks of the genome - specific genes per¬ 
forming specific functions - that have small variations among 
them, e.g., red eyes would be exchanged against green eyes, but 
not against a poor immune system. 

Note that this second issue has two aspects, structure and func¬ 
tion. Obviously, in DNA, similarity of structure is closely related 
to similarity of function. Otherwise homologous crossover would not 
work. DNA crossover relies entirely on structure (base pair bonding) 
so far as we know - it does not measure function. It is speciation 



that assures similarity of genetic function during homologous bio¬ 
logical crossover. So if we are proposing a mechanism to achieve a 
result similar to biological crossover, either we must make sure that 
structure alone may be used to approximate function or we must sep¬ 
arately measure functional homology and use those measurements to 
guide the crossover. 

Here is what we suggest. We measure structural distances by 
comparing genotypes and functional distances by comparing pheno-
typic behavior. This way we have two different sources of homology 
that we can use either separately or combined. In tree-based GP, 
homologous crossover would work like this: 

1. Mating selection 
Two trees are selected randomly. 

2. Measurement of structural similarity 
Structural similarity is denned by using edit distances, already 
applied by [Sankoff and Kruskal, 1983]. This is a method for 
comparing variable length structures for similarity. We only 
need to fix an order in which to traverse the tree: depth first.7 

We number all edges between nodes in both trees according to 
depth-first traversal. Each edge will subsequently serve as the 
"coordinate" of the subtree starting from the node it points to. 

Once we have found, for each edge k in the larger tree, a subtree 
with smallest distance (and therefore an edge imin(k)) in the 
other tree - a distance we call Ds(k,imin(k)) - we add up all 
these minimal distances 

and normalize each Ds(k,imin(k)) through division by DS to 
yield a quantity Dc[(k,imin(k)}.8 

3. Measurement of functional similarity 
We measure the output of each subtree (again, in the smaller 
tree) for a (small) sample of the fitness cases. We compare the 
outputs to those of the other tree and its subtrees and calculate 

^Efficient search techniques need to be used for the algorithm. It is 
best to traverse one tree (say, the larger) and to check with all subtrees 
of the other (say, the smaller) the distance between the two. Since we are 
always looking for the minimal distance only, distance computation can 
be stopped as soon as it assumes a larger value than the presently known 
nearest subtree. 

8We can do the same for the other tree, in order to act symmetrically. 

(6.4) 



the functional difference, 

(6.5) 

for the sample of a fitness cases. The resulting distances are 
again normalized by dividing by their sum DF 

4. Selection of crossover points 

We use these two measures to determine the probability that 
the trees are crossed over at a specific edge according to a chosen 
policy. Table 6.1 gives some ideas for possible policies. 

Table 6.1 
Different policies for 
crossover point selection 
with the homologous 
crossover operator. SMD: 
structurally most distinct; 
FMS: functionally most 
similar. P is the 
probability of crossover at 
edge k. n is a 
normalizing factor 
assuring that P is a 
probability. 

A GP 1-Point 

Crossover Operator 

L Type 

SMD 
FMS 

FMS/SMD 

P( Crossover at edge fc) 

Dg(k,imin(k)) 
l-D$(k,jmin(k)) 

J-S a ( rC, ITTlZTli Kj J 1 1 — D p ( KI JTT12,TL(K} J I / Tl 

To this end, values in Table 6.1 are interpreted as probabilities, 
and a roulette wheel is used to select one of the edges (subtrees) for 
crossover. Suppose we have selected ks in parent 1 by this method. 
We then act either deterministically by taking the corresponding edge 
(subtree) imin(ks) or jmin(ks), respectively, from parent 2, or we 
proceed by selecting a subtree in parent 2 by employing the roulette 
wheel again. This way we have biased crossover probabilities by 
structural and functional features of the trees. 

An analogous method can be used for linear programs. Here, we 
could even apply a much simpler method, based on position in the 
linear sequence only. There is a problem for graph-based systems, 
though, since we do not have a clear order of execution. 

Recently, Poli and Langdon have formulated a new crossover op¬ 
erator for tree-based GP that has distinctly homologous overtones 
[Poli and Langdon, 1997b]. It is based on an analogous formulation of 
the one-point crossover of GAs for genetic programming. One-point 
crossover for a GA selects one point only in both parents to exchange 
genetic material at this point (see Figure 4.3). In the work of the au¬ 
thors, this selection process involves checking for structural similarity 
of the trees in order to find a corresponding point in the second par¬ 
ent, once it has been determined in the first. The experimental evi¬ 
dence so far achieved for this new operator [Poli and Langdon, 1997a] 



suggests that its behavior is in line with our expectations for a ho¬ 
mologous crossover operator: destructive crossover diminishes over 
the course of generations. Note that Poll and Langdon have based 
their operator on finding structural homology alone. 

6.7 Improving Crossover - The Tradeoffs 

We have concluded that, in its present state, standard GP crossover 
acts mainly as a macromutation operator. Indeed, much of our dis¬ 
cussion in this chapter has focused on how to improve crossover -
how to make it more than a simple macromutation operator. All this 
seems to assume that simple macromutation is not enough. But it is 
important not to underestimate the power of a simple mutation op¬ 
erator. Orgel, Tuerk/Gold, and Bartel/Szostak's biological test tube 
evolution experiments demonstrate the power of simple population-
based evolutionary search using only mutation, selection, and repli¬ 
cation (see Chapter 2). GP crossover may do no more than replicate 
Orgel, Tuerk/Gold, and Bartel/Szostak's search techniques in digital 
form. By itself, this would suggest that GP is a powerful algorithm 
for program induction. 

However, because of the claims of the schema theorem, we have 
expected more of crossover. All indications are that crossover can be 
improved substantially in both the quality and efficiency of the search 
it conducts. But there is a cost associated with improving crossover 
in GP. Each of the techniques we have discussed for enhancing cross¬ 
over - brood recombination, explicitly defined introns, and so forth -
may carry additional digital overhead such as less efficient use of 
memory and CPU time. This digital overhead may be likened to the 
large amount of biological energy expended to maintain homologous 
crossover in nature. Crossover that acts as something other than a 
macromutation operator does not come free - in biology or in GP. 
This suggests two important issues: 

LI Duplicating homologous crossover is probably well worth try¬ 
ing. Nature would not waste so much energy on homologous 
crossover unless it played an important role in evolutionary 
learning. 

Q We probably should not expect the benefits of homologous 
crossover at any lesser cost than is paid by nature. 

It remains to be seen whether we are best off with a minimal cost 
approach similar to Orgel's fast RNA, or Tuerk and Gold's SELEX 
algorithm from biology, or whether incurring the significant overhead 
of implementing more homologous GP crossover will put GP over a 

Tradeoffs 

Digital Overhead and 
Homology 

Locating the Threshold 



threshold that yields disproportionately large results. This threshold 
appears to exist in nature - natural evolution has incurred the over¬ 
head of inventing and maintaining species, peacock tails, and huge 
dysfunctional antlers on male deer as part of the process of main¬ 
taining homology in crossover. Whether we can find a way to cross 
that threshold in GP is one of the great unanswered questions in 
evolutionary algorithms. 

6.8 Conclusion 

The same arguments we have raised for the crossover operator might 
apply to the mutation operator as well. The mutation operator is 
stochastic. It certainly stands to benefit from improvements, for ex¬ 
ample, through smart mutation or other types of added mechanisms. 

For the sake of the argument, we have concentrated here on the 
crossover operator because it is at the heart of standard genetic pro¬ 
gramming. It is clearly an imperfect operator in the current state of 
the art. However, recent developments suggest that it will become 
a much more powerful and robust operator over the next few years 
as researchers incorporate the approaches discussed in this chapter 
into their systems, combine the approaches, and devise new ways to 
improve the operator. 

What is the future of the building block hypothesis? Ironically, 
one of the strongest arguments for the building block hypothesis is the 
manner in which a GP population adapts to the destructive effects of 
crossover. GP individuals tend to accumulate code that does nothing 
during a run we refer to such code as introns. Recent experimental 
results strongly suggest that the buildup of introns is primarily an 
emergent response by a GP population to the destructive effects of 
crossover [Nordin et al , 1996] [Soule and Foster, 1997a].9 

We will discuss this phenomenon at greater length in the follow¬ 
ing chapter, but here the important point is that the presence of 
introns underlines how important prevention of destructive crossover 
is in the GP system. Indications are strong that there is something 
valuable to protect from crossover - probably good building blocks. 

9There has been some controversy about whether bloat was caused by 
a GP system defending itself against the destructive effect of crossover. 
Some researchers have reasoned that bloat could not be due to defense 
against crossover [Altenberg, 1994a]. Others have argued to the contrary 
[Angeline, 1996]. The empirical study referred to in the text suggests that 
Angeline is correct. There is a very strong correlation between bloat and 
the reduction of destructive crossover in GP systems. 



So the challenge in GP for the next few years is to tame the crossover 
operator and to find the building blocks. 



Table 6.2 
Fitness distribution for 
exercise 5 

Exercises 

1. What is the commonest effect of a crossover event in GP? 

2. Give two methods for improving crossover in GP. 

3. What is brood recombination? 

4. Describe the crossover operator of a graph-based system like 
PADO. 

5. In the text, we mention that the effect of crossover may be 
measured by pairing one child with one parent. How would you 
pair the parents of Table 6.2 with the children? How would you 
score the crossover event where the parents and the children had 
the following fitnesses (assume that higher is more fit)? You 

Parent 1 
100 
900 
900 
900 
900 
900 

Parent 2 
1000 
1000 
1000 
1000 
1000 
1000 

Child 1 
500 
1400 
900 
1000 
450 
800 

Child 2 
900 
900 
1000 
900 
1100 
900 

may wish to consult Figure 6.3 in justifying your decision. 

6. Prove to yourself that it would be better to have a system that 
uses natural selection and combines good building blocks than 
a system that uses only natural selection. 

7. If you were trying to improve crossover in tree-based GP by 
using a higher-level learner as in [Zannoni and Reynolds, 1996] 
or [Teller, 1996], what kind of information would you give to 
the high-level learning system? 

8. Devise an algorithm to let tree-based GP grow "one gene at a 
time." How would you keep track of the genes as the population 
evolved? 

9. How would you introduce species to GP? 

10. Design a conjugation operator for GP with linear genomes. 

11. What effects could result from using GP conjugation instead of 
crossover? 

12. Suggest a GP operator for transduction and transformation. 
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Similarity between GP 
and DNA / RNA 

Representation of the 
Problem 

7.1 Introduction 

The dynamics of a GP run are similar to the changes that take place 
during the Q/3 replicase RNA experiments discussed in Chapter 2.1 

Both feature substantial variety in large populations at the outset of 
the evolutionary process. Both effect profound structural and func¬ 
tional changes in the population during the run, and both eventually 
stagnate. That is, both GP and Q/3 replicase runs eventually reach 
a point where further evolution is impossible (see Figure 5.17). 

Changes in a GP run reflect the fact that GP, like natural evolu¬ 
tion, is a complex process. It has emergent properties that may not 
be obvious until observed in action. This chapter focuses on emergent 
properties arising from GP's freedom of representation of the prob¬ 
lem space. GP programs share many features with DNA and RNA 
(see Chapters 2 and 5). All have variable length structures, all have 
elements that code for particular actions (functions and codons), and 
over time, these elements may be moved around or combined with 
other elements during evolution. 

The reader may recall from Chapter 1 that the GP problem rep¬ 
resentation is, theoretically, a superset of the representations of all 
other machine learning systems. This stems from both its variable 
length structure and its freedom of choice of functions and terminals -
if a computer can do it, GP can use it in its representation. 

GP's enormous freedom of representation is a mixed blessing. 
With such a huge search space, an algorithm might have to search 
for a long time. There are benefits to narrowing the search space as 
long as the researcher has grounds for believing that the answer to 
the problem lies somewhere in that narrow space. But the price of 
narrowing the search space is that the problem representation cannot 
evolve outside this range if the solution does not lie there. 

In this chapter, we will look closely at two important emergent 
properties of GP: 

Q GP's ability to search the space of the problem representation. 

Q The problem (or promise) of introns or bloat 

We group these issues together because both present important 
and unresolved questions for the future of GP and both appear to 
emerge in GP runs as a result of one of the most distinctive features 
of GP - variable length genotypes.2 

1With one important exception: The selection pressure is much more 
constant in conventional GP systems than in the Q/3 experiments. 

2Angeline has argued correctly that the distinction between GP and 
fixed-length GAs is not a real distinction [Angelina, 1994]. That is, every 



7.2 Evolution of Structure and 
Variable Length Genomes 

The capability to evolve a representation of the problem depends 
on the ability of a learning algorithm to modify the structure of its 
own solutions. We shall illustrate this point with a, simple gedanken 
experiment about how evolution of representation is possible with 
variable length genotypes. We contrast that result with fixed length 
genotypes. 

Typical fixed length evolutionary algorithms (EA) come in many 
flavors. They may optimize a fixed length vector of real numbers sub¬ 
ject to constraints (evolutionary programming or evolution strate¬ 
gies). Or they may evolve fixed length bit strings (as in a standard 
genetic algorithm). As we will see, such fixed length structures have 
little capacity for evolution of their genotype (their structure) be¬ 
cause the length and meaning of each element have been determined 
in advance. 

By evolving structure, a variable length genotype may be able 
to learn not only the parameters of the solution, but also how many 
parameters there should be, what they mean, and how they interre¬ 
late. This introduces many degrees of freedom into the evolutionary 
search that are missing in fixed length structures. 

Let us look now at how two very simple EAs - one fixed and one 
variable in length - would evolve a rod of a certain target length, say, 
LI — 9 cm. In this very simple form, the problem could be solved 
using very simple fixed length parameter optimization. The genome 
would consist of just one gene (a fixed length of 1), which coded 
for the "length" of the rod. An evolutionary search minimizing the 
deviation of the actual length d — (L — Lt)

n with n > 0 would solve 
the problem easily. 

Let us make the task more difficult. Now, the target rod must be 
assembled from other rods of three different lengths, say, 

11 = 4 cm (7.1) 

12 = 2 cm (7.2) 

13 = 1 cm (7.3) 

GP system sets some maximum size on its representation. So in that 
sense, it has a fixed length. Likewise, any GA system could set its fixed 
length to a very high value and then allow the GA to be effectively shorter, 
as is exemplified in [Wineberg and Oppacher, 1996]. Nevertheless, as a 
practical matter, GAs rarely assume this form and GP almost always does. 
So when we refer to GP's "unusual" property of being variable in length, 
it is a practical argument. 

Fixed Length 
Genotypes 

Variable Length 
Genotypes 

A Gedanken 
Experiment 



7 Genetic Programming and Emergent Order 

Table 7.1 

Solutions to rod assembly 

problem, Lt = 9, given 

copies of three 

elementary pieces 

h = l , / 2 = 2,/3 = 4 

A rod length L of varying size could be generated by putting together 
a number N of these elements in arbitrary sequence: 

(7.4) 

where each element l^ is chosen from one of the available lengths 

l(i)e{l1,l2,l3},i = l,...,N (7.5) 

Now the problem is strongly constrained because the EA may 
only use "quantized" pieces of rod. A fixed length genome may as¬ 
semble only a fixed number of rods into the target rod. The quality 
of such a fixed length system is entirely dependent on what value of 
N the researcher picks. Table 7.1 shows how the choice of N affects 
the probable success of the search. 

Table 7.1 gives the number of correct solutions possible for differ¬ 
ent genome sizes, together with examples for each size. There is no 

Genome size 

2 
3 
4 
5 

6 

7 
8 
9 
10 

7̂  perfect solutions 

0 
3 
12 
20 
5 
6 

120 
42 
8 
1 

0 

Sample solution 

-
4 4 1 

4 2 2 1 
4 2 1 1 1 
2 2 2 2 1 

4 1 1 1 1 1 
2 2 2 1 1 1 

2 2 1 1 1 1 1 
2 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 

-

solution where TV < 3 or TV > 9. Further, if one chooses N = 5, the 
system can find only a subset of all possible solutions. This subset 
might even be disconnected in the sense that there is no smooth path 
through the search space on the way to a perfect solution.3 

3 One possible fixed length genome coding that would work in this par¬ 
ticular case would be to have three genes, each a natural number that 
defines how many of one of the rod lengths are to be used in a solution. 
This cleverly allows the genotype to stay fixed but the phenotype to change. 
This approach depends on the researcher knowing the problem domain well 
and using a clever device to solve the problem. It would work only as long 
as the number of pieces to be assembled remains constant. But what if it 



Of course, if a variable length solution were used to represent the 
problem in Table 7.1, the EA would have access to every possible 
solution in the table and would not be dependent on the researcher's 
up-front choice of N. Thus, our gedanken experiment with the rods 
and the variable length genome may be seen in one aspect as very 
similar to the Q/3 replicase RNA experiments discussed in Chapter 2. 
The original RNA template was over 4000 base pairs long. If the 
RNA had not been able to change its very structure, it would never 
have found the fast RNA solution, which was only 218 base pairs long. 
The variable length genotype is perhaps genetic programming's most 
radical practical innovation compared to its EA roots. 

7.3 Iteration, Selection, and Variable Length 
Program Structures 

Until now, our argument may have appeared to assume that varia¬ 
ble length solutions, by themselves, have some magical property of 
changing their own structure. In reality, this property emerges only 
when the variable length structure is part of a larger dynamic of iter¬ 
ation and selection. That is, the unique properties of variable length 
structures appear in an evolutionary context. This result is perhaps 
not surprising. DNA itself varies greatly in length and structure from 
species to species. Even the Q/3 replicase RNA experiments involved 
the evolution of variable length structures. 

The essence of evolution might be subsumed as being (1) itera¬ 
tive insofar as generation after generation of populations are assigned 
reproduction opportunities; and (2) selective, insofar as the better 
performing variants get a better chance to use these opportunities. 

It is thus the interplay between iteration and selection that makes 
evolution possible. Dawkins has called this aspect cumulative selec¬ 
tion [Dawkins, 1987]. It is cumulative because the effects of selection 
acting on one generation are inherited by the next. The process does 
not have to start again and again under random conditions. What¬ 
ever has been achieved up to the present generation will be a starting 
point for the variants of the next. 

So far we have dealt with abstract notions about variable length 
structures, problem representation, iteration, and emergent proper¬ 
ties. Now it is time to look at how these notions have important prac-

turns out that for some reason it would be good to form another piece of, 
say, length U = 5 cm by combining two original pieces together? There 
would be no gene for such a piece in the genome just introduced; therefore, 
no modules could be formed that would by themselves constitute further 
elements for construction of rods. 



tical implications in GP. Simply put, the emergent GP phenomena of 
(1) evolvable problem representations and (2) introns are among the 
most interesting and troubling results of combining variable length 
structures with iterative selection. The remainder of this chapter will 
be devoted to these two issues. 

7.4 Evolvable Representations 

The reader will recall that the problem representation is one of the 
crucial defining facts of a machine learning system (see Chapter 1). 
Most ML paradigms are based upon a fairly constrained problem 
representation - Boolean, threshold, decision trees, case-based repre¬ 
sentations and so forth. Constraints sometimes have the advantage 
of making the traversal of the solution space more tractable - as long 
as the solution space is well tailored to the problem domain. By way 
of contrast, GP may evolve any solution that can be calculated using 
a Turing complete language. Therefore, GP search space includes 
not only the problem space but also the space of the representation 
of the problem. Thus, it may be that GP can evolve its own problem 
representations.4 

7.4.1 Ignoring Operators or Terminals 

A simple example is illustrative. Suppose a GP system had the fol¬ 
lowing functions to work with: Plus, Minus, Times, Divide. GP 
can change this representation by ignoring any of these functions, 
thereby reducing the function set. Why should this happen? When 
iteration and selection are applied to variable length structures, the 
system should magnify the exploration of sections of the representa¬ 
tion space that produce better results [Eigen, 1992]. So if solutions 
that use the divide operator were, in general, producing worse results 
than others, we could expect the system to reduce and, eventually, 
to eliminate the divide operator from the population. 

7.4.2 Finding Solutions of the Correct Length 

Elimination of operators is not the only way by which GP may evolve 
representations. Let us go back to the example above about evolving 
a rod of a particular length. There is an area of the search space 

4This is not to say that GP always discovers good representations. 
There is some evidence that overloading a GP system with functions can 
cause the system to stick in a local minimum [Koza, 1992d]. Nevertheless, 
unlike other machine learning paradigms, it is able to evolve representa¬ 
tions. 



between a genome size of three and eight that is a better area to 
check than, say, a genome size of twenty. The multiplicative effect 
of iteration, selection, and variable length solutions should draw the 
search away from genomes that have a size of twenty very quickly 
and should focus it on the promising area. 

Where we do not know the size of the best solution to a problem 
in advance, the ability of GP to examine different size solutions is very 
important. If limited to a fixed length, a solution may be too big or 
too small. Both situations cause problems. If the largest permitted 
solution is less than the optimal solution size, a fixed length system 
simply lacks the firepower to find the best answer. On the other hand, 
if a fixed length solution is too long, it may not generalize well (see 
Chapter 8). Genetic programming can find a short or a long solution 
where a fixed length representation cannot. 

7.4.3 Modularization and Meta-Learning 

The capability of GP to search the space of the problem representa¬ 
tion is an area where research has only begun. Modularization re¬ 
search (see Chapter 10) and Koza's automatically defined functions 
are two promising directions in this regard. 

Another very exciting approach to this issue in GP is a meta-
learning approach. Meta-learning occurs when information about the 
problem representation from one GP run is used to bias the search 
in later GP runs. In 1995, Whigham designed an evolvable context-
free grammar. The grammar defined what types of programs could 
be created by the GP system on initialization. His system was de¬ 
signed to capture aspects of the function and terminal set that were 
associated with successful individuals during a run and to use that 
information to bias the grammar used in future runs. His results 
were very encouraging [Whigham, 1995a]. This work is probably the 
best example to date of how GP's flexibility may be used explicitly 
to evolve problem representations. The authors regard this direction 
as one of the most promising areas for future GP research. 

While variable length solutions have potentially great advantages, 
they also appear to be the cause of what may be troubling emergent 
properties in GP runs called, variously, introns or bloat. 

7.5 The Emergence of Introns, 
Junk DMA, and Bloat 

In 1994, Angeline noted that many of the evolved solutions in Koza's 
book contained code segments that were extraneous. By extraneous, 
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he meant that if those code segments were removed from the solution, 
this would not alter the result produced by the solution. Examples 
of such code would be 

a = a + 0 
b = b * 1 

Angelina noted that this extra code seemed to emerge spontaneously 
from the process of evolution as a result of the variable length of 
GP structures and that this emergent property may be important to 
successful evolution [Angeline, 1994]. 

Angeline was the first GP researcher to associate this emergent 
"extra code" in GP with the concept of biological introns. In Chapter 
2, we briefly discussed biological introns. Questions may be raised 
as to the appropriateness of the analogy between this extra code and 
biological introns, as we will note below. Nevertheless, the use of the 
term intron to refer to this extra code has become widespread in the 
GP community and we will, therefore, use the term introns or GP 
introns to refer to the extra code in GP that was first identified by 
Angeline in 1994. 

Also in 1994, Tackett observed that GP runs tend to "bloat." 
That is, the evolved individuals apparently grow uncontrollably until 
they reach the maximum tree depth allowed. Tackett hypothesized 
that GP bloat was caused by blocks of code in GP individuals that, 
while they had little merit on their own, happened to be in close 
proximity to high fitness blocks of code. Tackett referred to this 
phenomenon as hitchhiking [Tackett, 1994]. 

A body of research since 1994 has meanwhile established that GP 
bloat is, in reality, caused by GP introns [McPhee and Miller, 1995] 
[Nordin and Banzhaf, 1995a] [Nordin et al., 1995] [Soule et al., 1996] 
[Nordin et al., 1996] [Soule and Foster, 1997b] [Rosca, 1997]. Though 
Angeline saw the extraneous code as an "occasional occurrence," sub¬ 
sequent research has revealed that introns are a persistent and prob¬ 
lematic part of the GP process. For example, studies in 1995 and 
1996 suggest that in the early to middle sections of GP runs, in¬ 
trons comprise between 40% and 60% of all code. Later in the run, 
emergent GP introns tend to grow exponentially and to comprise 
almost all of the code in an entire population [Nordin et al., 1995] 
[Nordin et al., 1996] [Soule et al., 1996] [Soule and Foster, 1997b] 
[Rosca, 1997]. The evidence is strong that evolution selects for the 
existence of GP introns. 

Bloat is a serious problem in GP. Once the exponential growth of 
introns associated with bloat occurs, a GP run almost always stag¬ 
nates - it is unable to undergo any further evolution [Tackett, 1994] 
[Nordin et al., 1995] [Nordin et al., 1996]. On the other hand, Ange-



line suggested in his seminal article that emergent iritrons may have a 
beneficial effect on evolution in GP. Was Angeline wrong or are there 
two different but closely related phenomena at work here? 

It may well be that during the early and middle part of a run, 
introns have beneficial effects. For example, theory and some ex¬ 
perimental evidence suggests introns may make it more likely that 
good building blocks will be able to protect themselves against the 
damaging effects of crossover [Angeline, 1996] [Nordin et al., 1995] 
[Nordin et al., 1996]. On the other hand, the exponential growth of 
introns (bloat) at the end of the run is probably deleterious. 

The remainder of this chapter will be devoted to the major issues 
in GP regarding introns. In brief summary, they are as follows: 

Q How valid is the analogy between GP introns and biological 
introns? Can we learn anything from biology about GP introns? 

Q How should the term intron be defined in GP? 

Q What causes the emergence of GP introns? 

LI What are the relative costs and benefits of introns in GP runs? 

Q How may GP researchers deal with bloat? 

With this introduction in hand, it is now possible to move on to 
a detailed analysis of the phenomenon of introns. 

7.5.1 What Can We Learn from Biological Introns? 

In Chapter 2, we briefly discussed introns, exons, and junk DNA. In 
a greatly oversimplified overview, DNA is comprised of alternating 
sequences of: 

Q Base pairs that have no apparent effect on the organism called 
junk DNA; 

Q Base pairs that exert control over the timing and conditions of 
protein production, often referred to as control segments; and 

Q Base pairs that comprise genes. Genes are the active DNA 
sequences responsible for manufacturing proteins and polypep-
tides (protein fragments). 

The gene sequences themselves may be further divided into: 

Q Exons, base sequences that actively manufacture proteins or 
polypeptides; and 
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Q Introns, base sequences that are not involved in the manufac¬ 
ture of proteins. 

It is tempting to conclude that, because biological introns are not 
involved in protein manufacture, they must be the biological equiva¬ 
lent of the GP introns. They are there but they do nothing. While 
there are undoubted similarities between GP introns and biological 
introns, there are also real differences that must be taken into account 
when making analogies between the two. The following are some of 
the more important similarities and differences. 

A gene produces a protein by first transcribing an mRNA (mes¬ 
senger RNA) molecule that is effectively a copy of the base sequence 
of the gene. Then the mRNA molecule is translated into a protein or 
protein fragment. What happens to the introns during this process 
is fascinating. Each intron in a gene has a base pair sequence at the 
beginning and end of the intron that identifies it as an intron. Be¬ 
fore the mRNA is translated to a protein, all of the intron sequences 
are neatly snipped out of the translating sequence. In other words, 
biological introns do not directly translate into proteins. Therefore, 
they do not directly translate into the phenotype of the organism. 
In this sense they are quite similar to GP introns. The "extraneous 
code" in GP introns does not affect the behavior of a GP individual 
at all. Recall that best analogy in GP to the biological phenotype is 
the behavior of the GP individual. Thus, neither biological nor GP 
introns directly translate to their respective phenotypes. 

We will describe in detail, later, the theoretical and experimental 
results that suggest that GP introns may play some role in protecting 
good building blocks against destructive crossover. Watson describes 
a similar role for biological introns: 

[Sjeveral aspects of the structures of interrupted genes hint that 
the presence of introns (coupled with the ability to excise them 
at the RNA level) could have been used to advantage during the 
evolution of higher eucaryotic genomes. 

Since exons can correspond to separate structural or functional 
domains of polypeptide chains, mixing strategies may have been 
employed during evolution to create new proteins. Having individ¬ 
ual protein-coding segments separated by lengthy intron sequences 
spreads a eucaryotic gene out over a much longer stretch of DNA 
than the comparable bacterial gene. This will simultaneously in¬ 
crease the rate of recombination between one gene and another 
and also lower the probability that the recombinant joint will fall 
within an exon and create some unacceptable aberrant structure 
in the new protein. Instead, recombination will most likely take 



place between intron sequences, thereby generating new combina¬ 
tions of independently folded protein domains. 

WATSON ET AL., 1987 

Note that this is very much like our later description of the pos¬ 
sible "structural" effect of introns in the early and middle part of GP 
runs. In their structural role, introns would serve to separate good 
blocks of code and to direct the crossover operator to portions of the 
genome where crossover will not disrupt the good blocks. 

On the other hand, there is no biological analogy to the runaway, 
exponential growth of introns at the end of GP runs that is referred 
to as bloat. So while it may be valid to draw the analogy between 
GP introns that serve a structural role and biological introns, the 
analogy is strained at best when it comes to bloat. 

As we discussed in Chapter 2, the existence and contents of bi¬ 
ological introns are correlated with significant effects on both the 
amount and the quality of the proteins expressed by the gene in 
which the introns occur. This is true despite the fact that introns 
have no direct effect on protein manufacture. The mechanism of the 
indirect effect is not known. Nevertheless, we can conclude that bi¬ 
ological introns do indirectly affect the survivability of the organism 
and its genetic material. 

GP introns do not have any known effect on the survivability 
of the GP individual, direct or indirect. However, they probably 
do affect the survivability of the offspring of a GP individual quite 
profoundly (see below). Thus, GP introns do have an indirect effect 
on the survivability of the genetic material of an individual. 

Notwithstanding that both biological and GP introns have an 
indirect effect on survivability, the nature of the effect is different. 
Accordingly, while there are similarities between biological introns 
and GP introns, the differences are substantial and must be taken 
into account when reasoning from one domain to the other. 

Introns Affect the 
Survivability of the 
Organism Only 
Indirectly 

Conclusion 

7.6 Introns in GP Defined 

In Chapters 2 and 5, we discussed how GP frequently does not distin¬ 
guish between genotype and phenotype structures. In that case, the 
GP program may be regarded as the genotype and its behavior (that 
is, the state transitions it causes in the computer) may properly be 
regarded as the phenotype [Maynard-Smith, 1994] [Angeline, 1994]. 
On the other hand, many GP and GA systems feature an explicit dis¬ 
tinction between the genotype structure and the phenotype structure. 
In that case, the phenotype's structure is, by analogy with biology, 
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properly regarded as part of the phenotype. But the behavior of the 
entity would be part of the phenotype in this situation also. 

Defining a GP introii becomes rather tricky when one must be 
consistent with the biological analogy upon which the theory of in-
trons is based. Recall that the strict biological definition of an intron 
is a sequence of base pairs that is clipped out before the maturing 
of messenger RNA. More generally, since an organism may survive 
only by structure or behavior, an intron is distinctive primarily as 
a sequence of the DNA that affects the chances of the organism's 
survival only indirectly. 

From the above argument, two features may be used to define 
introns: 

Q An intron is a feature of the genotype that emerges from the 
process of the evolution of variable length structures; and 

Q An intron does not directly affect the survivability of the GP 
individual. 

Under the above definition, the following S-expressions would be 
examples of introns: 

(NOT (NOT X)), 
(AND .. . (OR X X)), 

( + . . . ( -XX)) , 

(+ X 0), 

(* * i), 
(*. . . (DIVXX)) , 
(MOVE-LEFT MOVE-RIGHT), 
(IF (2 = 1 ) . . . X), 
(SET A A) 

By this definition, we draw very heavily on Angeline's 1994 con¬ 
cepts, which also focused on the very interesting dual aspect of in¬ 
trons. Introns are emergent and they do not directly affect the fitness 
of the individual [Angeline, 1994]. In GP, this means that any code 
that emerges from a GP run and does not affect the fitness of the 
individual may properly be regarded as an intron. 

By this definition, we also ignore the details from biology of how 
an intron manages not to be expressed (i.e., the intron is snipped 
out before the maturing of mRNA). In short, we regard the fact that 
biological introns are not expressed as proteins to be more impor¬ 
tant than the manner in which that occurs. The importance of this 
distinction will become clear in the next section. 

In Chapter 6, we noted that many researchers have used various 
techniques to insert "artificial" introns into their GP systems. While 



both emergent and artificially inserted introns may behave in similar 
ways, the distinction is important. In this book, when we use the 
term intron, we mean an emergent intron as defined above. When 
we refer to artificially inserted introns, we shall use the term artifi¬ 
cial intron equivalents. Therefore, the insertion into the genome of 
explicitly defined introns by Nordin et al. and Angeline, of introns by 
Wineberg et al., and of write instructions that have no effect by An¬ 
dre et al. may all be regarded as different ways of inserting artificial 
intron equivalents into the genome. Unlike introns, artificial intron 
equivalents do not emerge from the evolutionary process itself. 

One final distinction: we shall call an intron global if it is an 
intron for every valid input to the program, and we call it local if it 
acts as an intron only for the current fitness cases and not necessarily 
for other valid inputs. 

Global vs. Local Introns 

7.7 Why GP Introns Emerge 

By definition, introns have no effect on the fitness of a GP individual. 
We would not expect to see strong selection pressure to create any 
genomic structure that does not affect the fitness of an individual. So 
why do introns emerge? The short answer is that, while introns do not 
affect the fitness of the individual, they do affect the likelihood that 
the individual's descendants will survive. We shall refer to this new 
concept of fitness, which includes the survivability of an individual's 
offspring, as effective fitness. 

The effective fitness of an individual is a function not only of how 
fit the individual is now but also of how fit the individual's children 
are likely to be. By this view, the ability of an individual to have high-
fitness children (given the existing genetic operators) is as important 
to the continued propagation of the individual's genes through the 
population as is its ability to be selected for crossover or mutation in 
the first place. It does no good for an individual to have high fitness 
and to be selected for crossover or mutation if the children thereby 
produced are very low in fitness. Thus, we would expect individuals 
to compete with each other to be able to have high-fitness children. 

The reader will recall that the normal effect of crossover is that 
the children are much less fit than the parents; see Chapter 6. So 
too is the normal effect of mutation. Any parent that can ameliorate 
either of these effects even a little will have an evolutionary advantage 
over other parents. And this is where introns come in. 

Simply put, the theoretical and experimental evidence today sup¬ 
ports the hypothesis that introns emerge principally in response to the 
frequently destructive effects of genetic operators [Nordin et al., 1995] 

Destructive Genetic 
Operators 



Effective Fitness 

An Important Caveat 

[Nordin et al., 1996] [Soule et al., 1996] [Soule and Foster, 1997b] 
[Rosca, 1997]. The better the parent can protect its children from 
being the results of destructive genetic operators, the better the ef¬ 
fective fitness of the parent. Introns help parents do that. 

This concept of effective fitness will be very important later. It 
is clearly a function of at least two factors: 

1. The fitness of the parent. The fitter the parent, the more likely 
it is to be chosen for reproduction. 

2. The likelihood that genetic operators will affect the fitness of 
the parent's children. 

Introns emerge as a result of competition among parents with 
respect to the second item. 

It is important to note what we are not saying. We do not con¬ 
tend that destructive crossover is always bad or that it is always 
good that children have fitness as good or better than their parents 
[Andre and Teller, 1996]. In fact, such a rule would reduce GP to 
simple hill climbing. Rather, we are saying that destructive genetic 
operators are the principal cause of introns. Therefore, one should not 
take our use of the term constructive crossover to mean that crossover 
should always be constructive. Nor should one understand from the 
term destructive crossover that it should never happen. Evolution is 
more complex than that. Thus, whether introns are beneficial, detri¬ 
mental, or both in the GP evolution process has nothing to do with 
the question of why introns emerge. 

Absolute vs. Effective 
Complexity 

7.8 Effective Fitness and Crossover 

It is possible to derive a formula that describes the effective fitness 
of an individual. That formula predicts that there will be selection 
pressure for introns. Before deriving this formula, it is necessary to 
define the effective and absolute complexity of a program. 

By the complexity of a program or program block we mean the 
length or size of the program measured with a method that is natural 
for a particular representation. For a tree representation, this could 
be the number of nodes in the block. For the binary string represen¬ 
tation, it could be, e.g., the number of bits. The absolute length or 
absolute complexity of a program or a block of code is the total size 
of the program or block. The effective length or effective complexity 
of a program or block of code is the length of the active parts of the 
code within the program or block, in contrast to the intron parts. 
That is, the active parts of the code are the elements that affect the 
fitness of an individual. 



7.8 Effective Fitness and Crossover EEj] 

In deriving the effective fitness of the individual, we must be 

careful to distinguish between effective and absolute complexity. We 

may star t deriving the effective fitness of an individual by formulating 

an equation tha t resembles the schema theorem [Holland, 1992] for 

the relationship between the entities described above. 

The following definition will be useful: A Few Definitions and 

a Statement 
• Let C? be the effective complexity of program j , and CJ its 

absolute complexity. 

• Let pc be the s tandard G P parameter for the probability of 

crossover at the individual level. 

• The probability tha t a crossover in an active block of program j 

will lead to a worse fitness for the individual is the probability 

of destructive crossover, pj. By definition p^ of an absolute 

intron5 is zero. 

• Let fj be the fitness6 of the individual and / be the average 

fitness of the population in the current generation. 

Using fitness-proportionate selection7 and block exchange crossover, 

for any program j , the average proportion Pj+1 of this program in 

the next generation is: 

(7.6) 

In short, equation (7.6) states tha t the proportion of copies of 

a program in the next generation is the proportion produced by the 

selection operator minus the proportion of programs destroyed by 

crossover. Some of the individuals counted in P t + 1 might be modified 

by a crossover in the absolute intron part , but they are included 

because they still show the same behavior at the phenotype level. 

The proportion P * + 1 is a conservative measure because the individual 

j might be recreated by crossover with other individuals.8 

Equation (7.6) can be rewritten as: 

An absolute intron is defined as neither having an effect on the output 
nor being affected by crossover. 

6 Notice that this is not standardized fitness used in GP. Here a better 
fitness gives a higher fitness value (GA). 

7The reasoning is analogous for many other selection methods. 
8The event of recreating individuals can be measured to be low except 

when applying a very high external parsimony pressure that forces the 
population to collapse into a population of short building blocks. 
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t+1 „ (fj-Pc-fj-ti-Cj/C? j ~ l r 
We may interpret the crossover-related term as a direct subtraction 

from the fitness in an expression for reproduction through selection. 

In other words, reproduction by selection and crossover acts as re­

production by selection only, if the fitness is adjusted by the term: 

Pc-fi-^-pl (7-8) 

Term (7.8) can be regarded as a fitness term proportional to 

program complexity. Hence we define effective fitness fj as: 

n = h-p*-n-%-pdi ( ^ 

The effective fitness of a parent individual, therefore, measures how 

many children of tha t parent are likely to be chosen for reproduction 

in the next generation.9 A parent can increase its effective fitness by 

lowering its effective complexity ( that is, having its functional code 

become more parsimonious) or by increasing its absolute complexity 

or both. Either reduces the relative target area of functioning code 

tha t may be damaged by crossover. Either has the effect of increas­

ing the probability tha t the children of tha t parent will inherit the 

good genes of the parent intact. In other words, the difference be­

tween effective fitness and actual fitness measures the extent to which 

the destructive effect of genetic operators is warping the real fitness 

function away from the fitness function desired by the researcher. 

Rooted-Tree Schemata Recently, Rosea has derived a version of the schema theorem for 

"rooted-tree schemas" tha t applies to GP. A rooted-tree schema is a 

subset of the set of program trees tha t match an identical tree frag­

ment which includes the tree root. The rooted-tree schema theorem 

also predicts tha t an individual may increase the likelihood that its 

genetic material will survive intact in future generations by either 

increasing the fitness of the individual or increasing the size of the 

individual [Rosea, 1997]. 

7.9 Effective Fitness and Other Operators 

The above equations could easily be refined to quantify the effect of 

the destructive quality of any genetic operator simply by replacing 

the term for the probability of destructive crossover with, say, a new 

I his assumes / « / 

(7.7) 

Effective Fitness, 

Formal 
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term for the probability of destructive mutation. Since the effect of 
mutation is normally quite destructive, this model would predict that 
some form of intron should emerge in response to mutation. In fact, 
that is exactly what happens. 

An example of such an intron we found in great numbers in 
AIMGP when increasing the probability of mutation is: 

Registerl = Register2 > > Register^ (7.10) 

Shift-right (>>) is effectively a division by powers of 2. Here, mu­
tations that change argument registers or the content of argument 
registers are less likely to have any effect on fitness. By way of con­
trast, an intron like 

A Mutation-Resistant 
Intron 

Registerl = Registerl + 0 (7.11) 

more typical for a high crossover probability run would very likely 
be changed into effective code by a mutation. In short, a type 7.10 
intron may be relatively more resistant to mutation than a type 7.11 
intron. Interestingly, these new introns are also resistant to crossover. 

We can suspect a general tendency of the GP system to protect 
itself against the attack of operators of any kind. When it is no 
longer probable that fitness will improve, it becomes more and more 
important for individuals to be protected against destructive effects 
of operators, regardless of whether these are crossover, mutation, or 
other kinds of operators. 

Equation 7.9 could thus be generalized to include the effects of 
other operators as well: 

fi-m-~E^-^d-cr] (7.12) 

Solutions Defend 
Themselves 

where r runs over all operators trying to change an individual, pr is 
the probability of its application, pr,' is the probability of it being 
destructive, and C^'e is the effective complexity for operator r. 

7.10 Why Introns Grow Exponentially 

Introns almost always grow exponentially toward the end of a run. 
We believe that the reason is that introns can provide very effective 
global protection against destructive crossover. By that, we mean 
that the protection is global to the entire individual. This happens 
because at the end of a run, individuals are at or close to their best 
performance. It is difficult for them to improve their fitness by solving 
the problem better. Instead, their best strategy for survival changes. 
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Their s trategy becomes to prevent destructive genetic operators from 

disrupting the good solutions already found. 

No End to Intron One can reformulate equation 7.12 as follows: 

Growth 

n=u • [i - i>fr • i1 - (<?r/c?))] (7-i3) 
where p • 'r now lumps together the probability both of application 

and of destructiveness of an operator r, and Cl-'r is the corresponding 

intron complexity. When fitness (fj) is already high, the probability 

of improving effective fitness by changing actual fitness is much lower 

than at the beginning of the run. But an individual can continue 

to increase its effective fitness, even late in a run, by increasing the 

number of introns (C*' r) against r in its s tructure. 

Further, there is no end to the predicted growth of introns. Be­

cause the number of introns in an individual is always less than the 

absolute size of an individual, the ratio (supressing index r) C j / C ? 

is always less than one. So introns could grow infinitely and continue 

to have some effect on the effective fitness of an individual as long as 

pD > 0 . 

Here are two pictures of how tha t works in practice. Figure 7.1 

represents a good solution of functioning (non-intron) code tha t has 

no introns. If crossover and mutat ion are destructive with high proba­

bility, then the individual in Figure 7.1 is very unlikely to have highly 

fit children. In other words, its effective fitness is low. 

Figure 7.1 
A group of functioning 

nodes. E indicates 

"effective" code. 

By way of contrast, Figure 7.2 shows the same functioning code. 

But the individual in Figure 7.2 is at tached to fourteen introns. Al­

together, there are four crossover points tha t would result in break­

ing up the functioning code in the individual and fourteen crossover 

points tha t would not. This individual's effective fitness is, therefore, 

relatively higher than the effective fitness of the individual in Fig­

ure 7.1. Tha t is, the individual in Figure 7.1 is likely to have children 
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Figure 7.2 
Same functioning nodes 

as in Figure 7.1. Introns 

(I) have been added. 

that will not compete well with the children of Figure 7.2, even if 
their regular GP fitness is identical. 

The effect of explosive intron growth is dramatic. Normally, 
crossover is destructive more than 75% of the time. But after introns 
occupy most of the population, destructive crossover is replaced al­
most completely with neutral crossover. Why? At that point, the 
individuals are just swapping introns with higher and higher prob­
ability each generation. Swapping code that has no effect between 
two individuals will have no effect. Hence neutral crossover comes to 
dominate a run after the explosive growth of introns. 

The Effect of 

Exponential Intron 

Growth 

We have presented a theory about why introns grow exponen­
tially. The theory has a good theoretical basis and also some grow­
ing experimental support [Nordin et al., 1995] [Nordin et al., 1996] 
[Soule and Foster, 1997b]. One additional prediction of this theory 
is that exponential growth will come mostly or entirely from introns 
or groups of introns that are, in effect, terminals. This is because 
introns that occur in the middle of blocks of functioning code are 
unlikely to result in neutral crossover if crossover occurs in the in­
trons - because there is functioning code on either side of the introns 
and it will be exchanged among individuals. Soule's research sup­
ports this prediction - bloat appears to grow at the end of GP trees 
[Soule and Foster, 1997b]. 

A Prediction 
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7.11 The Effects of Introns 

Various effects have been attributed to introns [Angeline, 1994] 
[Nordin et al., 1995] [Andre and Teller, 1996] [Nordin et al., 1996] 
[Soule et al., 1996] [Wineberg and Oppacher, 1996]. Some have ar­
gued that introns may benefit evolution while others argue that in­
trons almost always result in poor evolution and extended computa­
tion time. This field is very young and it may be that all of these 
studies, some seemingly inconsistent, just represent different points 
on the very complex surface that represents the effect of introns. 
Much more study is necessary before anything more than tentative 
conclusions may be stated. Accordingly, this section will be devoted 
more toward outlining the few effects of introns that may be clearly 
stated and, as to the other effects, trying to provide a clear outline 
of the unanswered issues. 

We start by noting again that introns are an emergent phe­
nomenon and probably exhibit a good deal of complexity and sensi­
tivity to initial conditions. It is important, in outlining these issues, 
to keep several points clear: 

• Introns may have differing effects before and after ex­
ponential growth of introns begins. After exponential 
growth occurs, the exponential effect surely overwhelms what­
ever effect the introns had previously, if any. 

• Different systems may generate different types of in­
trons with different probabilities. It may, therefore, be 
harder to generate introns in some GP systems than in others 
[McPhee and Miller, 1995]. 

• The extent to which genetic operators are destructive 
in their effect is likely to be a very important initial 
condition in intron growth. Equation 7.12 and Rosca's work 
[Rosea, 1997] predict that the maximum extent to which intron 
growth can modify effective fitness is equal or proportional to 
pD (the probability of destructive crossover). Furthermore, the 
effect of any given change in the ratio Cl /C° on effective fit­
ness will be proportional to pD. This underlines the impor­
tance of measuring and reporting on destructive, neutral, and 
constructive crossover figures when doing intron research (see 
Chapter 6). 

LI Mutation and crossover may affect different types of in­
trons differently. How this works may depend on the system, 
the function set and the mix of genetic operators. 
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A function set tha t uses no conditionals can generate in­

trons (a = a + 0). Such introns will be changed, with high 

probability, into functioning code by the mutat ion oper­

ator [Banzhaf et al., 1996]. Adding more mutat ion will, 

therefore, change the initial conditions of the stew. 

On the other hand, adding conditional branching creates 

the possibility of such introns as I f 2 < 1 t h e n X. If X 

represents a subtree of any length, both X and each node 

of X would be introns. However, unlike the example in 

the prior paragraph, X type introns will be quite immune 

to mutat ion within X. Again the initial conditions are 

changed. 

[J Finally, it is important to distinguish between emergent introns 

and artifical intron equivalents. In most systems, the existence 

and growth of artifical intron equivalents is more or less free 

to the system - a gift from the programmer so to speak. This 

may well make artificial intron equivalents much more likely to 

engage in exponential growth than emergent introns. 

Wi th this in mind, here are some reflections on the possible ben­

efits and drawback of introns. 

7.11.1 Problems Caused by Introns 

Researchers have identified possible problems caused by introns, in­

cluding run stagnation, poor results, and a heavy drain on memory 

and CPU time. 

Run stagnation appears to be, in part , a result of bloat - the Run Stagnation and 

exponential growth of introns. This effect is not something for which Bloat 

the researcher should strive. Once the population is swapping only 

introns during crossover, no improvement is likely to come in the best 

or any other individual. All effective growth has ended. 

One might argue tha t exponential intron growth is not really 

important because it merely reflects tha t the run is over. Tha t is, 

the argument goes, individuals in the run cannot improve, given the 

problem and the s tate of the population. Tha t introns explode at this 

point is therefore of no consequence. While this may be part ly true, 

stagnation due to intron growth is probably the result of a balance 

between the probability of destructive crossover and the extent to 

which changes in effective fitness may be more easily found by finding 

bet ter solutions or by adding introns (see equation 7.12). Of course, 

it is more difficult to find bet ter solutions after quite some evolution 

had already occurred. But tha t does not mean tha t it is impossible 
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or even improbable, just less likely. Thus, it is quite possible tha t the 

ease of improving effective fitness by adding introns just overwhelms 

the slower real evolution tha t occurs toward the end of a run. If this 

hypothesis is correct, then the exponential growth of introns would 

prevent the population from finding better solutions. This possibility, 

of course, becomes greater and greater as the destructive effects of 

crossover become greater. 

One study suggests that effective evolution may be extended (and 

stagnation averted for at least a while) by increasing the mutat ion 

rate in a system where mutat ion converts introns to functional code 

with high probability. In the high mutat ion runs, the durat ion of 

the runs was extended significantly before stagnation, the number of 

introns in the populat ion was reduced, and bet ter overall solutions 

were found [Banzhaf et al., 1996]. 

Poor Results Researchers [Andre and Teller, 1996] [Nordin et al., 1995] report­

ing poor best individual fitness results have a t t r ibuted those results 

to introns. Andre et al. reported very bad results when they added a 

form of artificial intron equivalents to their system. They added nodes 

tha t were deliberately designed to do nothing but take up space in the 

code. Nordin et al. added explicitly defined introns (EDI) (another 

type of artificial intron equivalents), which allowed the probability 

of crossover to be changed at each potential crossover point. We re­

ported good results up to a point but when it became too easy for 

the system to increase the EDI values, evolution tended to find local 

minima very quickly. 

It is difficult to assess how general either of these results is. One 

possible explanation for the results is suggested by the argument 

above regarding balance. Both studies made it very easy to add in­

trons in the experiments tha t showed bad results. The easier it is to 

add introns, the sooner one would expect the balance between im­

proving fitness, on the one hand, and adding introns, on the other, 

to t ip in favor of adding introns and thus cause exponential growth. 

By making it so easy to add introns, exponential growth may have 

been accelerated, causing evolution to s tagnate earlier. In bo th stud­

ies, making it harder for the system to generate introns seemed to 

improve performance. 

Some support for this tentative conclusion is lent by another 

s tudy tha t used explicitly defined introns similar to ours but evolved 

them differently. Angeline [Angeline, 1996] inserted EDIs into a tree-

based system. He made it quite difficult for the introns to change 

values rapidly by treat ing the EDI vector as an evolvable evolution­

ary programming vector. Thus, growth was regulated by Gaussian 

distributions around the earlier EDI vectors. This approach led to 

excellent results. 
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The computat ion burden of introns is undisputed. Introns occupy Computational Burden 

memory and take up valuable CPU time. They cause systems to page 

and evolution to grind to a halt . 

7.11.2 Possible Beneficial Effects of Introns 

Three different benefits may be at t r ibutable to introns. 

Although introns tend to create large solutions filled with code 

that has no function, they may tend to promote parsimony in the 

real code - tha t is, the code tha t computes a solution. As noted else­

where, short effective complexity is probably correlated with general 

and robust solutions. Ironically, under some circumstances, theory 

suggests tha t introns may actually part icipate in a process tha t pro­

motes parsimonious effective solutions and tha t this is an emergent 

property of G P [Nordin and Banzhaf, 1995a]. 

Recall equation 7.12. It may be rewritten as follows to make it 

easier to see the relationship between parsimony and introns: 

fe = f-[l-pD-(Ce/Ca)] (7.14) 

supressing indices j and r. 

If Ce is equal to Ca, there are no introns in the individual. In 

that case, the influence of destructive crossover on the effective fit­

ness of an individual is at its maximum. On the other hand, if there 

are introns in the individual, a reduction in Ce increases its effec­

tive fitness. When Ce is smaller, the solution is more parsimonious 

[Nordin and Banzhaf, 1995a]. The conditions tha t would tend to pro­

mote such a factor are: 

• A high probability of destructive crossover. 

• Some introns in the population (almost never a problem). 

• A system tha t makes it relatively easier to reduce the amount 

of effective code than to add more introns. 

Soule's work tends to support the prediction of equation 7.14. 

When no destructive crossover is allowed, the amount of effective 

code (code tha t has an effect on the behavior of the G P individ­

ual) is significantly higher than when normal, destructive crossover is 

permitted. The effect persists in virtually all generations and grows 

as the run continues [Soule and Foster, 1997b]. Thus, the prediction 

tha t effective fitness will tend to compress the effective code of G P 

individuals and tha t the effect will be more pronounced as the de-

structiveness of crossover increases now has significant experimental 

support. 

Compression and 
Parsimony 
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Structural Protection 

Against Crossover 

Global Protection 

Against Crossover and 

Bloat 

Researchers have also suggested tha t introns may provide a sort 

of s tructural protection against crossover to G P building blocks dur­

ing the earlier stages of evolution. This would occur if blocks of 

introns developed in a way so tha t they separated blocks of good 

functional code. Thus, the intron blocks would tend to a t t rac t cross­

over to the introns, making it more likely tha t crossover would be 

swapping good functional blocks of code instead of breaking them 

up. 1 0 This is very similar to Watson et al.'s view of biological introns 

in the quotation above. 

It is important to distinguish between this structural effect of 

introns and the global effect (explosive intron growth effect) discussed 

above. The two types of intron effects should have very different 

results and should look very different. 

• The global effect usually has a very bad effect on G P runs. 

It protects the entire individual from the destructive effects of 

crossover. It is probably implemented when crossover swaps 

groups of introns that are, effectively, terminals. 

• The structural effect would, on the other hand, tend to protect 

blocks of effective code from the destructive effects of crossover -

not the entire individual. Unlike global protection, which al­

most always has negative effects, s tructural protection could be 

very beneficial if it allowed building blocks to emerge despite 

the destructive effects of crossover and mutat ion. 

This s tructural effect would look considerably different than the 

global effects of introns discussed above. Structural protection would 

be characterized by groups of introns between groups of functional 

code instead of introns tha t were, effectively, terminals. In fact, in 

linear genome experiments, the authors have located a tendency for 

introns and functional code to group together. It can be observed by 

looking at the development of the so-called intron map which shows 

the distribution of effective and intron code in a genome. 

Intron Maps Figure 7.3 shows such an intron map. It records, over the gen­

erations, the feature of particular locations on the genome, whether 

they are introns or not. The figure was the result of a pa t te rn recog­

nition run with GP. In the early generations, the length of programs 

quickly increases up to the maximum allowed length of 250 lines of 

code. The further development leads to a stabilization of the feature 

at each location, which in the beginning had been switching back and 

forth between effective and intron code. 

10The theoretical basis for this idea is formalized in [Nordin et al., 1995] 
[Nordin et al., 1996]. Angeline's results with explicitly defined introns tend 
to support this hypothesis [Angeline, 1996]. 
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7.12 What to Do about Introns 

The above equations and other experimental results suggest several 

directions for controlling and possibly harnessing introns. 

7.12.1 Reduction of Destructive Effects 

Figure 7.3 

Development of an intron 

map over the course of a 

run. Introns are drawn in 

black; effective code is 

left white. 

In Chapter 6 the destructive effect of crossover was discussed at 

some length along with recent a t t empts to improve the crossover 

operator. Equat ion 7.12 suggests tha t reducing the destructiveness 

of crossover will, itself, reduce the tendency of introns to emerge 

or at least postpone the t ime at which exponential growth begins 

[Soule and Foster, 1997b]. 

Therefore, all of the different techniques explored in Chapter 6 

for improving the crossover operator - brood recombination, explic­

itly defined introns, intelligent crossover operators, and the like -

are likely to have a measurable effect on G P bloat. We argued in 

that chapter that the essence of the problem with the G P crossover 

operator is tha t it fails to mimic the homologous na ture of biologi­

cal recombination. The problem of bloat may be viewed in a more 

general way as the absence of homology in G P crossover. 

Of course, it would be easy to take reducing the destructiveness 

of crossover too far. We would not want to reduce the destructive 

effect of crossover to zero, or G P would become just a hill climber. 
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7.12.2 Parsimony 

The effect of parsimony pressure is to a t tach a penalty to the length of 

programs. Thus, a longer solution will be automatically downgraded 

in fitness as compared to a short solution. Whereas this will prevent 

introns from growing exponentially, it depends on the s trength of 

that penalty at what point in evolution introns become suppressed 

altogether. 

Figure 7.4 shows an AIMGP run with parsimony pressure. Fig­

ure 7.5 shows a similar run, though without this pressure. Whereas 

initially both runs look the same, the run with parsimony pressure 

succeeds in suppressing introns, effectively prohibiting explosive in-

tron growth. 

Figure 7.4 
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7.12.3 Changing the Fitness Function 

Changing the fitness function during a run may also help to suppress 

explosive intron growth. When the fitness function becomes variable, 

G P individuals might find ways to improve their fitness, despite the 

fact tha t they might have stagnated under a constant fitness function. 

If, for instance, one were to change a specific parameter in the fitness 

function for the sole purpose of keeping the G P system busy finding 

bet ter fitness values, this would greatly reduce the probability of a 

run getting stuck in explosive intron growth. Fitness functions might 

just as well change gradually or in epochs; the lat ter technique is also 

used for other purposes. Even a fitness function tha t is constantly 

changing due to co-evolution will help avoid explosive intron growth. 
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Absolute Complexity and Effective Complexity 

Figure 7.5 
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Exercises 

1. Give two examples tha t could be seen as G P evolving its own 

representation. 

2. Give three examples of introns in GP. 

3. Wha t is an artificial intron equivalent? 

4. W h a t is effective fitness? Explain the difference between effec­

tive and absolute fitness. 

5. Name a beneficial effect of an intron for an individual. Wha t is 

a detr imental effect of an intron? 

6. Is it possible to find code segments tha t are introns against 

crossover, but not against mutat ion? 

7. Give three examples of how an individual can increase its effec­

tive fitness. 

8. Describe two methods of preventing exponential intron growth. 
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The foregoing chapters established some theoretical grounding for ge­

netic programming. Nevertheless, G P is 99% an experimental method­

ology. Like natural evolution, G P produces complex and emergent 

phenomena during training (see Chapter 7) and, as in natura l evolu­

tion, predicting the results of changes in a G P system is difficult. In 

other words, the gap between theory and practice is wide indeed. 

To illustrate this point, assume tha t G P run 1 produces a good re­

sult and continues for 200 generations before intron explosion occurs. 

For G P run 2, only the random seed is changed. All other parameters 

are the same as for G P run 1. But G P run 2 could easily produce 

a bad result and terminate after only 15 generations because of in­

tron explosion. Such wide variances in results are typical in genetic 

programming. 

As a result, measuring what is going on before, during, and after 

a G P run and measuring its significance is important for at least three 

reasons: 

1. D y n a m i c R u n Contro l 
••} ' * 8 

One would like to be able to use the information to control the 

run itself. 

2. D a t a P r e p r o c e s s i n g 

It is good to present the da ta to the G P system in a way tha t 

maximizes the chance of testable, useful predictions. 

3. S ignif icance or M e a n i n g of R u n 

It is important to interpret the results of the run for mean­

ing and statistical significance - tha t is, does an evolved G P 

individual have any statistically valid predictive value? 

Online Analysis Tools This chapter refers to measurements made during a G P run as 

"online measurements." Online measurements of fitness have been 

with G P since its beginning [Koza, 1992d]. In 1995, researchers 

s tarted systematically to measure other aspects of G P runs online, 

such as introns, effective size, and crossover results. 

Offline Analysis Tools "Offline" analysis tools are measurements and statistical analysis 

performed before and after G P runs. Typical offline tools include 

da ta preprocessing and statistical analysis of whether a G P run is 

"generalizing" well to da ta it has not yet seen. 

This chapter begins with some basic statistical concepts such as 

populations and samples, and several elementary statistical tests tha t 

are widely applicable in GP. Then, we look at ways to use both online 

and offline tools in analyzing and improving G P runs. 
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8.1 Statistical Tools for GP 

8.1.1 Basic Statistics Concepts 

By statistical population we mean the entire group of instances (mea- Statistical Population 

sured and unmeasured) about which one wishes to draw a conclusion. 

If, for example, one wished to know how many men living in the city 

of Dortmund, Germany, weighed more than 100 kg, the statistical 

population to examine would be all men living in Dor tmund. 1 

A sample is a subset of a statistical population. To comprise Sample 

a sample, the subset must be drawn randomly from the statistical 

populat ion and the draws must be independent of each other (see 

Chapter 3). 

Many populations cannot be measured as a whole. Often, the 

best we can do is to select a sample from the population (say, 1000 

of the men who live in Dor tmund) and measure their heights. We 

would hope tha t the distribution of men's heights in tha t sample is 

representative and would let us est imate the distribution of heights 

in the entire male population of Dortmund. 

Statistics as a discipline does not give black and white answers. 

It gives probabilities tha t certain measurements or findings will be 

replicated on subsequent samplings from the population. For in­

stance, suppose tha t the 1000-man sample from Dor tmund had a 

mean weight of 80 kg with a s tandard deviation of 7 kg. Statisticians 

can estimate the probability tha t a second sample of 1000 men from 

Dortmund will weigh, on average, 110 kg. The probability would be 

very low. But statistics could not say tha t this event could not occur. 

The statistical significance level is a percentage value, chosen for Statistical Significance 

judging the value of a measurement. The higher the level chosen, Level 

the more stringent the test. Statistical significance levels chosen are 

usually values from 95% to 99%. 

8.1.2 Basic Tools for Genetic Programming 

There are many statistical tools available to the G P researcher. This Generically Applicable 

section is a brief survey of basic tools tha t apply generically to mea- Tools 

surements taken from samples drawn from populations. They should, 

therefore, be considered whenever a measurement is made of a sample 

drawn from a population in GP. 

1 "Statistical population" is offbeat terminology - statistics texts would 
refer to all men living in Dortmund as the "population." However, the term 
population already has a special meaning in GP. Therefore, we will use the 
term statistical population to refer to what ordinary statistics literature 
would call a "population." 
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How to calculate the statistics referred to in this section may be 

easily found in any basic text or handbook on statistics. 

Conf idence Intervals 

A confidence interval is a range around a measured occurrence of 

an event (expressed as a percentage) in which the statistician esti­

mates a specified portion of future measurements of that same event. 

The confidence interval expresses how much weight a particular pro­

portion is entitled to. A narrow confidence interval means tha t the 

measurement is accurate. A wide one means the opposite. Normally, 

confidence intervals are measured at the 95% and 99% statistical sig­

nificance levels. 

Confidence Intervals in Wha t follows is a real-world example of the use of confidence in-

the Real World tervals to determine the feasibility of redesigning a G P system. The 

importance of measuring G P introns has been discussed elsewhere 

(see Chapter 7). Let us assume a G P population (not a statistical 

population) size of 3000 programs. To measure the percentage of 

nodes in the G P population tha t are introns, the statistical popu­

lation is comprised of every node of every individual in the entire 

G P population. If the average individual is 200 nodes in size, the 

statistical population size is large - 600 000 nodes. 

Sometimes it is possible to take the measure of the entire pop­

ulation. In fact, one recent s tudy did measure the average num­

ber of introns per individual for the entire statistical population 

for every generation. Doing it tha t way was very t ime consuming 

[Francone et al., 1996]. 

After completing tha t study, we began to look for ways to speed 

up intron checking. One suggestion was to take a sample of, perhaps, 

1000 nodes (out of the 600 000 nodes) and measure introns in the 

sample. This sample could be used to estimate the percentage of 

introns for the entire population - reducing the t ime used for intron 

checking by a factor of 600. 

The payoff from this approach is clear. But what would be lost? 

Suppose tha t 600 of the 1000 sampled nodes were introns. Does 

this mean tha t 60% of the entire 600 000 node population are com­

prised of introns? No, it does not. The 95% confidence interval for 

this measured value of 60% is actually between 57% and 63%. This 

means, in 95% of all 1000-node samples drawn from the same G P 

population, between 57% and 63% of the nodes will likely be introns. 

Viewed another way, we could say tha t the probability is less than 

5% tha t a 1000-node sample drawn from the same G P population 

would have fewer than 570 introns or more than 630 introns. In a 

run of two-hundred generations, however, one would expect at least 
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ten generations with anomalous results just from sampling error. So 

we decided to run intron checks on about 2000 randomly gathered 

nodes per generation. This tightened up the confidence interval to 

between 59% and 6 1 % . 

In G P work, calculating confidence intervals on proportions is im­

por tant - intuition about proportions and how significant they ought 

to be are frequently wrong. Wha t would happen to confidence inter­

vals if the sample size of 1000 fell to a more typical G P level of thir ty 

samples? Of those thir ty nodes, suppose tha t 60% (18 nodes) were 

introns. Would we be as confident in this 60% measure as we were 

when the sample size was 1000? Of course not, and the confidence 

interval reflects tha t . The 95% confidence interval for a sample com­

prised of thir ty nodes is between 40% and 78% - a 38% swing. To 

obtain a 99% confidence interval from the thir ty sample nodes, we 

would have to extend the range from 34% to 82%. The lesson in this is 

tha t proportions should always be tested to make sure the confidence 

intervals are acceptable for the purpose for which the measurement 

is being used. 

Confidence Intervals 
and Intuition 

Corre la t ion M e a s u r e s 

There are several different ways to test whether two variables move 

together - tha t is, whether changes in one are related to changes 

in the other. This chapter will look at two of them - correlation 

coefficients and multiple regression.2 

Correlation coefficients may be calculated between any two da ta 

series of the same length. A correlation coefficient of 0.8 means 80% 

of the variation in one variable may be explained by variations in 

the other variable. If the correlation coefficient is positive, it means 

increasing values of the first variable are related to increasing values 

of the second variable. If negative, it means the reverse. 

A correlation coefficient comes with a related statistic, called the 

student's t-test. Generally, a t-test of two or bet ter means tha t the 

two variables are related at the 95% confidence level or bet ter . 

Assume a project involves many runs where the mutat ion rate is 

changed from 5% to 20% to 50%. The runs are finished. Did runs 

using higher mutat ion rates produce bet ter or worse performing in­

dividuals? Calculating the correlation coefficient and t-test between 

mutat ion rate and performance would be a good way to s tar t an­

swering this question. If the value of the t-test exceeded 2.0, then the 

2 Correlation analysis does not test whether changes in variable 1 cause 
changes in variable 2, only whether the changes happen together. Statistics 
does not establish causation. 

Correlation Coefficient 

Student's t-Test 

Use of Correlation 
Analysis in GP 
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correlation between mutat ion and performance is significant at the 

95% level. 

Multiple Regression Multiple regression is a more sophisticated technique than simple 

correlation coefficients. It can uncover relationships tha t the simpler 

technique misses. Tha t is because multiple regression is able to mea­

sure the effects of several variables simultaneously on another varia­

ble. Like correlation analysis, multiple regression is linear and yields 

bo th a coefficient and a t score for each independent variable. 

If the researchers in the mutat ion/performance study referred 

to above had not found a statistically significant relationship be­

tween mutat ion and performance using the correlation coefficient, 

they might have to deal with one additional fact. In their runs, they 

did not just vary the mutat ion rate, they also varied the parsimony 

rate . The effect of changes in the parsimony rate could well have 

obscured the effect of the changes in the mutat ion rate. Multiple re­

gression might have helped in this case because it would have allowed 

to hold the parsimony rate constant and test for just the effect of the 

mutat ion rate. 

Tes t ing P r o p o s i t i o n s 

F scores are frequently useful to determine whether a proposition 

is not false. Assume a project involving measurements of the value 

of best individual hits in thir ty separate G P runs. Tha t thir ty-run 

sample will have a mean (call it 75%) and the individual samples will 

vary around tha t mean (some runs will have hits of 78% and others 

72%). 

F- Test An F- tes t analyzes the mean and the variance of the sample and 

tests the proposition tha t the mean of the thir ty samples is not zero. 

The F- tes t is expressed in probabilities. Therefore an F-teat of 0.05 

would mean the probability tha t the mean of the thir ty samples is 

zero is only 5%. (See [Andre et al., 1996a] for a successful application 

of the F- tes t to establish that a tiny but very persistent difference in 

results was statistically significant.) 

More complex F- tes ts are available. For example, one can test 

the proposition tha t the means of two different samples are differ­

ent by more than a specified interval. This is a very useful measure 

in establishing the relative performance of different machine learn­

ing systems (benchmarking). In a typical benchmarking study, each 

system produces a variety of runs and results on the same data . 

A recent s tudy ran a G P system and a neural network on the same 

test da ta . The G P system did a little bet ter than the neural network 

across the board but the difference was not large. For example, for 

the best 10% of runs on one da ta set, G P averaged 72% correct and 
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the network averaged 68% [Francone et al., 1996]. Is tha t difference 

statistically significant? Fortunately, this was a big s tudy and there 

were a lot of runs. The F- tes t for a hypothesized difference between 

two means assuming unequal variances is very useful in this situation. 

It gave a 95% confidence level tha t the difference in means cited above 

was at least a 1% difference. 

All of the above tests can provide excellent feedback about the Caveat 

weight tha t should be given to experimental results. Nevertheless, 

statistics is an analytic science. A number of assumptions had to be 

made to derive t-tests, F- tes ts , and the like. For example, most sta­

tistical measures assume tha t the distribution of the sample on which 

the test is being performed is approximately normal (see Chapter 3). 

In practice, the tests work pret ty well even if the distribution is fairly 

distant from a Gaussian. But it is always a good idea to take a look 

at a histogram of the da ta one is analyzing to make sure it does not 

grossly violate this assumption of normality. If it does, the value of 

any of the tests described above is dubious. 

8.2 Offline Preprocessing and Analysis 

Before a G P run, there is only data . It is usually comprised of dif­

ferent instances of different da ta series. The task of the researcher is 

twofold: 

1. To select which da ta series and da t a instances should be fed to 

the G P system as input(s) ;3 and 

2. To determine which, if any, transformations should be applied 

to the da ta before it is fed to the G P system. 

Preprocessing and analysis of da ta before a run plays a crucial role 

in the machine learning literature, particularly the neural network 

literature. 

Preprocessing and analysis comes in three forms: 

1. Preprocessing to meet the input representation constraints of 

the machine learning system; 

2. Preprocessing to extract useful information from the da ta to 

enable the machine learning system to learn; and 

3. Analyzing the da ta to select a training set. 

3This is a largely unexplored domain in GP. The little research that 
exists on selecting inputs indicates that GP does not do well when fed a 
lot of irrelevant inputs [Koza, 1992dl. 
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The next three subsections discuss the integration of such tech­

niques into GP. 

8.2.1 Feature Representation Constraints 

Much of the preprocessing of da ta for neural networks or other ma­

chine learning methods is required by the constraints on feature (in­

put) representation in those methods (see Chapter 1). For example, 

most neural networks can accept inputs only in the range of —1 to 1. 

Boolean systems accept inputs of only 0 or 1, t r u e or f a l s e . So it is 

usually necessary to center and normalize neural network inputs and 

to transform inputs for a Boolean system to be either 0 or 1. 

By way of contrast, G P has great freedom of representation of 

the features in the learning domain. As a result, it can accept inputs 

in about any form of da ta tha t can be handled by the computer 

language in which the G P system is writ ten and, of course, over a 

very wide range. It has been suggested tha t it may be useful to 

have the different inputs cover roughly the same ranges and tha t 

the constants allowed in the G P system cover tha t range also. The 

authors are not aware of any experimental proof of this concept but it 

seems a good suggestion to follow. However, unlike in most machine 

learning systems, this is not a major issue in GP. 

8.2.2 Feature Extraction 

One challenging goal among G P researchers is to be able to solve 

problems using no prior knowledge of the learning domain. Fre­

quently, however, we can obtain prior knowledge of the domain by 

using well-established statistical techniques. These techniques may 

extract useful types of information from the raw da ta or filter out 

noise. 

Some of these techniques are simple. For example, one might look 

at a histogram of an input da ta series and determine tha t outlying 

points in the distribution should be t runcated back to three s tandard 

deviations from the mean of the series. Other techniques are much 

more complex but nevertheless very useful. This chapter will touch 

on only two techniques: principal components analysis and extraction 

of periodic information in t ime series data . 

Pr inc ipa l C o m p o n e n t s A n a l y s i s 

Real-world problems frequently have inputs that contain a large quan­

tity of redundant information. One series of input components might 

frequently be correlated with another series of input components to 

a high degree. If both series are used as inputs to a machine learning 
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system, they contain redundant information. There are two reasons 

why this is relevant: 

1. G P star ts in a hole. It has to learn how to undo the redundancy 

and to find the useful information. 

2. Redundancy of this kind creates unnecessarily large input sets. 

One way to at tack this problem would be to calculate the corre­

lation coefficient for each pair of potential input variables. In fact, 

this is a good idea before a G P run in any event. But suppose the 

correlation between two of the variables is high. Do we throw one 

out? Do we keep them both? 4 

Principal components analysis (PCA) extracts the useful varia­

tion from several partially correlated da ta series and condenses tha t 

information into fewer but completely uncorrelated da ta series. The 

series extracted by P C A are called the components or principal com­

ponents. Each of the principal components is numbered (the first 

principal component, the second ... and so forth). The actual tech­

nique for calculating principal components is beyond the scope of this 

chapter. Wha t follows is a visual metaphor for what P C A is doing 

when it extracts components. 

P C A calculates the first principal component by rotat ing an axis 

through the n-dimensional space defined by the input da ta series. 

P C A chooses this axis so that it accounts for the maximum amount 

of variation in the existing da ta set. The first principal component is 

then the projection of each da ta element onto tha t axis. 

P C A calculates the additional principal components in a similar 

manner except tha t the variation explained by previous components 

is not compensated for in positioning subsequent axes. It should 

be apparent tha t each new principal component must be measured 

on an axis tha t is orthogonal to the axes of the previous principal 

component(s) . One very nice feature of P C A is tha t it reduces the 

number of inputs to the G P system substantially while keeping most 

of the information contained in the original da ta series. In fact, it is 

not normally necessary to extract more than two or three components 

to get the vast bulk of the variance. This is t rue even when there are 

many da ta series. 

However, P C A is not an automatic process nor is it a panacea 

for all input problems, for at least three reasons: 

Actually, where there are only two highly correlated variables, it of­
ten helps to use their sum and their difference as inputs rather than the 
variables themselves. If there are more than two, it is necessary to use 
principal components analysis. 
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1. PC A involves judgment calls about how many components to 
use. 

2. Weighting inputs to the PCA system to emphasize "important" 
variance and to deemphasize "unimportant" variance can help 
the performance of the PCA tool. But assigning importance 
to variance is a task GP itself ought to be doing. For GP 
purposes, the manual assignment of weights seems rather self-
defeating unless one has specific domain knowledge to justify 
the decision. 

3. When, for instance, twelve components are reduced to only 
three components, some information will be lost. It could be 
the information that the GP system needed. 

Notwithstanding these drawbacks, PCA can be an effective tool and, 
used properly, helps far more often than it hurts. 

Extraction of Periodic Information in Time Series Data 

Engineers and statisticians have spent decades developing techniques 
to analyze time series. Some of that work has made its way into GP 
[Oakley, 1994a]. The purpose of this section is to give the broadest 
overview of the types of work that have been done in these areas to 
spur further research by the interested reader. > ; ' •''•'• 

Figure 8.1 
A time series shown in 3 5 • • 

the time domain , 

To begin with, there are simple techniques to extract different 
types of information from time series data such as simple or expo­
nential moving averages (SMAs or EMAs). For example, Figure 8.1 is 
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a time series plotted over ten years. To the eye, it has some periodic 
components but there appears to be a lot of noise. 

Figure 8.2 is the same time series as in Figure 8.1 except that 
two different simple moving averages have been applied to the series. 
Note that the simple moving averages serve as a sort of low pass filter, 
allowing only low frequencies through. This tends to filter out what 
might be noise. In many instances, SMA-type preprocessing greatly 
assists machine learning systems because they do not have to learn 
how to filter out the noise.5 

Untransformed Data 

-Six Month SMA 

-One Year SMA 

This brief treatment of SMAs is far too simple. The price of the 
low pass filter is that the smoothed data series lags behind changes 
in the real world. The greater the smoothing, the greater the lag. 
Further, if the actual data exhibits genuine periodicity, this means 
that the smoothed data may be out of phase with the actual data 
unless exactly the right window was chosen for the SMA. There is a 
rich body of literature in the trading technical analysis world dealing 
with this issue and, in particular, how to identify the dominant cycle 
and how to adjust the filters so that the filtered data end up in phase 
with the real-world data [Ehlers, 1992]. 

There are many other techniques to extract periodic components 
or otherwise preprocess time series data such as detrending and cen-

Should there be concern that the SMA is filtering out valuable high 
frequency information, the residuals may be calculated (that is, the differ­
ence between the original series and the SMA). Those residuals may be fed 
to the GP system as a separate data source. 

Figure 8.2 
The time series from 8.1 

with a simple moving 

average 

Other Preprocessing 

Techniques 
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tering, differencing, digital filtering, the maximum entropy spectrum 

technique, quadrature mirror filters, and wavelets.6 

Let us look at discrete Fourier transforms and the power spectrum 

as an example of the many preprocessing techniques tha t are available 

for real-world t ime series data. 

The Discrete Fourier Figure 8.1 is a t ime series plotted in the t ime domain. This means 

Transform tha t the series in Figure 8.1 is represented as a function of t ime and 

value. It is possible to transform the series into other domains. A 

popular transform is the discrete Fourier transform. Once the Fourier 

transform is performed, the real and imaginary parts of the transform 

are mapped to a power spectrum. This converts the series from the 

t ime domain to a frequency/power domain. 

How is this useful? If Figure 8.1 were a sound wave, feeding the 

results of the discrete Fourier transform to a G P system might help 

the G P system to bet ter extract useful information from the wave. In 

effect, the G P system would not have to go to the trouble of learning 

1 how to extract the periodic information. A much simpler statistical 

device would be doing that for the G P system. 

8.2.3 Analysis of Input Data 

Selecting a training set often presents two problems: 

1. How to choose among input series 

2. How to choose training instances 

C h o o s i n g a m o n g I n p u t Ser ies 

The G P researcher is frequently faced with many da ta series but has 

no idea (other t han intuition) which of the da t a series are relevant. 

This problem arises frequently in real-world problems - especially 

in sound and image processing problems, t ime series problems, and 

da ta mining problems. How to choose input series is one of the great 

unexplored areas in GP. Wha t little research there is suggests tha t , 

when G P is fed too many irrelevant inputs, its performance is severely 

compromised [Koza, 1992d]. 

Some Suggestions In the long term, a meta-learning approach is probably the best 

solution. But for most G P systems, serious meta-learning will have 

to wait for faster computers. Here are some suggestions until then: 

• Run correlation coefficients between each potential input and 

the output . This might help narrow what inputs to use. Ob­

viously, inputs with higher correlations should be used, but it 

6A11 of these subjects are treated well and in detail in [Masters, 1995b]. 
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would be unwise to stop there. The correlation coefficient will 

frequently miss many of the important variables. 

U Run correlation coefficients between each potential input. For 

those tha t are correlated, group them together, do a principal 

components analysis, as suggested above, and use the resulting 

components as inputs. 

• Try different runs with different combinations of variables. Keep 

da ta on which runs do the best. Select the variables tha t are 

most often associated with good runs. Do more runs with the 

possibly good variables. Keep repeating this until the system 

produces acceptable results. In effect, this is performing meta-

learning manually with respect to variable selection.7 

C h o o s i n g Training I n s t a n c e s 

Data analysis may also be of use in selecting a training set when there 

is an abundance of data . This is a different issue than choosing among 

da ta series. This issue assumes tha t the da ta series have been chosen. 

Now there are n examples of the training domain using those da ta 

series. Which of the examples will be used to t rain the G P system? 

The reader will, of course, recognize this as another incarnation of 

the problem of getting a representative sample from a population. 

In da t a mining the G P system combs through a large, frequently Data Mining 

mainframe or server database, and searches for pat terns in the data . 

Increasingly, machine learning applications, including GP, are being 

used for da t a mining. The important characteristic here of da t a min­

ing is tha t there are usually many more training instances available 

than a G P system could possibly digest. Large companies often have 

millions or more records of da ta . The problem is, how to select the 

particular training instances to make up the da ta set, given a gross 

overabundance of data? 

Obviously, there will be problem-specific selection issues. But 

once the problem-specific criteria have been fulfilled, it is still very 

7This suggestion illustrates the importance of calculating statistical sig­
nificance levels. If input variable x appears in two runs that do well, that is 
not so impressive. If it appears in 800 runs that do well, it is. Somewhere 
in between 2 and 800 is a number of runs that will give you 95% confidence 
that having variable i i n a run is related to having a good output on the 
run. Knowing what that number of runs is can save you from chasing a 
relationship that does not exist (if you draw conclusions based on too few 
runs). It can also save you much calculation time confirming a relationship 
for which you already have enough evidence. 
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important tha t the training set be representative of the overall da ta 

set. There are several possible approaches: 

• Select a random sample of training instances from the million-

plus database. But tha t raises the problem we have seen before, 

variance caused by sampling error. A random sample can be 

quite unrepresentative of the overall training set. This chapter 

has been filled with instances where statisticians would expect 

very substantial variation among different random samples from 

the same population. 

• Large da ta sets for da ta mining usually have many input vari­

ables in addition to many records. It would take some t ime, 

but the mean and variance of each of those records could be 

calculated. From that , it should be possible to define an ac­

ceptable level of variance for each such variable. Either by cal­

culation or by repeated sampling and measurement of different 

size samples, one could calculate the approximate sample size 

tha t produces a sufficiently representative training set. If the 

sample size chosen is not so large tha t G P training would be 

unduly slow, this is a workable option. 

• One could also look at the distributions of the input variables 

in the overall da ta set and make sure tha t the "random sample" 

tha t is picked matches those distributions closely. 

• The above approach is workable but unsatisfying. Perhaps this 

is a situation for stochastic sampling (see Chapter 10). In tha t 

method, the researcher never does pick a training set. Rather , 

the G P system is programmed to pick a new small training set 

regularly, t rain on it for a brief period, and then pick another 

new, small training set. 

The above are just a few of the methods in which statistical 

analysis and da ta preprocessing may be used before a G P run even 

starts . The next sections will show what we can do with the results of 

a G P run and demonstrate how to measure what is going on during 

a G P run. 

8.3 Offline Postprocessing 

8.3.1 Measurement of Processing Effort 

Koza has designed a method for G P performance measuring with 

respect to the processing effort needed for finding an individual -
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with a certain probability - that satisfies the success predicate of a 
given problem [Koza, 1992d]. The success predicate sometimes is a 
part of the termination criterion of a GP run. It is a condition that 
must be met by an individual in order to be acceptable as a solution. 

The processing effort is identified with the number of individuals 
that have to be processed in order to find - with a certain probabil­
ity - a solution. Note that this measure assumes a constant process­
ing amount for each individual, which is a simplification of reality. In 
general, different individuals will have different structures and this 
implies different processing efforts. For example, an individual hav­
ing a loop may require a significantly higher processing effort for its 
evaluation than an individual that does not use loops. 

Because of the simplification, we can concentrate on the popula­
tion size M and the number of generations evolved in a certain run 
as the two important parameters. 

Koza's method starts with determining the instantaneous prob- Instantaneous 
ability I(M, i) that a certain run with M individuals generates a Probability 
solution in generation z. One can obtain the instantaneous proba­
bility for a certain problem by performing a number of independent 
runs with each of these runs using the same parameters M and i. 

If I{M, i) has been determined for all i between the initial gener- Success Probability 
ation 0 and a certain final generation, the success probability P(M, i) 
for the generations up to i can be computed. That is, p = P(M, i) 
is a cumulative measure of success giving the probability that one 
obtains a solution for the given problem if one performs a run over i 
generations. 

With this function measured, the following question can be an­
swered: given a certain population size M and a certain generation 
number i up to which we want to have a run perform at most, what 
is the probability of finding a solution, at least once, if we do R 
independent runs with each run having the parameters M and il 

To answer this question, consider that the probability of not find­
ing a solution in the first run is 1 — P(M,i). Since the runs are 
independent of each other, the probability of again not finding the 
solution in the second run is (1 — P(M, i))2. In general, the probabil­
ity of not finding the solution in run Ris(l- P(M,i))R. Thus, the 
probability of finding a solution by generation i, using R runs, is: 

z = l-(l-P{M,i))R (8.1) 

Our question was: what is the probability of finding a solution, at 
least once, if we do R runs? We can now turn this question around 
and ask: how many runs do we need to solve a problem with a certain 
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probability z? Solving the above equation for R gives 

_ log(l - z) 

l o g ( l - P ( M , » ) ) ^ j 

R must be rounded up to the next higher integer to yield the answer. 

If mutat ion is one of the genetic operators, then the success prob­

ability P(M, i) rises the more generations a run performs. For given 

values of M and z, this means that the evolution of more generations 

per run requires fewer runs to be done in order to find a solution 

with probability z, while, on the other hand, the evolution of fewer 

generations per run requires more runs to be done. 

Which generation number requires a certain number of runs such 

tha t the overall number of processed individuals - the processing ef­

fort - is minimal? This question can only be answered in a problem-

specific way since the instantaneous probability is empirically ob­

tained by doing runs on the problem at hand. 

8.3.2 Trait Mining 

Usually, a program induced by genetic programming is not at all a 

piece of code tha t software engineers would rate as high quality with 

respect to understandabili ty by a human. It often is very monolithic, 

contains problem-relevant but redundant code and - even worse - a 

lot of code irrelevant to the problem at hand. Tackett approaches 

this problem with a method he calls t rai t mining [Tackett, 1995]. 

Redundant and irrelevant code bloats the program and often very 

effectively disguises the salient expressions - the expressions t ha t ac­

tually help in solving the problem. Trait mining helps to identify 

those expressions. 

Knowledge emerges stepwise during a genetic programming run. 

Initially, the population-inherent knowledge about the problem is 

very small, because programs are random structures. Soon, at least in 

a successful genetic programming run, the behavior of more and more 

programs begins to reflect the problem, which means the population 

gradually acquires more knowledge about the problem. 

However, due to their size and often tricky and counter-intuitive 

structures, the evolved programs mostly are hard for humans to read 

and understand. A naive approach to avoiding this unpleasant sit­

uat ion and alleviating program analysis is to restrict the size and 

complexity of the programs. On the other hand, program size and 

complexity may be needed for solving a problem. 

Gene Banking For this reason, trai t mining does not impose restrictions on these 

program at t r ibutes in order to identify salient expressions. It ra ther 



8.4 Analysis and Measurement of Online Data BJU 

keeps book on all expressions evolved so far during a genetic program­
ming run. This approach has been called gene banking. Obviously, 
due to the large number of such expressions, gene banking consumes a 
significant amount of CPU time and memory. Tackett claims that an 
integrated hashing-based mechanism keeps this consumption within 
acceptable limits. 

Finally, when a genetic programming run has ended, trait mining 
allows for the evaluation of expressions with respect to how salient 
they are. 

8.4 Analysis and Measurement of Online Data 

8.4.1 Online Data Analysis 

The first question in online data analysis is: why would one want to do 
it? The answer is twofold and simple. Doing so is (i) fascinating and 
(ii) often immensely useful. GP runs usually start in a random state 
and go through a period of rapid change during which the fitness 
of the population grows. Eventually GP runs reach a point where 
change ends - even though simulated evolution continues. 

Online tools monitor the transition from randomness to stability. 
Not only do they highlight how the transition takes place, they also 
raise the possibility of being able to control GP runs through feedback 
from the online measurements. 

In the next subsections, we will first address measurement issues 
for online data. Then we will describe some of the online data tools 
that are already being used. Finally, we will discuss the use of online 
measurements for run control. 

8.4.2 Measurement of Online Data 

This chapter has already addressed some measurement issues for on­
line measurement tools. Recall the earlier discussion of intron check­
ing, a relatively recent addition to the arsenal of online analysis tools. 
Because intron checking is so computationally intensive, the reader 
will recall that a statistical approach to intron checking was recom­
mended. A statistical approach to measuring any online data is pos­
sible. Whether it would be useful depends on the tradeoff between 
CPU cycles and the uncertainty caused by confidence intervals. 

Many of the typical GP online measurements characterize the Generational Online 
population as a whole - average fitness, percentage of the population Measurement 
that is comprised of nitrons, and so forth. In the generational model, 
each new generation is a distinct new group of individuals and it is 
created all at once (see Chapter 5). It therefore makes good sense to 
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measure the online statistics once per generation at tha t t ime. This 

is the typical practice in GP. 

Steady-State Online Steady-state models, on the other hand, do not have distinct gen-

Measurement erations (see Chapter 5). Steady-state G P maintains the illusion of 

generations by stopping once every P fitness evaluations (where P is 

the population size) and measuring their online statistics. This con­

vention has proved effective and is used almost universally in steady-

state G P systems. Here, we will follow this convention. The reader 

should recall, however, tha t a generation is no more than an agreed 

convention in steady-state models and any online statistic could be 

calculated so as to reflect the reality of a steady-state system more 

precisely.8 

8.4.3 Survey of Available Online Tools 

F i t n e s s 

Understandbly, fitness was the earliest online measurement in wide­

spread use [Koza, 1992d]. The most frequently used fitness measures 

are: 

• Fitness of the presently best individual; 

• Average fitness of the entire population; 

• Variance of the fitness of the entire population. 

The last two statistics characterize the population as a whole 

and are shown in Figure 8.3 for the same run of a pa t te rn recogni­

tion problem. Both average and variance first decrease quickly, then 

increase again on finding a simple approximative solution which is 

not optimal. Later, average fitness decreases continuously, whereas 

variance stays at a certain level. 

D i v e r s i t y 

Diversity is another measure of the s tate of the population. Genetic 

diversity is a necessary condition for the fast detection of a high-

fitness individual and for a fast adaptat ion of the population to a 

8One way to maintain online statistics in a steady-state system would be 
as EMAs. Each time a new fitness value was calculated, it would be added 
to the existing EMA for average fitness. If the illusion of generations is to 
be maintained, the width parameter of the EMA could be set so that the 
window of the average is approximately one generation. More interesting, 
however, would be to set the width to accommodate only a short window 
of data. Or possibly to maintain several different windows simultaneously. 
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changing environment. To maintain genetic diversity during runs, it 
is useful to measure diversity and changes in diversity. There are two 
overall approaches to measuring diversity: 

• Genotypic Diversity 
Measuring the structural differences between genotypes; and 

• Phenotypic Diversity 
Measuring differences in behavioral aspects of the phenotype 
that are believed to be related to diversity. 

Genotypic diversity is diversity among the actual structures in the 
population - the trees, the graphs, or the linear genomes. Genotypic 
diversity might be an online statistic of the state of the GP population 
that is orthogonal to the online fitness measurements. This would be 
valuable indeed. To construct such a measure, it would be ideal if no 
quality (fitness) information were contained in the diversity measures. 
Viewed this way, diversity should be based on a comparison of the 
structure of the individuals only. 

One good measure of diversity that fits this requirement is to use 
"edit distances" between programs. The edit distance of two pro­
grams could be calculated as the number of elementary substitution 
operations necessary to traverse the search space from one program 
to another. The definition of the edit distance <5, which goes back 
to [Levenshtein, 1966], states that 5(g, h) of two genotypes g, h is the 
minimal number of applications of given elementary edit operations 
needed to transform g into h. 

Measuring Genotypic 
Diversity 

Edit Distance 
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On the genospace of fixed length binary strings with single-bit 
flipping as the only edit operation, for instance, the Hamming dis­
tance, that is the minimal number of single-bit flips needed to trans­
form one string into another, is a type of edit distance often used. 
As an example, consider the strings g — 100001 and h = 011111. In 
order to transform g into h, we have to apply a single-bit flip at least 
5 times. Thus, we have S(g, h) = 5. 

In a tree space G, on the other hand, basic edit operations could 
be the insertion and deletion of nodes. Let the notation be del{l) and 
add(l), where I is a node label. Since we have a bijection between G 
and prefix strings, we can write each tree as a string the characters 
of which are leaf labels. For example, consider g = +a/bc and h — 
+ * abc. The sequence 

del(b), del(c), del(/), add(c), del(a), add(*), add(a), add(b) 

is a minimal sequence leading from g to h. Thus, we have 6(g, h) = 8. 
If we imagine the space of all genotypes as a high-dimensional 

space [Keller and Banzhaf, 1994], a genotype - that is a structure -
takes exactly one position. Intuitively, there is high genetic diversity 
in a population if the individuals represent many different genotypes 
that are "equally distributed" over this entire space. 

The edit distance approach to diversity is based on the assump­
tion that edit distance actually measures diversity. It is not clear 
that this is the case. For example, two individuals with identical 
working code would be far apart in edit distance if one of the in­
dividuals had an intron structure comprised of hundreds of nodes. 
Such structures are not uncommon. Although there would be great 
apparent diversity caused by the introns, in fact the only contribu­
tion of the introns would be to change the probability of crossover 
in the working code, that is, the effective fitness of the working code 
[Nordin et al., 1996]. Arguably, the difference between the effective 
fitness of the two individuals constitutes diversity. Because effective 
fitness increases with the number of introns, the edit distance would 
be related to the difference in effective fitness. It is especially unclear 
that the edit distance necessary to factor in introns is in any way 
equivalent to the edit distance to get from one piece of working code 
to another. 

Because it has been so hard to define genotypic diversity and 
because measuring it is computationally intensive, edit distance as a 
measure of structural diversity is not widely used. 

GP researchers have also measured diversity by measuring vari­
ance in the performance of the phenotype - a good example is mea­
surement of variance of fitness in the population. Such measure­
ments compute some aspect of phenotypic behavior. While such mea-
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sures are clearly not orthogonal to fitness, they are computationally 
tractable. Several methods have been used to calculate phenotypic 
diversity: 

• Fitness Variance 
Experimental use of fitness variance suggests that it measures 
some quantity of the state of the population that is different 
from fitness. Changes in such measures of diversity within the 
population may presage major leaps in the quality of the best 
individuals in the population [Rosea, 1995b] (see Figure 8.3). 
Thus, fitness variance provides a look into the diversity issue 
but it is far from the ideal of being orthogonal to the fitness 
vector. 

• Fitness Histograms 
Fitness histograms provide a more subtle look into the diversity 
of the population. Both Rosea and Koza have experimented 
with this measure. Figure 8.4 shows an example of a fitness 
histogram used by [Rosea, 1995b]. 

3 0 0 0 -

• ° 2 0 0 0 -

Figure 8.4 
Fitness histogram. The 

number of hits (fulfilled 

fitness cases) increases 

over the course of a run. 

(Reproduced with 

permission from 

[Rosea, 1995b].) 

35 0 Generations 

Hits 

• Entropy 
In accordance with developments in the GA community, en-
tropic measures of diversity are also proliferating. Rosea points 
out that diversity in populations of program individuals can be 



W7TM 8 Analysis — Improving Genetic Programming with Statistics 

represented by a measure 

E(P) =-Y,Pk log Pk (8.3) 
k 

where pk is the proportion of a population P tha t is in category 

or part i t ion k with reference to a specific feature, such as fitness. 

Regardless of what measurement is used, all phenotypic fitness 

measures assume, implicitly, tha t fitness differences do in fact reflect 

differences in the genotypes of individuals. While this assumption 

is intuitively appealing, neutral variants having huge differences in 

their s t ructure often behave in virtually the same manner, and thus 

evaluate to the same fitness. It is not clear how to handle this prob­

lem. 

Wha t is the purpose of observing diversity, either of the phe-

notypes or the genotypes? The reason one would want informa­

tion about the s ta tus of diversity of the population is simply tha t 

it helps estimate the chances tha t continuing the run would have 

some prospect of discovering a solution to the problem. High diver­

sity would give an indication tha t it is profitable to extend the run; 

low diversity would indicate the opposite. Thus, a re-start with a 

newly seeded population might in this situation be the bet ter choice. 

M e a s u r i n g O p e r a t o r Effects 

Each variation operator in G P has its own effect on the population 

and on the emergent dynamic of the run. By observing these effects, 

one can t ry to see which operators are useful in a certain stage of the 

evolution and which are not. 

To distinguish between useful and useless operators, one has to 

isolate their effects radically. If a generational selection scheme is 

used, it will in general not be possible to discern the effect of different 

operators. Therefore, a tournament or (/x, A) selection scheme should 

be used to check immediately which effects have been caused by an 

operator. Also, each operator should be applied exclusively, i.e., no 

sequence of operators (apart from reproduction) should be allowed. 

Crossover Effects The most useful measurement of operator effects to date has been 

tha t of the effects of crossover on the fitness of parents relative to the 

fitness of their children. The goal is to be able to assign any operator 

event - here, crossover - into a category tha t tells us whether it 

was successful, neutral, or unsuccessful. Two basic approaches to 

measuring the effect of crossover have been discussed earlier in the 

book. 

• The average fitness of bo th parents has been compared with the 

average fitness of both children [Nordin and Banzhaf, 1995a] 
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[Nordin et al., 1996]. If the average of the children is more 

than 2.5% bet ter than the average of the parents, the cross­

over is counted as being constructive; if more than 2.5% worse, 

it is counted as being destructive; and if the average fitness 

for the children is within 2.5% of the parents, it is counted as 

neutral . The effect of this measurement technique is tha t bo th 

parents and both children are counted as one crossover event. 

This method gives three simple online measurements t ha t can 

be followed during evolution. 

• The fitness of children and parents are compared one by one 

[Francone et al., 1996] [Teller, 1996]. In this approach, one child 

is assigned to one parent. Therefore, each such pairing is counted 

as one crossover event. 

Measurements of crossover effects have permit ted at least two 

different systems to achieve run-t ime control over G P runs. Those 

successes will be described later in this chapter. 

Let us look at a more formal way to s tudy operator effects. Given 

the number of predecessors I = 1, 2, . . . , N with 1=1 for mutat ion, 

1 = 2 for conventional crossover, I = N for multirecombinant oper­

ators, and a number of offspring J = 1, ...,M one can quantify the 

"progress" between individuals gained from applying operator k as 

fitgainik) = ( / / - fj)/fi (8.4) 

where / / , fj are scalar measures of the participating predecessors and 

offspring, respectively. In the simplest case these measures could be 

generated by taking the ari thmetic average 

/ / = y l > (8-5) 

and 

fj=l
1

Stf, (8-6) 

Improvements are signaled by positive values of fitgain, whereas de­

teriorations are signaled by negative values (assuming fitness falls to 

0 for the optimal value). 

Intron M e a s u r e m e n t s 

Introns are code in a G P individual tha t does not affect the output of 

the individual. As we have seen in Chapter 7, a large proportion of 

introns in a population often indicates tha t all effective evolution is 
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Intron Counting in Tree 
Structures 

over and tha t crossover is only swapping introns back and forth. The 

process of ascertaining the number of introns is called intron counting. 

It is important to note tha t all intron measurement methods are 

estimations. 

Assume a binary tree with addition nodes where two values arc 

t ransmit ted up into a node via the input branches and one value 

is t ransmit ted from the node further up in the tree via the result 

branch. The top node in Figure 8.5 receives two inputs, 6 and 0. The 

node itself adds the two inputs together and produces the sum as its 

output . The output value is obviously 6. Further, it is obvious tha t , 

so long as the right input is 0, the result will always equal the left 

input. Viewed in this manner the right tree, which produces 0 as an 

output , is irrelevant because it does not affect the output value of the 

function at all. 

Of course, introns are code tha t does not affect output . But what 

does tha t mean? For an intron, the output of the node in Figure 8.5 is 

the same as the left-hand side input for all fitness cases. Pu t another 

way, if the output is the same as one of the inputs for all fitness cases, 

then we regard the irrelevant subtree together with the node under 

examination as an intron. 

The algorithm for measuring tree-based introns is not very com­

putationally expensive. Each node contains a flag indicating whether 

this node so far has had the same output as one of the inputs. This 

flag is then updated by the evaluation interpreter each t ime it passes 

the node - for each fitness case. When all fitness cases have been 

calculated, the tree is passed through again to sum up the intron 

contents by analyzing the flag values. 

Figure 8.5 
Intron measurement in 

tree-based GP 

Intron Counting in 
Linear Genomes 

Intron counting began with linear genomes in AIMGP. Not sur­

prisingly, the technique is straightforward. The genome is a string of 

machine instructions because AIMGP evolves machine code directly. 

Other linear G P systems could evolve linear sequences of code (LoC). 

A no-op instruction (NOP) , i.e., an operation tha t does nothing, can 

be inserted in place of each instruct ion/LoC in order to check whether 

this particular instruct ion/LoC is effective in the code or not. Thus, 

an intron counting method would read: 
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For each instruct ion/LoC in the individual do: 

1. Run each fitness case through the individual and store the out­

put values. 

2. Replace the instruct ion/LoC with a NOP-instruction. 

3. Rerun the fitness function on each fitness case. 

4. If there was no change for any of the fitness cases after the N O P 

was exchanged then classify the instruct ion/LoC as an intron 

else classify it as an exon. 

5. Remove the NOP-ins t ruct ion/LoC and replace it with the orig­

inal one. 

When this procedure is completed the number of introns is summed 

together as the intron length of tha t individual. However, this is not 

the only method to measure introns. At the moment, researchers are 

actively examining various methods for intron removal. 

C o m p r e s s i o n M e a s u r e m e n t 

In the previous chapter it was argued tha t the effective length of 

an individual often is reduced during evolution. This phenomenon 

is called compression. Compression can be estimated with a simple 

method. We measure the effective length by subtract ing the length 

of the introns from the total length. Every time the fitness of the 

best individual changes, we store the value of the effective length. 

At termination of a run, we measure the difference between effective 

length of the best individual and the stored value. When fitness 

stagnates at the end of a run, we can see how much the effective size 

of an individual has decreased since it assumed its fitness value for 

the first t ime. It is also possible to store the number of generations 

over which this compression has taken place. 

N o d e U s e a n d B l o c k A c t i v a t i o n 

Node use and block activation are two other important online anal­

ysis tools. Node use measures how often individual nodes from the 

terminal and function set are used in the present generation. The 

run-time overhead is small, since measuring just means incrementing 

a counter associated with a node. 

The same measure can be applied to blocks of code, tha t is, to 

subtrees of arbitrary depth, although this approach will quickly be­

come unfeasible for larger subtrees due to combinatorial explosion 

(see Section 8.3.2). 
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Block activation is defined as the number of times the root node 
of a block is executed. This requires an additional counter recording 
the number of times the node has been activated. 

By looking at node use one can easily get an impression of how 
important a certain function or terminal is in a particular problem. 
A node might turn out never to be used over consecutive generations, 
indicating that it is mainly a burden in the search process and has 
no obvious advantage for successful programs. In a new run it could 
be discarded or substituted by a potentially better suited node. 

The reader is advised, however, to be careful when using such 
an observational measure, because the observed frequencies could be 
misleading. Introns often comprise a large part of evolved programs, 
and measuring node use for introns would indicate high usage where 
no use is made of the node for behavioral purposes. It follows that 
it would be better to measure node use on effective code only. This 
way, one could at least ignore those parts of the code that do not 
contribute to fitness. 

Rosea [Rosea, 1995a] introduced another term, salient block, as 
a means to indicate those parts of the code which influence fitness 
evaluation. A good modularization method, in his proposal, should 
identify those blocks. Rosea proposes to consider block activation as 
one piece of information necessary to identify salient blocks. Block ac­
tivation, however, can usually be measured only for trees with a small 
depth. For details of the method, see [Rosea and Ballard, 1994a]. 

Real-Time Run Control Using Online Measurements 

Two systems have successfully used online measurements to effect 

online control during a G P run. ,. ;.. >, ,. . .. . _ ..... 

• PADO 
Chapter 6 describes how Teller conducted meta-learning during 
PADO runs. The meta-learning module changed the crossover 
operator itself during the run. Like its fitness function, the 
meta-learning module used online measurements of the effect 
of crossover. 

• AIMGP 
We performed a very large GP study involving 720 runs. A 
running total was maintained for each generation of the per­
centage of total crossover events that constituted destructive 
crossover. Destructive crossover usually exceeds 75% of total 
crossover events. Previous studies [Nordin et al., 1996] estab­
lished that, when destructive crossover fell below 10% of total 
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crossover events, intron explosion had occurred and all effective 

evolution was over. 

As a result of this previous study, a run-t ime termination cri­

terion was adopted: terminate the run after 200 generations or 

when destructive crossover falls below 10% of total crossover 

events, whichever comes first. The result of using this termina­

tion criterion was tha t the run t ime for all 720 runs was reduced 

by 50%. In short, this run-time termination criterion effectively 

doubled the speed of the system [Francone et al., 1996]. 

8.5 Generalization and Induction 

Once upon a time, there was a little girl named Emma. Emma 
had never eaten a banana, nor had she been on a train. One day 
she went for a journey from New York to Pittsburgh by train. 
To relieve Emma's anxiety, her mother gave her a large bag of 
bananas. At Emma's first bite of a banana, the train plunged 
into a tunnel. At the second bite, the train broke into daylight 
again. At the third bite, Lo! into a tunnel; the fourth bite, La! 
into daylight again. And so on all the way to Pittsburgh and to 
the bottom of her bags of bananas. Our bright little Emma told 
her grandpa: "Every odd bite of a banana makes you blind; every 
even bite puts things right again." 

After Li and HANSON 

This story is an example of the principles and risks of induction. We 

use G P to find a generally valid set of rules or pat terns from a set 

of observations. Chapter 1 described how machine learning systems 

do their learning on a training set. For Emma, her training set is 

her train ride. GP, machine learning, and E m m a all have tried to do 

something more - they have tried to come up with general rules tha t 

will work on da ta they did not learn upon. Chapter 1 referred to this 

type of da ta as a testing set. 

Generalization occurs when learning that occurs on the training 

da ta remains, to some extent, valid on test data . Viewed another way, Generalization as a 

generalization is a problem of drawing a sample from a population and Sampling Problem 

making predictions about other samples from the same population. 

The noise from one sample to the next is probably different, perhaps 

a lot different. In other words, sampling error can be a big problem. 

Recall tha t sampling error can cause the 95% confidence interval on 

thir ty samples to extend all the way from 40% to 78%. 

But there is another, perhaps equally difficult problem commonly Overfitting 

referred to as overfitting. Ideally, G P would learn the t rue relation­

ship between the inputs and the outputs and would ignore the noise. 
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But GP is constantly pushed by its fitness function to lower the error 
on the training data. After GP has modeled the true relationship, 
GP individuals can and do continue to improve their fitness by learn­
ing the noise unique to the sample that comprises the training data 
- that is, by overfitting the training data. An overfit individual will 
often perform poorly on the test set. 

Let's go back to poor Emma. Of course, her learning is not likely 
to generalize the next time she eats a banana in, say, her kitchen. She 
has learned the noise in her training set. But can this be a problem 
in actual machine learning and GP? It can. Overfitting has plagued 
the neural network world and some GP researchers have noted its 
existence in their runs. Three factors may play a part in causing 
overfitting: 

1. Complexity of the learned solution 
In Section 3.3 we discussed the complexity of computer pro­
grams. The simpler the solution, the higher the probability 
that it will generalize well. More has to be said about this 
below. 

2. Amount of time spent training 
In neural networks, it is important to stop training before the 
network overfits the data. A large part of neural network liter­
ature deals with this problem. It is not clear yet how this factor 
fits into GP training because the end of training can be a very 
complex dynamic (see Chapter 7). 

3. Size of the training set 
The smaller the training set (i.e., the smaller the sample size 
from the population), the less reliable the predictions made 
from the training set will be. 

The next section presents an example of overfitting caused by the 
first and second factors above. 

8.5.1 An Example of Overfitting 
and Poor Generalization 

Here is an example of how extensive training and complex solutions 
can cause overfitting of noisy data. The task is to learn the simple 
quadratic function: 

y = x2 (8.7) 

in the interval between x = — 1 and x = +1 . 
A simple sine function formed the atoms of our learning system: 

y = a sin(bx + c) + K (8.8) 
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These were subjected to a hill climbing algorithm. We varied the 

complexity of the solution by adding more sine terms. For example: 

y — a sin(6x + c) + d sin(ea; + / ) + K (8.9) 

Figure 8.6 

Results of learning with 1 

degree of freedom 

Let us refer to a solution containing one sine expression as having 

one degree of freedom, a solution containing two as having two degrees 

of freedom, and so forth. While this is not a formal use of the term 

degrees of freedom, we use it here for convenience. 

Noise was added to the function's 200 sample values between 

—0.5 and 0.5. The noise was distributed normally around 0 with 

a s tandard deviation of 0.1. Newtonian descent was then used to 

find solutions to the da ta with 1,2,4,8, and 16 degrees of freedom. 

The algorithm was run as long as any improvement was found by the 

algorithm (this was to encourage overfitting by training for too long). 

Figures 8.6, 8.7, and 8.8 show a dramatic change in the nature 

of the learning tha t occurs as the degrees of freedom increase. Wi th 

only one degree of freedom, the real function is found in the noise 

very accurately. But as the degrees of freedom increase, the learning 

began to fit the noise. At sixteen degrees of freedom, the system is 

modeling the noise rather effectively. 
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-0.2 

-0.5 -0.4 -0.3 -0.2 -0.1 0.1 0.2 0.3 0.4 0.5 

Figure 8.7 
Results of learning with 4 

degrees 
When the complex solutions were tested on new values of x be­

tween — 1 and + 1 with different random noise,9 the story was com­

pletely different. The in-sample testing error ( the error on points 

between —0.5 and +0.5) increased by 3 1 % as the number of degrees 

of freedom rose from one to sixteen. The out-of-sample testing error 

( the error from —1 to +1) more than doubled. The simpler solutions 

generalized better. 

Table 8.1 shows tha t the more complex solutions modeled the 

training data be t ter than did the simple solutions. 

Table 8.1 
Comparison of learning 

and generalization 

performance for varying 

degrees of freedom. ISE 

(in-sample error): 

- 0 . 5 < x < +0.5; OSE 

(out-of-sample error): 

- 1 .0 < x < +1.0 

Deg. of freedom 

1 
2 
4 
8 
16 

Training error 

1.00 
1.00 
0.95 
0.91 
0.83 

ISE 

1.00 
1.01 
1.08 
1.19 
1.31 

OSE 

1.00 
0.98 
0.95 
2.04 
2.09 

9The noise was generated with precisely the same mean and standard 
deviation; the only difference was the random seed. 
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This example demonstrates clearly that G P researchers must pay 

careful at tent ion to generalization issues any time they use G P to 

make predictions on da ta other than training data . 

Learned function 
Function to learn with noise 

Function to learn 

Figure 8.8 

Results of learning 

16 degrees 

8.5.2 Dealing with Generalization Issues 

Overfitting and sampling error are the principal problems in ma­

chine learning generalization. There are several methods of address­

ing these issues statistically. The problem with these methods is tha t 

most G P systems are very computationally intensive. Performing 

enough runs to produce a statistically significant result is sometimes 

very difficult. So the G P researcher frequently opts for no statistical 

validation or the first type of validation to be discussed. Regardless 

of what is possible under particular circumstances, there is a range 

of options for dealing with generalization issues. 

Training a n d Test Set 

The tradit ional way for G P to test generalization is to split the da ta 

into a training and a test set. Wha t this procedure really amounts 

to, however, is having two samples from one population. After train-
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ing, the best individual on the training da ta is run on the test set. 

Because the best individual has never before seen any test data , its 

performance is then used as a measure of how well tha t individual 

will generalize on further samples drawn from the overall statistical 

population. 

Though this approach is a good start ing point to check general­

ization, it has some drawbacks. To begin with, what criterion should 

be used to choose the best individual on the training set? The indi­

vidual with the highest fitness on the training set may be precisely 

the individual to avoid because it might overfit the training data . 

One way out of this problem would be to have a good stopping crite­

rion. If we knew just when to stop the run, tha t would be a powerful 

solution.1 0 

Another approach would be to test other individuals from the 

run on the test set to find a bet ter generalizer. Based on experience, 

this method produces decent results as long as the individual also 

j performs well on the training set. Because the test set becomes now 

part of the training set, however, this method has a serious problem: 

The test set ceases to be an independent set used only for measuring 
1 performance. Therefore, it is called the validation set and a new test 

set has to be introduced.1 1 ; 

• J > ? • ' ; - '•' •-.:• *• •'<• 'C 0-

. v - t i A d d i n g a N e w T e s t Se t 

Adding a third set of da ta tha t the system has never previously seen 

<v for performance-measuring purposes should be encouraged. But a 

single independent test set has problems all of its own. Again, vari­

ance and sampling error are important quantities to consider. 

The Variance of the An example will help. Suppose a test set is comprised of 100 

Mean Prediction Error instances and the best individual has a mean error of only 1.2% on 

the test set. We should not yet be satisfied, and a few tests should 

be performed first. 

The variance of the predictor on the test set is one essential test. 

The mean error of 1.2% hides whether the individual errors are all 

close to 1.2% or whether they frequently exceed 5% or —5%. A —5% 

error could be a disaster in many predictive models. It is possible 

to est imate the s tandard deviation of the population for the mean of 

the prediction error. Let fi be the mean of the absolute errors for 

the predictor. Let /ut be the i-th absolute error. Let n be the sample 

size. An estimate of the s tandard deviation of the errors from the 

10The increasing power of the online indicators lends hope that this may 
be possible some day. 

11 In the literature, test and validation set are sometimes interchanged. 



8.6 Conclusion MdtH 

population can then be given as: 

1 n 

T _ I 2 ( / i i - M ) 2 (8-10) 
i = i 

If the distribution of the errors appears normal and if <rM =; 0.8, then 

one could cautiously conclude tha t 95% of the predictions will have 

an error no greater than 1.6%. 

The above equation is not valid for statistics like percentiles or Measuring the Variance 

percentage of predictions where the error is greater than a certain of Statistics Other 

percentage. For those predictions, one can add new sets of test data . Than Mean Error 

Were it possible to draw 1000 test sets of 100 instances each and 

to repeatedly test the best individual on those 1000 test sets, the 

variance caused by the sampling error could be calculated easily and 

one could assess in this way whether the best individual was worth 

keeping. In data-mining applications, such a brute force approach 

may be feasible. But in most G P applications, da ta is dear and one 

has to make the most of limited data . 

There are powerful statistical techniques not covered here tha t 

may be used to estimate the bias and variance of any statistic from 

sparse data . The techniques go by such names as the Jackknife and 

the Bootstrap. If testing a G P individual uses measures other than the 

mean error, these techniques can improve the researcher's confidence 

in the integrity of the results. Or they can reveal variance so wide as 

to render the predictions made by the G P individual useless. Ei ther 

way, crucial information can be obtained. 

Special Techn iques for Class i f icat ion 

Classification problems are increasingly being confronted by G P sys­

tems as more G P researchers at tack real-world problems. Many clas­

sification models are structured so that the output indicates whether 

an instance is a member of a class or not. In tha t case, Kendall 's 

t score measures how well the system distinguishes instances from 

non-instances [Walker et al., 1995]. It is a good star t ing measure 

with which to judge the predictions of a classification system. 

8.6 Conclusion 

The common thread running through this chapter is observe, mea­

sure, and test. The tools to estimate the predictive value of G P 

models exist and are easily applied to GP. The tools to improve G P 

systems or to test theories about, say, the crossover operator, exist 

and can be applied easily. Wha t is needed is a decision to use them. 

\ 
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Exercises 

1. What is a statistical population? 

2. What is a sample? 

3. Describe two basic statistical tools for GP. 

4. Describe a moving average. 

5. Give an overview of how to choose among input series. 

6. What is an online tool, and what is an offline tool? 

7. Give four different useful fitness measurements. 

8. Give two examples for diversity measures in populations of pro­
gram individuals. 

9. Describe a method for measuring introns in a tree-structured 
individual. 

10. What is generalization? What is overntting? How can overnt­
ting be avoided? 

•••'->j'!>- :..ri >'.';••.'• i t - . ; . , ; J / M ' - r n ;-•• 
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9 Different Varieties of Genetic Programming 

Structures Used in GP We have already seen how the G P arena has been populated with 

numerous different approaches to program evolution. It is astonishing 

how the simple theme can be varied without destroying the basic 

mechanism. In this chapter we will take a closer look at G P variants. 

Table 9.1 gives an indication of which kinds of s tructure have been 

used with GP. As we can see, some of these variants are very different 

and quite incompatible with each other, a s trength rather than a 

weakness of the fundamental idea. 

Structure name 

S-expression 

GMDH primitives 

T B 

J B 

bits 

bits 

abstract date types 

production rules 

production rules 

PADO 

cellular encoding 

Description 

tree s tructure 

tree s tructure 

linear postfix 

linear prefix 

linear genomes 

machine code instructions 

lists, queues, stacks 

grammars 

graph structure 

graph structure 

tree grammars 

Source 

[Koza, 1992d] 

[Iba et al., 1995b] 

[Cramer, 1985] 

[Cramer, 1985] 

[Banzhaf, 1993b] 

[Nordin, 1994] 

[Langdon, 1995b] 

[Whigham and McKay, 1995] 

[Jacob, 1996a] 

[Teller and Veloso, 1995b] 

[Gruau, 1993] 

Table 9.1 

Some of the many 

different structures used 

for GP 

The following sections present a selection of these variants, s tart­

ing with a look at tree-based GP, currently in most frequent use in 

the G P community. 

Td* ' , , ? * M H 5 < M ? S t i i » b C h.fi 

9.1 GP with Tree Genomes 

The general working of G P on trees was introduced in Chapter 5.1 

Here we shall review the different types of operators tha t have been 

introduced over the years for manipulat ing tree structures. As men­

tioned earlier, the simplest operator is the reproduction operator which 

does nothing but copy the individual into the next generation. The 

next more complicated operator is the mutation operator which acts 

on a single tree at a time. Table 9.2 gives an overview of what sorts 

of mutat ion operators have been used with trees. Figures 9.1-9.6 

summarize graphically the effect of certain mutat ion operators. 

In many applications, the mutat ion operator is not applied di­

rectly to a reproduced individual, but is applied to the result of 

1There are trees of different kinds. Mostly we shall use "expression" 
trees in our examples. 
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Figure 9.1 

Different mutation 

operators used in tree-

based GP: point mutation 

another operator, canonically working on two trees: crossover. If 
crossover is used as the follow-up operator to reproduction, two indi­
viduals are copied into the next generation. Subsequently, one node 
is selected in each tree and the subtree below this node is cut out 
and transferred to the location of the node selected in the second 
tree, and vice versa. The function of crossover is to swap genetic 
material between trees.2 As Table 9.3 shows, various crossover oper­
ators are applicable to trees and it is a matter of a priori choice and 
implementation which one to take in an actual run. 

2Usage of the crossover operator to generate one new individual is also 
very common. 
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Operator name 

point mutat ion 

permutat ion 

hoist 

expansion mutat ion 

collapse subtree mutat ion 

subtree mutat ion 

gene duplication 

Description of effect 

single node exchanged against 

random node of same class 

arguments of a node permuted 

new individual generated 

from subtree 

terminal exchanged against 

random subtree 

subtree exchanged against 

random terminal 

subtree exchanged against 

random subtree 

subtree subst i tuted for 

random terminal 

Operator name 

subtree exchange crossover 

self crossover 

module crossover 

context-preserving crossover 

SCPC 

W C P C 

Description of effect 

exchange subtrees 

between individuals 

exchange subtrees 

between individual and itself 

exchange modules 

between individuals 

exchange subtrees if 

coordinates match exactly 

coordinates match approximately 

Table 9.3 
Crossover operators 

applied within tree-based 

GP CPC: 

context-preserving There should be a close correspondence between crossover and 
crossover mutation operators, the former being applied to two individuals and 

swapping information between them and the latter being applied to 

one individual alone with additional random action. One can as­

sume that a crossover operator can be constructed to correspond to 

each mutation operator, and vice versa. The fact that this has not 

been done systematically in the past says more about the status of 

systematization in GP than about the potential of those operators. 

Figures 9.7-9.9 summarize graphically the effect of certain cross­

over operators on trees. 

Table 9.2 
Mutation operators 

applied in tree-based GP 
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Figure 9.2 
Different mutation 

operators used in tree-

based GP: permutation 

9.2 GP with Linear Genomes 

Linear GP acts on linear genomes, like program code represented by 

bit strings or lines of code for register machines. Before we discuss 

a few variants of linear G P we should contrast the behavior of linear 

G P to tha t of tree-based G P . 

When we consider the effects of applying different operators to 

tree individuals there is one aspect of the hierarchical tree repre­

sentation tha t specifically a t t rac ts our attention: in a hierarchical 

representation there is a complicated interplay between the order of 

execution of the program and the influence of changes made at var-
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Figure 9.3 
Different mutation 

operators used in tree-

based GP: hoist 

ious levels of the tree. Trees are usually executed in a depth-first 

manner, i.e., the left branches of nodes are evaluated before the right 

branches. Thus order of execution is from left to right. However, the 

influence of change is determined in a hierarchical representation by 

the level at which a particular node resides. An exchange at a deeper 

level in the program tree will naturally have fewer consequences than 

an exchange at a higher level. 

For the following consideration we have to make two simplifying 

assumptions, they are, however, not very restrictive. First , we shall 

assume tha t our tree is constructed from binary functions. Second, 

we shall assume tha t trees are (nearly) balanced. 

Operator Hit Rate D e f i n i t i o n 9.1 The hit r a t e of an operator in relation to a feature 

of nodes is the probability by which one node or more nodes in the 

tree possessing this particular feature are selected for operation. 
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Figure 9.4 
Different mutation 

operators used in tree-

based GP: expansion 

mutation 

Pu t plainly, the hit rate of nodes in the deepest level of a tree, i.e., 

nodes with the feature of being on the deepest level, is - assuming 

balanced binary trees - 1/2. It follows tha t all nodes in the rest of the 

tree possess a hit ra te of 1/2 in total , with 1/4 going to the second 

deepest level, 1/8 to the next higher level, and so on. Hence, with 

overwhelming probability, nodes at the lowest level are hit most often 

for crossover or mutat ion operations.3 

3Very often, therefore, precautions are taken in tree-based GP systems 
to avoid high hit rates at the lowest level of a tree by biasing the hit rate. 
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Figure 9.5 
Different mutation 

operators used in tree-

based GP: collapse 

subtree mutation 

Together, the two facts mentioned above result in the conclusion 
that in tree-based GP, the most frequent changes are small. This is 
true for all operators uniformly selecting nodes from a tree. 

The influence of change in a linear structure can be expected to 
follow the linear order in which the instructions are executed. An ex­
change later in the sequence will have fewer behavioral consequences 
than an exchange earlier on. The hit rate of operators, on the other 
hand, in relation to the position of a node or instruction in that 
sequence is equal for the entire linear genome. Hence, it can be ex­
pected that in GP with linear representations, changes of all sizes are 
equally frequent. This is true for all operators uniformly selecting 
nodes from a sequence. 
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Figure 9.6 
Different mutation 

operators used in tree-

based GP: subtree 

mutation 

Figure 9.10 demonstrates the behavior of tree-based G P for a 

simple regression problem. The amount of change (improvements 

as well as deteriorations) relative to the fitness of predecessors is 

recorded. Small changes are by far the most frequent ones. 

Figure 9.11 shows a marked difference to Figure 9.10. Here, the 

same regression problem has been approached with machine language 

GP. Changes of all sizes are more frequent, which can be seen from 

the distribution of the aggregations of black dots. 

We should keep in mind tha t results from this comparison are 

not yet conclusive, but it is an interesting research area to compare 

the behavior of different representations in genetic programming. 
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Figure 9.7 
Different crossover 

operators used in tree-

based GP: subtree 

exchange crossover 

Figure 9.8 
Different crossover 

operators used in tree-

based GP: selfcrossover 
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9.2.1 Evolutionary Program Induction with Introns 

Wineberg and Oppacher [Wineberg and Oppacher, 1994] have for­

mulated an evolutionary programming method they call EPI (evo­

lutionary program induction). The method is built on a canonical 

genetic algorithm. They use fixed length strings to code their indi-
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Figure 9.9 
Different crossover 

operators used in tree-

based GP: module 

crossover 

Figure 9.10 
Changes during an 

evolutionary run for a 

regression problem in 

tree-based GP. Each dot 

denotes a change relative 

to predecessors. Small 

changes are most 

frequent. 

1000 2000 3000 4000 5000 6000 7000 

viduals and a GA-like crossover. However, their linear genomes code 

for trees tha t are identical to program trees in tree-based GP. The 

fixed length of individuals and their coding scheme imply a predefined 

maximal depth of trees in evolutionary program induction with in-

trons. The coding is constructed to maintain a fixed structure within 

the chromosome tha t allows similar alleles to compete against each 

other at a locus during evolution. As a consequence, the genome 

normally will be filled with introns, which they argue is beneficial to 

the search process [Wineberg and Oppacher, 1996]. 
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Figure 9.11 
Changes during an 

evolutionary run for a 

regression problem in 

linear (AIMGP) 

representation. Each dot 

symbols a relative change 

to predecessors. Changes 

show levels that are most 

frequent. 

1000 2000 3000 4000 5000 6000 7000 8000 

M. 

Genotypes vs. 

Phenotypes 

9.2.2 Developmental Genetic Programming 

Developmental genetic programming (DGP)4 is an extension of G P 

by a developmental step. In tree-based GP, the space of genotypes 

(search space) is usually identical to the space of phenotypes (solu­

tion space) and no distinction is made between genotypes and phe­

notypes: an individual is always identified with a computer program 

of syntactically correct s t ructure which is interpreted or compiled for 

execution. Developmental genetic programming, on the other hand, 

maps binary sequences, genotypes, through a developmental process 

[Banzhaf, 1994] into separate phenotypes. These phenotypes are the 

working programs with the syntactic s tructure of an LALR( l ) gram-

Two abstract properties of how G P approaches a problem are 

evident: 

Feasible vs. Infeasible 

Structures 

1. G P optimizes a fitness measure tha t reflects the behavior of a 

program 

2. The optimization problem is hard-constrained, since the set of 

feasible points in search space is identical to the solution space. 

In the tree-based G P approach, the second property is reflected by 

the fact tha t it is a constrained search process: creation and variation 

are only allowed to yield feasible programs. 

However, given a certain syntax, a function and terminal set, and 

a maximal sequence length, the set of infeasible programs is often ex­

tremely large compared to the set of feasible programs - as every 

4We had earlier called this method binary genetic programming or BGP 
[Keller and Banzhaf, 1996] but have now decided DGP is more to the point. 
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programmer knows from painful personal experience. Despite this 

fact, infeasible programs may contain syntactically correct par ts tha t 

could prove useful during evolution. A huge amount of genetic diver­

sity might become unavailable to the search process if it could not 

make use of these parts . To make the diversity of infeasible programs 

accessible, the search process should be unconstrained, i.e., the search 

operators should be able to accept and to produce an arbi trary se­

quence. Prior to fitness evaluation, however, an infeasible program 

should be mapped into a feasible program. D G P implements this 

function by using a specifically designed genotype-phenotype map­

ping. 

There is one further argument to add plausibility to these con­

siderations: it is sometimes preferable to search in a space with more 

dimensions than the solution space. More dimensions enable the 

search to cut through dimensions instead of being forced to evolve 

along longer paths in solution space. One can expect tha t searching 

with shortcuts will increase the probability of finding bet ter solutions 

dramatically. 

As we already mentioned, genotypes in D G P take the simplest 

and most universal form of a binary representation. The representa­

tion of phenotypes (programs), on the other hand, is determined by 

the language used. Simple search operators, as in s tandard GAs, can 

be used in DGP. 

Once the genotypic representation has been fixed, we can define The 

the mapping between genotype and phenotype. At least two steps Genotype-Phenotype 

are needed to make the genotype-phenotype mapping work: Mapping 

1. The high-dimensional genotype (binary sequence) must be tran­

scribed into the low-dimensional phenotypic representation (raw 

symbol sequence). 

2. In case the raw symbol sequence is infeasible, it must be edited 

into a feasible symbol sequence. 

For transcription, the obvious approach is to identify each symbol Transcription 

from the terminal and symbol set - which we could call token - with 

at least one binary subsequence which we shall call codon. If all 

codons have equal length, there is a mapping from the set of all n-bit 

codons into the set of all symbols. A binary sequence of m codons 

thus represents a raw sequence of m symbols. 

For instance, if a, b, + are represented by 00, 01, 10, then the raw 

(and feasible) sequence a+b is given by 001001. In this example, we 

have a three-dimensional solution space if we consider all syntactically 

correct symbol sequences of length 3. The search space, however, has 

6 dimensions. 
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Editing The raw sequence produced by transcription is usually illegal, 

and an editing step is needed to map a raw sequence into an edited 

sequence. Here we consider only LALR( l ) grammars [Aho, 1986], 

i.e., the D G P as discussed here can only evolve programs in languages 

defined by such a grammar. Many practically relevant languages like 

C are LALR( l ) languages. Let us introduce the notion of a legal 

symbol set: a symbol tha t represents a syntax error at its position 

in a raw sequence will be called illegal. When, during parsing of a 

raw sequence, an illegal symbol s is detected, the corresponding legal 

symbol set is guaranteed to be computable in LALR( l ) grammars . 

This set is computed and a subset of it, the minimal-distance set, is 

selected. It holds the candidates for replacing s. Depending on the 

actual mapping, there can be more than one such symbol. In order 

to resolve this ambiguity, the symbol with lowest integer value among 

all codons of closest symbols will be selected. 

If this procedure is applied, editing will often produce symbol se­

quences tha t terminate unfinished. For instance, editing could result 

in the unfinished arithmetical expression sin(a) *cos(fc)+. In order to 

handle this problem, we assign a termination number to each symbol. 

This number indicates how appropriate the symbol is for the short­

est possible termination of the sequence. In the above expression, for 

instance, a variable would terminate the sequence, while an operator 

symbol like s i n would call for at least three more symbols, (, vari­

able, ). The termination number of a symbol is simply the number 

of additionally needed symbols to terminate the expression. Thus , in 

the example, a variable-symbol like a has termination number 0, while 

a symbol like sin has termination number 3. Note tha t the number of 

symbols actually needed for termination when using a certain symbol 

can be larger than its termination number. For instance, there could 

be an open parenthesis prior to the end of the unfinished sequence, 

which had to be closed before termination. Such context-sensitive 

circumstances shall not be reflected in a termination number. In case 

there are several symbols with equal minimal termination number, 

t ha t one is taken which is encoded by a codon with the lowest index 

among all codons of the symbols in question. 

Translation Edit ing yields a feasible symbol sequence which is subsequently 

completed by language-specific s tandard information such as a func­

tion header. Finally, the resulting program is interpreted or compiled 

and executed in order to evaluate its fitness. 

Consider the example in Table 9.4. The genotype 000 001 011 is 

transcribed into a raw sequence ab*. Editing scans a as first and legal 

symbol. It then scans b as an illegal symbol with 001 as its codon in 

the genotype. { + , *} is the legal symbol set. The symbol closest to b 

is *. Thus, b gets replaced by *, thereby terminating the removal of 
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Binary code 

000 
001 

010 

Oil 

100 

101 

110 

111 

Token 

a 

b 

+ 
* 

a 

b 

+ 
* 

Table 9.4 
Example of redundant 

genetic code mapping 

codons into tokens 

the syntax error. The partially edited raw sequence now equals a * *. 

Edit ing continues, replacing the last symbol * with b. 

The edited sequence a * b is passed on to translation, which 

adds, for instance, a function frame. The translated sequence might 

look like doub le f n c ( d o u b l e a , doub le b) { r e t u r n a * b ; } . This 

sequence could now be integrated with other edited sequences, for 

example, into a main program tha t a C compiler could handle. Ex­

ecution would then allow the fitness of the corresponding genotypes 

to be evaluated. 

As can be seen, 000 001 011 gets mapped into the phenotype a*b. 

However, 010 011 101, 000 011 001, and 100 111 101 all get mapped 

into a * b as well. When analyzing this phenomenon, it becomes clear 

immediately tha t bo th the redundancy of the genetic code and the 

editing mechanism are responsible for this effect. 

The following unconstrained search operators are used in D G P . 

They perform operations on sets of codons and bits within codons. 

• Creation 

Search Operators 

• Mutat ion 

• Recombination 

Creation generates individuals as random binary sequences tha t con­

sist of m-bit codons. Mutation may work within codons or it may 

change bits of different codons at the same time. A codon-limited 

mutat ion corresponds to exploring few dimensions in the same sub-

space, while a codon-unlimited muta t ion may explore the search space 

in many dimensions. These mutat ion operators do not produce vast 

changes in the genotype because they do not replace complete syntac­

tic units, as they would in tree-based GP. Thus, this type of mutat ion 

seems closer to natural mutat ion. Crossover is implemented in deve­

lopmental genetic programming by a s tandard GA operator like one-
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or two-point crossover. In particular, swapped subsequences may be 

of different length, thus producing offspring with different length. 

Figure 9.12 outlines the central piece of the D G P algorithm. Ad­

dition of a genotype-phenotype mapping step could be considered for 

any G P algorithm. The genotype-phenotype mapping must always 

happen prior to fitness evaluation. 

Figure 9.12 
The central piece of the 

DGP algorithm, the 

genotype-phenotype 

mapping 

[Genotype J -

Search Space 
(unconstrained) 

Genotype -Phenotype 
Mapping (GPM) 

Constraint implementation 

[Phenotype J 

Solution space 
(constrained) 

Major DGP Parameters 

Sample Problem 

Protected Functions 

9.2.3 An Example: Evolution in C 

D G P can be used for the evolution of a program in an arbi t rary 

LALR( l ) target language. Assume D G P has been evolving FOR­

T R A N programs for some problem, and now we want it to produce 

C programs. In principle, four system parameters must be changed. 

First , we exchange the FORTRAN parser for a C parser. Second, we 

subst i tute those target symbols in the genetic code tha t are specific 

of FORTRAN by the semantically corresponding C symbols. Third , 

the editing phase must supply C-specific phenotype par ts , like C-style 

function headers. Fourth, any commercially available C compiler will 

be called prior to fitness evaluation. D G P will now happily evolve C 

programs for the given problem. 

Let us consider an example for the evolution of C programs along 

the lines of [Keller and Banzhaf, 1996]. Since C is the chosen target 

language, each phenotype will be a symbol sequence obeying C syn­

tax. The test problem is a symbolic function regression on a four-

dimensional parameter space. The function we would like to model 

is 

/ = sin(m) • cos(z;) • -== + tan(a) (9-1) 

All parameter values shall be real-valued. The domain of the test 

problem suggests variables, unary and binary ari thmetic functions, 

and parenthesis operators as elements of the terminal and function 

sets. To protect against division by zero, we use a division function 

D tha t re turns the reciprocal value of its single argument. If the 

argument equals zero, the function returns 1. We supply a protected 

square root function sqrt tha t returns the square root of the absolute 
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value of its argument. Furthermore, an overflow-protected exponen­

tial function exp(x) is provided tha t normally returns ex, but in case 

the value of x causes an overflow, returns 1. 

The code shown in Table 9.5 is used. 

Binary code 

0000 

0001 

0010 

0011 

0100 

0101 

0110 

0111 

1000 

1001 

1010 

1011 

1100 

1101 

1110 

1111 

Token 

+ 
* 

* 

D 

m 

V 

q 
a 

( 

) 
sin 

cos 

tan 

sqrt 

exp 

) 

Abbr. token 

+ 
* 

* 

D 

m 
V 

q 
a 

( 
) 
S 

c 
T 

R 
E 

) 

The codons get mapped into a set of 16 symbols, featuring 14 

different symbols of variables and operations. This genetic code is re­

dundant with respect to the multiplication and the closing-parenthesis 

operator. This might have positive and negative effects on conver­

gence. For instance, the redundancy of the multiplication opera­

tor could result in phenotypes tha t consist of many such operators. 

This can be advantageous since the problem function features two 

such operators. On the other hand, the redundancy concerning the 

closing-parenthesis operator could pose a handicap to evolution, since 

it enlarges the probability tha t a needed long subexpression never 

emerges. 

The genotype length is fixed at 25 codons; tha t is, each genotype 

consists of 25 codons. Since there are 16 different codons in the 

genetic code, the search space contains 1625 or approximately 1.3E30 

genotypes. When using the unrestricted mutat ion operator described 

above, D G P faces 25 • 4 = 100 degrees of freedom, since each codon 

consists of 4 bits. In other words, in addition to the relatively large 

size of the search space, this space is high-dimensional, with 100 

dimensions. 

Table 9.5 
Genetic code of the 

example function 

regression problem, 

including one-character 

abbreviations 
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Sometimes the actual length of phenotypes after repair can sur­

pass 25 target symbols. Imagine, for instance, the - improbable -

case of a phenotype like 

D(D(D(D(D(D(D(D(D(D(D(D(D ( a ) ) ) ) ) ) ) ) ) ) ) ) ) 

Prior to the space character within the symbol sequence, there are 25 

symbols. Shortest possible termination of the phenotype still requires 

appending 15 more symbols, most of them being ) to close open 

parenthesis levels. 

Due to the real-valued four-dimensional parameter space, a fitness 

case consists of four real input values and one real output value. 

We supply a set of fitness cases with randomly chosen input values. 

Although the problem is significantly harder than many regression 

problems used to test G P systems, we increase the difficulty further 

by providing only ten fitness cases to the system. Note tha t G P 

systems will take advantage of this si tuation and develop a simpler 

model of the da ta than would have evolved with a large number of 

fitness cases. 

An Example Result Runs lasted for 50 generations at most, with a population size of 

500 individuals. In one experimental run, the genotype 

1100 0010 1000 0111 1001 0010 1101 1001 0111 1110 
0000 1011 1001 1110 1001 1010 1101 0011 1100 1111 
0101 1010 0110 1110 0001 

evolved. W h a t must happen to this genotype in order to evaluate the 

fitness of the corresponding individual? Transcription derives from it 

the raw symbol sequence (using the one-letter abbreviations) 

T*(a)*R)aE+C)E)SRDT)vSqE* 

Repairing transforms this illegal sequence into 

{T((a)*R(a+m))+(S(D((v+q+D> 

Since this sequence is unfinished, repairing terminates by com­

pleting the sequence into .._ , .,. 

{T( (a )*R(a+m))+(S(D((v+q+D(m)) ) ) )> 

Finally, editing produces 

doub le i n d ( d o u b l e m,double v , d o u b l e q , d o u b l e a) 

{ r e t u r n T ( ( a ) * R ( a + m ) ) + ( S ( D ( ( v + q + D ( m ) ) ) ) ) ; } 
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A C compiler takes over to generate an executable that is valid on the 
underlying hardware platform. This executable is the final phenotype 
encoded by the genotype. As a formula this reads 

tan(a * \Ja + m) + sin( =-) (9-2) 

This phenotype featured a normalized least-square error fitness of 
0.99 (with 1.0 as perfect fitness), which is quite acceptable, consider­
ing the size of the search space and the use of mutation as the only 
search operator besides creation. 

As a side effect, this example shows that GP can be used to 
find "simpler good models" (i.e., solutions) for a "reality" (i.e., a 
problem) described by fitness cases. While the perfect solution is 
an expression that uses the cosine and the exponential function, the 
almost perfect solution above does without these functions. This 
inherent potential of GP can be applied to problems where a certain 
degree of compromise between quality and complexity is acceptable. 

9.2.4 Machine Language 

Commercial computers are - at a low level of abstraction - regis­
ter machines. A register machine executes a program by reading 
the numbers in its memory cells and interpreting them as operations 
between memory and registers. The registers form a small set of 
memory cells internal to the processor. A typical machine code in­
struction may look like x=y+z, which should be interpreted as "add 
the content of register y to the content of register z and store the re­
sult in register a;." The instructions could also access and manipulate 
the RAM memory. The instructions x=memory c e l l [y] will inter­
pret the content of register y as an address pointing to a memory cell 
whose value should be moved into register x. Instructions that realize 
jumps and comparisons enable the creation of conditional branches 
and loops. 

A simple four-line program in machine language might look like 
this: 

1: x=x-l 
2: y=x*x 
3 : x=x*y 
4: y=x+y 

This program uses two registers, x, y, to represent a function, in 
this case the polynomial f(x) = (x — l ) 2 + (x — l ) 3 . The input for 
the function is placed in register x and the output is what is left in 
register y when all (four) instructions have been executed. Register 
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Figure 9.13 

The dataflow graph of 

the (x- l ) 2 + ( x - l ) 3 

polynomial 
-1 

rr 

i l 

rr 

y is initially zero. Note tha t registers are variables which could be 

assigned at any point in the program. Register y, for instance, is 

used as temporary storage in instruction 2, before its final value is 

assigned in the last instruction. The program has more of a graph 

than a tree structure, where the register assignments represent edges 

in the graph. Figure 9.13 shows the dataflow graph of the function 

computat ion for (x — l ) 2 + (x — l ) 3 . We can see tha t the machine code 

program corresponds to this graph very closely. Compare this to an 

equivalent individual in a tree-based G P system such as in Figure 

9.14. 

Figure 9.14 

The representation of 

{x - l ) 2 + {x- l ) 3 in a 

tree-based genome 
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A disadvantage of the more compact register machine representa­
tion might be that it may be more brittle because of the dependencies 
between registers. On the other hand, temporary storage of values in 
registers can be seen as a simple substitute for automatically defined 
functions (see Section 10.1), since the reuse of calculated values could 
under certain conditions replace the need to divide the programs into 
functions [Nordin, 1994]. 

Machine code programming is often used when there is a need for 
very efficient solutions - with applications having hard constraints on 
execution time or memory usage. In general, the reasons for using 
machine code in GP - as opposed to higher-level languages - are 
similar to those for programming in machine code by hand: 

• The most efficient optimization can be done at the machine 
code level. This is the lowest level of a program and is also 
where the biggest gains are possible. Optimization could aim 
at speed or memory space or both. For instance, GP could be 
used to evolve short machine code subroutines with complex 
dependencies between registers and memory. 

• Another reason for using machine language is that high-level 
tools might simply not be available for a target processor. This 
is often the case for special-purpose processors in embedded 
control applications. 

• Machine code is often considered hard to learn, program, and 
master. Although this is a matter of taste, sometimes it could 
be more convenient to let the computer evolve small pieces of 
machine code programs itself rather than learning to master 
machine code programming. 

Although it is possible to evolve machine code with a tree-based 
system (by building trees of machine instructions), there are addi­
tional reasons for using binary machine code directly: 

• The GP algorithm can be made very fast by having the individ­
ual programs in the population in binary machine code. This 
method eliminates the interpreter in the evaluation of individu­
als. Instead, evaluation requires giving control of the processor 
to the machine code constituting the individual. This acceler­
ates GP around 60 times compared to a fast interpreting system 
[Nordin and Banzhaf, 1995b]. As a result, this method becomes 
the fastest approach to GP. 

• The system is also much more memory efficient than a tree-
based GP system. The small system size is partly due to the 
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fact tha t the definition of the language used is supplied by the 

CPU designer in hardware - there is no need to define the 

language and its interpretation in the system. Low memory 

consumption is also due to the large amount of work expended 

by CPU manufacturers to ensure tha t machine instruction sets 

are efficient and compact. Finally, manipulation of individuals 

as a linear array of integers is more memory efficient than using 

symbolic tree structures. 

• An additional advantage is tha t memory consumption is sta­

ble during evolution with no need for garbage collection. This 

consti tutes an important property in real-time applications. 

In the rest of this section we will take a look at the methods used 

to realize machine code G P systems. 

E v o l v i n g M a c h i n e C o d e w i t h an In terpre t ing S y s t e m 

The most straightforward approach to G P with machine code would 

be to define a function and terminal set suitable for a machine code 

variant. The terminal set would be the registers and the constants 

while the function set would be the operators used. The problem with 

such an approach is tha t one cannot crossover arbitrary subtrees with­

out violating the syntax of the machine language used. A solution 

is to have a strongly typed G P system where one can only crossover 

subtrees of the same type [Montana, 1994]. In strongly typed G P 

(STGP) one cannot crossover a subtree returning a Boolean with a 

subtree returning a float, to give one example. In a similar way, we 

would not crossover nodes tha t are registers with nodes tha t are op­

erators. Figure 9.15 illustrates how the small machine code segment 

representation below could be represented in a strongly typed tree 

structure: 

1: x=x-l * " "•'"•'•'•"•'• ' " ' : ' 

2 : y = x * x . . : ! v w , i » , . l , i i ; i , . . : | 1 l ' A , s V ; ! ; , - . ' l f -
3: x=x*y .: .. , v ; ,,[;,,..... .,.,;r .;.'*. •.,. ; . .- , i - , ; i :- r ! 

4: y=x+y 

There are three different types of nodes in this figure. Terminal 

nodes represent constants or register values. Operator nodes calculate 

values from two of their operands and store the result in the register 

specified by their first operand. The operands are tied together with 

I nodes which do not represent a calculation but instead are used to 

give the operand nodes a defined execution order. In our example we 

execute the operand nodes in depth-first order. 
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Strongly typed G P is similar to grammar-restricted GP, which 

uses a grammar of the language to restrict, e.g., crossover 

[Whigham, 1995a]. This way it is also possible to guarantee correct 

operation of G P operators on individuals. This method is also well 

suited for evolution of machine code. There are also other methods 

for structure preserving crossover which might be used [Koza, 1992d]. 

These tree-based G P methods for evolution of machine language 

might seem slightly forced. Most researchers have used a crossover 

method, instead, which is similar to GA crossover due to the lin­

ear s t ructure of machine code programs. This crossover operator 

exchanges pieces of machine code in a linear representation. 

T h e J B L a n g u a g e 

One of the earliest approaches to evolution of computer programs 

similar to machine code is the J B language [Cramer, 1985]. Cramer 

formulated his method as a general approach to evolve programs, 

but his register machine language is in many ways similar to a simple 

machine code language and will thus serve as a good illustration 

for register machine G P . He uses a string of digits as the genome. 

Three consecutive digits represent an instruction. The first integer 

in the triple determines the type of instruction. This is similar to the 

syntax of a machine code instruction which has specific bit fields to 

determine the type of instruction. There are five different instructions 

or s ta tements in J B . INCREMENT adds one to a specified register. The 

register number is given by the second digit of the triple. ZERO clears 

a register while SET assigns a value to a register. There are also 

BLOCK and LOOP instructions tha t group instructions together and 

enable w h i l e - d o loops. Figure 9.16 shows a very short J B example. 

Neither INCREMENT nor CLEAR uses the last digit of its triple. J B 
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Figure 9.16 

Program representation 

in JB 

0 = BLOCK (group statements) 
1= LOOP 
2 = SET 
3 = ZERO (clear) 
4 = INCREMENT 

Individual genome: 
0 0 1 3 1 H i 2 1 4 1 X 

block stat. 1 stat.2 
registers = 0 
repeat stat.1, register2 
registeri = registerl +1 

employs a variable-length string crossover. In part to avoid infinite 

loops, Cramer later abandoned this method in favor of an approach 

using a tree-based genome. 

T h e G E M S S y s t e m 

One of the most extensive systems for evolution of machine code is 

the GEMS system [Crepeau, 1995]. The system includes an almost 

complete interpreter for the Z-80 8-bit microprocessor. The Z-80 has 

691 different instructions, and GEMS implements 660 instructions, 

excluding only special instructions for interrupt handling and so on. 

It has so far been used to evolve a "hello world" program consisting of 

58 instructions. Each instruction is viewed as atomic and indivisible, 

hence crossover points always fall between the instructions in a linear 

string representation. Figure 9.17 illustrates the crossover method 

used in GEMS, where new offspring are created by exchanging a 

block of instructions between two fit parents. 

9.2.5 An Example: Evolution in Machine Language 

A typical application of G P is symbolic regression. Symbolic regres­

sion is the procedure of inducing a symbolic equation, function, or 

program tha t fits given numerical data . A G P system performing 

symbolic regression takes a number of numerical i npu t /ou tpu t rela­

tions, called fitness cases, and produces a function or program tha t 

is consistent with these fitness cases. Consider, for example, the fol­

lowing fitness cases: 

f ( 2 ) = 2 

f ( 4 ) = 36 

f ( 5 ) = 80 

f ( 7 ) = 2 5 2 ,. . . 
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Parents 
Figure 9.17 

Lesser fit parent ^-^ Better fit parent The crossover of GEMS 

One of the infinite number of perfect solutions would be f(x) — 

(x — l ) 2 + (x — l ) 3 . The fitness function would, for instance, be 

the sum of the difference between an individual's (function's) actual 

output and the target output specified by a fitness case. If a matching 

formula is found by the G P system it can be used to predict the values 

between or outside the given range of points. 

The first issue we need to decide is which instructions from ma­

chine language we would like to include in the function set. When 

evolving a program in machine language, we should always spend 

some t ime assuring tha t the representation of the problem and the 

fitness cases are well suited for the available machine code instruc­

tions. Sometimes it is advantageous to map the fitness cases to an­

other representation which bet ter corresponds to primitives of the 

language. By introducing a CALL instruction, one can use any sort 

of user-defined function even when working with machine code evo­

lution. However, the power of machine code G P is exploited to the 

highest degree only when native machine code instructions are used 

for calculation. In our symbolic regression problem, we choose three 

ari thmetic instructions for the function set + , —, x . 

We must also decide on the number of registers an individual has 

access to. Hardware usually provides an upper limit on the number 

of registers accessible. This limit is between 2 and 64 registers, de­

pending on the processor type and the programming environment. If 
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there are not enough registers available for the application, one has 

to include instructions for stack manipulation. In our case, we can 

assume tha t two registers (x,y) will be enough. 

After the number of registers, the type of the registers has to be 

fixed. Three types exist: input registers, calculation registers, and 

output registers.5 The input value to the function is assigned to the 

x register while the y register is cleared. 

If the machine code instruction format allows for constants inside 

the instructions, then we also need to give an initialization range for 

these instructions. The initialization range can be smaller than the 

maximal number expected in the formula because the system can 

build arbitrary constants by combining them. 

The usual parameters for G P runs, like population size and cross­

over or mutat ion probabilities, have to be fixed as well. The popu­

lation is initialized as random programs with random length. The 

maximum length of programs during initialization is another param­

eter of the system. In our example, two average individuals are the 

parents in Figure 9.18. The figure shows a possible crossover event 

between the parents. In this instance, a perfect individual is found 

tha t satisfies all the fitness cases and has a fitness 0. 

Parents 
Figure 9.18 
Example crossover with 

fitness of parents and 

offspring 

Dad: equivalent (x-x-ii) Worn: equivalent 
V l y to f ( x )=x - i 

I Fitness 358 

Children 

(x=y rj Offspring #1: equivalent 
to f(x)=x 
Fitness 352 

Offspring #2: equivalent 
tof(x)=(x-1)'+(x-lf 
Fitness 0 (perfect) 

• < 4 . swm.vM 
5Sometimes, specific state registers need to be used. Here this is not 

the case and we defer a discussion of those to Chapter 11. 
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9.3 GP with Graph Genomes 

Graphs are another important structure on which G P has been ap­

plied. In this section we shall discuss two examples, the PADO system 

of Teller and Veloso [Teller and Veloso, 1995b], and the developmen­

tal system of Gruau [Gruau, 1992b]. 

9.3.1 PADO 

The graph-based G P system PADO (Parallel Algorithm Discovery 

and Orchestration) employs several different innovative ideas. The 

topic we discuss in this section is tha t PADO works not with S-

expressions but with programs. Teller and Veloso say they prefer this 

way to evolve a superset of those elements of tradit ional hierarchical 

G P functions. 

The programs of PADO are regarded as N nodes in a directed 

graph, with as many as N arcs going out from each node. Each node 

consists of an action part and a branch-decision par t . Figure 9.19 

shows a program, a subprogram, and the memory organization for 

each node. 

Each program has a stack and an indexed memory for its own 

use of intermediate values and for communication. There are also 

the following special nodes in a program: 

• Start node 

• Stop node 

• Subprogram calling nodes 

• Library subprogram calling nodes 

There are also parameters stat ing, for example, the minimum 

and maximum time for a program to run. If a particular program 

stops earlier, it is simply restarted from the s tar t node, with values 

accumulated in stack or memory reused. Library subprograms are 

available to all nodes, not just the one which is calling, whereas sub­

programs without tha t provision are for a program's "private" use 

only. 

A population of these programs competes for performance on sig­

nal classification tasks. In fact, no one program becomes responsible 

for a decision; instead, a number of programs are "orchestrated" to 

perform the task. Teller claims tha t the system is able to classify sig­

nals bet ter thus than with LISP-like constructs such as S-expressions 

and ADFs [Teller and Veloso, 1995a]. In addition, due to the spe­

cial representation of programs in directed graphs, loops are easily 

incorporated. 
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Main Program 
Figure 9.19 
The representation of a 

program and a 

subprogram in the PADO 

system. Each node is 

comprised of: Number, 

Action, Branch, Arcl, 

Arc2, ..., Branch 

Constant. 

START 

STOP 

Stack 

Indexed Memory 

Subprogram (private or public) 
" :0-K>.!:,r; i. 

: I i 

Special care has to be taken to provide good mutat ion and cross­

over operators for such a system. Teller and Veloso use a co-evolution­

ary approach they call smart operators [Teller, 1996] (see Chapter 6). 

There are more sophisticated breeding details, which we shall omit 

here, as well as additional evaluation procedures specifically curtailed 
to facilitate pa t te rn recognition, but the above is the gist of PADO's 

graph representation. 

9.3.2 Cellular Encoding 

An interesting scheme for a developmental approach toward graph 

evolution has been proposed by Gruau [Gruau, 1992b] [Gruau, 1993] 

[Gruau, 1994a]. Gruau designed a rewriting system tha t can work on 

graph structures as exemplified by neural networks, electrical circuits, 

or finite s ta te automata . Because the notion of graphs is ubiquitous 
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in computer science, the application area of this method is potentially 

large. 

The general idea is tha t what ult imately should result as a phe-

notype is separated from the genotype of the tree-based individual. 

The phenotype is a (possibly) cyclic graph, something strictly for­

bidden in tree structures by their very definition, which forces the 

separation between genotype and phenotype. 

The genotype is a so-called grammar tree, which contains rules Grammar Trees as 

for rewriting, like the models of Whigham (see Section 9.4.2) or Jacob Genotype 

(see Section 9.4.3). W h a t is rewritten, however, is not a string but 

a graph, whose nodes (cells) or edges (connections) are undergoing 

rewriting. The former is called division by Gruau, the lat ter change 

of weights/l inks/connections. These operations are applied in a par­

allel manner so tha t grammar trees develop over t ime like L-systems 

[Lindenmayer, 1968]. Figure 9.20 shows a selection of operations in 

this rewriting system. 

Another aspect of Gruau 's work in cellular encoding is the ability 

to define modules once tha t subsequently can be applied in various 

locations in the grammar tree. We shall discuss an example of the 

development of a neural network for a walking insect-like robot in 

Chapter 12. 

9.4 Other Genomes 

A wealth of other structures has been used for evolution. This section 

will discuss a few of them. 

9.4.1 STROGANOFF 

Iba, Sato, and deGaris [Iba et al., 1995b] have introduced a more 

complicated structure into the nodes of a tree tha t could represent 

a program. They base their approach on the well-known Group 

Method of Data Handling (GMDH) algorithm for system identifi­

cation [Ivakhnenko, 1971]. In order to understand STructured Rep­

resentation On Genetic Algorithms for NOnlinear Function Fitting 

(STROGANOFF) we first have to understand GMDH. 

Suppose we have a black box with m inputs £i,:c2> • • • ,xm and 

one output y; see Table 9.6. The black box receives signals on its 

input lines and responds with a signal on its output line. We can 

model the process by saying that the system computes a function / 

from its inputs: 

y = f(xi,x2,...,xm) (9.3) 
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Figure 9.20 

Side effects of nodes of 

cellular encoded grammar 

trees ([Gruau, 1995], 

copyright MIT Press, 

reproduced with 

permission) 

1 2 3 4 

(a) Initial graph (b) Sequential Division 'S ' (c) Parallel Division 'P' 

(d) Division "T (e) Division 'A' 

(g) Division 'H' (h) Division 'G' 

(f) Division 'A' 

(i) Recurrent Link 'R' 

(j) Cut input link 'C 3' (k) Change Input Weight 'D 3' (1) Change Output Weights 'K 2' 

Unfortunately, we cannot know anything about the system's internal 
working. We can only observe the system's reactions to a number N 
of input stimuli. 

Table 9.6 
Input/output behavior of 

the black box to be 

modeled 

# Obs. 
1 
2 
k 
N 

Input 

1 1 1 ^ 1 2 • • -Xlm 

X2\X22 • • •X2m 

%N1XN2 • • -XNTTI 

Output 

2/i 

V2 

Vk 

VN 

To tackle the problem of estimating the true function / with an 
approximation / , GMDH now assumes that the output can be con­
structed by using polynomials of second order in all input variables. 
Thus the assumption is that the system has a binary tree structure 
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of the kind shown in Figure 9.21. Intermediate variables 2j compute 
(recursively) input combinations. 

f~\ Figure 9.21 
\-—\ Group Method of Data 

/ \ Handling (GMDH) using 
s~V y— ^ 'nPut variables xi ... x$ 
( P2 ) ( P A ) 

P3 

x1 ) ( x2 ) ( x3 ) ( x4 ) ( x5 

The polynomials are of second order in their input variables, 
which by themselves might be the result of other second-order poly­
nomials: 

Pj(xi,x2) = Zj = a0 + aixi + a2x2 + a^x\ + a^x\ + a5xix2 (9-4) 

assuming for the moment a polynomial in inputs xi,x2. Given the 
observations of Xi,X2,... ,xm, y, we can now adjust the parameters 
ai,a2, 0,3,0,4, a5 by conventional least mean square algorithms. The 
parameter fitting aims to minimize the difference between observed 
output yi and output jji, i — 1 . . . m generated by the polynomial tree 
structure. Multiple regression analysis may be used, for instance, to 
achieve this goal. Now that the best parameter set of all Pj has been 
found, it is considered an individual of a GP population. 

The STROGANOFF method applies GP crossover and muta­
tion to a population of the above polynomial nodes. A sketch of how 
crossover works is shown in Figure 9.22. Note that a node returns a 
complicated function of its inputs that is subject to a local search pro­
cess before being finally fixed. Thus, the features of the function set 
are not determined from the very beginning, except for their overall 
form. Instead, a local search process that Iba et al. call a "relabeling 
procedure" is used to find the best combination of parameters to fit 
the output function, provided a structure is given. The overall form, 
on the other hand, is the same for all non-terminal nodes. 

The fitness of the GP algorithm, now operating on polynomial 
trees as shown in Figure 9.23, is not necessarily the degree of fitting 
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© 

Figure 9.22 

Crossover of trees of 

GMDH nodes, 5 variables 

x i . . . X5. In offspring 

only part of the functions 

has to be recomputed for 

evaluation: y[,y!i (left 

side), y±,y'2. 

that is used in the multiple regression part. Instead, it can use other 
measures, such as complexity of the individual - Iba et al. use the 
minimal description length (MDL) criterion - or a combination of 
fitness and complexity, to compare the quality of solutions. 

r In Section 12.2 we will see an application example of this method. 

9.4.2 GP Using Context-Free Grammars 

Whigham [Whigham, 1995a] [Whigham, 1995b] has introduced a very 
general form of grammar-based genetic programming. He uses context-
free grammars as the structure of evolution in order to overcome the 
closure requirements for GP. By the use of a context-free grammar, 
typing and syntax are automatically assured throughout the evolu­
tionary process, provided the genetic operators follow a simple rule. 
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Figure 9.23 
Different mutations of a 
tree of GMDH nodes, 5 
variables xi .. .x$ 

In context-free grammar GP, the central role of a function pos­
sessing arguments is taken over by a production rule generating new 
symbols. A context-free grammar can be considered a four-tuple 
(S,Z,,N,P) [Gustafson et al., 1986], where S U N is the set of non-
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terminal symbols, with S the starting symbol, £ the set of terminal 
symbols, and P the set of production rules. 

Terminal of a Definition 9.2 A terminal of a context-free grammar is a 
Context-Free Grammar symbol for which no production rule exists in the grammar. 

Production Rule Definition 9.3 A production rule is a substitution of the kind 
X -» Y where XeNandYeNUY,. 

There might be more production rules applicable to a symbol X 6 N 
that can be expressed using the disjunction |; for example, X —> Y\z 
means that the non-terminal symbol X can be substituted by either 
the non-terminal Y or the terminal z (we adopt the convention that 
non-terminals are written with capital letters). 

What has been a terminal in the conventional tree-based ap­
proach to GP has become a terminal in context-free grammar, too, 
but, in addition, all functions of conventional GP have now become 
terminals as well. Thus, a sort of developmental process has been in­
troduced into evolution, with production rules applied until all sym­
bols have reached (from left to right) terminal character. A functional 
expression of traditional GP can then be read off from left to right 
following all leaves of the structure. 

As an example, we discuss the following grammar: 

/"> 

V ; S -> B 

B -> +BB\ - BB\ * BB\%BB\T 

(9.5) 

(9.6) 

(9.7) 

where S is the start symbol, B a binary expression, T a terminal, 
and x and 1 are variables and a constant. The arithmetic expres­
sion discussed earlier can be considered a possible result of repeated 
application of these production rules as shown in Figure 9.24. 

Crossover in context-free grammar ensures syntactic closure by 
selecting, in one of the parents, a non-terminal node of the tree, and 
then searching, in the second parent, for the same non-terminal. If 
the same non-terminal is not found, then no crossover operation can 
take place; otherwise, crossover is allowed at precisely this node. It 
is easy to see that diversity comes in when a non-terminal allows 
more than one production rule to be applied. In this way, differences 
between two individuals can develop in the first place. 

Mutation involves selecting one non-terminal and applying ran­
domly selected productions until (at the latest) the maximally al­
lowed depth of a tree is reached. 
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Figure 9.24 
Arithmetic expression of 

Figure 9.14 expressed as 

a grammatical structure. 

S: start symbol, B: binary 

expression, T: terminal, 

x,l: variables, a constant 

B B - B B B B - B B 

T T T T T T T T 

1 x 1 1 x 1 

Whigham [Whigham, 1995a] has also considered a modification 
of the context-free grammar by incorporating new beneficial produc­
tions into the grammar at certain stages of the evolutionary process 
(epochs). Wong and Leung introduced an even more general system 
by using context-sensitive grammars as the basis of his GP system 
[Wong and Leung, 1996]. 

9.4.3 Genetic Programming of L-Systems 

Lindenmayer systems (also known as L-system [Lindenmayer, 1968] 
[Prusinkiewicz and Lindenmayer, 1990] have been introduced inde­
pendently into the area of genetic programming by different research­
ers [Koza, 1993a] [Jacob, 1994] [Hemmi et al., 1994b]. L-systems were 
invented for the purpose of modeling biological structure formation 
and, more specifically, developmental processes. The feature of rewrit­
ing all non-terminals in parallel is important in this respect. It allows 
various branches to develop independently of each other, much as a 
true developmental process does. 

L-systems in their simplest form (OL-systems) are context-free 
grammars whose production rules are applied not sequentially but 
simultaneously to the growing tree of non-terminals. As we have seen 
in the previous section, such a tree will grow until all branches have 
produced terminal nodes where no production rule can be applied 
any more. The situation is more complicated in context-sensitive 

Different L-Systems 
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L-systems (IL-systems), where the left and right contexts of a non­
terminal influence the selection of the production rule to be applied. 
Naturally, if more than one production rule is applicable to a non­
terminal, a non-deterministic choice has to be taken. 

The goal of evolution is to find the L-system whose production 
rules generate an expression that is most suitable for the purposes 
envisioned. Thus, L-systems are individuals themselves. They are 
evaluated after all non-terminals have been rewritten as terminals 
according to the grammar. Figure 9.25 shows a typical individual 
where each LRule consists of a non-terminal predecessor and a ter­
minal or non-terminal successor (in the simplest case of OL-systems). 

Figure 9.25 

Context-free L-system 

individual encoding a 

production rule system of 

Lindenmayer type 

LRulel 

OL-System 

AxiomA LRules 

LRule2 LRule3 

pred succ pred succ pred succ 

' - ' - * ) • ; » 

Note that individuals of this kind cannot be varied arbitrarily, but 
only following the "meta-grammar" of how L-systems are encoded. 
For instance, the Axiom A branch is not allowed to change into an 
LRule. Rather, it can change only into a different axiom, say, Axiom 
B. The situation is very similar to the variation of ADF trees in Koza's 
treatment [Koza, 1994a]. There, for example, a result-producing 
branch in one tree can be recombined only with the result-producing 
branch of another tree, not with its function-defining branch. 

Jacob [Jacob, 1994] gives a general treatment of how allowed vari­
ations may be filtered out of the total of all variations. 

.ivi.ti-j''. -\ invirM--



Exercises 

1. Give four examples of different mutation operators acting on 
trees. 

2. Give four examples of different crossover operators acting on 
trees. 

3. Describe a linear GP system. 

4. Describe the STROGANOFF GP system. 

5. Give an example of a GP system that has a graph genome. 

6. Describe the genotype-phenotype mapping in the BGP method. 

7. Give two reasons why it is beneficial to evolve machine code. 

8. Describe cellular encoding. 

9. Why is it not possible to allow unrestricted crossover in GP 
using a context-free grammar as genome? 
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Convergence and 
Diversity 

The Granularity of 
Programs 

Closure and Typing 

The basic approach to genetic programming has many limita­

tions. Over t ime, G P researchers have become aware of those limita­

tions and there is widespread consensus among them tha t despite its 

successes, there is vast room for improvement in the G P algorithm. 

In this introduction we shall quickly highlight three limitations of the 

basic approach to genetic programming, before we delve into a more 

detailed and systematic discussion. 

One of the most serious problems of s tandard G P algorithms 

is the convergence of a population. An often used rule states tha t 

what has not been achieved in a G P run in 50 generations will never 

be achieved. Although this is an informal s tatement, it points to a 

serious weakness of the paradigm: in a population tha t is recombined 

repeatedly, sooner or later uniformity will develop. Diversity will be 

the keyword for finding remedy to this situation, which can be found 

by parallelizing genetic programming using demes. 

Another problem of G P is its dependence on the terminal and 

function set initially chosen for a certain task. It may well be that 

the abstractions residing in this terminal and function set are too 

high or too low to allow for a sensible evolution of individuals. If 

they are too low, the system will find the task too complicated to 

simultaneously move in the various directions necessary to improve 

a solution. This is the complexity issue, which would actually call 

for a correlated change in individuals as could be achieved by using 

modules tha t might be modified as wholes. If the abstractions are 

at too high a level, the task cannot be broken down appropriately 

and the solutions developed will always be more abstract , i.e., more 

general, than the fitness cases would dictate. The system will thus be 

forced to ignore part of the information in the fitness cases shown to 

it, with all the negative consequences following from tha t . We shall 

discuss this topic in Section 10.2.1. 

A more practical consideration is related to the requirement of 

closure of genetically evolved programs. If the set of terminals and 

functions were of such a kind tha t not all functions could bear all 

terminals as arguments, the system would become britt le. Typing 

is one of the ways out of this dilemma (see Section 10.2.10), where 

each node carries its type as well as the types it can call, thus forcing 

functions calling it to cast the argument into the appropriate type. 

We have mentioned just a few examples of the potential for im­

provement of the basic algorithm of genetic programming. In Chap­

ter 6 we already discussed potential improvements for the crossover 

operator. This chapter will focus on three principal areas for im­

provement: . _.. 



10.1 Improving the Speed of GP 

1. Improving the speed of GP; 

2. Improving the evolvability of programs; 

3. Improving the power of GP search. 

10.1 Improving the Speed of GP 

GP is computationally intensive. That arises from the need to evalu­
ate each individual's fitness over many different fitness cases. There 
have been a number of different approaches to accelerating GP runs. 

10.1.1 Run Termination 

Often there is a need for exploring parameter choices to be set for an 
entire GP run. This can be done serially by choosing different sets of 
parameters for subsequent runs. In such a situation it is very helpful 
to have various criteria for signaling the end of a run. For exam­
ple, one such signal could be the intron explosion we introduced in 
Chapter 7. Fitness improvement is effectively over once exponential 
intron growth sets in. In this way, criteria for early run termination 
can accelerate the exploration of the parameter space of GP consid­
erably. In one set of experiments, where the maximum number of 
generations was set to 200, the early termination criterion reduced 
the run time by 50% [Francone et al., 1996]. 

10.1.2 Parallelization 

Another way to accelerate GP and, at the same time to keep diver­
sity high, is to use parallelization. Parallel populations, also known 
as demes, might possess different parameter settings that can be ex­
plored simultaneously, or they might cooperate with the same set 
of parameters, but each work on different individuals. Paralleliza­
tion is possible for all EAs, of course, due to their population-based 
approach. 

Parallel Populations 

Koza has developed a system that provides fast performance on 64 
Power PC processors arranged in a toroidal mesh. The host in charge 
of the entire run is a Pentium PC. This system is modeled as an 
island GA [Andre and Koza, 1996a]. That is, each processor has its 
own population, which is separate from the populations of the other 
processors. Each processor sends a "boatload" of "migrants" to the 
four adjacent processors on the toroid in each generation. So the 
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isolation of the individual domes, or populations, is tempered by a 

weak migration of individuals from processor to processor. 

A typical implementation of this system would involve 64 demes 

of population 800 each. The total population over all demes would 

be 51200 [Koza et al., 1996b]. Of course, the parallelization of the 

system results in a great speed-up in processing such a large popula­

tion. Koza and Andre have reported intriguing results of a more than 

linear speed-up due to this arrangement. It is possible tha t a larger 

population allows the system to find solutions with fewer evaluations 

[Keith and Martin, 1994]. 

10.1.3 Parallel Fitness Evaluations 

Another way to parallelize a G P system is to evaluate programs in 

parallel. In [Juille and Pollack, 1996] a system is reported tha t uses 

the 4096 processors of a MasPar MP-2 parallel computer (SIMD) 

to implement parallel evaluation of trees. The machine in question 

has a peak performance of 17 GIPS. The idea of Juille and Pollack 

was to implement a virtual processor with its own specific memory 

organization in order to simultaneously execute a population of pro­

grams on this SIMD architecture. Depending on the specific problem 

they used (trigonometric identities and symbolic integration), ap­

proximately 1000 S-expressions could be evaluated per second. For 

two other problems (tic-tac-toe and the spiral problem) the authors 

used more sophisticated fitness evaluations. 

Oussaidene et al. [Oussaidene et al., 1996] report in another s tudy 

where they used farming of fitness cases to slave processors from a 

master processor tha t , for problems of 1000 and more fitness cases 

on an IBM SP-2 machine, a nearly linear speed-up can be obtained. 

10.1.4 Machine Code Evolution / . - v ! =n <̂ 

Evolution of programs in machine code is t reated in more detail else­

where (see Chapters 9 and 11). Here we note only tha t , due to the fast 

execution of machine code on processors, a considerable speed-up can 

be reached by directly evolving machine code. Though figures differ 

somewhat depending on which system is compared to machine code 

evolution, an acceleration factor of between 60 and 200 compared to 

a tradit ional G P system can be safely assumed. 

10.1.5 Stochastic Sampling 

In many G P problems, the evaluation of a program individual is 

a time-consuming process. Consider, for example, the problem of 
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teaching a robot the correct behavior in an unknown environment. 
An entire population of programs has to be evaluated in order to 
find out which behavior is appropriate (has a high fitness) in this 
environment, and which is not. A common procedure to compute this 
fitness measure is to let each program control the robot for a certain 
time, allowing the robot to encounter sufficiently many situations to 
be able to judge the quality of this program. The same process is 
repeated for all programs in the population, with the robot suitably 
prepared for generating equal conditions for all programs. 

A simple calculation should help to illustrate the difficulties. Sup­
pose the robot can perform an elementary behavior within 500 ms, 
i.e., every 500 ms there will be a command issued from the robot that 
depends on its state and the inputs present at the outset of this pe­
riod. Because a task such as navigating or searching in the real world 
is complex, at least 100 different situations (the fitness cases) should 
be examined in order to get a measure of fitness for the individual 
program. Thus, 50 s will be consumed for the evaluation of one in­
dividual. Given a relatively small population of 50 programs used 
for the GP runs, we end up needing at least 40 minutes to evaluate 
one generation of behavioral programs. In order to do so, however, 
we had to prepare an initial starting state for the robot every 50 s. 
Without counting the time taken for that, a moderate test run with, 
say, 20 generations would require more than 13 hours to be invested, 
a rather full workday for an experimenter. As many researchers have 
found, evaluation is a tedious process, even without the preparation 
for identical initial conditions. 

There is one radical step to shorten the time of an individual's 
evaluation: allow each individual program to control the robot for 
just one period of 500 ms, i.e., evaluate only one fitness case. This 
way evaluation is accelerated by a factor of 100. In addition, we can 
skip - under these non-deterministic conditions - the preparation into 
a normalized initial state. Each program will have to steer the robot 
under different conditions anyway! 

This example can be generalized to any type of application. A 
way to accelerate fitness evaluation is to evaluate each individual with 
a different (possibly small set of) fitness case(s), a method we call 
"stochastic sampling" [Nordin and Banzhaf, 1995c]. The assumption 
is that over a number of sweeps through the entire set of fitness cases, 
accidental advantages or disadvantages caused by the stochastic as­
signment of fitness cases to individuals will cancel out and individuals 
will develop that are fit on the basis of the entire set of fitness cases. 

A side effect of this method is the tendency toward generaliza­
tion. We can expect that the drive toward more general solutions 
is much stronger with this method than with keeping the fitness 
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cases constant. A similar effect has been observed with the on­

line versus batch learning methods for supervised neural networks 

[Hecht-Nielsen, 1988]. 

Stochastic sampling is also much closer to fitness evaluation in 

nature and natural selection, where evaluation can take place only 

locally in space and t ime. The non-determinism implicit in such an 

approach can even be used to good effect, e.g., for escaping local 

minima. 

In [Gathercole and Ross, 1994] [Gathercole and Ross, 1997a] an­

other approach toward selection of fitness cases is proposed. Through 

observation of the performance of a G P run Gathercole and Ross's 

system obtains da ta about which fitness cases are difficult and which 

are easy (there is also an age factor weighed in). Subsequently, the 

system preferentially selects those fitness cases which have a higher 

rank based on these criteria. So in this approach, a "sorting" of fitness 

cases takes place which leads to a two-fold acceleration in learning, 

first based on the fact tha t only subsets of the entire training set are 

selected, and second based on the fact tha t the system chooses the 

harder ones. 

Another interesting suggestion [Gathercole and Ross, 1997a] 

[Gathercole and Ross, 1997b] by the same authors is to restrict fit­

ness evaluation by keeping track of the cumulative error an individual 

has collected in the course of evaluation. If, during evaluation, the 

cumulative error should exceed an adaptive threshold, evaluation is 

stopped, and all fitness cases tha t have not been evaluated are reg­

istered as failures. The error threshold adapts to the performance of 

the best individual of a generation. 

10.2 Improving the Evolvability of Programs 

G P has established itself as a powerful learning tool - often with very 

basic function sets. For example, using only P l u s , Minus, Times, 

D iv ide and bitwise Boolean operators, a linear G P system has out­

performed neural networks on pat tern recognition problems. But the 

G P system was not allowed I f - t h e n - e l s e , For, D o - u n t i l , Do-whi le , 

or other looping constructs, whereas a multilayer feedforward neural 

network has addition, subtraction, multiplication, division, and con­

ditional branching capabilities built into its neuron squashing and 

threshold functions and its transfer functions. G P can accomplish 

a lot with a very restricted set of operators. Tha t said, there are 

many ways tha t G P can improve the expressive power of evolvable 

programs. 
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1 0 . 2 . 1 M o d u l a r i z a t i o n 

A natural tool for humans when defining an algorithm or computer 
program is to use a modularization technique and divide the solution 
into smaller blocks of code. Human programmers find it useful to sub­
divide a program hierarchically into functions. This is an example of 
a divide and conquer strategy - one of the most basic problem solv­
ing strategies known. GP systems may have some tendency toward 
self-modularization. 

Modularization in general is a method by which functional units 
of a program are identified and packaged for reuse. Since human pro­
grammers have to struggle constantly with the increasing complexity 
of software - as humans generally have to when dealing with the com­
plexity of their environment - the natural tool of thought, namely, 
to bundle entities into abstractions to be used later on as units, is 
also useful in programming. Modular approaches are mainstream in 
software engineering and result, generally speaking, in simpler and 
more generic solutions. 

Let us first look at a general definition of modules as given by 
Yourdon and Constantine [Yourdon and Constantine, 1979]. 

Definition 10.1 A module is a lexically contiguous sequence of 
program statements, bounded by boundary elements, having an aggre­
gate identifier. 

A module has at least the following properties: 

• it is logically closed; 

• it is a black box (referred to as the information hiding principle 
in computer science); and 

• it offers an interface to other modules. 

Module 

An interface between modules is the set of operations and data 
types offered to other modules by a module. 

Modularization approaches are central when trying to tackle two 
of the main problems of simple GP: scaling and inefficiency. Modu­
larization methods weigh in the benefits of encapsulating code and 
ultimately generalizing from one to more applications of the same (en­
capsulated) piece of code. If GP is able to work with building blocks, 
as some researchers have suggested (and others have doubted), then 
modules will be synonymous with building blocks. 

A key to understanding why modularization and encapsulation 
are useful in GP has to do with the effects of crossover on build­
ing blocks. All modularization techniques are ways of encapsulating 

Encapsulation of Code 
against Inefficiency 

Building Blocks 
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blocks of code. Such encapsulated blocks become subroutines and can 

be called repeatedly from the main program or from other subrou­

tines. This means tha t a program can reduce its length by put t ing 

frequently used identical blocks of code into a subroutine. As we 

have argued earlier in Chapter 7, programs of shorter effective length 

have bet ter chances of survival than programs with larger effective 

length. Thus it might be expected tha t some modularization tech­

niques work spontaneously: as soon as working code is encapsulated, 

the odds of it being destroyed by crossover are zero. Hence, encapsu­

lation is a crossover protection, and more generally, a variation pro­

tection mechanism. In addition to tha t , shorter programs are bet ter 

at generalizing when applied to unseen data . Thus modularization in 

G P can be seen to affect generalization in a positive way. Re-use of 

modules is further facilitated by placing modules into a library from 

where they can be called by different individuals. 

Different modularization techniques have been suggested for ge­

netic programming. Automatically defined functions (ADF) are the 

most thoroughly evaluated method [Koza, 1994a]. Other examples of 

modularization techniques include encapsulation [Koza, 1992d] and 

module acquisition [Angeline and Pollack, 1993]. 

10.2.2 Automatically Defined Functions 

Automatically defined functions (ADFs) have been proposed by Koza 

and represent a large proportion of his more recent work [Koza, 1994a]. 

ADFs are inspired by how functions are defined in LISP during nor­

mal manual programming. The program individual containing ADFs 

is a tree just like any program in regular tree-based GP. However, 

when using ADFs, a tree is divided into two par ts or branches: 

| 1. The result-producing branch, which is evaluated during fitness 

calculation; and 

2. the function-defining branch, which contains the definition of 

one or more ADFs. 

These two branches are similar to program structures in, e.g., 

C or Pascal. There, a main par t is accompanied by a part for the 

definition of functions. The main part corresponds to the result-

producing branch while the definition part naturally corresponds to 

the function-defining branch. Both of these program components 

part icipate in evolution, and the final outcome of G P with ADFs is 

a modular program with functions. 

Figure 10.1 gives an example of a program individual with an 

ADF. At the top one can see the root node Program which is jus t 
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a place holder to keep the different par ts of the tree together. The 

node def un to the left is the root node of an ADF definition. If there 

were more than one ADF then we would have more than one def un 

node under the Program node. In other words, we may need more 

than one ADF definition in the function-defining par t of the program. 

Likewise, it is also possible to have more than one result-producing 

branch. The Va lues function determines the overall ou tput from this 

individual. If the result-producing branch returns a single value only, 

then it is called the result-producing branch. The ADF definition Result-Producing 

branch has a similar Values node which wraps the result from the Branch 

ADF body. In most examples Values is a dummy node returning 

what it receives from below in the tree. 

The node labeled ADFO in Figure 10.1 is the name of the single 

ADF we use in the individual. This is a name of a function and it 

will be a par t of the function set of the result-producing branch to 

allow this branch to call the ADF. Jus t to the right of the ADFO 

node is the argument list. This list defines the names of the input 

variables to the ADFO function. These variable names will then be 

a par t of the terminal set of the ADFO function body. The principle 

is similar to a function definition in C or Pascal where we need to 

give the function a name and define its input variables together with 

a function body defining what the function does. All evolution takes 

place in the bodies of the ADFs and the result-producing branch (see 

Figure 10.1). 

Depending on how the system is set up it is also possible to have 

hierarchies of ADFs, where an ADF at a higher level is allowed to 

call an ADF at a lower level. Normally, one must take care to avoid 

recursion though an ADF tha t calls itself either directly or via a chain 

of other ADFs. In principle, it would be possible to allow recursive 

ADF calls, but this is an area of G P tha t needs more exploration. 

It is evident tha t the ADF approach will work only with a spe­

cial, syntactically constrained crossover. We cannot use the simple 

G P crossover crossing over any subtree with any other subtree. For 

instance, we must keep all of the nodes tha t do not evolve in Figure 

10.1 intact. There are separate function sets for the result-producing 

branch and the function-defining branch, and the terminal sets are 

also different. Crossover must not move subtrees between the two dif­

ferent branches of the ADF. Hence, crossover is done by first selecting 

a subtree in either the function-defining or the result-producing part 

of one parent . The crossover point in the second parent then has to 

be chosen in the same type of branch, ensuring tha t we switch sub­

trees only between ADF branch and ADF branch or result-producing 

branch and result-producing branch. 
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Figure 10.1 

A typical automatically 

defined function 

definition 

Before starting a run with a GP system that uses ADFs we must 
determine the number of ADFs and the number of arguments each 
is allowed to use. In other words, we have to specify the shape of 
the nodes that do not evolve in Figure 10.1. During initialization 
the system will keep track of this definition and will produce only 
individuals with this shape. The function-defining bodies and the 
result-producing bodies are then generated randomly. 

Figure 10.2 shows an example individual where the cube function 
has evolved as an ADF. This ADF is then used in the result-producing 
branch to realize the x6 function. 

ADFs have been shown to outperform a basic GP algorithm in 
numerous applications and domains. Also, Kinnear has compared 
the performance of ADFs to the performance of another modular­
ization technique called "module acquisition" defined below (see Sec­
tion 10.2.4). In his study [Kinnear, Jr., 1994], ADFs outperformed 
both a basic GP algorithm and a GP algorithm with module acquisi­
tion. But in accordance with what we said earlier, ADFs seemed to 
give a performance advantage only when the introduction of functions 
reduced the length of possible solutions sufficiently [Koza, 1994a]. 

In summary, these are the steps needed when applying GP with 
ADFs: 

1. Choose the number of function-defining branches. 

2. Fix the number of arguments for each ADF. 

3. Determine the allowable referencing between ADFs if more than 
one ADF is used. 



10.2 Improving the Evolvability of Programs TST1 

Figure 10.2 

Example of an ADF 

program tree 

4. Determine the function and terminal sets for both of the branches 
(remember they are different). 

5. Define the fitness measure and fix parameters and the termina­
tion criterion, as in any other GP run. 

A weakness of the ADF approach is that the architecture of the 
overall program has to be defined by the user beforehand. The ar­
chitecture consists of the number of function-defining branches in the 
overall program, the number of arguments (if any) possessed by each 
function-defining branch, and, if there is more than one function-
defining branch, the nature of the hierarchical references (if any) al­
lowed by them. This requirement adds another set of parameters 
to the initial parameters of a GP run. It would be much better if 
the complete structure of an individual could evolve, including all 
ADF specifications. Koza [Koza, 1995a] has proposed architecture 
altering operations as a method to achieve this goal. Architecture 
refers to the complete structure of the program individual. He pro-

Architecture Altering 

Operations 
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posed six architecture altering genetic operations tha t can add initial 

ADF structures, clone them, and change the number of parameters . 

Again, na ture was used as a source of inspiration by referring to gene 

duplication [Ohno, 1970]. 

Gene Duplication Evolution by gene duplication works by occasional duplication 

of a gene that does something useful. The risk of such an event is 

small - an additional copy of the same gene only marginally affects 

an individual. However, the copy can be muta ted away from its 

original function into a different function because the original gene 

is still functional. Using architecture altering operations and gene 

duplication, no additional prespecified information is necessary for 

an ADF run compared to a basic G P run. Even iteration-performing 

branches could be added with this method [Koza and Andre, 1996b]. 

A system with architecture altering operations can be bench-

marked against an ADF system with predefined size and shape, but 

the outcome will strongly depend on which predefined architecture it 

was compared to. One recent s tudy [Koza, 1995b] compared, for one 

problem, the architecture altering method to the best known prede­

fined architecture. The result was tha t the new method performed 

slower. It is too early to draw any conclusion, though, and one should 

always keep in mind tha t the benefits of specifying fewer parameters 

are very important . 

10.2.3 Encapsulation 

The original idea of encapsulation in G P is due to Koza [Koza, 1992d] 

who introduced it as an elementary operation into hierarchical GP. 

All of the following, however, is also applicable to linear GP. 

Encapsulation of The operation of encapsulation consists of selecting an individ-

Subtrees into Terminals ual from the population, selecting a non-terminal node within tha t 

individual and replacing the subtree below tha t node with a newly 

defined terminal node tha t contains the subtree removed. The new 

terminal is applicable in other individuals from this moment on. Re­

moving the entire subtree has the effect of admit t ing only functions 

with arity 0 as encapsulated code. Nevertheless, if the newly defined 

terminal should tu rn out to contain useful code, reuse has been made 

possible. 

An example of encapsulation is shown in Figure 10.3 for the arith­

metic expression of Figure 9.14. By replacing a subtree with a new 

node EQ, crossover can no longer recombine par ts of the subtree. 

Analogously, other operations are prohibited from changing this part 

of the code. Provided the subtree contains useful operations, this 

is beneficial. At present it is unclear whether encapsulation really 

confers a significant advantage on a G P system. 
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Figure 10.3 
Eo is used as a terminal 

to symbolize an 

encapsulated subtree of 

the arithmetic expression 

of Figure 9.14. The full 

tree can be shortened 

through the substitution. 

10.2.4 Module Acquisition 

Another form of preparing code for reuse is module acquisition cis-
cussed in [Angeline and Pollack, 1992] [Angeline and Pollack, 1993]. 
Module acquisition can be used as an elementary operator to act on 
an individual. From a chosen individual a subtree is selected and a 
part of this subtree (up to a certain depth) is defined as a module. 
This operation has also been called compression. The parts of the 
subtree below the module are considered arguments to the module. 
In this way, module acquisition offers a way to create new functions, 
much as Koza's encapsulation operation generates new terminals. 

Angeline and Pollack go another way, however. In their approach, 
the new module is placed in a library of modules from where it can 
be referenced by individuals in the population. Figure 10.4 gives a 
sketch of the procedure. If a module provides some fitness advantage 
in the population, it will spread to more individuals, thus increasing 
the number of references to it in the library. As long as there is any 
one individual in the population to refer to this module, it is kept in 
the library. 

Much in the spirit of encapsulation, once a module is defined it 
ceases to evolve any further. Module acquisition thus gives opera­
tor protection to the modules, although parameters are allowed to 
change. The compression operation carries a parameter itself, the 
depth at which the module is cut off. There might even be two 
parameters used, one for minimal depth, one for maximal depth of 
modules. We note in passing that the authors also introduce an op­
erator countering the effect of compression: expansion. Expansion 
selects a single module to expand in an individual and expands it one 
level. So other modules are not affected nor are any modules that 
might be inside the expanded module. 

Encapsulation into 

Library Functions 

The Library Is Available 

to the Entire 

Population 

The Counter-Operator: 

Expansion 
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Figure 10.4 
How a module is 

acquired. A node is 

selected, and its subtree, 

down to a certain depth, 

is considered a module 

and moved into the 

library. The module 

might contain terminal 

branches, as well as 

functional branches that 

become arguments of the 

module. 

One very important similarity to the encapsulation method men­

tioned in the foregoing section is tha t newly defined modules are 

available globally, i.e., to the entire population. Kinnear has done 

a comparative study on the use of module acquisition but concludes 

tha t there is no obvious advantage [Kinnear, Jr. , 1994]. However, it 

is too early to close the books on modide acquisition, because the one 

study done was based on a limited sample of runs and problems. 

10.2.5 Adaptive Representation 

Adaptive representation is another technique for modularization in 

G P [Rosea and Ballard, 1994b]. Based either on heuristic informa­

tion about the problem domain or, preferably, on certain statistical 

information available in the population, small subtrees are named to 
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be candidates for modules. These subtrees are extracted from the 

population in order to serve as new functions or subroutines for fur­

ther evolution. 

Every step of this kind can be done by use of a part ial new seed- Epochs 

ing of the population with individuals containing the newly defined 

functions. Thus, the EA has a new time scale called an epoch lasting a 

number of generations until a new set of candidates for modules is ex­

t racted from the population. Rosea et al. [Rosea and Ballard, 1994b] 

claim tha t their method is the only bot tom-up method for modular­

ization developed so far tha t really catches what should be contained 

in modules. 

To determine which parts of programs might serve as viable mod- Viability of Modules 

ules, Rosea et al. introduce the learning of adaptive representation 

based on differential offspring-parent fitness and on the notion of 

activity of certain par ts of the programs. In a nutshell, the former 

criterion identifies individuals in the population tha t presumably pos­

sess highly fit subtrees. The notion is tha t , once an individual has 

made a j u m p in fitness compared to its parents, this should be due 

to a useful combination of genetic material in this individual. 

Now tha t the genetic material has been narrowed down, the Salient Blocks of Code 

search for salient blocks of code is the second step. The criterion and Block Activation 

applied here is block activation, tha t is, the execution frequency of 

a particular par t of the code within the individual. The measure­

ment of block activation of new blocks of code is, according to Rosea 

[Rosea, 1995a], done in 0{N) t ime. Nodes with the highest value of 

block activation are considered candidates, provided all nodes in the 

subtree have been activated at least once. 

Once blocks of code have been selected, they are generalized by 

dropping variables, which is an important heuristic. Rosea argues 

that this way he is able to create modules of a variable number of 

arguments. 

He claims to find extremely interesting modules using the adap­

tive representation method. In experimental results presented on an 

agent behavior problem in a dynamic world [Rosea, 1995a] - a Pac-

man-like problem earlier described by Koza [Koza, 1992d] - Rosea 

shows tha t adaptive representation runs maintain higher diversity in 

the population and discover appropriate modules much faster than 

conventional GP. 

10.2.6 Automatically Defined Macros 

Spector has suggested and evaluated a variant of ADFs called Auto­

matically Defined Macros (ADMs) [Spector, 1996]. Macros are mod­

ularization structures which are part of most computer languages and 
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define transformations to be performed on the source code before it 

is compiled or interpreted. A common macro transformation is sub­

sti tution, where the programmer substi tutes frequent code fragments 

by macros. The macros are expanded by a preprocessor before compi­

lation or interpretation. Many LISP dialects contain powerful macro 

capabilities tha t can be used to implement new control structures. If 

a program is purely functional, then there is no difference in result 

between a macro and a function. However, if the macro uses side ef­

fects or is sensitive to its calling context, then it can produce unique 

effects. 

Spector shows how substi tution macros can be evolved simulta­

neously with the main program in a method analogous to the ADF 

method. The evolved macros can be seen as special control structures, 

producing, for example, specialized forms of i teration or conditional 

execution. 

One disadvantage of macros is tha t the macro expansion process 

and the execution of expanded macros can sometimes take much more 

t ime than calls to functions, depending on the implementation. In 

addition, the caching of values provided by arguments to functions, 

but not by arguments to macros, can sometimes be valuable. So 

macros should only be used where side effects or context sensitivity 

are an important par t of the application. Spector shows how the 

ADM method has advantages over ADFs in certain simulated control 

tasks while ADFs produce bet ter results in other control tasks. He 

concludes tha t ADMs are likely to produce bet ter results in non­

functional domains while ADFs may be bet ter suited for functional 

domains with few side effects. 

10.2.7 Modules and Crossover 

The discussion above has shown how we can protect code from being 

destroyed by variation operations like crossover or mutat ion. The 

main answer of authors was encapsulation. By freezing code and 

compressing it into terminals and functions, this goal certainly can be 

reached, since, by definition, functions and terminals are the "atomic 

units" of GP. Also, modularization using ADFs has been shown to 

increase protection of code [Teller, 1996]. 

But we might turn the question around, and ask: if a G P system 

has evolved (without the help of encapsulation) a solution to a prob­

lem, a solution tha t contains chunks of code separated by crossover-

protecting code segments like introns,1 are these chunks of code ac­

tually modules? If we go back to the definition of modules given 

1 Crossover protection is by far the most important protection, given the 
large amount of crossover used in GP. 
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earlier in this chapter, a definition which is now adopted widely in 
computer science, they do fit this definition exactly. 

In fact, crossover can be expected to be the only operator to find 
these chunks of code, since contiguity is one of its hallmarks. In addi­
tion, it can be argued that intron segments separating effective pieces 
of code will evolve preferentially at those places where interactions 
between subsequent instructions are minimal and disruption of the 
sequence is not harmful. Those pieces of code that have minimal 
interaction will therefore be automatically singled out. But what is 
missing is the aggregate identifier, though this could be added when 
making the module explicit. The boundary elements need to be added 
at the same time. 

We are therefore led to the conclusion that chunks of code which 
evolved together and have an actual function, i.e., are not introns, 
can be considered modules or candidate modules. 

10.2.8 Loops and Recursion 

Loops and recursion are useful to any computer system. Without 
them, a computer would simply consume all of its program memory 
in a few seconds and then stop. This does not mean that we could 
not have any useful program parts without iterative structures or that 
GP would be useless without loops, but for a computer system to be 
complete it needs iteration. GP, too, must be able to address these 
issues in order to scale up to more complex problem domains. One of 
the challenges of GP is to evolve complete computer applications, and 
if this is ever going to be possible, then iteration is necessary. But 
loops and recursion are also beneficial to smaller programs of the type 
currently addressed with GP. Iteration can result in more compact 
programs that among other things allow better generalization. 

The problem with iteration is that it is very easy to form infinite Infinite Loops 
loops. Worse, it is theoretically impossible to detect infinite loops in 
programs. The halting theorem described in Section 3.3.2 states that 
we cannot decide whether a computer program will halt or not. In 
GP this could mean that the entire system might wait for the fitness 
evaluation of an individual that has gone into an infinite loop. Even if 
we were able to detect infinite loops, there would still be enough finite 
loops executing far too long to be acceptable in a learning situation. 
Hence, we must find a way to control the execution of programs that 
contain loops and recursion. 

There are in principle three ways to address the issue of infinite 
and "near-infinite" loops: 
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• The simplest solution is to define a limit on the number of 

iterations for each program and fitness case. A global variable 

is incremented for each iteration and execution is aborted when 

it exceeds a predefined maximum value. 

• The iteration limit can be defined more flexibly by allowing the 

program to distribute execution t ime among different fitness 

cases and even to make its own judgments of the tradeoff be­

tween quality of solutions and execution t ime. This method is 

referred to as aggregate computat ion t ime ceiling. 

• In some cases, it is possible to ensure tha t the problem do­

main and the function and terminal sets are constructed such 

tha t there could be no infinite or very long loops. It might be 

necessary to change the original representation and to switch 

primitives to achieve this goal. 

An example from the last category is Brave's system for evolution 

of tree search programs [Brave, 1994] [Brave, 1995]. A tree search 

program navigates in a tree da ta s tructure in order to find a specific 

node or to obtain a specific s tate [Nilsson, 1971]. Each program is 

recursive in its s tructure, but due to the limited depth of the input 

trees each program is destined to terminate . 

Kinnear uses a specialized loop construct (dobl) to evolve sort­

ing algorithms [Kinnear, Jr. , 1993b]. The loop construct operates on 

indices of lists with limited length, and hence also limits the number 

of iterations to a finite number. 

Koza has also performed experiments where he evolved recursive 

sequences, and he has been able to produce the Fibonacci sequence 

[Koza, 1992d]. This experiment is not really an instance of a recursive 

program bu t it touches recursive issues. His programs belong to the 

third category where termination is guaranteed. In recent work, Koza 

demonstrated the evolution of i teration [Koza and Andre, 1996b]. 

Time-Bounded Categories 1 and 2 above are examples of t ime-bounded execu-

Execution tion, a technique tha t can be used both with iteration and recursion. 

The next section examines these methods in more depth. Time-

bounded execution in G P is when a program is limited in how many 

execution steps or t ime units it is allowed to perform, or as a milder 

restriction, if the program is punished for long execution times. 

10.2.9 Memory Manipulation 

Programming in most common computer languages such as Pascal, 

C, FORTRAN, or Ada relies on the assignment of memory or struc­

tures in memory. All commercial computers are register machines 
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that operate by assigning values to memory or to internal registers 

of the CPU. This means tha t even purely functional languages will 

end up being implemented by memory assignment. Consequently, 

manipulation of memory and variables is an important concept in 

computer science. 

The earliest method for evolution of computer programs tha t was 

evaluated on a large scale - tree-based G P - used programs with LISP 

syntax. The reason is tha t LISP has one of the simplest syntaxes of 

any computer language. The simpler the syntax the easier is it to 

ensure tha t crossover and mutat ion result in syntactically correct 

programs. The crossover operator working with LISP must in princi­

ple ensure only tha t the parentheses are balanced. This will result in 

syntactically correct programs. A crossover operator exchanging sub­

trees is such an operator: it always leaves the number of parentheses 

balanced in offspring. 

LISP is a functional language in its purest form and hence does 

not use assignment. In the tree representing a LISP program the 

terminal node variables always represent the same value. In an im­

perative language such as C, a variable can be assigned at different 

moments and will hence correspond to different values. Complete 

LISP systems give an interface to assignment through special func­

tions such as the set function for assignment or storage of values. 

A s s i g n m e n t of Variables 

Koza uses a S e t - V a l u e function to set the content of a single varia­

ble [Koza, 1992d]. The variable is then included in the terminal set 

where it can be read like any other variable. In other G P paradigms, 

variables and side effects are a more integrated part of the represen­

tation. In machine code GP, for instance, each instruction results in 

the assignment of memory or registers. It is a natural step from the 

assignment of a variable to the manipulation of indexed memory. 

C o m p l e x D a t a S t r u c t u r e s a n d A b s t r a c t D a t a T y p e s 

GP differs from other evolutionary techniques and other "soft com­

puting" techniques in tha t it produces symbolic information (i.e., 

computer programs) as output . It can also process symbolic infor­

mation as input very efficiently. Despite this unique strength, genetic 

programming has so far been applied mostly in numerical or Boolean 

problem domains. 

A G P system can process fitness cases consisting of any da t a type 

for which we can supply the necessary function set. These could be 

strings, b i tmap images, trees, graphs, elements of natural language, 
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or any other da ta type tha t we can process with computer programs. 

For instance, G P has been used to evolve mathematical proofs where 

the fitness cases are trees representing s tatements about ari thmetic 

[Nordin and Banzhaf, 1997a] and to evolve sorting algorithms oper­

ating on lists [Kinnear, Jr., 1993b]. 

G P can also be used to evolve its own abstract da ta types. A 

human programmer working in a high-level programming language 

can define his or her own abstract da ta structures fitting the prob­

lem domain he or she is working in. Da ta structures often help to 

s tructure a problem and result in higher quality code. Langdon has 

succeeded in evolving abstract da ta types with a G P system. He ar­

gues tha t these structures may help to increase the scalability of G P 

[Langdon, 1995c]. Abstract da ta structures have also been shown in 

several cases to be superior to an unstructured, fiat indexed memory 

[Langdon, 1995a] [Langdon, 1996b]. 

In Langdon's work, abstract da ta structures are evolved from a 

flat index memory similar to the one used by Teller. The system has 

a handful of primitives at its disposal in order to address and move 

around in the indexed memory. The genome consists of multiple trees. 

The number of trees is predefined and corresponds to the functions 

expected to be necessary to manipulate the da ta s tructure. The stack 

da ta structure, for example, has five trees in its genome, correspond­

ing to the five stack manipulat ion operations tha t one would like to 

evolve (push, pop, top, makenull, empty) . All functions are evolved 

simultaneously. Crossover can exchange subtrees freely between the 

different trees in the genome. Figure 10.5 illustrates the multiple tree 

s tructure of the genome with abstract da ta types. 

Cul tura l G P 

Spector and Luke present an approach tha t may be called "cultural 

G P " [Spector and Luke, 1996a] [Spector and Luke, 1996b]. The prin­

ciple here is to increase G P performance by methods t ha t are an ana­

log of cultural learning, i.e., of learning by non-genetic information 

transfer between individuals. To tha t end, Teller's indexed-memory 

technique gets used in a modified form [Teller, 1994a] [Teller, 1993]. 

For some problems, Spector and Luke show tha t the computat ional 

effort for problem solving gets reduced by employing cultural GP. 

In the context of cultural G P , culture is viewed as the sum of all 

non-genetically transferred information. For instance, when a pro­

gram t ransmits a numerical value to another program, this is an 

instance of culture. Referring to Dawkins [Dawkins, 1989], Spector 

and Luke use the term meme to designate the cultural analog of a 

gene: a meme is a cultural information unit. 
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A key issue in the context of culture is the interaction between 

evolutionary and cultural learning. It can be argued tha t : 

• the dissemination speed of genetic information is slow compared 

to tha t of cultural information; 

• hence, the gene pool is more stable compared to the meme pool. 

Considering these properties, the synthesis of bo th learning methods 

may be superior to an approach using either one of them. One may 

hope, for instance, that beneficial memes would spread fast and could 

get exploited by many individuals, while, due to selection, deleteri­

ous memes - also spreading fast - would not "poison" the complete 

population. 

The basic idea behind implementing cultural G P is to let all indi­

viduals have access to the same indexed memory. This memory gets 

initialized once only, tha t is, when a run starts . Tha t way it serves 

as an information storage within and across generations. In particu­

lar, a certain individual may transfer information to itself. It would 

store information during its evaluation on a certain fitness case, and 

it would read this information during a subsequent evaluation on an­

other fitness case. It could also transfer the information to another 

individual of the same generation or to an individual of a subsequent 

Indexed Memory 
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generation. Thus, the meme pool (indexed memory) would evolve 

over t ime like the gene pool. 

Spector and Luke empirically investigated the efficiency of cul­

tural G P on sample problems from symbolic regression, control, and 

artificial intelligence. They found tha t in some cases the computa­

tional effort was significantly lower with cultural G P than without . 

The method of cultural G P surely is an interesting approach tha t 

deserves further at tention, since it represents a significant extension 

of G P toward a software analog of organic evolution that incorporates 

more features than just genetic learning. 

10.2.10 Strongly Typed Genetic Programming 

Most modern programming languages, such as C-\—h, have mecha­

nisms preventing the programmer from mixing different da ta types 

unintentionally. For instance, trying to pass an integer argument 

to a function tha t is declared a string function will result in an er­

ror. If the programmer wants to violate the types he or she has de­

clared, he or she must say so explicitly. Besides helping the program­

mer to avoid mistakes, these strongly typed programming languages 

make the source code more readable. Strongly typed genetic pro­

gramming (STGP) introduces typed functions into the G P genome 

[Montana, 1994]. Using types might make even more sense in G P 

than with a human programmer because the G P system is completely 

random in its recombination. The human programmer has a mental 

model of what he is doing, whereas the G P system has no such guid­

ance. Type checking also reduces the search space, which is likely to 

improve the search. 

The use of strongly typed G P is motivated by the closure prop­

erty of the function set. All functions in the individuals must be able 

to gracefully accept all input tha t can be given from other functions 

in the function set. This could be rather difficult in real-life applica­

tions with many different types of information represented as many 

different da ta structures. 

A common example is a mix of Boolean and numeric functions. 

Let us say tha t we want to evolve a customer profile from a customer 

database. For instance, we would like to know to which customers 

we should mail our latest product offer. The function set consists of 

Boolean functions (AND, OR, . . .) , ar i thmetic functions (+, - , *, / ) , 

comparison functions (>, <, =) and conditionals (IF THEN ELSE). 

We might want to evolve criteria such as IF the latest customer order 

is bigger than the average customer order times 10 OR IF the cus­

tomer is a regular costumer, THEN send him the offer. This kind 

of rule mixes numerical and Boolean information. It probably makes 
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little sense to recombine the two different sorts of da t a with crossover. 

Interpreting a numerical as a Boolean value (0=TRUE; l=FALSE) does 

not make much sense here and is not likely to improve the search. If 

we instead use a strongly typed G P system, we can guarantee tha t 

crossover will switch only two subtrees tha t re turn the same type. 

N 

( IF) Figure 10.6 
, / ~ p \ A strongly typed GP 

/ I \ individual 
B N N 

In Figure 10.6 we see how each link between the nodes in the 

program tree is typed as either a Boolean or a numerical value. The 

comparison functions take a numerical and produce a Boolean, the 

ari thmetical functions both take and produce numerical values, while 

the Boolean functions use only Boolean inputs and outputs . Condi­

tionals may be defined in different ways. The leftmost input should 

be a Boolean, while the other inputs and the output are either com­

pletely Boolean or completely numerical. Functions tha t can manip­

ulate several different da ta types are called generic types. 

10.3 Improving the Power of GP Search 

One of the central issues in machine learning is: how does an al­

gorithm move from point n in the search space to point n + 1? In 

GP, the basic G P operators crossover and mutat ion are used to tha t 

end. Genetic programming search can be improved by employing ad­

ditional mechanisms, some of which we present below. Among them 

are software analogs of ontogeny and co-evolution as well as hybrids 

built from different search paradigms. 

10.3.1 Ontogeny 

While evolutionary biology is concerned with processes tha t result 

in genotypic adapta t ion to an environment, developmental biology 



10 Advanced Genetic Programming 

investigates a process tha t modifies the structure and, thus, the be­

havior of an organism during its entire lifetime. This process is called 

ontogeny. 

Many G P systems ignore ontogeny altogether, because it cer­

tainly adds enormous complexity to the evolutionary process. Here 

we shall discuss those G P approaches that make explicit use of on­

togenetic ideas. It has been shown empirically for certain prob­

lems tha t these systems improve the search in GP. The interested 

reader will find additional material in [Gruau, 1994a] [Teller, 1994a] 

[Iba et al., 1995a] [Zomorodian, 1995] [Keller and Banzhaf, 1996] 

[Spector and Stoffel, 1996b] [Spector and Stoffel, 1996a]. 

D e v e l o p m e n t 

From an abstract point of view, a s tructure is the carrier of a func­

tion. An individual in an evolutionary algorithm is such a s tructure. 

The interpretation of the structure in the context of a problem do­

main determines the function tha t will be carried by tha t s t ructure. 

For instance, this structure can be a real-valued vector, a cellular 

au tomaton rule, a 3D-wire-frame model of a real object, a tree, a 

network, etc. In GP, the function of an individual is defined by the 

semantics of the program language. 

In our opinion, developmental approaches to G P t ry to address 

at least one of the following problems: 

• How can the search be left unconstrained, whereas the solutions 

need to be highly constrained through syntax? 

• How can one use a compact genetic representation tha t unfolds 

into a complex individual program? 

• Is there a way to include the "environment" into the process 

of generating complexity? Can the environment even help in 

organizing an individual program? 

Developmental biology, as one very important branch of biology, 

will provide more insights into the ontogeny of an individual, and G P 

stands to learn a lot from those models. Not only G P but also other 

EAs will benefit as well. We anticipate theories of development to 

have a considerable impact on genetic programming and evolutionary 

algorithms in general in the coming years. 

As one example of what has already been achieved, we shall dis­

cuss in the rest of this section a model due to Spector et al. 
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O n t o g e n e t i c P r o g r a m m i n g 

Spector and Stoffel [Spector and Stoffel, 1996b] present an approach 

they call ontogenetic programming. By including program self-modifi­

cation operators into the function set, a program may evolve tha t can 

change its s t ructure during run t ime. Such a program represents an 

analog of an organism tha t changes its s t ructure during its lifetime, 

for instance, when it grows. A change in the program structure may 

modify the program's future behavior. Since the self-modification 

operators are elements of the function set, the self-modification of a 

certain program may evolve itself. 

Ontogenetic modification of an individual program - versus phy- Ontogeny vs. 

logenetic modification of the population, which is what every G P Phylogeny 

system does - may enhance the performance of a program under cer­

tain circumstances. For instance, if different expressions of a certain 

program feature are needed over the program's run t ime, ontogenetic 

program modification may yield it. 

For an example, the authors describe a program performing as 

an adventure-game agent. Depending on the properties of the game 

environment, different tactical agent behavior in different game stages 

may be helpful in reaching the strategic goal of the game. Thus, a 

development of the individual may be needed. 

Different behaviors of the same program might be realized, how- Ontogeny vs. 

ever, in a much simpler way t han by ontogenetic modification, by Conditionals 

using conditionals. On the other hand, ontogenetic modification al­

lows for a potentially unlimited number of different behaviors over 

the run t ime and is therefore significantly more flexible. 

Stoffel and Spector use their own system called HiGP 

[Stoffel and Spector, 1996] t o validate the ontogenetic approach. A 

HiGP program has a linear structure. The self-modification opera­

tors are tailored to this s tructure. Stoffel and Spector describe three 

such operators, al though many others are possible: segment-copy re­

places a program part by the copy of another part , s h i f t - l e f t and 

s h i f t - r i g h t rota te the program instruction-wise.2 On a problem of 

binary sequence prediction, ontogenetic programming has enhanced 

program performance considerably. 

2In fact, Spector has recently been focusing on rather different ontoge­
netic operators, including an i n s t ruc t i on instruction that replaces itself 

or another instruction - with an instruction obtained from a lookup ta­
ble. He has also been adding functions that allow a program to know 
how "old" it is so that it can incorporate timed developmental strategies 
[Spector, personal communication, July 1997]. 
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The concept of ontogenetic programming can also be used with 

S-expression-based programs, although the implementation is easier 

for linear program structures. 

10.3.2 Adaptive Parsimony Pressure 

Zhang and Miihlenbein [Zhang and Miihlenbein, 1996] have suggested 

a simple method for adaptively controlling parsimony pressure dur­

ing evolution. The method is simple, well grounded in theory and 

empirically validated [Zhang and Muehlenbein, 1995] [Blickle, 1996]. 

The theoretical analysis of the concepts draws from the notion of the 

minimal description length (MDL) principle [Rissanen, 1984] and it 

considers the programs as Gaussian models of the data . For details 

the reader may consult the original sources. 

Let Ei{g) denote the error produced by a given individual i in 

generation g. Similarly, let Ci(g) denote the complexity of an individ­

ual i in generation g. For Ei(g) and Ci{g) the following assumptions 

should hold: 

0 < Ei(g) < 1 (10.1) 

Ci(g) > 0 (10.2) 

Then fitness is defined as the error plus an adaptive parsimony term 

a(g) t imes complexity: 

Fi(g) = Ei(g) + a(g) • Ci(g) (10.3) 

where a(g) is determined as follows. Let N be the size of the training 

set and e be the maximal error allowed in an acceptable solution. 

The e-factor is given before training and is an important ingredient 

of the method: it could be said to represent the expected noise in 

the training data . Given this, the parsimony factor should be chosen 

according to the following equation: 

P{g) J &*%£$• if lW*-D>e 
\ ^ i W g - i W , , , . ( g ) o t h e r w i s e-

Ebestis — 1) is the error of the best performing individual in the 

preceding generation while C'be3t(g) ls a n est imation of the size of the 

best program, estimated at generation (g — 1). Cbest(g) is used to 

normalize the influence of the parsimony pressure. 

This method has some similarities to the way a human may solve 

a problem or program an algorithm. First, we are more directed 

toward finding a solution tha t works, and when this is achieved we 

might t ry to simplify the solution and to make it more elegant and 

generic. Similarly, the parsimony pressure decreases while the error is 
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falling. In contrast, when the fitness approaches zero the parsimony 

pressure decreases to encourage small, elegant, generic solutions. 

10.3.3 Chunking 

An almost obvious method to improve the efficiency of a G P sys­

tem when dealing with very large sets of fitness cases is to divide 

the fitness case set into smaller chunks.3 A solution can then be 

evolved for each of the smaller chunks, and the overall program will 

be some kind of concatenation of all the solution generated for the 

chunks. For instance, consider the programmatic compression of im­

ages [Nordin and Banzhaf, 1996], where we try to evolve a G P pro­

gram tha t produces a b i tmap image - close to a target image - when 

executed. This application has fitness case sets of hundreds of thou­

sands of i npu t /ou tpu t pairs, one for each image pixel. The image 

can be chunked into subimages and a program for each subimage can 

be evolved. The overall solution to the compression problem is then 

a loop activating the evolved results for each of the chunks in the 

correct order. 

10.3.4 Co-Evolution 

The idea behind co-evolution of fitness functions is to get rid of the 

static fitness landscape usually provided by a fixed set of fitness cases. 

In fitness co-evolution, all fitness cases are considered to be the re­

sult of an algorithm tha t can be subjected to the same principles of 

variation, evaluation, and selection as the population to be evolved. 

Thus, a separate population encoding a variety of fitness tests 

for the original population could be co-evolved by allowing the per­

formance of tests to influence their survival probabilities. In other 

words, the environment for the second population is given by the 

first, and vice versa. Because both populations are allowed to evolve, 

and weaknesses of the first population are exploited by the second, as 

are weaknesses of the second population by the first, an "arms race" 

will develop [Dawkins, 1987]. 

Figure 10.7 shows a sketch of different evaluation pat terns for 

both populations. In (a), all members of the first population are sys­

tematically tested against all the members of the second. In (b), all 

are tested against the best performing member of the other popula­

tion. In (c), randomly selected members are tested with randomly 

selected members from the other population. 

3This usage of the word chunking should not be confused with that in 
other fields of artificial intelligence, for instance, in connection with the 
SOAR system. 
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(a) (t» 

Figure 10.7 

Three scenarios for 

competitive co-evolution 

with two populations: (a) 

all vs. all; (b) random; 

(c) all vs. best. Similar 

patterns can be used 

within one population, 

(from [Sims, 1994]) 

Both populations will improve their fitness in response to the cri­

teria set forth in their respective evaluation function, which is allowed 

to shift dynamically to more sophisticated levels. Hillis [Hillis, 1989] 

[Hillis, 1992], Angeline and Pollack [Angeline and Pollack, 1993] and 

Sims [Sims, 1994] report a considerable improvement in the degree 

of optimization reached when performance is judged dynamically. 

Ronge [Ronge, 1996] has examined the artificial ant problem under 

the provision that trails providing food pellets to a population of 

searching ants themselves develop to escape the searching ants. 

In Jannink [Jannink, 1994] pseudo-random number generators 

are co-evolved with testers. Testing programs t ry to guess the se­

quence of numbers generated by an algorithm. The problem has 

a long history with roots going back to von Neumann and Mor-

genstern's seminal work [von Neumann and Morgcnstcrn, 1944] on 

game theory. It can be shown tha t a random strategy is the best 

a player can apply in order to test another player's random strat­

egy. Thus, bo th populations, pseudo-random number generators and 

pseudo-random number testers will be driven in the direction of bet­

ter pseudo-random number series. 

Competit ive co-evolution can be set up even within one popu­

lation. Juille and Pollack [Juille and Pollack, 1996] have reported 

good results by put t ing individuals from one population into oppo­

site camps for a game. Wha t they aimed at was to reward differential 

fitness instead of absolute fitness. Therefore, fitness was computed 

using tournaments between individuals, but only those fitness cases 
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were counted on each side tha t were unique hits. A number of tourna­

ments were executed for each individual and the scores were summed 

up to yield a fitness for the individual. 

So far, we have considered competitive co-evolution, which has 

a long-standing tradit ion in population biology under the heading of 

predator-prey models. However, cooperative co-evolution is another 

legitimate strategy. Here, it is not the weakness of the counterpart 

tha t is exploited, but the strength of the other population tha t helps 

improve one's fitness. So each population should benefit the other 

one, and itself profit from the thriving of the other one. A typi­

cal application is the co-evolution of solutions to a search problem 

with genetic search operators tha t themselves are allowed to evolve 

[Teller, 1996]. 

10.3.5 Hybrid Approaches 

We noted earlier tha t there are different kinds of learning4 in na ture -

genetic learning, learning from experience, and learning from culture. 

Many types of learning are going on simultaneously. Some researchers 

have developed hybrid systems combining genetic learning with other 

types of learning. 

We distinguish two classes of hybrid approaches. In the first class, 

G P is blended with other general-purpose search algorithms, such as 

simulated annealing (SA) or stochastic i terated hill climbing (SIHC). 

We will discuss this issue first. 

Later, we discuss a second class of hybrid approaches where G P 

is merged with special-purpose search algorithms. The specialty lies 

in the fact tha t , given a certain choice of terminals and functions 

(including their side effects), various algorithms can be employed to 

add explorative power to GP. 

G P a n d G e n e r a l - P u r p o s e Search A l g o r i t h m s 

This subsection covers combinations of G P with other algorithms 

for general-purpose search. Like GP, other general-purpose search 

algorithms for program induction have to deal with the following 

problems: 

• Local minima 

• Size of search space 

Thus, the class of algorithms combinable with G P is restricted. Ba­

sically, all the algorithms tha t have been blended with GAs are also 

We take learning in a natural system to be synonymous with search in 
an artificial system. 
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candidates to be blended with GP. Table 10.1 shows which techniques 

have been combined with G P so far. 

Search technique 

stochastic i terated 

hill climbing 

cultural transmission 

Problem domain 

6-, 11-multiplexer 

sort 

block stacking 

regression 

lawnmower 

Wumpus agent world 

Source 

[O'Reilly and Oppacher, 1996] 

[O'Reilly and Oppacher, 1996] 

[O'Reilly and Oppacher, 1996] 

[Spector and Luke, 1996a] 

[Spector and Luke, 1996a] 

[Spector and Luke, 1996a] 

Table 10.1 
Combination or 

comparison of GP with 

other general-purpose G p a n d S p e c i a l - P u r p o s e Search A l g o r i t h m s 
search techniques 

Special-purpose algorithms are designed in the realm of a particular 

problem domain. They are intended to provide problem-specific op­

erations working only on a specific representation of solutions. Their 

advantage is t ha t they work efficiently and fast; on the other hand, 

they usually suffer from being local search tools tha t can be easily 

t rapped by local minima. It is here tha t G P offers a remedy. 

G P can benefit heavily from an insertion of efficient local search 

operations; see Table 10.2. Iba et al. [Iba et al., 1994] have done a 

s tudy on the problem class of Boolean problems. The ordinary G P 

approach to Boolean problems is augmented by a specific local search 

procedure tha t does not change the tree s tructure of the individuals 

but periodically employs what they call a relabeling of nodes. Every 

now and then, the entire population is subjected to this relabeling, 

where the nodes of all trees are exchanged with those nodes tha t 

guarantee optimal performance, given the s tructure of the trees. This 

local algorithm is the adaptive logic network algorithm first published 

in 1979 by Armstrong et al. [Armstrong and Gecsei, 1979]. 

The key idea of their G P system is to use a local search procedure 

periodically to improve all trees of the population simultaneously. 

Thus, s t ructured advantages are not lost due to overspecification. 

Iba et al. [Iba et al., 1994] report favorable results for low periods of 

2-3 generations before an adaptive logic network algorithm is applied 

in the population: with much smaller populations or tree depths, a 

perfect solution can be found. Up to 50 t imes fewer evaluations have 

to take place for this hybrid G P as compared to conventional GP. 

In a second comparison, Iba et al. used the GMDH algorithm 

[Iba et al., 1994] for relabeling nodes in a system identification prob­

lem. We explained this approach in more detail in Chapter 9. The 
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Search technique 

ALN 

GMDH 

Problem domain 

6-,11-mult 
6-,11-mult, non-stationary 

even 3,4,5 parity 
Emerald's robot world 

regression: Heron formula 
Glass-Mackey time series prediction 

pattern recognition 

Source 

[Iba et al., 1994] 
[Iba et al., 1994] 
[Iba et al., 1993] 
[Iba et al., 1993] 
[Iba et al., 1994] 

[Iba et al., 1995a] 
[Iba et al., 1995b] 

problem of symbolic regression of the Heron formula 

S = 
(a + b + c)(a + b - c)(a - b + c ) ( -o + b + c) 

16 
(10.4) 

Table 10.2 
Combination of GP with 

special-purpose search 

techniques. ALN = 

adaptive logic network 

algorithm 

was successfully solved with 10 times fewer evaluations than in con­
ventional GP [Iba et al., 1994]. 

As we have seen in the GA community, we can expect that other 
local search methods will be employed together with GP to yield 
better results that could not have been achieved by either method 
alone. 



Exercises 

1. Give two limitations to the basic G P approach. 

2. Describe two methods for parallelizing GP. 

3. Wha t is stochastic sampling? 

4. Name three modularization techniques. 

5. Describe the basic ADF technique. Wha t is an architecture 

altering operation? 

6. Wha t is similar and what is different between the encapsulation 

method and the module acquisition method? 

7. Give two examples of how to do t ime-bounded execution. 

8. How does a strongly typed G P system work? 

9. Give two examples of competitive co-evolution in populations. 

Wha t is cooperative co-evolution? 

10. Which concepts of developmental biology could be included in 

GP? 

11. Wha t is the idea behind hybridizing G P with other algorithms? 

Give two examples. ~! •"-;' "? •• ' • • • ' , : - " 
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r This chapter addresses fundamental "how to" issues of GP. A G P 

system has to store representations of the individuals it is evolving, 

perform genetic operations upon them, interpret the stored individu­

als as programs, and perform fitness calculations using the interpreted 

individuals. Coding a G P system tha t is fast, memory efficient, easily 

maintainable, portable, and flexible is a difficult task. As a mat te r 

of fact there are many tradeoffs, and this chapter will describe how 

major G P systems have addressed those tradeoffs. 

The chapter will discuss the following subjects: 

1. We will present examples to show why G P uses C P U cycles 

and memory so profusely. This is the central problem faced by 

G P programmers. In the examples of C P U and memory use, 

the numbers we present are approximate and could vary sub­

stantially from system to system and from machine to machine. 

The purpose of these numeric examples is to explain and to un­

derline the magnitude of the difficulties tha t must be faced in 

GP. 

2. We will describe systematically various low-level representa­

tions of evolving programs. The three principal models tha t 

have been used for storing G P individuals during evolution are 

(LISP) lists, compiled language (such as C + + ) da ta structures, 

and native machine code. We will discuss how they have been 

implemented and what the relative advantages and disadvan­

tages are. . . ,_. h . , r 

3. We will give an overview of the parameters tha t must be set 

during G P runs and suggest rules of t humb for setting those 

parameters . 

The thread tha t will run through the entire chapter is tha t G P 

programs need speed, flexibility, portability, and efficient use of mem­

ory, but tha t there are tradeoffs among these goals. Inevitably, in 

discussing tradeoffs, the authors will often point out what may seem 

to be a drawback of a particular approach. In doing so, they do 

not mean to criticize the decision tha t led to these approaches or to 

discourage their use. 

11.1 Why Is GP so Computationally Intensive? 

A brief examination of the nature of G P will make it clear why G P is 

so very intensive in its use of CPU time and memory. Three factors 

are at work. • • 
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1. Large Populations 
GP evolves a population or populations of individuals. Typical 
population sizes range between 500 and 5000. But they can be 
much larger to good effect. In Koza's parallel implementation 
on 64 Power PCs, populations in excess of 600 000 individuals 
have been evolved successfully [Andre and Koza, 1996b]. One 
of our own experiments went up to population sizes of 1 000 000 
individuals in AIMGP. 

2. Large Individual Programs 
GP works with variable length individuals (programs). This 
fact frequently results in large GP program sizes for two rea­
sons. First, the problem to be solved often appears to require 
reasonably long solutions. Second, invariably the problem of 
bloat occurs during GP runs. Much of that problem is con­
nected to the accumulation of introns in the GP individuals. 
The growth of introns is ultimately exponential during a GP 
run unless controlled. 

3. Many Fitness Evaluations 
Almost all of the time consumed by a GP run is spent per­
forming fitness evaluations. Fitness evaluations are necessary 
because they provide the metric by which GP performs selec­
tion on the population. To understand why fitness evaluations 
are so CPU intensive we have to add two more factors. First, 
GP fitness evaluations typically take place using a training set 
of fitness cases. The size of the training set varies enormously, 
depending on the problem - from 50 to 5000 or more fitness 
cases is not unusual. Second, every GP individual is normally 
evaluated on each fitness case in each generation. 

11.1.1 Why Does GP Use so Much CPU Time? 

Let us look at what these three factors mean for CPU use during 
a sample GP run. Our sample run will last G — 50 generations 
and have a training set of F = 200 fitness population size of 
P = 2000 and an average individual size that grows from (Ninn) = 50 
nodes to (Nmax) = 800 nodes during the run due to bloat. We assume 
each of the nodes will be evaluated during evaluation. 

Even in this average-size run, the demand on the processor is 
very substantial. For example, in the initial generation of this run, 
each individual must be evaluated for each training instance. In other 
words, for each individual in the population in the first generation, 
(Ninit) x F = 104 nodes must be executed. To perform fitness eval­
uation during the first generation, the GP system must evaluate all 
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individuals. So, the G P system must execute {Ninit) x F x P — 2 • 107 

nodes jus t to evaluate the individuals in the first generation. There­

fore, 108 node evaluations would be required for the first 5 generations 

of the example run. Table 11.1 shows how this node number grows 

as bloat sets in. 

Generations 

0 - 4 
5 - 9 

1 0 - 14 
15 - 19 
20 - 24 
25 - 29 
30 - 34 
3 5 - 3 9 
40 - 44 
4 5 - 4 9 

Ave. no. of nodes 
per individual 

50 
50 
100 
100 
200 
200 
400 
400 
800 
800 

Nodes evaluated 
(millions) 

100 
100 
200 
200 
400 
400 
800 
800 

1,600 
1,600 

Cum. nodes evaluated 
(millions) 

100 
200 
400 
600 

1,000 
1,400 
2,200 
3,000 
4,600 
6,200 

Table 11.1 

Example of node 

calculations with a 

population of 2000 GP 

individuals 

By the 50th generation, the G P system will have performed over 

6 • 109 node evaluations! Had we used the very large population size 

(600000) employed by Andre and Koza, the number would have been 

1.86 • 1012 node evaluations just through generation 50. It should, 

therefore, come as no surprise tha t G P programmers have labored 

hard to make G P node evaluation as efficient and fast as possible. 

Limits of Efficient 

Memory Use 

11.1.2 Why Does GP Use so Much Main Memory? 

The high CPU time consumption is not the only problem. G P also 

consumes a lot of memory. Ideally, every G P individual should be 

stored in RAM in as compact a manner as possible. Further, tha t 

compact representation should make application of genetic operations 

simple and interpretation of the individual as a program easy and fast. 

Needless to say, it is not quite tha t easy. We will first take a look at 

the practical limit of efficiently representing an individual in memory. 

Then we will suggest some of the problems tha t have prevented G P 

programmers from reaching tha t ideal. 

A compiled computer program is no more than a sequence of in­

structions in native machine code. Processor designers have spent 

years compressing a large amount of information into the native ma­

chine code format designed for their processor. Thus, we may safely 

regard the amount of memory tha t would be used by a G P individual, 
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expressed as native machine code, as the practical minimum amount 
of memory that must be devoted to an individual. A 100-node in­
dividual would occupy 400 bytes of memory, expressed as machine 
code, assuming that each node is equivalent to and may be expressed 
as one 32-bit machine code instruction. 

Most GP systems do not begin to approach the efficiency of mem­
ory usage that is implicit in a machine code representation of a par­
ticular program. This might seem unusual. We are, after all, talking 
about genetic programs. But with one exception, genetic programs 
are not stored in memory directly as machine code. Rather, most GP 
systems represent the individuals/programs symbolically in some sort 
of high-level data structure. That data structure is interpreted by the 
GP system as a program when it is time to conduct a fitness evalua­
tion. The decision to represent the GP individual in data structures 
that are less efficient memory-wise is often a deliberate tradeoff made 
by the software designer to effect, for instance, easier application of 
the genetic operators or portability. 

An example will be useful. One structure often used in GP sys­
tems is an expression tree. Essentially, each node in an individual is 
stored in an array or a linked list that identifies what function the 
node represents and where the node gets its inputs from. Both the 
function and the inputs are identified with pointers. In modern pro­
gramming languages, pointers consume, say, four bytes of memory. 
If the average arity of the nodes in an individual is two, then it takes, 
on average, three pointers to represent each node - two pointers to 
point to the input nodes and one pointer for the function represented 
by the node. For a 100-node GP individual, therefore, it would take 
at least 1200 bytes of memory to represent the individual symboli­
cally rather than in machine code. As a practical matter, more is 
necessary - 1600 bytes would be a conservative estimate. 

We may now look at the approximate memory requirements of 
the same example run that we discussed in the above table. In the 
first generation, a population of P — 2000 individuals would occupy 
(Nina) x P x 16 bytes = 1.6 megabytes. But, by the 50th generation, 
the population averages (Nmax) = 800 nodes for each individual and 
would occupy around (Nmax) x P x 16 bytes = 25.6 megabytes of 
memory. This exceeds the memory available on many modern com­
puters for an application. Thus, the run would degenerate into disk 
swapping. 

There are two prominent effects of extensive memory use: 

1. Memory access is slow 
Every byte of data used to describe an individual during evo­
lution causes the GP system to slow down. Every time the 

A Memory Usage 
Example 

Effects of Extensive 
Memory Use 
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processor must look to RAM for data, the processor usually 

has to stop and wait several cycles - say it averages three cy­

cles waiting for a response from RAM. If each node is defined 

by 16 bytes of da ta held in RAM, it takes four RAM accesses 

to get tha t da ta on a 32-bit machine. This means it takes ap­

proximately twelve cycles of the processor to get those 16 bytes 

of da ta from RAM. During tha t t ime, the processor could have 

executed at least twelve instructions. Given these assumptions, 

the run in the above table would have required 74.4 billion pro­

cessor cycles just to access the RAM for loading nodes.1 

2. G a r b a g e co l l ec t ion 

There is a more subtle memory problem caused by many G P 

representation schemes like LISP list systems and C tree sys­

tems. Tha t problem is garbage collection. One of the common 

features shared by systems interpreting C and by LISP lists is 

tha t memory is being constantly allocated and deallocated for 

the nodes and the elements of the lists. When small chunks 

of memory are being allocated and deallocated constantly, it 

leads to RAM tha t resembles Swiss cheese, where the holes in 

the cheese represent available RAM, and the cheese itself rep­

resents allocated RAM. Over the course of evaluating several 

billion nodes during a G P run, one would expect a lot of small 

holes to develop in the cheese: the memory gets fragmented. 

Thus, it gets increasingly harder to find contiguous memory 

chunks large enough for housing certain da ta structures. 

Dealing with fragmented memory is a task known as garbage 

collection, a practice of moving the "cheese" around in RAM 

such tha t one gets large "holes" again. This process may be 

very t ime consuming. This problem has caused researchers to 

abandon LISP lists for storage of G P individuals. Instead, they 

use high-level symbolic da ta structures (arrays) to contain sym­

bols tha t are then interpreted as a program. 

11.2 Computer Representation 

of Individuals 

Ultimately, all programs are just information about what operations 

on which da ta to perform with the processor. A G P individual may, 

therefore, be viewed as only a collection of information tha t should 

be interpreted as a program. Perhaps the most important decision a 

'This consideration does not take into account cache effects. 
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GP programmer must make is how to store that information. This 
decision affects how simple it is to create and maintain genetic op­
erators, how fast the system runs, how efficient the use of memory 
is, and many other important aspects of performance. Programmers 
have represented the GP individual during evolution in three different 
ways. Here is a brief description of the three approaches and their 
various advantages and disadvantages: 

1. LISP lists 
LISP is a high-level programming language that is very popular 
with artificial intelligence programmers. The GP individual in 
this approach is represented as a LISP list. LISP lists are very 
convenient for the representation of tree-based programs - they 
make crossover and mutation simple to implement. LISP is 
not so convenient for genome structures other than tree-based 
structures. As long as the programmer sticks to tree structures, 
however, a LISP-based system is easy to maintain and makes 
execution of the individual simple since LISP has a built-in 
interpreter. 

2. Data structures in compiled languages such as C, PAS­
CAL, or FORTRAN 
In this approach, information about the individual is stored 
symbolically in a data structure such as a tree, an array, or a 
linked list. When it comes time to evaluate the individual for 
fitness, compiled programs are much faster than LISP. On the 
other hand, C data structures, for instance, are much more la­
bor intensive to provide than LISP lists. This approach requires 
the programmer to write genetic operators that operate on va­
riable length structures and that usually engage in large-scale 
pointer manipulation - always a tricky task. The C program­
mer must also write and maintain his or her own interpreter to 
convert the symbolic program information stored in the data 
structure into a usable program. 

3. Native machine code 
In this approach, the GP individuals are stored as arrays in 
memory. The arrays actually contain machine code instruc­
tions in the form of binary code, which operate directly on the 
CPU registers. There is no high-level interpretation or com­
pilation step involved since the instructions get interpreted -
that is, executed - directly by the processor. This approach 
is very fast (about sixty times faster than compiled C code 
[Nordin and Banzhaf, 1995b]) and is very compact in its use of 
memory. However, programming this type of system is more 
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difficult than either LISP list or C da ta s tructure systems, and 

much greater effort is needed to assure portability, flexibility, 

and maintainability. 

The next several sections of this chapter will discuss four different 

actual implementations of a G P system using these three different 

representations of the individual. The emphasis here will be on the 

details of how the G P individuals are stored, executed, and crossed 

over. 

11.3 Implementations Using LISP 

Because of the prominence of Koza's work, references to LISP and 

LISP type concepts dominate large parts of the G P li terature. In 

fact, many researchers who do not use LISP systems nevertheless re­

port their results using LISP S-expressions. LISP is, in many ways, 

a natura l language for AI and tree-based machine learning applica­

tions because of its simplicity and its strong support of dynamic da t a 

s tructures.2 Indeed, our discussion of the LISP approach will be much 

simpler than our discussion of the C and machine code approaches 

for one reason - most of the support for storing and manipulat ing 

tree structures is handled by the LISP language itself. 

Before we look at how LISP implementations of G P work, it will 

be useful to define a few terms. 

11.3.1 Lists and Symbolic Expressions 

A LISP list is an ordered set of items inside parentheses. For the 

purpose of this work, a symbolic expression (S-expression) may be 

regarded as a list. In LISP, individuals are wri t ten and stored as S-

expressions. Here is an example of a very simple S-expression, which 

could be a simple G P program: 

(xab) (11.1) 

This expression is equivalent to the algebraic expression: 

•s;:.r:n " M i Y i 'OMi . . 

(a x b) (11.2) 

Therefore, if the value of a is 2 and the value of b is 13, the above 

S-expression evaluates to 26. 

Other researchers have devised GP systems for other high-level lan­
guages such as PROLOG and MATHEMATICA. We will address the LISP 
systems here because of their prominence. 
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S-expressions can be more complex than this simple example. 
In particular, parentheses may be nested. Note how the above S-
expression is nested into the S-expression below: 

(-(xafc)c) (11.3) 

This S-expression is equivalent to the algebraic expression: 

(axb)-c (11.4) 

These three equivalent expressions are shown in Figure 11.1. 

Expression Tree 

Figure 11.1 
A program statement as 

an expression tree, an 

S-expression, and an 

algebraic expression 

S-Expression (- (* A B ) C ) 

Algebraic Notation (A * B) - C 

11.3.2 The "How to" of LISP Implementations 

S-expressions have several important properties that make them use­
ful for GP programmers. To begin with, the GP programmer does 
not need to write any code interpreting the symbolic information in 
the S-expression into machine code that may be executed. The LISP 
interpreter does that for the programmer. 

Furthermore, LISP S-expressions make it very easy to perform 
genetic operations like tree-based crossover. An S-expression is itself 
an expression tree. As such it is possible to cut any subtree out of an 
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S-expression by removing everything between any pair of matching 

parentheses. Note how this works for the S-expression in Figure 11.1. 

Crossing over the subtree under the x symbol is accomplished in an 

S-expression by clipping out the string ( x a b ) . The process of 

performing this operation is shown in Figure 11.2. 

Figure 11.2 

Clipping out a subtree 

from an expression tree 

and an S-expression Expression Tree 

S-Expression C ) 

(* A B ) 
i-a 

Clipping out a subtree in LISP is thus very simple compared to 

performing crossover on a G P individual tha t is held in a C array. Ex­

changing subtrees during crossover is also simple. It is only necessary 

to make sure tha t the portion to be clipped out of each S-expression 

is between matching parentheses in each individual. Then the two 

segments are clipped and exchanged as shown in Figure 11.3. 

Likewise, mutat ion is simple. The subtree (* a b) could easily 

be muta ted by changing the * to a + in the S-expression. In tha t 

case, the resulting subtree would be (+ a b). The reason for this 

simplicity is tha t manipulating tree structures is something tha t LISP 

was designed to do. 

11.3.3 The Disadvantages of LISP S-Expressions 

We have already indicated above tha t LISP S-expressions can cause 

memory problems. This is because lists are constantly being created 
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Parents 

( - ( ( + d e ) f ) g ) 

Children 

( - ( - ( + d e ) f ) c ) ( * ( * a b ) g ) 

and destroyed during evolution. Although many flavors of LISP have 
built-in garbage collection, GP may create garbage faster than it can 
be collected. 

Another problem with LISP is speed. C-based GP is more than 
ten times as fast as LISP-based GP. Finally, although LISP lists pro­
vide the advantage of simple tree manipulation, LISP does not have 
the same advantage in manipulating other GP type genomes such as 
a linear graph genome. 

Figure 11.3 

Exchanging two subtrees 

in LISP crossover 

11.4 Some Necessary Data Structures 

Many GP systems today are written in a compiled language, which 
often is C. We have already described C systems that use pointers 
to link together the nodes of a tree. Other researchers have used a 
quite different approach in compiled language GP. They combine a 
more linear C data structure such as a linked list or an array with 
a stack. This chapter will focus on implementation issues in two of 
these systems: 

1. The systems described in [Keith and Martin, 1994], which im­
plemented tree-based GP in an array/stack arrangement, and 

2. Teller's PADO system which implements GP as a directed graph 
of program execution nodes that are held in linked-list struc­
tures. PADO also relies on a stack to implement the system 
[Teller and Veloso, 1996]. 

Many readers will already be familiar with arrays, linked lists, 
and stacks. Understanding these basic data structures and how the 
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memory for them is allocated and de-allocated is essential to under­
standing the remainder of this chapter. If the terms push, pop, pointer 
to next, and pointer to prior are familiar to you, then you may skip 
to the next section. 

/ 

11.4.1 Arrays 

An array is an ordered list of items of the same type with each of the 
items having an index. Such a type may be integer, real, or character, 
for instance. Figure 11.4 shows a generic array and an array filled 
with integers. 

Figure 11.4 

Two ways of looking at 

arrays 

Index 

Stored 
Data * 

Index 

Stored 
ntegers 

0 

Datal 

0 

13 

Generic Array 

1 

Data 2 

2 3 

Data 3 Data 4 

Array of Integers 

1 

22 

2 

1025 

3 

300 

4 

Data 5 

4 

97 

To access an item, the programmer simply uses its index. For 
example, to access the fourth integer in the array of integers shown 
in Figure 11.4, the programmer could write array [3]. Of course, the 
value of array [3] in Figure 11.4 is 300. It should be obvious that a 
GP individual can be stored in an array. In fact, some GP systems 
do just that. 

There are several problems that arise in using arrays for storing 
GP individuals: 

• Variable size individuals 
Although it is possible in C-|—\- to create arrays of undetermined 
size, resizing arrays at run time requires a lot of programming 
and memory allocation and de-allocation. This is an impor­
tant factor in GP where the evolving individuals are variable in 
length. If a program holds the individuals in the GP run in ar­
rays, crossover is constantly changing the size of the individual, 
allocating and de-allocating memory. This can cause garbage 
collection problems. 

i 

• Complex crossover operators 
Figure 11.3 has shown how crossover is performed in LISP S-
expressions. Note that the sizes of the subtrees that are ex-
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changed in tha t figure are different. There is no obviously easy 

way, as there is in LISP, to clip out part of an array contain­

ing, say, four elements, and exchange those four elements with 

five elements taken from another array. Both arrays have to 

be resized, which implies programming work and computat ion 

overhead. We will see two different solutions to this problem 

below. 

• Var iable a m o u n t s of d a t a p e r n o d e 

In GP, different nodes often have different numbers of inputs. 

For example, a P lus node has two inputs. On the other hand, 

an I f / T h e n / E l s e node has three inputs. This makes an ar­

ray representation difficult to keep track of, because the P l u s 

node will need at least three array elements to store it (one 

element to identify the type of function and the other two to 

identify the inputs to the operator) . Using the same logic, the 

I f / T h e n / E l s e node will use up at least four array elements. 

This would require the G P programmer to add logic to keep 

track of what operators are where in the array, bo th for cross­

over and for execution. 

None of the above problems is insoluble, and we will look at how 

programmers have addressed them. Consistent with the theme of this 

chapter, we conclude tha t al though arrays are easy to manipulate and 

to access, there are tradeoffs in using arrays to hold G P individuals. 

11.4.2 Linked Lists 

The details of creating and traversing linked lists are beyond the 

scope of this section. However, it is important to know what such a 

list looks like, because linked lists can provide important flexibility 

in creating a G P system, as we will see when we examine the PADO 

system. 

A linked list is a sequence of elements. Each element contains 

some data . In addition, it contains a pointer to the next element 

in the list and, sometimes, a pointer to the previous element in the 

list. Technically, a pointer is simply an integer, stored at one place in 

memory, tha t identifies a second location in memory. Using pointers, 

a program can hop around in memory in order to access da t a in a 

very flexible manner. Figure 11.5 shows a doubly linked list. 

It is obvious tha t , from any element in Figure 11.5, the program­

mer can move forward or backward to any other element in the list 

jus t by following the pointers. 
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Figure 11.5 
A doubly linked list, a 

versatile storage structure 

for GP individuals 
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Inserting GP nodes into a 

linked list 

A linked list is a very flexible type of da ta s tructure because any 

information may be at tached to an element. It has several advantages 

and disadvantages over arrays for storing G P individuals: 

• E a s e in r e s i z i n g 

Resizing a linked list requires only tha t memory be allocated or 

de-allocated for the nodes to be added or deleted. For example, 

Figure 11.6 shows how a node may be easily inserted into the 

middle of a linked list. 
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The node insertion is a simple mat te r of reassigning four point­

ers (the relevant pointers are numbered so tha t the insertion 

may be clearly followed). The only memory allocation tha t oc­

curs is the one for the inserted node. It is equally easy to clip 

a node out of a linked list. 
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• Simple to crossover 
Crossover between two linked lists is simpler than for an array. 
Consider Figure 11.7. All that is required to crossover these 
two linked lists is to rearrange the pointers between the nodes. 
Not only is this simpler than array crossover, it is also much 
less likely to cause garbage collection problems than the use 
of an array. Note that both of the linked lists in Figure 11.7 
change size after crossover. A linked list would not, as would 
an array, have to create a new (and different sized) array for 
each individual, allocate memory for them, transfer the data 
from the old arrays to the new arrays, and then de-allocate the 
old arrays. 

^-Prioi n. 
• Next-

- Prioi— 

Parents Before Crossover 
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Crossover between two 

doubly linked lists 
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Priot 1 I Prior-
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• Flexible in size of elements 
We noted above that an element in a linked list can contain 
whatever data may be desired. Thus, for an If/Then/Else 
operator, one linked list element can have four items of data, 
while, for a Plus operator, the linked list element needs to carry 
only three items of data. The corollary of this is that the pro-
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grammer may establish a one-to-one correspondence between 

the elements of a linked list and the program operators. 

• Fast i n s e r t i o n / d e l e t i o n 
A linked list is faster to insert into or delete from than an array. 

• D e m a n d i n g in m e m o r y r e q u i r e m e n t s 
A linked list consumes more memory than an array representa­

tion because the lat ter does not use pointers. 

• S low a c c e s s 

A linked list is slower to access than an array. This can be 

very expensive during fitness evaluations where every element 

is accessed repeatedly. 

Of course, it is not necessary to use either a linked list or an array 

only. The PADO system uses a linked list to store individuals and to 

perform genetic operations. But it uses an array structure to execute 

the individual programs. 

11.4.3 Stacks L „_,.., <_-.T 

Two of the systems tha t we will consider use a stack for temporary 

da ta storage. A stack can be thought of as an ever-changing pile of 

da ta . Both the da ta items and their number change in the pile. A 

stack is a little like using a pile of books to store your books instead 

of using a bookcase. You would place a book onto the pile by put t ing 

it on top of the top book. On the other hand, you could get to any 

book in the pile by successively taking the top book off the pile and 

reading it until you reached the book. 

W h a t seems odd about this arrangement is tha t you can only 

get to the top book and you can only store a book by put t ing it on 

top. While a top-of-the-pile-only arrangement would be an odd way 

to store books, it is a powerful way to store short- term da ta during 

execution of a program. Wha t we just described is also known as 

LIFO: Last In - First Out . This acronym comes from the property 

of a stack tha t the last item you put into - tha t is, on top of - the 

stack will be the first item you can remove again. 

In the computer, a stack is an area of memory tha t holds da ta 

much like the pile of books stores books. When you push an i tem 

onto the stack, the top of the stack now holds tha t item for later 

use. Tha t is like when you put the book on top of the pile of books. 

Figure 11.8 shows graphically how a piece of da ta may be stored by 

being pushed onto the stack for later use. 

When you pop an item off the stack, you get the top item to use 

in program execution. Popping da ta off a stack is like taking the top 
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Push and pop operations 
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book off the pile. Figure 11.8 shows an item being popped off the 

stack. 

Technically, a stack is realized by using a stack pointer pointing 

to the address in memory address space where the presently newest 

value resides. Wi th these basics in mind, we are now prepared to 

describe various C-based G P systems. 

11.5 Implementations Wi th Arrays or Stacks 

In 1994, Keith and Mart in looked at five different approaches to pro­

gramming G P in C + + [Keith and Martin, 1994]. We have already 

looked briefly at the tree approach, where every node contains a 

pointer to each of its input nodes. Keith and Mart in also consid­

ered two systems where the G P individuals were stored in an array 

and the tree structure was implicit in the ordering of the elements of 

the array. One of these approaches used a stack and postfix ordering 

to effect the implicit tree structure. The other used prefix ordering 

and recursive evaluations of the next node to accomplish the same 

thing. 

11.5.1 Postfix Expressions with a Stack 

Postfix ordering occurs when the operator follows its operands. For 

example, the following postfix ordering of nodes for evaluation: 

wx x yz+ xSQRT (11.5) 
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is equivalent to the following algebraic expression: 

A / ( W x x) x (y + z) (11.6) 

One advantage of postfix ordering is tha t , if one evaluates the 

postfix expression from left to right, one will always have evaluated 

the operands to each operator before it is necessary to process the 

operator. Thus, one need not spend time finding the operands so 

tha t they can be evaluated prior to the operator processing. 

Keith and Mart in proposed tha t one way to represent G P indi­

viduals would be to hold a symbolic representation of each operator 

and operand - the elements of an expression - in an array in postfix 

order. The top array in Figure 11.9 shows how the above postfix 

expression would appear in an array.3 

Figure 11.9 
Postfix and prefix 

expression representation 
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One question remains: where do intermediate and final results 

occuring during execution get stored? For example, element 0 eval­

uates the value of the input w. But w is not needed until after the 

system has also gotten the value of x from element 1 of the array. 

Only then is the system ready to evaluate the product of w and x as 

required by the multiplication operator in element 2 of the array. 

A stack is a simple way to effect this kind of storage, and Keith 

and Mart in do exactly tha t . The logic of evaluation is set up so tha t 

values are pushed onto and popped off the stack so as to maintain 

the logic of the tree structure. For example, element 0 in the array 

represents the value of the input w which is pushed onto the stack. 

The same is t rue for element 1 with respect to input x. Element 2 

represents popping two values from the stack (w and x), multiplying 

them and pushing the result onto the stack. Now the product of w 

and x is safely stored in the stack for later use as an input. Execution 

proceeds in tha t manner right down the array. 

There is no intuitive LISP-like way to perform crossover in this 

postfix arrangement. Take a moment and try to figure out a general 

3 The programmer would probably not use symbols like letters and 
strings - MUL, for instance - that we have used. Rather, each element 
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rule tha t would always crossover valid subexpressions and is as simple 

as the LISP "match the parentheses" rule. Actually, the answer is 

easier than it seems, but it is still far from being as simple as the 

LISP rule. The answer is: s tar t at any node, and move to the right 

to another node. If the number of items on the stack is never less 

than zero, and the final number of items on the stack is one, then the 

visited nodes represent a subtree, tha t is, a subexpression. 

The principal advantage of this arrangement is the compact in­

dividual representation in memory. It is a little slower than the tree 

arrangements [Keith and Mart in, 1994], and the compactness of the 

representation could make the system difficult to extend. The main 

reason it is slower is tha t each element must be evaluated for what 

type it is - the element type needs to be stored by a symbolic repre­

sentation. Tha t symbol must be interpreted, and Keith and Mart in 

do so with a switch s ta tement , which takes a substantial amount of 

t ime to evaluate. 

The other principal drawback to this method is that it does not 

allow for skipping evaluation of parts of the program tha t do not 

need to be evaluated. For example, assume tha t x = 10. In the 

following expression, it is unnecessary to evaluate y, I f x < 10 Then 

y E l s e z. However, in a postfix representation, y would be evaluated 

nevertheless. 

11.5.2 Prefix Expressions with Recursive Evaluation 

Keith and Martin also proposed a prefix expression representation 

with recursive evaluations. Prefix ordering is the opposite of postfix 

ordering. The operator precedes the operands. The second array of 

Figure 11.9 shows the same expression we used above but expressed 

in prefix ordering. A problem here is tha t the operands must be 

known in order to process the operator, while the operands follow 

the operator. 

Keith and Mart in solve tha t problem with their EvalNextArg 

function. Every t ime EvalNextArg is called, it increments a counter 

that identifies the current element in the array. Then it calls itself in 

a manner appropriate for the type of the identified element. When it 

calls itself, it automatically jumps to the next element in the array. 

Let us look at how this works more specifically. To begin evalu- Evaluating a Prefix 

ating the array in Figure 11.9, EvalNextArg gets called for element Array 

0 of the array. The function reads element zero and interprets it to 

mean "take the square root of the next element in the array." To do 

would be represented by, say, an integer. However, for clarity, we will use 
symbols. 
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tha t , EvalNextArg might execute the following pseudocode: r e t u r n 

SQRT(EvalNextArg). 

The effect of this pseudocode is to a t t empt to take the square 

root of element 1 in the array.4 However, clement 1 in the array 

interprets to MUL. It has no inherent re turn value of which there is a 

square root until the multiplication has been performed. This means 

tha t the square-root operator must wait for its operands until further 

evaluations have been performed. The further evaluations happen 

in the following manner. EvalNextArg might execute the following 

pseudocode at this point: r e t u r n EvalNextArg * EvalNextArg. 

Note what happens here. The system tries to multiply the values 

in elements 2 and 3 of the array. A review of the array shows tha t 

further evaluations will still be necessary because element 2 is a + 

operator, and it has no immediate value until it, too, has been eval­

uated. So, the system calls EvalNextArg over and over again until it 

has completely evaluated the individual. 

Prefix Crossover Crossover is performed in a way similar to tha t of the postfix 

approach. Start ing at any element, take the arity of each element 

minus one and sum these numbers from left to right. Wherever the 

sum equals minus one, a complete subexpression is covered by the 

visited nodes. For instance, for elements two, three, and four, this 

gives 1 + (—1) + (—1) = —1, and, indeed, + z y is a complete prefix 

expression. 

This arrangement is superior to the postfix arrangement in tha t 

it allows for skipping over code tha t does not need to be evaluated. 

It shares the compactness of representation of the postfix approach. 

The interested reader may review the original article, which includes 

an innovative opcode approach to storing the values in the array. 

11.5.3 A Graph Implementation of GP 

Another G P system employing arrays and stacks is PADO (Parallel 

Algorithm Discovery and Orchestration) [Teller, 1996]. Using graphs, 

it looks unlike the tree-based systems whose implementation we have 

considered so far in this chapter. Graphs are capable of representing 

complex program structures compactly. In addition, PADO does not 

just permit loops and recursion, it positively embraces them. This is 

not a trivial point, since other G P systems have experimented with 

loops and recursion only gingerly because of the great difficulties they 

"'""" cause. 

A graph structure is no more than nodes connected by edges. 

The edges, sometimes also called arcs, may be thought of as pointers 

4Remember EvalNextArg automatically goes to the next element in the 
array every time it is called. 
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between two nodes indicating the direction of a movement from one 

node to the other. Each edge represents a part of the flow of program 

control. The reader may note tha t tree genomes and linear genomes 

can also be represented as graphs. In a tree structure, for instance, 

there may be several incoming but only one outgoing edge at each 

node. In a graph system, however, there may be several incoming and 

several outgoing edges for each node. Figure 5.3 showed a diagram 

of a small PADO program. 

A few points about the system are important before we can look 

at implementat ion issues. 

LI S t a r t a n d e n d n o d e s 

There are two special nodes, S t a r t and End. Execution begins 

at S t a r t , and when the system hits End, the execution of the 

program is over.5 The flow of execution is determined by the 

edges in the graph. More about tha t later. 

• P A D O u s e of t h e s t a c k 

Data is transferred among nodes by means of a stack. Each of 

the nodes executes a function tha t reads from or writes to the 

stack. For example, the node A reads the value of the operand a 

from RAM and pushes it onto the stack. The node 6 pushes the 

value 6 onto the stack. The node MUL pops two values from the 

stack, multiplies them, and pushes the result onto the stack. 

• P A D O use of i n d e x e d m e m o r y 
Data may also be saved by the system in the indexed memory. 

The node labeled Wr i te pops two arguments from the stack. It 

writes the value of the first argument into the indexed memory 

location indicated by the second argument. Read fetches da ta 

from the memory location. 

Note tha t there are really two things tha t each node must do: it 

must perform some function on the stack and /or the indexed memory, 

and it must decide which node will be the next to execute. This 

lat ter function is really a mat te r of choosing between the outgoing 

edges from the node. Consider Figure 5.3 again. The MUL node may 

transfer control to Wri te , Read, or 4. For this purpose each node 

has a branch-decision function which determines, depending on the 

stack, memory cells, constants, or the foregoing node, which of the 

edges to take. 

5 In some implementations, PADO repeats execution a fixed number of 
times or until a certain condition is met. So, it is not quite accurate to say 
that the program always ends when the End node is reached. 
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From an implementation viewpoint, PADO is much more diffi­

cult than tree or linear genomes. For example, there are a lot more 

pointers to keep track of. Imagine crossing over the program repre­

sentation in Figure 5.3 with another program representation. Wha t 

to do with all of the nodes and, worse, all of the pointers tha t have 

been cut? How do you keep track of the pointers, and where do they 

get reat tached? The designer has come up with good solutions to 

these problems, but the point is tha t the problem was a tough one 

relative to other G P systems. 

Dual Representation of Because of the difficulty of coding this system, an individual is 

Individuals represented in two different structures. For the purpose of storage, 

crossover, and mutat ion, individuals are stored in a linked list. Each 

element in the list contains all of the information necessary to iden­

tify a PADO node. On the other hand, for the purpose of execution, 

individuals are stored as arrays. The purpose of this dual representa­

tion is tha t the linked list provides simple crossover and mutat ion but 

would slow down the system if it were the basis of program execu­

tion. On the other hand, while an array provides for fast execution, 

'•> it would be complicated to keep track of all of the pointers during 

crossover in the array. 

The minute details of implementation of this interesting and pow­

erful system are beyond the scope of this section. The reader may con­

sult [Teller and Veloso, 1995a] [Teller and Veloso, 1995b] [Teller, 1996] 

[Teller and Veloso, 1996] for more information. 

11.6 Implementations Using Machine Code 

While the systems presented above represent individuals as high-level 

da ta structures, machine code-oriented genetic programming systems 

use low-level representations. Let us take a closer look at how such 

systems are implemented. 

11.6.1 Evolving Machine Code with A I M G P 

No mat te r how an individual is initially represented, it is always 

represented finally as a piece of machine code, because a processor 

has to execute the individual for fitness evaluation. Depending on 

the initial representation there are at least the following three G P 

approaches, the third of which is the topic of this section. 

1. The common approach to G P uses a technique where an indivi­

dual representation in a problem-specific language is executed 

by a virtual machine, as shown in Figure 11.10 (top). This 

solution gives high ability to customize the language depending 
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on the properties of the problem at hand. The disadvantage of 

this paradigm is tha t the need for the virtual machine involves 

a large programming and run t ime overhead. 

Genetic operators 

Evaluation result 

Genetic operators 

Evaluation result 
Binaries 

Genetic operators 

individual [CPUj 
Evaluation result 

Binaries 

2. Another approach is to compile each individual from a higher-

level representation into machine code before evaluation, as 

shown in Figure 11.10 (middle). This approach can provide 

genetic programming with problem-specific and powerful oper­

ators and also results in high-speed execution of the individual. 

The compilation itself is an overhead, of course, and compilers 

do not produce perfectly optimized machine code. Neverthe­

less, the speed-up can be considerable if an individual runs, on 

average, for a long time during fitness evaluation. Long exe­

cution times may be due to, say, a long-running loop or may 

be due to a large number of fitness cases in the training set. 

Problem-specific operators are frequently required. 

Figure 11.10 
Three approaches to 

make GP work 
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Machine code GP with 

genetic compilation 
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This approach has been used by [Keller and Banzhaf, 1996] and 
[Friedrich and Banzhaf, 1997]. While the first approach evolves 
code in a potentially arbitrary language which then gets inter­
preted or compiled by a standard compiler like ANSI-C, the 
second uses its own genetic compiler. Thus, there is no separate 
compilation step for the system and execution times approach 
those of the system that manipulates machine code directly. 
Figure 11.11 shows how tokens representing machine code in­
structions are compiled - by a fast and simple genetic compiler 
- to machine code which then gets executed. This method has 
advantages when working with CISC processors, where machine 
language features variable length instructions. 

Genome of equally sized tokens: 

inc A dec B pop S ret 

Efficient on-the-fly translation or "compilation" 

I \ \ 
: 01110010O110001Oojl 0111101110101010111011001100010^1010110111010101 

Binary code to be executed. 

3. The central approach of this section - automatic induction of 
machine code with GP (AIMGP) - represents individuals as 
machine code programs which are directly executable. Thus, 
each individual is a piece of machine code. In particular, there 
are no virtual machines, intermediate languages, interpreters, 
or compilers involved. This approach was earlier introduced as 
the compiling genetic programming system [Nordin, 1994].6 

AIMGP has been implemented in C. Thus, individuals are in­
voked with a standard C function call. The system performs 
repeated type casts between pointers to arrays for the manipu­
lation of individuals and between pointers to functions for the 
execution of the individuals as programs. 

AIMGP has accelerated individual execution speed by a factor of 
2000 compared to LISP implementations [Nordin and Banzhaf, 1995b]. 

The approach was earlier called "compiling" because it composes ma­
chine code programs which are executed directly. Because the approach 
should not be confused with other approaches using a compiler for the 
mapping into machine code, we have renamed it. 
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It is the fastest approach available in GP for applications that allow 
for its use [Nordin, 1997]. (See www.aimlearning.com.) 

11.6.2 The Structure of Machine Code Functions 

As said earlier, the individuals of AIMGP consist of machine code se­
quences resembling a standard C function. Thus AIMGP implements 
linear genomes, and its crossover operator works on a linear struc­
ture. Figure 11.12 illustrates the structure of a function in machine 
code. The function code consists of the following major parts: 

1. The header deals with administration necessary when a func­
tion gets entered during execution. This normally means ma­
nipulation of the stack - for instance, getting the arguments for 
the function from the stack. There may also be some process­
ing to ensure consistency of processor registers. The header is 
often constant and can be added at the initialization of each in­
dividual's machine code sequence. The genetic operators must 
be prevented from changing the header during evolution. 

2. The footer "cleans up" after a function call. It must also be 
protected from change by the genetic operators. 

3. The return instruction follows the footer and forces the sys­
tem to leave the function and to return program control to the 
calling procedure. If variable length programs are desired, then 
the return operator could be allowed to move within a range 
between the minimum and maximum program size. The footer 
and the return instruction must be protected against the effects 
of genetic operators. 

4. The function body consists of the actual program represent­
ing an individual. 

5. A buffer is reserved at the end of each individual to allow for 
length variations. 

Header -•- •*- Body 

V d=c*a s=c+14 

Footer 

_i_ 
Buffer 

a=c+d restore 

Figure 11.12 

Structure of a program 

individual in AIMGP 
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11.6.3 Genetic Operators 

AIMGP has the following two genetic operators: 

1. A m u t a t i o n operator changes the content of an instruction 

by mutat ing op-codes, constants or register references. It ran­

domly changes one bit of the instruction provided certain crite­

ria are fulfilled. The operator can change only the instruction 

to a member of the set of approved instructions to assure tha t 

there will be no illegal instructions, bus errors, unwanted loops 

or jumps, etc. Furthermore, the operator ensures ari thmetic 

consistency, such as protection against division by zero. 

2. The crossover operator works on variable length individuals. 

Two crossover methods have been used in AIMGP. The first 

method (protected crossover) uses a regular GA binary string 

crossover where certain par ts of the machine code instruction 

are protected from crossover to prevent creation of illegal or 

unwanted instructions, as shown in Figure 11.13. The second 

method (instruction crossover) allows crossover only between 

instructions, in 32-bit intervals of the binary string. Hence, the 

genome is snipped and exchanged so as to respect the 32-bit 

machine code instruction boundaries. Figure 11.14 illustrates 

the lat ter crossover method [Nordin and Banzhaf, 1995b]. 

:'! »:1 t 

Figure 11.13 
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11.7 A Guide to Parameter Choices 

Once a system has been coded, one must choose parameters for a 

G P run. The good news is tha t G P works well over a wide range of 

parameters . The bad news is tha t G P is a young field and the effect 

of using various combinations of parameter values is just beginning 

to be explored. We end this chapter by describing the typical pa­

rameters, how they are used, and what is known about their effects. 
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Much of what G P researchers know about parameters is anecdotal 

and based on experience. We will suggest rules of thumb for the 

various parameters based on our experience. Our aim here is not 

merely to list parameters tha t are well described elsewhere, but to 

look at those parameters where real experience makes it possible to 

give some practical advice about real implementation issues. 

Population size is an important parameter setting in a G P run Population Size 

for several reasons. To begin with, bigger populations take more 

t ime when evolving a generation. Also, bigger populations have more 

genetic diversity, explore more areas of the search space, and may 

even reduce the number of evaluations required for finding a solution. 

Positive results have been achieved with population sizes ranging 

from P = 10 to P = 1 000 000 individuals. Between 10 and 100 000 

individuals, the authors have experienced a near linear improvement 

in performance of the system. A start ing point of P = 1000 is usu­

ally acceptable for smaller problems. But as the problem grows more 

difficult, the population size should grow. A rule of thumb in deal­

ing with more difficult problems is tha t , if a problem is sufficiently 

difficult, then the population size should start at around P = 10 000. 

This number should be increased if the other parameters tend to ex-



ItfctJ 11 Implementation — Making Genetic Programming Work 

Maximum Number of 
Generations 

ert heavy selection pressure. On the other hand, if there is a lot of 

noise in selection (very small tournaments and the like), then smaller 

populations will suffice. 

A larger number of training cases requires an increase in the pop­

ulation size. In a smaller problem, say, less than 10 fitness cases, a 

population size of 10 to 1000 usually suffices. Between 10 and 200 

fitness cases, it is bet ter to use 1000 < P < 10 000. Above 200 train­

ing cases, we recommend using P > 10 000. Koza summarizes his 

experiences with population size in Chapter 26 of [Koza, 1992d]. He 

uses 50 < P < 10 000 in his book, but reports 500 individuals as the 

commonest setting. 

Early in the history of GP, it was argued that the limit on gener­

ations should be quite low because nothing happens after generation 

Gmax = 50. Tha t has not been our experience. In some runs, inter­

esting evolution has been delayed to as late as generation 1000. Other 

t imes, evolution will seem to s tagnate and then suddenly pick up and 

begin improving the popidation again. We have seen examples where 

interesting things happen after generation 10 000. 

Tha t said, it is impractical to run most G P systems for tha t many 

generations - there is not enough C P U time available. There are two 

possible practical solutions: 

1. Star t testing with a relatively low setting for Gmax, such as 50 < 

Gmax < 100 generations. If you are not getting the results you 

want, first raise the population size and then raise the number 

of generations. 

2. Monitor the run to determine whether it may safely be termi­

nated. Explosive growth of introns almost always marks the end 

of effective evolution. This growth may be measured indirectly 

by measuring the percentage of to ta l crossover events t ha t are 

destructive. As a rule of thumb, when destructive crossover 

falls to below 10% of all crossover events, no further effective 

evolution will occur. So it is possible to set Gmax quite high but 

to catch the runs in which evolution is finished and terminate 

them early. 

Terminal and A few rules of thumb for the terminal set and function set have 

Functions Set served the authors well: 

• Make the terminal and function set as small as possible. Larger 

sets usually mean longer search t ime. The same is t rue for the 

number of registers used in AIMGP. 



11.7 A Guide to Parameter Choices 

• It is not tha t important to have (all) customized functions in the 

function set: the system often evolves its own approximations. 

• It is very important , however, tha t the function set contains 

functions permit t ing non-linear behavior, such as if-then func­

tions, Boolean operators on numbers, and sigmoid squashing 

functions. 

• The function set should also be adapted to the problem in 

the following way: problems t ha t are expected to be solved by 

smooth curves should use function sets tha t generate smooth 

curves, and functions t ha t are expected to be solved by other 

types of functions should have at least one representative of 

these functions in the function set. 

• Sometimes transformations on da ta are very valuable, for in­

stance, fast Fourier transforms [Oakley, 1996]. 

The typical settings of mutat ion and crossover probabilities in G P 

involve very high rates of crossover and very low rates of mutat ion. 

Experiments suggest tha t a different balance (pc = 0.5, pm = 0.5) 

between the two operators may lead to be t te r results on harder prob­

lems [Banzhaf et al., 1996] and tha t the worst results are obtained 

when either operator is left out. 

The proper balance between these operators is, therefore, a wide 

open question and may be very problem dependent. A rough ride of 

thumb would be to s tar t with 90% crossover and 10% mutat ion. If 

the results are not pleasing, increase the mutat ion rate . 

Selection pressure is another parameter to be put under some 

conditions. If tournament selection is applied, the size of the tour­

nament will determine the selection pressure. The authors have very 

good experiences with low selection pressure. Tournaments of 4 in­

dividuals regularly perform very well. 

Research in the area of parsimony pressure is not fully conclusive 

at this t ime. Some researchers have reported good results with parsi­

mony pressure. Our own experience is that constant parsimony pres­

sure usually gives worse results and makes local opt ima more likely. 

However, variable parsimony pressure produces very nice, short, and 

elegant solutions. Some researchers have reported good results with 

adaptive parsimony, which is applied only when a solution tha t per­

forms well is found. 

As a general rule, the maximum depth of trees or the maximum 

program size should be set such tha t the programs can contain about 

ten times the number of nodes as the expected solution size. This 

allows both for estimation error in predicting the solution size and 

for intron growth. 

Mutation and 
Crossover Balance 

Parsimony Pressure 

Maximum Program 
Size 



11 Implementation — Making Genetic Programming Work 

Initial Program Size Typically, the initial program size should be very small compared 

to the maximum size. This allows the system to build up good indi­

viduals piece by piece. But for complex problems, when no success 

results from this approach, we suggest trying longer programs at the 

s tar t to allow the system to s tar t with some complexity already and 

to avoid local minima early on. 

Exercises 

1. Why is G P computationally expensive? 

2. Wha t is garbage collection, and why is it necessary in some G P 

implementations? 

3. Give three examples of how to represent an individual in GP. 

4. Why is it easier to do crossover when using linked lists than 

when using arrays to represent individuals in a tree? 

5. Define postfix and prefix representations. 

6. Describe two methods of implementing tree structures suitable 

for GP. 

7. Describe three important parameters of G P runs. 
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12 Applications of Genetic Programming 

Table 12.1 

Development of GP 

literature since 1989 

12.1 General Overview 

In this chapter we discuss a selected number of applications of genetic 
programming. The selection is arbitrary but is intended to give a 
taste of what is already discussed in GP. Regretfully, due to the large 
number of practically relevant applications of genetic programming, 
we had to select among very many important contributions. This 
section and the next, however, are devoted to an overview of the 
diversity of applications researchers have tackled with GP. 

To start with, it is clear that the number of applications must be 
correlated with the number of papers published in GP. This will give 
a lower bound on applications, because it can be safely assumed that 
a considerable percentage of applications never get published at all. 

So let us first look at the development of GP publications in 
general. Table 12.1 summarizes the history of of GP publications 
since 1989 in part using data given in [Alander, 1995]. 

Year 

1989 
1990 
1991 
1992 
1993 
1994 
1995 
1996 
1997 

Number of publications 

1 
12 
18 
30 
40 
95 

140 (est.) 
220 (est.) 

150 (1st half, est.) 

o 

&d: 

r w 
12.2 Applications from A to Z 

Table 12.2 gives an overview of applications according to our classifi­
cation. As one can see, genetic programming has spawned numerous 
interesting applications in the short time of its existence. 

It can be safely assumed that at least the same growth factor 
applies to applications as it does to GP in general. 

Table 12.3-12.6 on the following pages present the different ap­
plications of genetic programming, including the sources where more 
information can be found. Some entries are repeated as they fit under 
more than one heading. 



12.3 Science-Oriented Applications of GP EH 

Application domain 

algorithms 

art 

biotechnology 

computer graphics 

computing 

control (general) 

control (process) 

control (robots and agents) 

control (spacecraft) 

da ta mining 

electrical engineering 

financial 

hybrid systems 

image processing 

interactive evolution 

modeling 

natural languages 

optimization 

pa t t e rn recognition 

signal processing 

First publication 

1992 

1993 

1993 

1991 

1992 

1992 

1990 

1992 

1996 

1996 

1994 

1994 

1993 

1993 

1991 

1994 

1994 

1994 

1994 

1992 

Cum. number 

8 

5 

9 

7 

17 

4 

5 

27 

2 

6 

9 

9 

9 

14 

4 

7 

4 

7 

20 

5 

The following sections discuss some applications in more detail 

in order to give an impression of the diversity of problems G P has 

been applied to. The authors have made an arbitrary selection and 

do not claim to cover all topics exhaustively. 

We group the selected applications roughly in the following do­

mains: 

1. Science-oriented applications 

2. Computer science-oriented applications 

3. Engineering-oriented applications 

12.3 Science-Oriented Applications of GP 

12.3.1 Biochemistry Data Mining 

In many areas of science and technology, so much knowledge has Problem Domain 

accumulated tha t the methods of da ta mining are needed in order to 

discover interesting and valuable aspects of the da ta tha t would have 

gone undiscovered otherwise. 

Table 12.2 
Summary overview of 

applications of GP in 

different areas 
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Application domain 

algori thms 

art 

biotechnology 

computer graphics 

computing 

Year j Application 

1996 
1997 
1996 
1994 
1994 
1996 
1993 
1992 
1994 
1993 
1995 
1995 
1994 
1996 
1995 
1995 
1993 
1994 
1994 
1994 
1993 
1996 
1994 
1994 
1991 
1991 
1993 
1995 
1997 
1995 
1994 
1996 
1992 
1996 
1991 
1996 
1996 
1994 
1994 
1995 
1996 
1996 
1997 
1996 
1995 
1994 

acyclic graph evaluation 
caching algori thms 
chaos exploration 
crossing over between subpopulat ions 
randomizers (R) 
recursion 
sorting algori thms 
sorting networks 
artworks 
images 
jazz melodies 
musical s t ruc ture 
vir tual reality 
biochemistry 
control of biotechnological processes 
DNA sequence classification 
detector discovering and use 
protein core detect ion (R2) 
protein segment classification 
protein sequence recognition 
sequencing 
solvent exposure prediction (R2) 
3D object evolution 
3D modeling (R) 
artificial evolution 
artificial evolution 
computer animat ion 
computer animat ion 
computer animat ion 
computer security 
damage-immune programs 
da t a compression 
da ta encoding 
da ta processing s t ruc ture identification 
decision trees 
decision trees 
inferential est imation 
machine language 
monitoring 
machine language 
object orientat ion 
parallelization 
parallelization 
specification refinement 
software fault number prediction 
virtual reality 

Source 

[Ehrenburg, 1996] 
[Paterson and Livesey, 1997] 
[Oakley, 1996] 
[Ryan, 1994] 
[Jannink, 1994] 
[Wong and Leung, 1996] 
[Kinnear, Jr . , 1993a, Kinnear, Jr . , 1994] 
[Hillis, 1992] 
[Spector and Alpern, 1994] 
[Sims, 1993a] 
[Spector and Alpern, 1995] 
[Spector and Alpern, 1995] 
[Das et al., 1994] 
[Raymer et al., 1996] 
[Bettenhausen et al., 1995a] 
[Handley, 1995] 
[Koza, 1993b] 
[Handley, 1994a] 
[Koza and Andre, 1996a] 
[Koza, 1994b] 
[Handley, 1993a] 
[Handley, 1996b] 
[Nguyen and Huang, 1994] 
[Nguyen et al., 1993] 
[Sims, 1991a] 
[Sims, 1991b] 
[Ngo and Marks, 1993] 
[Gritz and Hahn, 1995] 
[Gritz and Hahn, 1997] 
[Crosbie and Spafford, 1995] 
[Dickinson, 1994] 
[Nordin and Banzhaf, 1996] 
[Koza, 1992d] 
[Gray et al., 1996a] 
[Koza, 1991] 
[Masand and Piatesky-Shapiro, 1996] 
[McKay et al., 1996] 
[Nordin, 1994] 
[Atkin and Cohen, 1993] 
[Crepeau, 1995] 
[Bruce, 1996] 
[Walsh and Ryan, 1996] 
[Ryan and Walsh, 1997] 
[Haynes et al., 1996] 
[Robinson and Mcllroy, 1995a] 
[Das et al., 1994] 

Table 12.3 

GP applications overview, 

part I (R means 

"repeated") Various da ta mining methods exist. One of them is (automatic) 

clustering of da ta into groups such tha t from the s tructure of those 

clusters one can draw appropriate conclusions. Clustering methods 

are a general tool in pa t tern recognition, and it can be argued that 

da ta in a database are pat terns organized according to a homogeneous 

set of principles, called features. 

The problem of da ta mining thus becomes a problem of feature 

extraction, and it is this point of view tha t is discussed in this appli-
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Application domain 

control 

control (process) 

control (robotics) 

control (spacecraft) 

da t a mining 

Year 

1995 
1995 
1994 
1992 
1990 
1996 
1995 
1996 
1994 

1993 
1994 
1994 
1994 
1994 
1994 
1994 
1995 
1997 
1995 
1992 
1996 
1997 
1997 
1997 
1994 
1993 
1994 
1994 
1996 
1992 
1994 
1992 
1996 
1997 
1993 
1994 

1996 
1997 
1996 
1996 
1995 
1997 
1995 
1995 

Application 

boardgame 
cooperating strategies 

s teady s tates of dynamical systems 
vehicle systems 

control s t rategy programs 
modeling chemical process systems 

process engineering 
process engineering 

stirred tank 
autonomous agents 
autonomous agents 
autonomous agents 
autonomous agents 
autonomous agent 

bat t le tank 
corridor following 

juggling 
manipulator motion 

motion 
motion in cri t ter populat ion 

motion planning 
motion and planning 

navigation 
navigation 

obstacle avoiding 
planning 
planning 
planning 

sensor evolution 
subsumption 

terrain flattening 
trailer back-up 
wall-following 
wall-following 

walking and crawling 
walking and crawling 

maneuvering 
maneuvering 

da tabases 
internet agents 

predicting DNA 
rule induction 

signal identification 
t ime series 

Source 

[Ferrer and Mart in , 1995] 
[Haynes et al., 1995] 

[Lay, 1994] 
[Hampo and Marko, 1992] 

[Koza and Keane, 1990] 
[Hinchliffe et al., 1996] 

[McKay et al., 1995] 
[McKay et al., 1996] 

[Lay, 1994] 
[Atkin and Cohen, 1993] 
[Atkin and Cohen, 1994] 
[Fraser and Rush, 1994] 

[Ghanea-Hercock and Fraser, 1994] 
[Rush et al., 1994] 

[D'haeseleer and Bluming, 1994] 
[Reynolds, 1994a] 

[Taylor, 1995] 
[Howley, 1997] 

[Nordin and Banzhaf, 1995c] 
[Reynolds, 1992] 

[Faglia and Vetturi , 1996] 
[Banzhaf et al., 1997a] 

[Bennett III , 1997] 
[Iba, 1997] 

[Reynolds, 1994b] 
[Handley, 1993b] 
[Handley, 1994b] 
[Spector, 1994] 

[Balakrishnan and Honavar, 1996] 
[Koza, 1992a] 
[Lott, 1994] 

[Koza, 1992b] 
[Ross et al., 1996] 

[Dain, 1997] 
[Spencer, 1993] 
[Spencer, 1994] 
[Howley, 1996] 

[Dracopoulos, 1997] 
[Raymer et al., 1996] 
[Zhang et al., 1996] 

[Handley, 1995] 
[Freitas, 1997] 

[Teller and Veloso, 1995c] 
[Lee, 1995] 

Table 12.4 

GP applications overview, 

cation. As a particular example where it has been applied success- p 

fully, we shall discuss the biochemistry database CONSOLV contain­

ing da ta on water molecules bound to a number of proteins. 

Using the classification technique of K-nearest neighbors (Knn) 

and a G P system to feed this classification scheme, a very successful 

feature analysis can be done resulting in an identification of important 

features as well as a good classification of untrained da t a entries. 

The authors of this s tudy did earlier work using a genetic algo­

r i thm for the same task [Punch et al., 1993] but concluded tha t G P 

would be bet ter suited for the goals to be achieved. One important 
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Application domain 

electrical engineering 
circuit design 

financial market 

hybrids 

image processing 

interactive evolution 

Year 

1997 
1994 
1996 
1996 
1994 
1997 
1994 
1996 
1996 
1996 
1994 
1996 
1997 
1995 
1994 
1994 
1996 
1997 

1996 
1996 
1996 
1997 
1994 
1994 
1994 
1997 
1994 
1995 
1996 
1996 
1996 
1996 
1996 
1993 
1995 
1996 
1997 
1994 
1995 
1994 
1994 
1992 
1991 
1992 
1993 

Application 

analog source identification circuit 
circuit design 
circuit design 
circuit design 

circuit simplification 
controller circuit 

evolvable hardware 
facility layout 

decision diagrams 
bargaining 

horse race prediction 
hypothesis 

investment behavior 
share prediction 

strategies 
t rade strategies 

t rade models 
volatility models 

cellular au toma ta rules 
fuzzy logic controllers 

L-systems 
learning rules 

neural network training 
neural network training 
neural network t raining 
neural network training 

regular languages 
analysis 
analysis 

classification 
compression 
compression 

edge detection 
feature extract ion 
feature extract ion 
feature extract ion 

image enhancement 
magnetic resonance image processing 

recognition 
s t ruc ture of na tura l images 

visual routines 
dynamical systems 

interactive image evolution 
procedural models 
procedural models 

Source 

[Koza et al., 1997b] 
[Ehrenburg and van Maanen, 1994] 

[Koza et al., 1996a] 
[Koza et al., 1996b] 

[Coon, 1994] 
[Koza et al., 1997a] 

[Hemmi et al., 1994a] 
[Garces-Perez et al., 1996] 

[Drechsler et al., 1996] 
[Dworman et al., 1996] 

[Perry, 1994] 
[Chen and Yeh, 1996] 

[Lensberg, 1997] 
[Robinson and Mcllroy, 1995a] 

[Andrews and Prager , 1994] 
[Lent, 1994] 

[Oussaidene et al., 1996] 
[Chen and Yeh, 1997] 
[Andre et al., 1996b] 

[Alba et al., 1996] 
[Jacob, 1996b] 

[Segovia and Isasi, 1997] 
[Bengio et al., 1994] 

[Gruau, 1994b] 
[Zhang and Muehlenbein, 1994] 

[Esparcia-Alcazar and Sharman, 1997] 
[Dunay et al., 1994] 

[Robinson and Mcllroy, 1995b] 
[Bersano-Begey et al., 1996] 

[Zhao et al., 1996] 
[Jiang and Butler, 1996] 

[Nordin and Banzhaf, 1996] 
[Harris and Buxton, 1996] 

[Tackett, 1993] 
[Daida et al., 1995] 

[Daida et al., 1996b] 
[Poli and Cagnoni, 1997] 

[Thedens, 1994] 
[Teller and Veloso, 1995a] 

[Gordon, 1994] 
[Johnson et al., 1994] 

[Sims, 1992a] 
[Sims, 1991a, Sims, 1991b] 

[Sims, 1992b] 
[Sims, 1993b] 

Table 12.5 

GP applications overview, 

part III 
strength of their method, the authors claim, is that it is useful in 
noisy environments [Pei et al., 1995]. 

Genetic algorithms can do an optimization based on a linear 
weighting of features, whereas genetic programming can do non-linear 
weighting and an adjustment of the function [Raymer et al., 1996]. 

Task The task Raymer et al. considered was to generate a good scal­
ing of features for a Knn classifier of data entries in the biochemical 
database CONSOLV. This database contained data on the environ­
ment of a set of 1700 randomly selected water molecules bound to 
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Applicat ion domain 

modelling 

na tura l languages 

opt imizat ion 

pa t t e rn recognition 

signal processing 

Year 

1995 
1995 
1997 
1995 
1995 
1994 
1995 
1994 
1994 
1996 
1997 
1994 
1996 
1994 
1996 
1996 
1995 
1994 
1994 
1996 
1997 
1995 
1994 
1994 
1994 
1996 
1996 
1993 
1994 
1996 
1997 
1997 
1994 
1994 
1996 
1996 
1996 
1996 

1992 
1996 
1993 
1993 
1996 

Application j Source 

biotechnological fed-batch fermentation 
macro-mechanical model 

metallurgic process model 
model identification 

model induction 
spatial interaction models 

system identification 
confidence of text classification (R) 

language decision trees 
language processing 

sense clustering 
da tabase query optimizat ion 
da tabase query optimizat ion 

job shop problem 
maintenance scheduling 

network (LAN) 
railroad track maintenance 

t ra ining subset selection 
classification 
classification 
classification 

dynamics extract ion 
feature extract ion 

filtering 
combustion engine misfire detect ion 

magnet ic resonance da ta classification 
myoelectric signal recognition 

noise filtering 
optical character recognition 

object classification 
object detection 

preprocessing 
signal filtering 

text classification 
text classification 

t ime series 
t ime series prediction 

visibility graphs 
control vehicle systems 

digital 
signal filtering 

signal modeling 
waveform recognition 

[Bettenhausen et a]. , 1995b] 
[Schoenauer et al., 1995] 

[Greeff and Aldrich, 1997] 
[Schoenauer et al., 1996] 

[Babovic, 1995] 
[Openshaw and Turton, 1994] 

[Iba et al., 1995b] 
[Masand, 1994] 

[Siegel, 1994] 
[Dunning and Davis, 1996] 

[Park and Song, 1997] 
[Kraft et al., 1994] 

[Stillger and Spiliopoulou, 1996] 
[Atlan et al., 1994] 
[Langdon, 1996a] 

[Choi, 1996] 
[Grimes, 1995] 

[Gathercole and Ross, 1994] 
[Tackett and Carmi , 1994] 

[Abramson and Hunter , 1996] 
[Gray and Maxwell, 1997] 

[Dzeroski et al., 1995] 
[Andre, 1994a] 
[Oakley, 1994b] 

[Hampo et al., 1994] 
[Gray et al., 1996b] 

[Fernandez et al., 1996] 
[Oakley, 1993] 
[Andre, 1994b] 

[Ryu and Eick, 1996] 
[Winkeler and Manjunath , 1997] 

[Sherrah et al., 1997] 
[Oakley, 1994a] 
[Masand, 1994] 

[Clack et al., 1996] 
[Masand and Piatesky-Shapiro, 1996] 

[Mulloy et al., 1996] 
[Veach, 1996] 

[Hampo and Marko, 1992] 
[Esparcia-Alcazar and Sharman, 1996] 

[Oakley, 1993] 
[Sharman and Esparcia-Alcazar, 1993] 

[Fernandez et al., 1996] 

Table 12.6 
GP applications overview, 

20 different proteins. Four features were used to characterize each of part IV (R means 

the water molecules in their ligand-free structure: repeated ) 

1. the crystalographic tempera ture factor, called the B-value 

2. the number of hydrogen bonds between the water molecule and 

the protein 

3. the number of protein atoms packed around the water molecule, 

called the atomic density 

4. the tendency of the protein atoms to a t t rac t or repel the water 

molecule, called the hydrophilicity 
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Based on those features of the ligand-free configuration, the water 

molecules binding to active sites were classified into cither conserved 

or displaced, predicting whether they participate in ligand-active site 

binding (conserved) or not (displaced). The authors claimed tha t , 

if the active-site water molecules could be classified correctly and 

thus predicted, this would have broad applications in biotechnol­

ogy [Raymer et al., 1996]. From the 1700 water molecules in the 

database, only 157 were binding to the active site, and those were 

used to part icipate in training of the system. 

Figure 12.1 shows the idea behind scaling of features for Knn 

classification. The scaling is done in order to maximize classification 

correctness in the training set. Validation is done using a separate 

par t of the database tha t has not been involved in the training. 

Figure 12.1 
Scaling of the x-axis 

(B-value) changes the 

classification of the water 

in question. 
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Feature 2 (B-value) Feature 2 (B-value) 

System Structure 

GP Elements 

The G P system evolves functions tha t map the original values of 

the features into values allowing bet ter separability of the pat terns 

and, therefore, bet ter classification of the water molecules. The entire 

system consisting of a G P module mapping the features into the Knn 

classifier module is depicted in Figure 12.2. Input to the system 

are the original features stored in the database as well as the correct 

classification results expected from the Knn classifier. These are then 

used as a qviality measure for the G P system's mapping (scaling) of 

the features according to Figure 12.2. 

Raymer et al. used the basic ari thmetic functions + , — , * , % as 

the function set of the G P module. The terminals consisted of the 

original features to be mapped and of random ephemeral constants. 

A peculiarity of their work was tha t each tree of the genetic pro­

gramming population consisted of 4 subtrees, corresponding to the 

four features to be mapped. In order to maintain those subtrees dur­

ing evolution, they were coded as ADFs to be called by the main tree. 

The fitness measure was simply the degree of correct classification by 

a Knn with K = 3 among the 1700 water molecules, including 157 

active-site binding water molecules. 
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Target Classification 

1 
Classification Result 

n 

GP System KNN Classifier 

Figure 12.2 

A system for improved 

Knn classification 

Input features 

The G P run was done using a ramped half-and-half initializa­

tion and the convergence termination criterion or the generation 

limit given below. The following parameters were chosen: P = 

100; Gmax = 300; pc = 0.9; MDP = 17; MDPmit = 6. Raymer 

et al. report improved performance of the classifier and therefore im­

proved prediction accuracy of the G P system over a comparable sys­

tem using a genetic algorithm as feature-scaling device. The overall 

classification rate on all 157 active-site water molecules rose from 

77% to 79%. The authors claim this to be a very good result given 

the difficulty of reaching more than 70% accuracy for protein sec­

ondary structure prediction from ab initio or knowledge-based meth­

ods [Mehta et al., 1995] [Rost and Sander, 1993]. 

The four features were mapped differently, with an overall in­

crease in importance given to the first and third. For illustration 

purposes, Figure 12.3 shows one of the developed non-linear map­

pings of features for atomic density. The scaling was done after the 

original features were normalized to the interval [1,10]. The compu­

tat ion t ime per generation was about 15 minutes on a SUN SPARC 

502. 

Results 

12.3.2 Sequence Problems 

In many areas of science, there are problems with sequences of in­

formation carriers. These sequences might come about as the result 

of temporal processes or might be generated in the course of trans­

forming spatial distributions into a form tha t can be subjected to 

sequence analysis. The very process by which you read these lines is 

such a case. During the process of reading text we are transforming 

Problem Domain 
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Figure 12.3 
A GP-evolved function 

for the B-value with a 

Knn ofK = 3. It 

approximately follows a 

f(x) — — x3 function. 

([Raymer et al., 1996], 

copyright MIT Press, 

reproduced with 

permission) 
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spatial pa t terns (dot pa t te rn on paper) into a spatio-temporal form 

tha t our brain can process. 

A glimpse of the ubiquity of sequence problems is given here: 

• Speech processing 

• Communication in general 

• Language understanding and translation 

• Analysis of economic problems 

• DNA pat te rn recognition 

• Time series analysis: prediction of weather, etc. 

• Secondary and tert iary protein s tructure prediction 

As we can see, sequence problems are widespread, and computer 

science and biology contain especially challenging instances of these 

problems. These problems have in common tha t the da ta type of 

sequence elements is usually the same over the entire sequence. Thus, 

whether an element is at the beginning of the sequence or at the end, 

it would have the same meaning in either case. In other words, there 

is positional independence or translational invariance as far as the 

sematics is concerned. 
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Handley has created a special set of functions for solving sequence 

problems [Handley, 1996a] and applied this set to two problems for 

demonstrat ion purposes. 

The task given by the analysis of sequences is usually simply Task 

to recognize certain pat terns in a sequence or to compare sequences 

for similarity when the number of elements tha t might express tha t 

pa t t e rn is not fixed. According to Handley, many machine learning 

techniques approach the problem by forcing the sequence into a fixed 

length pat tern , tha t is, by sliding a window over the sequence. The 

window size thus determines the size of the pat tern , which is now 

fixed in length irrespective of the entire length of the sequence. Han­

dley, instead, proposes a more flexible approach using an arbi trary 

or adjustable window size, up to the extreme of taking the influence 

of the entire sequence into account for one specific pat tern . 

Handley's G P system is a tradit ional one, except tha t it is en- GP Elements 

hanced by his so-called statistical computing-zone function set. These 

functions may be divided into two classes: convolution functions and 

statistical functions. 

Convolution functions are functions tha t compute values from 

par t s of the sequence, independently of what the same convolution 

function has computed on other par ts of the sequence. The situation 

is depicted in Figure 12.4. 

A' B" C 

Typical representatives of those convolution functions are: 

• ari thmetic functions on single elements or on sequences 

Figure 12.4 
The effect of a 

convolution function on 

a sequence. Values 

are computed locally, 

independently of the 

computations for other 

parts of the sequence. 

• conditional branches on single elements or on sequences 

• sequence manipulation functions, like shift left or shift right 

Statistical functions, on the other hand, do depend on the appli­

cation of the same function earlier on in the sequence. As a typical 

instance, Handley mentions a summing operation tha t returns, at 

the end of the sequence, the sum of all values found on the sequence. 

Until the end, however, this function returns part ial sums only, with 

each partial sum depending on partial sums computed earlier on. The 

si tuation is depicted in Figure 12.5. 
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Figure 12.5 
The effect of a statistical 

function on a sequence. 

Values are computed 

locally, but are dependent 

on computations of the 

same function earlier on 

in the sequence. 

A' B' C 

The statistical functions are based on one important function 

called scz, which inverts the order of execution usually valid in gene­

tic programming. Instead of moving along a sequence and evaluating 

the elements in this order, this function moves over the sequence and 

evaluates in the opposite order. This allows it to take into account 

values tha t should be computed earlier in the sequence when evalu­

ating later par ts of the sequence. This is similar to storing values in 

registers in AIMGP when moving along the sequence. 

Results In one example, Handley applied this newly introduced function 

set to a problem of amino-acid classification in proteins. More specifi­

cally, the question was to predict the buriedness of a particular amino 

acid in the sequence, a problem closely related to tert iary s tructure 

prediction. Buriedness has to do with the tendency of an amino acid 

to t ry to hide from water within the protein fold or to t ry to be 

exposed to water at the surface. 

Handley used 122 proteins from the Brookhaven Protein Da ta 

Bank [Bernstein et al., 1977] and separated them into training (60), 

test (30), and evalutation (32) sets. Runs were done with a 64-node 

parallel machine with denies of size 300, resulting in a total pop­

ulation of 19 200 individuals. Emigration of 5% was allowed per 

generation on a 2D toroidal mesh. Results reported by Handley 

[Handley, 1996b] compare very favorably with other methods on the 

same problem (although using another set of proteins). Prediction 

accuracy was 90% for the evaluation set, much bet ter than the ac-
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curacy of 52% reached by Holbrook et al. using a neural network 

[Holbrook et al., 1990] [Holbrook et al., 1993]. 

12.3.3 Image Classification in Geoscience and Remote 
Sensing 

Daida et al. [Daida et al., 1996a] have implemented an impressive 

GP-supported image processing system for the analysis of satellite 

radar images in a geoscience application. The objectives of their 

work are: 

1. to describe an instance of a computer-assisted design of an 

image-processing algorithm where the computer assistance has 

a G P par t , 

2. to present one solution produced with the help of G P compo­

nents, and 

3. to present a special method for fitness specification using large 

da t a sets. 

The images come from the ERS (European Remote Sensing Satel­

lite) which scans the earth with a radar called SAR (Synthetic Aper­

ture Radar) . Figure 12.6 shows an example image (1024 x 1024 pix­

els). 

The goal is to detect pressure ridges from images of ice in the 

Arctic Sea. A pressure ridge can be the result of first-year ice buck­

ling under pressure from thicker, older ice. To a viewer on location 

the pressure ridge may look like a 5-10 meter high, long hill made of 

shat tered ice blocks. The pressure ridges affect how the floating ice 

moves and drifts, which is of interest to meteorologists, for instance. 

On the radar images, pressure ridges appear, at best, as low-contrast 

brighter curves or blobs, which are very t ime consuming and tedious 

to extract by hand. The primary goal is, therefore, to find an auto­

matic algorithm tha t can extract these diffuse features directly from 

satellite images. 

Daida et al. use the scaffolding to describe a system tha t assists 

in algorithm design and that features G P as an essential component. 

The reason for using a system for algorithm design is part ly tha t the 

goodness criterion or fitness function is not easy to define for pressure-

ridge extraction. Experts may agree on where a pressure ridge is on a 

radar image, but they largely disagree on what defines such a feature 

in general. Hence, it is hard to just define a fitness criterion and then 

use a G P system for the algorithm design. Instead, the system uses 

an interactive cycle for designing the algorithm, illustrated in Figure 

12.7. 
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Figure 12.6 

Example target bitmap 

([Daida et ai, 1996a], 

copyright MIT Press, 

reproduced with 

permission) 
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Figure 12.7 
Diagram of scaffolded GP 

system 

([Daida et ai, 1996b], 

copyright MIT Press, 

reproduced with 

permission) 
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The user selects the terminal and function set together with test 

images, a fitness function, and G P parameters . When the G P system 

terminates, the best individual is tested on a full image, and an ex­

pert judges its performance. These steps are repeated until the G P 

component has found an acceptable image-processing algorithm. 

The terminals tha t can be used in a terminal set represent image 

da t a and texture filters. 

The function set components are the ari thmetic operators and the 

conditional I f - L e s s - T h a n - o r - E q u a l - t o (IFLTE). The operators are 

modified such tha t they are closed under 8-bit ari thmetic. 

The fitness calculation is based on manually classified single im­

age points and on at t r ibutes of these points. The use of subimages 

turned out to be too computationally expensive even when subimages 

were as small as 8 X 8 pixels, and the results found did not generalize 

for full images. This is the reason for using manually classified single 

image points as fitness cases. A test point is a vector of values. The 

first value is a Boolean quanti ty simply giving the manually classi­

fied ridge or non-ridge property. Next comes the 8-bit pixel-intensity 

value of the test point followed by several intensity values for the 

image tha t has been processed by a selection of texture filters. The 

fitness is computed as the number of hits over the classification set. 

The first work by Daida et al. in this field used a fixed training 

set. Later, bet ter results were achieved using a dynamic training set 

tha t is changed during evolution. Daida et al. describe the method 

and its results: 

A GP system starts a run with a training set that is relatively 
small and contains test points that should, in theory, be easy for 
the algorithm to score well. When an individual scores a certain 
number of hits, a few points are added to the training set under 
evaluation. This process can continue until either an individual 
scores a maximum number of hits or maximum number of gener­
ations has been reached. Not only has this strategy resulted in 
a better individual than described in [Daida et al., 1995], but the 
overall process under this fitness function has been proven to be 
more controllable than when using a static training set. 

J. DAIDA ET AL., 1996 

The method is inspired by the work of Goldberg [Goldberg, 1989] 

and Holland [Holland et al., 1986]. 

The results are encouraging when the best-of-runs individual is 

applied to two full test images. In a qualitative examination, it is 

shown tha t the extracted features are very well correlated with the 

pressure-ridge and rubble features identified by human experts; see 

Figure 12.8. These results consti tute the first automat ic extraction of 
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pressure-ridge features as low-contrast curvilinear features from SAR 

imagery. 

12.4 Computer Science—Oriented 

Applications 

12.4.1 Cellular Encoding of Artificial Neural Networks 

Problem Domain Gruau has attacked the problem of automatic generation of neural 

networks using a developmental approach. He reasoned tha t for an 

encoding method to be compact and efficient, a modular approach 

must be employed. His idea was to use modular descriptions of parts 

of neural networks tha t could be used repeatedly in the course of 

construction (development) of a complete and presumably complex 

neural network. 

Earlier work in the field of development of complex neural systems 

[Mjolsness et al., 1988] [Mjolsness et al., 1995] [Kitano, 1990] had al­

ready demonstrated the feasibility of grammars . In a series of pa­

pers Gruau proposed and later refined a developmental approach 

based on graph grammars [Gruau, 1992b] [Gruau and Whitley, 1993] 

[Gruau et al., 1994] [Gruau, 1995]. 

Task The task Gruau considered in one demonstrat ion of the feasibility 

of his approach is controlling a six-legged insect. Each leg has a 

number of neurons for control: three motor neurons and one sensor 

neuron recording the s ta tus of the leg. The task is to coordinate the 

different neurons on different legs so as to end up with coordinated 

motion in various gaits. 

It is necessary to allow for recurrent connections in the network 

due to the problem of storing s tate information. Each artificial neural 



12.4 Computer Science—Oriented Applications 

network cell consists of input and output connections to other cells, 

thus it is t reated as a directed labeled graph. The author simpli­

fies the concept as much as possible in order to be able to generate 

directed graphs. 

The developmental approach comes in when Gruau specifies a 

list of graph rewriting rules to be applied to the cells. We have al­

ready seen a collection of graph rewriting rules in Figure 9.23. The 

basic idea is to allow for a division of cells under conservation of 

connections. Adding, removing, and changing weights are other pos­

sible rewriting rules. Originally, Gruau had only binary weights, but 

recently he has added more functionality to the weights. 

The rewriting rules specified in this way are encoded as a tree 

and applied in a chosen order to arrive at a fully developed neural 

net. Figure 12.9 shows a sample with three different trees which are 

applied repeatedly. 

Tree 1 Tree 2 Tree 3 

Figure 12.9 

Sample cellular code, 

designed by hand, r i l 

means that the next tree 

in order from left to right 

is to be applied at that 

position. Capital letter 

nodes refer to rewriting 

rules of Figure 9.20. 

The development of the neural network is shown in Figure 12.10. 

Keep in mind, however, tha t the rules are hand-designed for this 

demonstrat ion, thus a highly symmetric solution results. 

Genetic programming is now employed to evolve solutions similar GP Elements 

to Figure 12.10 but start ing from random rewriting rules and, hence, 

from randomly developed neural nets. Because the process is compu­

tationally expensive, Gruau implemented the algorithm on a MIMD 

machine (IPSC860 with 32 processors) as an island model with 2D 

torus-like topology. After the structure was developed, a stochastic 

hill climbing algorithm was applied to the weights of the neural net. 

Gruau used a population size of 32 x 64 individuals. 

Gruau found networks of the kind shown in Figure 12.11. The Results 

left example uses an additional refinement called automatic definition 
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Lay out of the input and output units 

Figure 12.10 
The development of a 

neural network specified 

through rules of Figure 

12.9 ([Gruau, 1995], 

copyright MIT Press, 

reproduced with 

permission) 

of subnetworks which is the cellular encoding version of ADFs. It 

can be seen clearly tha t such a network needs fewer nodes and has 

a more ordered structure than the simple approach of Figure 12.11 

(right). The resulting networks are similar to the ones seen previously 

[Beer and Gallagher, 1992]. 
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ABPl PEP I AEP2 PEP2 AEP3 PEP3 AEPJ PEP4 AEPS PEPS AEP6 PEP* 

PS1 RSI PS2 RS2 PS3 RS3 PS4 RS4 PS5 RS5 PS6 RS6 

Figure 12.11 
GP-evolved solutions: 

(left) including ADSN, 

(right) without ADSN 

([Gruau, 1995], copyright 

MIT Press, reproduced 

with permission) 

Gruau claims tha t his method is well suited for problems with 

regularities in them. Cellular encoding can discover those regulari­

ties and exploit them in the course of the development of a suitable 

solution. 

12.4.2 Development and Evolution of 

Hardware Behaviors 

Hemmi et al. describe an application from the domain of circuit syn­

thesis [Hemmi et al., 1994a]. The authors do not report on a real-

world application, but on a contribution - with GP-like means - to 

a field tha t will become highly practically relevant: hardware evolu­

tion. This work is a step toward hardware tha t may self-adapt its 

behavior with respect to an environment. 

The authors present a process tha t consists of a developmental 

and an evolutionary phase. Hardware description language (HDL) 

programs get developed and evolved, which represent hardware spec­

ifications, which ultimately represent behavior of circuitry. 

In the developmental phase, a program gets "grown" from a s tar t 

symbol by using a rewriting system. Beginning with the s tar t sym­

bol, this system produces a tree structure by using production rules. 

The s tar t symbol corresponds to a zygote while the sequence of leafs 

produced corresponds to the multi-cellular organism, in this case a 

program. The authors term this tree a chromosome since it represents 

the final program. 

In the evolutionary phase, chromosomes may be subject to mu­

tat ion and crossover, much like tree structures in common G P ap­

proaches. Fitness evaluation is performed by converting a chromo­

some into a programmable-logic device (PLD) program which mod­

ifies a PLD such that it represents the circuitry described by the 

chromosome. This circuitry can then be evaluated with respect to 

its behavior. This evaluation can be used to assign a fitness to the 

corresponding chromosome. 
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Finally, by using this method, the authors evolve a binary adder 

circuit t ha t produces the binary sum of two input values. 

12.4.3 Intrusion Detection 

Crosbie et al. report on a prototype in the domain of computer system 

defense [Crosbie and Spafford, 1995]. Due to the high connectivity 

between systems worldwide, there is high potential for an intrusion 

into a system. In general, an intruder aims at getting access to and 

control over the system in order to perform an activity tha t is dele­

terious to the system's functionality or to a user, like deleting system 

files or accessing classified information. 

A common intrusion detector is a central unit watching the com­

plete system for intrusion. The authors propose a decentralized de­

tection approach: autonomous software agents watch the system -

each of them observing just a system part - and each of them learns 

to detect a potential intrusion related to the observed par t . These 

agents are evolved by genetic programming. 

The decentralized approach has several advantages over the cen­

tral approach, according to the authors. Two important ones follow. 

First, a system change can be easily answered by a change in the num­

ber and potential speciation of agents. In contrast to this, a central 

approach might require a high effort in redesigning the detector. 

Second, a central detector tha t gets conquered by an intruder is 

not only useless but actually very dangerous to the system, since it 

will provide information signaling non-existent system safety to the 

administrator. However, a single subverted software agent corrupts 

just a t iny par t of the complete decentralized detector. Thus, the 

detector stays functional - although with decreased effectiveness. 

Detector-Agent Design The red line in the design of detector agents is concentration and 

inter-agent communication. A single agent focuses on one or just a 

few aspects of intrusive activity. If it detects a potential intrusion, 

it communicates this circumstance to all other agents, which will 

modify their operation accordingly. If the communication activity 

between agents reaches a certain degree - so tha t the probability of 

an actual intrusion is rather high - this may be communicated to 

a human agent, for instance, a system administrator . Of course, a 

single agent may wrongly assess a certain activity sequence - like 

two consecutive failed login trials to the same user account - as an 

intrusion trial. However, this single misinformation will not make it 

to the administrator. Thus, a single "paranoid" agent cannot disturb 

the system performance. 

To detect intrusive activity, an agent scans system audit da ta , like 

login trials or ftp connections. For fitness evaluation, several scenar-
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ios get presented to each agent. Each scenario consists of potentially 

intrusive and legitimate activities, and it has a certain actual proba­

bility tha t it represents an intrusion. Based on this probability and 

the agent 's assessment of this probability, the agent gets a certain 

fitness value. 

Actually, the prototype application succeeds in evolving an agent 

tha t classifies two of three scenarios correctly. Certainly, the under­

lying concept has to be extended and tested more intensively, but the 

prototype results indicate a potential for future GP-based detection 

systems. 

12.4.4 Autoparallelization 

Walsh et al. report on an application from the domain of software en­

gineering [Walsh and Ryan, 1996]. Considering the huge body of se­

rial software, an automatic parallelization of serial programs is highly 

relevant. The authors present P A R A G E N , a GP-based system for au­

toparallelization of serial software. The system's goal is to transform 

a serial program into a functionally equivalent highly parallel pro­

gram. To tha t end, PARAGEN tries to reassemble a parallel program 

from the s ta tements of the serial program such tha t the parallel pro­

gram performs fast and correctly. 

An individual is a parse tree. Each s tatement from a serial pro­

gram represents a terminal. Fitness evaluation works in two ways: 

fitness reflects both a degree of functional equivalence and a degree 

of parallelism. 

An evolved individual, representing a potentially functionally e-

quivalent parallel version of a serial program, gets executed for several 

different initializations of the variables used in the serial program. 

The serial program gets executed using the same initializations. The 

smaller the differences between the corresponding results are, the 

bet ter is the parallelizing individual with respect to functional equiv­

alence. 

Furthermore, the degree of parallelism gets evaluated. The faster 

the parallel version performs, the bet ter is the parallelizing individual 

with respect to generating a high degree of parallelism. Thus, a 

balance between correctness and good parallelity gets established in 

a population. 

P A R A G E N was tested on common problems from the domain of 

parallelization. The authors report on a successful transformation 

of all corresponding serial programs, using a population size of 100 

individuals over 10 generations. An example follows. When execut­

ing assignment s tatements that share variables, execution order is 
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crucial. Consider the following sequence of assignment s tatements 

5 2 , 5 5 , 5 6 , 5 8 . 

f o r i : = l t o n do 

b e g i n 

S2: f [ i ] := 57; 

S5 : b [ i ] := a [ i ] + d [ i ] ; 

S6: a [ i ] := b [ i ] + 2; 

S8: c [ i ] := e [ i - l ] * 2 ; 

end; 

Obviously, the sequence 55 , 5 6 is critical, since its s ta tements share 

the array variables a and b with identical index i. Thus, in gen­

eral, this sequence will result in different values for a[i],6[i] than the 

sequence 56 , 5 5 . Therefore, when parallelizing the above code, P A R -

AGEN must produce parallel code tha t ensures the execution order 

5 5 , 56 . Indeed, the system comes up with 

DoAcross i := 1 to n 

begin 

PAR-BEGIN 

S8: c [ i ] := e [ i - l ] * 2 ; 

S5 : b [ i ] := a [ i ] + d [ i ] ; 

PAR-END 

PAR-BEGIN 

S2: f [ i ] := 57; 

S6: a [ i ] := b [ i ] + 2 ; 

PAR-END 

end; 

The semantics of PAR-BEGIN. .PAR-END is to execute all s ta tements 

between these two keywords in parallel. DoAcross loops over the 

sequence of PAR blocks. Note how this code ensures the execution of 

5 5 prior to the execution of 56 yet also parallelizes execution. 

The authors plan to focus further work on making PARAGEN 

generate OCCAM code - O C C A M is a prominent parallel language -

and on having it generate parallel programs directly out of a problem 

description. 

12.4.5 Confidence of Text Classification 

The flood of information pouring over us is increasing by the day. We 

speak about the information society where information is the main 

commodity t raded. One of the biggest, problems in the information 

society is how to sort and discriminate information tha t is interesting 

and relevant to you and your work. Several companies offer services 
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where information is classified and given keywords according to con­

tents. The keywords can then be used to compile material of interest 

for different groups. One such provider is Dow Jones, which daily 

assigns keywords or codes to several thousand texts . The texts come 

from many different sources, like newspapers, magazines, news wires, 

and press releases. The large volume of texts makes it impractical or 

impossible for Dow Jones ' editors to classify it all without computer 

support . 

One such support system uses a memory-based reasoning tech­

nique (MBR) [Dasrathy, 1991] for assigning keywords automatically 

to articles. However, it is desirable tha t the automatic system can in­

dicate which classification it is uncertain of and then call for manual 

assistance. 

The system should, in other words, assign a confidence value to 

the classification that allows it to classify easy texts automatically 

while giving difficult cases to the editors. Brij Masand has success­

fully applied G P to the evolution of such confidence values for auto­

matically classified news stories [Masand, 1994]. 

The coding of a text consists of assigning one or more keywords or 

codes to the document. There are about 350 different codes, such as 

industrial, Far East Japan, technology, computers, automobile manu­

facturers, electrical components & equipment. A single story typically 

will have a dozen codes assigned to it. 

The automatic MBR classification system - which in itself has 

nothing to do with genetic programming - is trained on a database 

of 87000 already classified stories. Performance is measured by the 

two concepts recall and precision. Recall is the proportion of codes 

tha t were assigned both by the system and the editors. Precision is 

the rat io of correct codes to total number of assigned codes. 

The automatic system has a recall of about 82% and precision 

of about 71%. For each of the codes assigned to a text the system 

also produces a score which can be used as a measure of certainty 

for the particular code. The objective of the G P system is to evolve 

a general measure given the sorted list of confidence scores from the 

assigned codes. 

The fitness of the G P system is the product of the recall, preci­

sion, and the proportion of texts accepted for automatic classification. 

Thus, the system simply tries to achieve highest possible quality in 

judgment together with automatic judgment of as many texts as pos­

sible. 

The terminal set contains the scores of the assigned codes and 

five numerical constants (1 — 5). The function set contains the four 

ar i thmetic operators +,—, x , / and the square-root function. The 

output of each individual is normalized, and all output above 0.8 
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is interpreted as an accept of the text, while output below 0.8 is 

interpreted as give the text to manual classification. The G P system 

is trained on 200 texts and validated on another 500 texts. 

Results show the confidence formulas evolved by the G P sys­

tem beat hand-constructed formulas by about 14%, measured by the 

number of correctly accepted or transfered texts . 

12.4.6 Image Classification with the PADO System 

Teller and Veloso [Teller and Veloso, 1996] use their PADO system 

for classification of images and sound. The PADO system is an evo­

lutionary program-induction system tha t uses a graph representation 

of the individuals. It is a quite complex system which is briefly de­

scribed in Section 12.12. Classifying images and sounds means deal­

ing with large da ta sets and fuzzy relationships. The system has 

many different application areas, such as robotic control. 

PADO has been used for bo th image and sound classification, 

but here we concentrate on an image classification experiment. The 

system is trained on one object image each t ime. After training, the 

classification performance is evaluated on an unseen image portraying 

the same object. This unseen image is taken from a validation set 

containing close to 100 images of the object. Examples of training 

and validation image pairs are shown in Figure 12.12. Objects in 

the images include book, bott le , cap, glasses, hammer, and shoe. 

Recognizing such objects in an image is an easy task for the human 

brain, but the problem is of extreme complexity, and it is very hard 

to find a general adaptive algorithm tha t can solve the task with 

a minimum of domain knowledge. Consequently, very few generic 

algorithms for this kind of image processing exist. The PADO system, 

however, has shown remarkable success in the limited domain it has 

been applied to . 

Each program in the population has an indexed memory of 256 

integers tha t are 8-bit values. The terminal set includes functions 

and procedures of many different types. There are ar i thmetic prim­

itives (ADD, SUB, MUL, DIV, MOT, MAX, MIN) and conditional branches 

(IF-THEN-ELSE and EITHER). The terminal set also includes functions 

specific to the domain - PIXEL, LEAST, MOST, AVERAGE, VARIANCE, 

DIFFERENCE - which either give information on a single specific pixel 

value or perform a simple statistical function on an image area. The 

parameters for the functions reside on the system stack. 

The population size is 2800 individuals, and the system is run 

over 80 generations for each of the 98 training images. The results 

show tha t the classification program is correct between 70% and 90% 
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Figure 12.12 
77?e training and test im­

ages classified with PA DO 

([Teller and Veloso, 1996], 

copyright Oxford 

University Press, Inc., 

reproduced with 

permission) 

of the test cases, depending on the difficulty of the respective image. 

Similar results are achieved in a sound classification task. 

12.5 Engineering-Oriented Applications of GP 

12.5.1 Online Control of Real Robot 

Genetic programming has great potential for control applications. 

Many control applications demand solutions tha t are hard or impos­

sible to derive with analytical methods. Nevertheless, nature has 

proved to us tha t there exist ingenious solutions to many advanced 

control problems. 

Consider the miracle of controlling a house fly (Musca domestica), 

for instance. The fly shows significant precision in its movements, 

controlling several wings in the context of the extremely non-linear 

dynamics of small-scale aeronautics. In addition, we know tha t the 

hardware elements controlling the flight - the neurones - are fewer 

than one million, with a clock frequency thousands of times slower 

than tha t of the processing elements of a computer. The control algo­

r i thm is also run on a fault tolerant massively parallel tiny hardware 
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base without problems. This example - one of many - is indeed an 

impressive achievement of evolution. If G P could evolve solutions to 

problems a fraction as complex as insect flying, this would already 

have enormous potential in the field of control. 

Problem Domain Robot control is an area tha t has interested several G P research­

ers (see Table 12.2). However, most experiments have been performed 

with a simulation of a robot in the computer. A problem with many 

of these approaches is tha t it is difficult to move the experiment from 

a simulated robot to a real one. The commonest way of doing G P 

for a control problem is to create a population of random programs. 

Each program then controls the robot for a predefined number of 

t ime steps. The robot is reset to exactly the same point before ev­

ery program evaluation. The individual program's performance is 

judged according to the fitness function as usual. When all programs 

have been evaluated, the best performing ones are reproduced into 

the next generation. Subsequently, the genetic operators are applied. 

These steps are repeated until a good solution is found. Let us say 

approximately 100 generations are needed for convergence. If we have 

a population size of 500 programs and each individual is evolved dur­

ing 100 time steps then we need 100 x 500 x 100 = 5 000 000 time 

steps of evaluation before a good controller is found. This is imprac­

tical for a real robot. The dynamic response from the environment 

generally requires at least 300 ms for meaningful feedback - the re­

sult of too short a control action will drown in the different kinds 

of mechanical, electronic, and algorithmic noise the robot produces. 

This means an evolution t ime of 1 500 000 seconds, or two weeks. The 

robot also needs to be reset to its initial position before each program 

evaluation, in this case 50 000 times. A computer simulation, on the 

other hand, could be run much faster than a real-time simulation, 

and resetting the position would not be a problem either. 

In this section, we present our own work on an online version 

of a G P control architecture which allows for efficient use of G P to 

control a real robot .1 The experiments are performed with a genetic 

programming system (AIMGP) evolving machine code control pro­

grams. This system - described in Section 9.2.4 - is well suited for 

low-level control, since it gives acceptable performance even on very 

weak architectures while also allowing for a compact representation 

of the population. 

Task The objective of the control system is to evolve obstacle-avoiding 

behavior given da ta from eight infrared proximity sensors. The exper-

1For details, see the following papers: [Nordin and Banzhaf, 1995c] 
[Olmer et al., 1996] [Banzhaf et al., 1997b] [Nordin and Banzhaf, 1997b] 
[Nordin and Banzhaf, 1997c]. 



12.5 Engineering-Oriented Applications of GP Mcl.il 

iments were performed with a s tandard autonomous miniature robot, 

the Swiss mobile robot platform Khepera [Mondada et al., 1993], 

shown in Figure 12.13. The mobile robot has a circular shape, a 

diameter of 6 cm, and a height of 5 cm. It possesses two motors and 

an on-board power supply. The motors can be independently con­

trolled by a PID controller. The robot has a microcontroller onboard 

which runs both a simple operating system and the GP-based online 

learning system. 

Figure 12.13 
The Khepera robot 

The fitness in the obstacle-avoiding task has a pain and a pleasure 

par t . The negative contribution to fitness - pain - is simply the sum 

of all proximity sensor values. The closer the robot 's sensors are to an 

object, the higher the pain. In order to keep the robot from standing 

still or gyrating, it has a positive contribution to fitness - pleasure -

as well. It receives pleasure from going straight and fast. Both motor 

speed values minus the absolute value of their difference is thus added 

to the fitness. 

The online G P is based on a probabilistic sampling of the envi­

ronment. Different solution candidates (programs) are evaluated in 

different situations. This could result in unfair comparison because a 

good individual dealing with a hard situation can be rejected in favor 

of a bad individual dealing with a very easy situation. The conclusion 

of these experiments, however, is tha t a good overall individual tends 

to survive and reproduce in the long term. The somewhat paradoxi­

cal fact is tha t sparse training da ta sets or probabilistic sampling in 

evolutionary algorithms often both increase convergence speed and 

keep diversity high enough to escape local opt ima during the search. 

The remarkable fact tha t evolutionary algorithms might prefer 

noisy fitness functions is also illustrated in [Fitzpatrick et al., 1984]. 

Here, a genetic algorithm is used to match two digital pictures, each 

consisting of 10 000 pixels. The most efficient sample size in the 

fitness evaluation turned out to be 10 (out of 10 000) pixels. In other 

GP Elements 
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The robot shows exploratory behavior from the beginning on. 

This is a result of the diversity in behavior residing in the first gener­

ation of programs which has been generated randomly. Naturally, the 

behavior is erratic at the outset of a run. During the first minutes, 

the robot keeps colliding with different objects, but , as t ime goes on, 

the collisions become less and less frequent. The first intelligent be­

havior usually emerging is some kind of backing up after a collision. 

Then, the robot gradually learns to steer away in an increasingly 

sophisticated manner. 

On average, in 90% of the experiments, the robot learns how to 

reduce the collision frequency to less than 2 collisions per minute. The 

convergence t ime is about one hour. It takes about 40-60 minutes, or 

200-300 generation equivalents, to evolve good obstacle-avoiding be­

havior. Figure 12.15 shows how the number of collisions per minute 

diminishes as the robot learns and as the population becomes domi­

nated by good control strategies. 

Results 
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These experiments indicate the potential of G P for online control 

and how genetic programming combined with a technique for evolv­

ing machine code can make the evolution of low-end architectures 

possible. 
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12.5.2 Spacecraft Attitude Maneuvers 

Howley describes a nice application from the domain of optimal con­

trol [Howley, 1996]. The object to be controlled is a spacecraft. The 

problem is to find a control program tha t performs a 3D craft re­

orientation in minimal t ime. This means tha t , given an initial craft 

a t t i tude and a desired final a t t i tude , the program is required to rotate 

the craft into the final a t t i tude in minimal t ime by rotat ing the craft 

around one or more of its three body axes. These axes are pairwisely 

orthogonal. 

Problem Domain The craft components affecting the rotation are called actuators. 

For each body axis, there is an actuator , which generates a positive 

or a negative torque tha t lets the craft rota te - depending on the 

definition of positive and negative - anticlockwise or clockwise, say, 

about the respective axis. Each actuator is assumed to have a bang-

bang characteristic, so tha t it generates either a maximal positive or 

maximal negative torque. 

This problem is practically relevant in the area of satellite-based 

da ta transmission and observation, for instance. Typically, an obser­

vation satellite has to keep an optical system in focus on a planetary 

target area. If the satellite is moving relative to the planetary sur­

face, it has to reorient continuously - or, at least, at sufficiently short 

t ime intervals - in order to stay focused. 

Task The application concentrates on two maneuver types: rest-to-rest 

and rate-limited non-zero (RLNZ) terminal velocity. A rest-to-rest 

maneuver begins and ends with zero angular rates - ra te is a synonym 

for velocity here - so there is no rotat ion about any axis before or after 

the maneuver. Often, however, a RLNZ maneuver is needed: before 

or after the maneuver, the craft is rotat ing about one or more axes 

with certain angular rates. For instance, when the craft is supposed 

to track a moving and maneuvering target with an optical system, 

RLNZ maneuvers are needed. The maximal angular rates are limited 

by the maximal forces the actuators can generate. In particular, a 

rest-to-rest maneuver can be viewed as a RLNZ maneuver with zero 

initial and final rate. 

Note tha t , according to a theorem of Euler, a rigid body can get 

from an arbi trary a t t i tude into another arbi trary a t t i tude by a rota­

tion through a certain angle about a certain axis, called the eigenaxis. 

Thus, instead of doing a rotation sequence about one or more body 

axes, the craft may just rota te through a certain angle about the 

corresponding eigenaxis. This rotation is implemented by operat ing 

one or more actuators in parallel. 

If you have trouble imagining this, take a rubber eraser and a 

needle. Hold the eraser in some initial a t t i tude , then move it into 
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some final a t t i tude by a sequence of body axis rotations. For each 

pair of initial and final a t t i tude, you can always stick the needle 

through the eraser such tha t , when rotat ing the needle appropriately, 

the eraser will move from the initial to the final a t t i tude: the needle 

represents the eigenaxis. 

Thus, a maneuver means changing an initial eigenaxis/rate into 

a final eigenaxis/rate. The control problem is to do this as fast as 

possible. 

Since an actuator has a bang-bang characteristic, the complete Control Law 

maneuver consists of a sequence of actuator-switching commands. 

Each command switches one or more actuators, each to positive or 

negative torque. For instance, such a command may switch actuators 

one and two to positive and three to negative. Thus, a command 

can be represented by a 3D torque vector u\,U2,uz with each u; 

designating maximal positive or negative torque. This vector is the 

output of a control law tha t takes as input the final eigenaxis/rate 

and the current eigenaxis/rate. 

Thus, for the control law implementation at the s tar t of the ma­

neuver, the initial eigenaxis/rate are the current parameters . The 

control law becomes active for the first t ime, computing a torque 

vector. The corresponding actuator activities lead to a new current 

eigenaxis and rate . The control law becomes active again, and so on, 

until the desired eigenaxis/rate are reached. Then the control loop 

terminates. 

The control problem for rest-to-rest maneuvers has a known nu­

merical solution. However, the computat ion of this solution takes 

some time, whereas the problem must be solved in real t ime: there is 

no sense in computing an optimal solution tha t , when finally found, 

can no longer be used since it is out of date . An approximate but 

real-time solution is required. It is realized by the control loop tha t 

makes the craft move incrementally into the final eigenaxis/rate. 

For the genetic programming search, an individual is a control GP Elements 

law: G P evolves expressions tha t are used as control law within the 

control loop. The terminal set reflects the described input and output 

parameters . The function set contains + , —, x , a protected division 

operator, sign inversion, the absolute-value function, an if-a-less-6-

then-action-else-action construct, and three ADF symbols. 

The fitness cases consist of the initial eigenaxis/rate, the final 

eigenaxis/rate, and a time-out limit. Fitness evaluation considers an 

individual as successful if its application by the control loop results 

in the final eigenaxis/rate within certain error bounds and before 

time-out. 

For rest-to-rest maneuvers, runs went over 51 generations and Results 

used population size 5000. For RLNZ maneuvers, the values were 
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74 and 10 000. As genetic operators, 80% node crossover, 10% leaf 

crossover, and 10% copying were employed. As for hardware and 

software, Andre 's D G P C was used on an IBM RS6000. 

Genetic programming produced a result for the rest-to-rest ma­

neuver within plus or minus 2% of the numerical solution. Addition­

ally, this solution generalized to solve further randomly generated 

maneuvers. As for the RLNZ maneuver, G P produced a solution 

tha t solved all fitness cases but did not generalize. 

12.5.3 Hexapodal Robot 

Spencer reports on an application of genetic programming to robotics 

[Spencer, 1994]. A simulated hexapodal (six-legged) robot is to be 

controlled by an evolved program such tha t the robot walks as far as 

possible in an environment before a time-out. Each leg of the robot 

can be lifted up to a final position or put down until the foot touches 

the ground. Each leg can also be moved forward and backward -

parallel to the ground - with varying force. Thus, if the leg is down 

and moves, this action results in a robot-body movement. The robot 

is unstable if its center of gravity is outside the polygon defined by 

the feet t ha t are on the ground. After a certain t ime, an unstable 

robot falls. 

Task A subgoal of this application is having the robot learn to walk 

with minimal a priori knowledge about this function. Thus, three 

experimental setups are presented, each providing the robot with less 

knowledge. 

GP Elements The genotype is a tree expression. The terminal set contains ran­

dom floating-point constants, and - depending on the experimental 

setup - O s c i l l a t o r and Ge t -Leg -Fo rce -n . O s c i l l a t o r represents 

10sin(^), t being the number of elapsed t ime units since the s tar t of 

an experiment. G e t - L e g - F o r c e - n returns the force leg n moves with. 

The function set consists of unary negation , + , —, X, protected 

division, min and max functions, and the f mod function (floating-point 

modulo). A ternary i f function answers its second argument if the 

first argument is positive, and its third argument if the first argument 

is non-positive. 

For leg control, there are two functions. Unary S e t - L e g - F o r c e - n 

sets a certain force for leg n. The leg will be moved with this force. 

Unary S e t - L e g - S t a t e - n lifts leg n up or puts it down dependent on 

the argument 's sign. 

The fitness of an individual corresponds to the distance - between 

the s tar t and end points of the walked pa th - the robot walks under 

sf'.vr.? the individual's control until a t ime-out. Distance is measured in 

space units. The time-out occurs 500 time units after the simulation 
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has s tar ted. After each elapsed t ime unit, an individual gets evalu­

ated. The evaluation - the execution - may cause leg actions. As 

a consequence, the individual may fall. In this case, the simulation 

stops at once. 

A populat ion size of 1000 individuals is used, with 50, 65, or 

100 generations, depending on the experimental setup. The selection 

scheme is a 6-tournament, and 0.5% mutat ion and 75% crossover are 

employed as genetic operators. 

Spencer introduces constant perturbat ion, which gets used with 

25% probability. This operator, applied to an individual, changes 

each constant in the expression by plus or minus 10%. Spencer argues 

tha t this kind of mutat ion is more beneficial than s tandard mutat ion 

since it is just the coefficients tha t get changed, not the structure, 

which might disrupt the program logic. 

The leg-related terminals and functions may give rise to inter­

esting side effects. For instance, certain legs can be controlled im­

mediately by the s tate of other legs. For example, the s tatement 

S e t - L e g - F o r c e - l ( G e t - L e g - F o r c e - 2 ( . . ) ) makes leg 1 move with 

the force of leg 2. This kind of inter-leg communication is actually 

a software analog of a similar concept implemented in the neural 

leg-motion control system of certain insects. 

Spencer reports tha t , in all three experiments, individuals emerge Results 

t ha t can control the robot such tha t it performs "efficient, sustained 

locomotion," and believes tha t the application can be scaled up to 

three-dimensional robots. 

This application raises a very interesting possibility: real-time 

G P control of robotic systems. Obviously, evolving a program for a 

real-time application is usually infeasible during run t ime, since the 

evolution takes too long. So, the naive approach is to evolve a very 

good solution offline and to transfer this program to the control unit 

of a robot where it performs in real t ime. However, a big disadvan­

tage with this approach is tha t , no mat ter how good the solution 

is, once it has been evolved and transferred, it cannot evolve fur­

ther to adapt to a potentially changing environment. Spencer briefly 

considers combining genetic programming with classifier systems to 

overcome this disadvantage. 

12.5.4 Design of Electrical Circuits 

The most obvious application area for G P is evolving programs. How­

ever, variants of the technique can be used to evolve structures rep­

resenting objects that are not immediately identified as conventional 

programs. One such application is the automatic design of electrical 

circuits. 



12 Applications of Genetic Programming 

74 and 10 000. As genetic operators, 80% node crossover, 10% leaf 

crossover, and 10% copying were employed. As for hardware and 

software, Andre 's D G P C was used on an IBM RS6000. 

Genetic programming produced a result for the rest-to-rest ma­

neuver within plus or minus 2% of the numerical solution. Addition­

ally, this solution generalized to solve further randomly generated 

maneuvers. As for the RLNZ maneuver, G P produced a solution 

tha t solved all fitness cases but did not generalize. 

12.5.3 Hexapodal Robot 

Spencer reports on an application of genetic programming to robotics 

[Spencer, 1994]. A simulated hexapodal (six-legged) robot is to be 

controlled by an evolved program such tha t the robot walks as far as 

possible in an environment before a t ime-out. Each leg of the robot 

can be lifted up to a final position or put down until the foot touches 

the ground. Each leg can also be moved forward and backward -

parallel to the ground - with varying force. Thus, if the leg is down 

and moves, this action results in a robot-body movement. The robot 

is unstable if its center of gravity is outside the polygon defined by 

the feet tha t are on the ground. After a certain t ime, an unstable 

robot falls. 

Task A subgoal of this application is having the robot learn to walk 

with minimal a priori knowledge about this function. Thus, three 

experimental setups are presented, each providing the robot with less 

knowledge. 

GP Elements The genotype is a tree expression. The terminal set contains ran­

dom floating-point constants, and - depending on the experimental 

setup - O s c i l l a t o r and Ge t -Leg -Fo rce -n . O s c i l l a t o r represents 

10sin(i) , t being the number of elapsed t ime units since the s tar t of 

an experiment. G e t - L e g - F o r c e - n returns the force leg n moves with. 

The function set consists of unary negation , + , —, x , protected 

division, min and max functions, and the f mod function (floating-point 

modulo). A ternary i f function answers its second argument if the 

first argument is positive, and its third argument if the first argument 

is non-positive. 

For leg control, there are two functions. Unary S e t - L e g - F o r c e - n 

sets a certain force for leg n. The leg will be moved with this force. 

Unary S e t - L e g - S t a t e - n lifts leg n up or puts it down dependent on 

the argument 's sign. 

The fitness of an individual corresponds to the distance - between 

the s tar t and end points of the walked pa th - the robot walks under 

?" the individual's control until a t ime-out. Distance is measured in 

space units. The time-out occurs 500 time units after the simulation 
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Koza et al. have used genetic programming successfully to evolve 

a large number of different circuits with good results 

[Koza et al., 1996b] [Koza et al., 1996c]. Here, a recipe for how to 

construct a circuit is evolved by the G P system. Each individual 

contains nodes with operations tha t manipulate an electrical circuit. 

At the beginning of an individual evaluation a - predefined em­

bryonic circuit is created. This small but consistent circuit is then 

changed by the operators in the G P individual, and the resulting 

circuit is evaluated for its performance by a simulator for electrical 

circuits using the original task. The simulator is often very com­

plex and the fitness function thus takes a very long t ime to compute. 

Nevertheless, it is possible to evolve well-performing electrical circuit 

designs faster and bet ter than a human could design them manually. 

The technique is an example of a method where the phenotype -

the circuit - differs from the genotype - the G P individual - and is 

part ly based on the work of Gruau described in Section 12.4.1. 

The circuits tha t have been successfully synthesized include both 

passive components (wires, resistors, capacitors, etc.) and active 

components (transistors). Figures 12.16 and 12.17 show examples 

of evolved circuits. 

Figure 12.16 
An evolved circuit 

([Koza et al., 1996b], 

copyright MIT Press, 

reproduced with 

permission) 
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The function set contains functions of three basic types: 

• Connection-modifying functions 

• Component-creating functions .; 

• Automatically defined functions 

<*..£ .,* J 

At each moment, there are several writing heads in the circuit. 

The writing heads point to components and wires in the circuit t ha t 

will be changed by the next function to be evaluated in the program 
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Figure 12.17 
An evolved circuit 

([Koza et al., 1996b], 

copyright MIT Press, 

reproduced with 

permission) 

Aztf 

tree. A writing head moves and/or spawns new writing heads after 
each operation. 

Connection-modifying functions can flip a component upside down 
or duplicate a component in series or in parallel with it. Component-
creating functions insert a new component into the circuit at the 
location of a writing head. 

The program tree is typed (see Section 10.2.10), and crossover 
exchanges only subtrees of the same type. Initialization is guaranteed 
to create trees obeying syntactic constraints, that is, a tree has a 
correct number of subtrees. There is also a mutation operator that 
complies with the syntactic rules of the circuit. 

The SPICE package from the University of California at Berkeley 
is used to simulate electronic circuits for fitness evaluation. Simulat­
ing electronic circuits is very time consuming, thus the system is run 
on a 64-processor (PowerPC) parallel machine with a parallel GP 
implementation using demes (see Section 10.1.2). 

The results show that, using a population size of 640 000 over 
about 200 generations, it is possible to solve problems that are re­
garded as difficult for a human designer. 

12.5.5 Articulated Figure Motion Animation 

Computer-assisted character animation became a multimillion-dollar Problem Domain 
business in the 1990s. With the advent of powerful graphic worksta­
tions and parallel-processor farms for simulating lighting conditions 
and other aspects of animated scenes, the automated generation of 
articulated figure motion is a growing need. 

Professional animators have until recently been able to keep up 
with the demand for frames, but the manual generation of frames is 
becoming more and more outdated. Gritz and Hahn have proposed 
using GP for animating figures [Gritz and Hahn, 1995]. They observe 
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tha t , although it is difficult for humans to generate character motion, 

it is easy for humans to judge generated motion for its quality. Their 

suggestion is to let a G P system generate motion and to have the 

human provide the judgment as to whether it is good or bad. 

The agents to be animated are controlled by programs which will 

be subject to evolution via GP. The hope is that G P is able to find 

good controller programs, start ing from a population of randomly 

generated motion control programs. 

Task The task Gritz and Hahn consider is to generate control programs 

for artificial agents consisting of a figure model with fixed geometry 

and dynamical features. A figure is t reated as a tree of rigid links 

with damped angular springs, and a simulation of its dynamics is 

performed using established methods [Armstrong and Green, 1985] 

[Hahn, 1988] [Wilhelms, 1990]. 

Figure 12.18 shows one of the joints with the corresponding quan­

tities to be used for the dynamics simulation. The joint has a desired 

orientation tha t can be achieved by integrating, with a proportional-

derivative (PD) controller, the forces of the spring. 

Figure 12.18 

The torque at the joint is 

proportional to the 

angular difference 

between actual and 

desired orientation of the 

links. The desired angle 

is the output of the 

controller program 

([Gritz and Hahn, 1995]). 

System Structure 

GP Elements 

Rigid Link i 

Rigid Linki+1 
(actual pos.) 

O--- Desired pos. link i+1 

The G P system evolves controller programs tha t output desired 

orientations for all the joints which are then used by the dynamics 

model to generate motion by integrating the dynamics equations for 

a number of t ime steps. The dynamics simulation also performs col­

lision detection and collision response, yielding a physically realistic 

motion of the figure. 

The entire system consisting of a G P module communicating with 

the dynamics module is depicted in Figure 12.19. 

The figure model of the particular character to be animated is 

considered the input, as is the fitness function specifying what kind 

of motion is good or bad. The control programs giving commands as 

to how to move the figure are the output of the system. 

The minimal set of functions Gritz and Hahn consider are the 

basic ar i thmetic functions + , — , * , % and a function i f l t z , which 

needs three arguments. More elaborate functions, such as cos or abs , 

or while-control functions or special functions like r e l e a s e — g r i p or 

d i s t a n c e — t o — n e a r e s t — n e i g h b o r , are mentioned but not used. 
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Figure 12.19 
A system for rigid body 

animation 

([Gritz and Hahn, 1995]) 
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The terminals consist of the internal state variables of the figure 
and outputs of sensors accessible to the figure. These quantities are 
read out at the time of evaluation of the control program and used 
as its input. Gritz and Hahn also use random ephemeral constants 
as terminals for their simulations. 

Because there is usually more than one joint in a figure, the con­
trol programs for each of the joints are evolved simultaneously but 
separately. 

The fitness measure consists of two terms one evaluates the main 
goal of the movement, and the other one judges the style of movement. 
In one example used by Gritz and Hahn, the main goal is to move a 
lamp - as the animated figure - to a certain place. Parameters used 
were: P = 250, Gmax = 50, pc = 0.9. 

The lamp figure has four links and three internally controllable 
3D degrees of freedom. The resulting lamp motions (see.Figure 12.20) 
consisted of jumps and looked smooth, physically realistic, efficient 
and surprisingly organic [Gritz and Hahn, 1995]. Gritz and Hahn 
also use a humanoid figure with a total of 28 degrees of freedom, 
between 4 and 10 of which are controlled by the GP system. 

As to the style of the motion, Gritz and Hahn played a nice trick 
applicable anywhere. Initially, the fitness function consisted of the 
distance to the goal only. The movement-style terms were gradually 
phased in after some generations. "In this manner, we allowed the 
motion to start crudely and get, progressively more stable over several 
generations. This was easier for the system than requiring optimal 
motion at the very start" [Gritz and Hahn, 1995]. 

Figure 12.20 
The lamp's jumping 

motion: the main goal is 

to move the lamp to the 

target point X 

([Gritz and Hahn, 1995], 

copyright John Wiley, 

reproduced with 

permission) 
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Style was judged by a weighted sum of the following: 

• bonus for completing the motion early 

• penalty for excess movement after the goal was met 

• penalty for hitting its head or falling over 

• bonus for ending with joints at neutral angles 

The computation time per generation was a few minutes on a 
MIPS R4000 processor. This performance appears good when com­
pared to that of a human animator drawing a sequence of frames by 
hand. 

12.6 Summary 

In this chapter, we have seen an amazing variety of applications. 
Genetic programming has shown its worth in a broad spectrum of 
real-life problem domains with remarkable flexibility as a machine 
learning technique. GP is also unique in its combination of symbolic 
and subsymbolic application areas. In contrast to neural networks, 
for instance, it is possible - but not always easy - to interpret the 
GP output individual and thus to generate potentially new insights 
into the solved problem. In this way, we have seen or mentioned 
how GP can be applied to highly symbolic tasks such as natural 
language processing and even theorem proving. At the other end of 
the spectrum, it can be used for low-level signal processing. 

Genetic programming has shown its value in hybrid techniques 
together with other machine learning paradigms such as neural net­
works. In other experiments, it compared well to other such machine 
learning paradigms in terms both of speed and learning capability. 
GP techniques have been used to evolve binary machine code, which 
gives very efficient evolved programs. 

Some GP applications learn with only a few fitness cases while 
others work in domains with huge data sets such as image processing. 
In other examples, for instance, in Koza's circuit design approach, GP 
has been shown to match human expert performance both in time 
expenditure and in solution quality. 

Some of this flexibility may be attributed to the freedom in choos­
ing an arbitrary function set. By changing the function set, it is pos­
sible to adapt GP toward any problem domain where a suitable fit­
ness function can be defined. Another reason for the broad spectrum 
of GP application domains is the generally very robust evolutionary 
search. Evolutionary search is not always the most efficient search in 
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specialized problem domains but it is known to be very robust in its 
applicability - at worst degrading to a hill climbing algorithm. 

The achievements in GP research over only five years or so are 
truly encouraging for the future. 
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The engineering process doesn't work very well when it gets com­
plicated. We are beginning to depend on computers that use a 
process very different from engineering - a process that allows us 
to produce things of much more complexity than we could with 
normal engineering. Yet we don't quite understand the possibili­
ties of that process, so in a sense it's getting ahead of us. We are 
now using those programs to make much faster computers so that 
we will be able to run this process much faster. The process is 
feeding on itself. It's becoming faster. It's autocatalytic. We are 
analogous to the single-celled organisms when they were turning 
into multicellular organisms. We are the amoebas, and we can't 
quite figure out what the hell this thing is we are creating. We are 
right at that point of transition, and there is something coming 
along after us. 

• : — D. HlLLIS, 1991 

13.1 Summary 

In this book we have set out to introduce the reader to genetic pro­

gramming, an exciting new field in computer science. G P is par t of 

the machine learning branch of artificial intelligence. Therefore, it 

seemed to us appropriate to s tar t this book with a look at machine 

learning in Chapter 1. Our main point here was t ha t G P is able to 

evolve computer programs and, as such, GP ' s problem representation 

is a superset of the representations of all other ML methods, all of 

which work on computers, too. 

G P has also drawn heavily on ideas from biology. In particular, it 

is an ML paradigm built on the theory of evolution. Chapter 2 thus 

presented some biological background, and we looked at how natura l 

evolution proceeds in the living world. Throughout this book, we 

have a t tempted to return to the biological metaphor in explaining 

G P or in posing possible answers to unresolved questions. In the 

judgment of the authors, much more is to be learned by studying 

this analogy further and into more depth. 

G P can be said to be the "offspring" resulting from a crossover 

of biology with computer science. Accordingly, Chapter 3 presented 

some mathemat ics and computer science background. In particular, 

we looked at the question of generating randomness, and randomness 

with different features for algorithms, and into the computer science 

methods available for GP. 

There are other offspring from such a crossover of biology with 

computer science, notably EP, GA, and ES, which were discussed 

in more detail in Chapter 4. The main differences between G P and 

these other algorithms were mentioned. 
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The chapters treat ing G P directly started with an introduction 

to the basics in Chapter 5. Elementary representations for breeding 

programs were presented along with the commonest genetic operators 

and selection schemes tha t work on these representations. 

One of the most heavily used genetic operators in GP, crossover, 

was the subject of Chapter 6. Our point of view was tha t crossover, 

in its simplest embodiment, has some flaws tha t need improvement. 

We argued tha t a homologous crossover operator or other means to 

decrease the rate of destructive crossover would be impor tant steps 

in tha t direction. 

In looking at the run dynamics of GP, we learned in Chapter 7 

how introns can spoil G P runs and why they emerge in the first place. 

The mixed blessing of this emergent phenomenon was the main theme 

in the chapter. We tried to make clear tha t understanding emergent 

effects helps in understanding evolution. 

Validation of results and understanding complex run dynamics 

are essential to advancing the discipline. Accordingly, Chapter 8 

describes the toolkit available to practitioners to measure important 

observables during G P runs and to validate G P results. 

After these general considerations, Chapter 9 presented a set of 

G P variants. Roughly, they can be classified by their genotypic struc­

ture into three groups: sequence, tree, and graph structures. 

Chapter 10 was devoted to discussing a large variety of advanced 

methods for G P which were organized around how they improved 

the features of GP: speed, power of evolution, and the power of the 

evolved programs. 

Chapter 11 then dealt with implementation issues - the tech­

niques necessary to make G P work on the computers available today. 

We discussed systems based on list processing, on arrays and stacks, 

and on machine code. 

Chapter 12, finally, discussed a large variety of subjectively se­

lected application problems tha t have been tackled using GP. 

13.2 The Future of Genetic Programming 

But the only way of discovering the limits of the possible is to 
venture a little way past them into the impossible. 

A.C. CLARKE 

Some of the ideas presented in this section will seem to be just around 

the corner, while others may appear far-fetched. However, we should 

not forget tha t dynamic systems - and G P is part of such a system, 

science and technology sometimes show non-linear behavior which 

may result in accelerated development during critical phases. 
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Let us remind ourselves of the ul t imate goal. We want to be 

able to tell computers what we want them to do - and computers 

should learn how to do it automatically. Computers should be able 

to program themselves, and G P is one approach tha t might take us 

toward tha t goal. 

However, if we can tell a computer what to do, why should not 

a computer tell another computer what to do? Consider the increas­

ing connectivity of computers worldwide. It is intriguing to think 

about computers delegating subtasks of a complex overall task to 

their peers. In July 1996 there were close to 13 million hosts in the 

Internet. A certain percentage may often be down, slow, or busy, but 

this still leaves us with an impressive number of CPUs t ha t could 

solve delegated G P subtasks instead of being idle. 

i Genetic programming requires substantial computing resources in 

order to perform the task of breeding generations of complex struc­

tures. Programs can be considered to be jus t special cases of such 

structures. It does not actually mat te r to G P whether crossover 

works with parse trees, strings, graphs, or, say, bridge components. 

The generation of general structures may become a major topic of 

G P in the future. 

The idea of generating all kinds of structures once more illustrates 

the flexibility of GP. At least one s trength of G P compared to other 

evolutionary paradigms might be mentioned here: its power to handle 

symbolic expressions. G P also has its weaknesses, like depending 

on explicit fitness measures. Thus, there is a great potential for 

combining genetic programming with other paradigms into hybrids 

appropriate for certain problem domains. 

Many real-world situations may well be so complex tha t explicit 

fitness measures cannot be defined. For instance, what is the fitness 

function for evolving a program telling you when to sell and when to 

buy stocks and shares, for controlling traffic in a complex highway 

system, or for simulating tissue growth in an organism? Typically, we 

are in trouble when trying to define a meaningful fitness measure for 

problems tha t involve many interacting entities with different s trate­

gies in a dynamic environment. The trouble arises because, in such 

situations, the underlying fitness landscape becomes dynamic and 

cannot be described by a static fitness measure. •-; •• . 

Such situations are very similar to what happens in organic evo­

lution. Organisms change their environment, which then changes 

the organisms. Hence, it is interesting to combine genetic program­

ming and artificial life: evolved programs should represent behavior 

implicitly evaluated by program-program and program-environment 

interactions. It is typical for artificial life environments tha t there is 
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no explicit fitness measure. A certain entity continues its existence 
or vanishes due to its specific interaction with its environment. 

Some research has already gone into combining genetic program­
ming and artificial life, such as ERUNTICLAB 1 or PHILIA,2 the latter 
a project implemented by students at Dortmund University. GP for 
co-evolving agents in an environment is becoming a more widespread 
technique [Luke and Spector, 1996] [Qureshi, 1996]. 

We referred to work on making electronic hardware evolve "like Hardware Evolution 
an organism." May we, in the future, expect GP to grow circuits 
more complex than a binary adder or an asymmetric bandpass filter 
[Koza et al., 1996b]? For instance, imagine a circuit that rewires in 
order to replace the lost functionality of a damaged subsystem, like 
certain brain parts may take over tasks from damaged parts. 

Work on combining genetic programming with robotics has also GP and Robotics 
been presented. Usually, such approaches focus on evolving a control 
program for a mechanical device that does not develop or evolve, like 
a little mobile robot. May we, in the future, expect GP to grow and 
evolve hardware in general, not just electronic hardware? A blending 
of GP with nanotechnology [Drexler, 1992] could be interesting. 

Meta-GP is another area where we can expect dramatic progress Meta-GP 
in the coming years. Self-adaptation of parameters of GP runs and 
evolution of operators through a GP system are issues that have been 
mentioned in this book. With the acceleration of GP systems, these 
areas will become more and more accessible for researchers. 

13.3 Conclusion 

It is our strong belief that, over the next decade, GP will make 
progress on the challenges we have presented and on other issues 
mentioned. The question is: How far can we go? The evolution of 
GP might itself follow an improvement law similar to the ones we can 
observe in numerous evolutionary algorithm runs: very fast improve­
ment over the first few years of its evolution, then a gradual decline 
in speed until phases of stagnation are only occasionally interrupted 
by incremental improvements. 

GP must be able to scale up and generate solutions for problems 
demanding larger solution programs. There should be clearer guide­
lines for the application engineer, so as to make GP application less of 
an art and more routine. Off-the-shelf software packages would help 
in the emergence of commercial applications. GP must also prove its 

1 http://hanip.hampshire.edu/CCL/Projects/ErunticLab/ 
2http://lsll-www.informatik.uni-dortmund.de/gp/philia.html 
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worth in more real-life applications and generate money in large-scale 

industrial applications. 

We are still in the first phase of rapid progress as more and more 

researchers enter the field of GP. It is impossible to predict where the 

field will be in ten years. All the indications are tha t , as the speed of 

software and hardware improves, the learning domains tha t may be 

addressed successfully with G P will grow. We see two main factors 

tha t will determine the rate and longevity of tha t growth. 

GP Needs Speed Returning one last t ime to the biological metaphor, greater speed 

means tha t G P populations may become much larger and a G P run 

may be able to conduct a much broader search of the space of pos­

sible programs. The importance of the massive parallelism seen in 

biological evolution may be the key to bet ter G P algorithms. The 

remarkable results of the Q/3 replicase experiments involve literally 

billions of RNA molecules, all evolving in parallel. The same is true 

for the elegant and promising SELEX algorithm (Chapter 2). To­

day, even very large G P runs involve, perhaps, no more than one 

million individuals because of the speed of present-day hardware and 

G P systems. Accordingly, increases in the speed of G P software and 

hardware will be one key factor determining GP ' s growth over the 

next few years. 

GP Needs Efficiency Speed is not the only factor. It is also important to re turn again 

to our discussion in Chapter 1 about GP ' s place among machine 

learning systems. The problem representation and the efficiency of 

the search algorithm are very important . Impor tant research and 

innovation lies ahead in improving the G P search algorithm. 

If increases in G P speed are also accompanied by increases in the 

efficiency of the G P search algorithm, it is possible tha t we may al­

ready have begun a historic move away from the "guild" era of writing 

computer programs toward an era where we can, as Friedberg said 

in 1958, tell a computer "precisely how to learn" - how to program 

itself and other computers. Even in the new era, however, it would 

remain our burden to specify tasks worthy of being learned. 



A Printed and Recorded 
Resources 

The following URLs are also available from the homepage of this 
book. 

http://www.mkp.com/GP-Intro « 

The reader is advised to check with the URL to find the most up-to-
date information. 

A . l Books on Genetic Programming 

• Koza, J.R. (1992). Genetic Programming: On Programming 
Computers by Means of Natural Selection. MIT Press, Cam­
bridge, MA. 

http: / /www-leland.Stanford.edu/~phred/jaws1.html 

• Kinnear, K.E. Jr. (ed.) (1994). Advances in Genetic Program­
ming. MIT Press, Cambridge, MA. 

ht tp: / /www-cs-facui ty .Stanford.edu/~koza/aigp.html 

• Koza, J.R. (1994). Genetic Programming II: Automatic Dis­
covery of Reusable Programs. MIT Press, Cambridge, MA. 

http: / /www-leland.Stanford.edu/~phred/jaws2.html 

• Angeline, P.J. and Kinnear, K.E. Jr. (eds.) (1996). Advances 
in Genetic Programming 2. MIT Press, Cambridge, MA. 

h t tp : / /www-dept .cs .uc l .ac .uk/s ta f f /w. langdon/a igp2 .h tml 

• Koza, J.R. and Goldberg, D. E. and Fogel, D. B. and Riolo, 
R. L. (eds.) (1996). Genetic Programming 1996: Proceedings 
of the First Annual Conference. Stanford University, Stanford, 
CA. MIT Press, Cambridge, MA. 
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• Koza, J.R. and Deb, K. and Dorigo, M. and Fogel, D. B. and 
Garzon, M. and Iba, H. and Riolo, R. L. (eds.) (1997). Genetic 
Programming 1997: Proceedings of the Second Annual Confer­
ence. Stanford University, Stanford, CA. Morgan Kaufmann, 
San Francisco, CA. 

A.2 GP Video Tapes 

• Koza, J.R. and Rice, J. P. (1992). Genetic Programming: The 
Movie. MIT Press, Cambridge, MA. 

• Koza, J.R (1994). Genetic Programming II Videotape: The 
Next Generation. MIT Press, Cambridge, MA. 

• (1996). Genetic Programming 1996: Video Proceedings of the 
First Annual Conference. Sound Photo Synthesis, CA. 

A.3 Books on Evolutionary Algorithms 

• Holland, J.H. (1975 and 1995). Adaptation in Natural and Ar­
tificial Systems. University of Michigan Press, Ann Arbor, MI. 

• Schwefel, H.-P. (1981 and 1995). Evolution and Optimum Seek­
ing. John Wiley & Sons, New York. 

• Davis, L. (ed.) (1987). Genetic Algorithms and Simulated An­
nealing. Pitman, London. 

• Goldberg, D. E. (1989). Genetic Algorithms in Search, Op­
timization, and Machine Learning. Addison-Wesley, Reading, 
MA. 

• Davis, L. (1991). Handbook of Genetic Algorithms. Van Nos-
trand Reinhold, New York. 

• Fogel, D.B. (1995). Evolutionary Computation. IEEE Press, 
New York. 

• Michalewicz, Z. (1992). Genetic Algorithms + Data Structures 
= Evolution Programs. Springer-Verlag, Berlin. 1996: 3rd edi­
tion. 

• Mitchell, M. (1996). An Introduction to Genetic Algorithms. 
MIT Press, Cambridge, MA. 

Some dissertations have also been published in book form. 
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A.4 Selected Journals 

• Adaptive Behavior, MIT Press 

• Artificial Intelligence, Kluwer Academic 

• Artificial Life, MIT Press 

• Biological Cybernetics, Springer-Verlag 

• BioSystems, Elsevier Science 

• Complexity, Academic Press 

• Complex Systems, Complex Systems Publications 

• Evolutionary Computation, MIT Press 

• IEEE Transactions on Evolutionary Computation, IEEE 

• IEEE Transactions on Systems, Man, and Cybernetics, IEEE 

• Machine Learning, Kluwer Academic 
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B Information Available 
on the Internet 

The following URLs are also available from the homepage of this 
book. 

http://www.mkp.com/GP-Intro 

The reader is advised to check with the URL to find the most up-to-
date information. 

B.l GP Tutorials 

http://metricanet.com/people/j j f/gp/Tutorial/tutorial.html 

http://research.germany.eu.net:8080/encore/www/Ql_5.htm 

http://alphard.ethz.ch/gerber/approx/default.html 

http://www.byte.com/art/9402/secl0/artl.htm 

http://aif.wu-wien.ac.at/~geyers/archive/ga/gp/gp/node2.html 

http://www.geneticprogramming.com 

B.2 GP Frequently Asked Questions 

http://www.salford.ac.uk/docs/depts/eee/gp2faq.html 

http://www.salford.ac.uk/docs/depts/eee/gpfaq.html 

B.3 GP Bibliographies 

This always close-to-complete bibliography is being maintained by 
Bill Langdon: 

f tp : / / i tp .cs .bham.ac .uk/pub/authors /W.B.Langdon/bib l io /gp-bib l iography.b ib 

h t tp : / / l i inwww.ira .uka .de/bibl iography/Ai /genet ic .programming.html 

Jarmo Alander's GP Bibliography: 

h t t p : / / r e imar i . uwasa . f i /~jal /gaGPbib/gaGPlis t .html 

'IP* 
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B.4 GP Researchers 

Lists of researchers and their homepages can be found on 

ht tp: / /www-cs-facui ty .Stanford.edu/~koza/gpers .html 

h t tp : / /www.cs .uc l .ac .uk / research /genprog/ 

h t tp : / /metr icanet .com/people / j j f /gp/GPpages/misc .h tml 

This resource offers various GP-oriented links and links to Koza's 
papers: 

h t tp: / /www-leland.s tandford.edu/"phred/ john.html 

B.5 General Evolutionary Computation 

GGAA 

http://www.aic.nrl.navy.mil/galist/ 

ENCORE 

http://research.germany.eu.net:8080/encore/www/top.htm 

Evolutionary Computation Page 

http://rodin.cs.uh.edu/~twryu/genetic.html 

B.6 Mailing Lists 

There are two genetic programming e-mailing lists: one global list 
with more than 1000 researchers participating, and one local list for 
the San Francisco bay area. You may subscribe to the global list by 
sending a subscription request consisting of the message 

subscribe genetic-programming 

to 

genetic programming-REQUESTScs.Stanford.edu 
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If you would like to unsubscribe, send a request consisting of the 
message 

unsubscribe genetic-programming 

to 

genet ic programming-REQUESTQcs.Stanford.edu 

The local list announces the periodic genetic programming lunches 
held at Stanford to people in the San Francisco bay area. It is occa­
sionally also used to announce conference events and jobs in the bay 
area. You can subscribe to the local list by sending a subscription 
request consisting of the message 

subscribe ba-gp 

to 

ba-gp-REQUESTQcs.Stanford.edu 

If you wish to unsubscribe, send a request consisting of the message 

unsubscribe ba-gp 

to 

ba-gp-REQUESTQcs.Stanford.edu 

Related Mailing Lists and News Groups 

• Genetic algorithm mailing list 

g a - l i s t - r e q u e s t Q a i c . n r l . n a v y . m i l 

• Genetic algorithms and neural networks mailing list 

gann-reques tQcs . ias ta te .edu 

• Genetic algorithms news group 

USENET news group: 

comp.ai .genet ic 

• Artificial life news group 

USENET news group: 

alife.bbs.ga 



C GP Software 

The following URLs are also available from the homepage of this 
book. 

http://www.mkp.com/GP-Intro 

The reader is advised to check with the URL to find the most up-to-
date information. 

C.l Public Domain GP Systems 

• GP in C++; author: Adam Eraser 

f t p : / / f t p . s a l f o r d . a c . u k / p u b / g p / 

U lilGP; source: GARAGe 

h t tp : / / ga rage . cps .msu .edu / so f tware / l i l -gp / index .h tml 

• GP-QUICK; author: Andy Singleton 

• GP-QUICK with data structures (Bill Langdon) 

f tp: / / f tp . io .com/pub/genet ic-programming/GPdata-20-aug-95. tar .Z 

• DGPC; author: David Andre 

h t tp : / /www-le land.Stanford .edu/~phred/gp. tar .gz 

• Genetic Programming Kernel, C + + class library; 
author: Helmut Horner 

h t tp : / / a i f .wu-wien .ac .a t /~geyers /a rch ive /gpk/Dok/kurz /kurz .h tml 

• SGPC-Simple Genetic Programming in C; 
authors: Walter Alden Tackett, Aviram Carmi 

available at the genetic programming FTP site 

• YAGPLIC-Yet Another Genetic Programming Library In C 

contact Tobias Blickle: blickle@tik.ee.ethz.ch 

• Common LISP implementation; 

! W 
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f tp: / / f tp . io .com/pub/genet ic-programming/code/ 
koza-book-gp-implementation.l isp 

This is a LISP implementation of genetic programming as de­
scribed Koza's first book. There is also a file containing source 
from Koza's second book which includes ADFs. 

• GPX/Abstractica 

Interactive evolution a la Karl Sims 

f tp: / / f tp . io .com/pub/genet ic-programming/code/ 
a b s . t a r . Z 

• Symbolic regression using genetic programming in MATHEMAT-

ICA 

f tp: / / f tp . io .com/pub/genet ic-programming/code/ 
GPSRegress.m 

• A framework for the genetic programming of neural networks 

f tp : / / f tp . io .com/pub/genet ic-programming/code/ 
cerebrum.tar .Z 

C.2 Commercial GP Software 

Discipulus"", genetic programming software for desktop PCs. This 
tool evolves machine code directly and is fast and efficient. Nice user 
interface. Free version is available at 

http://www.aimlearning.com 

C.3 Related Software Packages 

D A V I N C I tree drawing tool 

http://www.informatik.uni-bremen.de/~inform/forschung/ 

daVinci/daVinci.html 

C.4 C + + Implementation Issues 

http://www.fre.ri.emu.edu/~mcm/chapt.html 
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The following URLs are also available from the homepage of this 
book. 

http://www.mkp.com/GP-Intro 

The reader is advised to check with the URL to find the most up-to-
date information. 

D.l GP Conferences 

The annual genetic programming conference series started in 1996. 
Information about it can be found at 

ht tp: / /www.cs.brandeis .edu/~zippy/gp-96.html 

The Genetic Programming 1997 conference is presented at 

ht tp: / /www-cs-facuity.Stanford.edu/~koza/gp97.html 

The Genetic Programming 1998 conference is presented at 

http://www.genetic-programming.org/ 

D.2 Related Conferences and Workshops 

ICGA International Conference on Genetic Algorithms (ICGA) con­
ference series 

• Grefenstette, John J. (ed.). Proceedings of the First Interna­
tional Conference on Genetic Algorithms and Their Applica­
tions. Hillsdale, NJ. Lawrence Erlbaum Associates. 1985. 

• Grefenstette, John J.(ed.). Proceedings of the Second Interna­
tional Conference on Genetic Algorithms. Hillsdale, NJ. Lawrence 
Erlbaum Associates. 1987. 

• Schaffer, J. David (ed.). Proceedings of the Third International 
Conference on Genetic Algorithms. San Mateo, CA. Morgan 
Kaufmann. 1989. 

• Belew, Richard and Booker, Lashon (eds.). Proceedings of the 
Fourth International Conference on Genetic Algorithms. San 
Mateo, CA. Morgan Kaufmann. 1991. 
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• Forrest, Stephanie (ed.). Proceedings of the Fifth International 
Conference on Genetic Algorithms. San Mateo, CA. Morgan 
Kaufmann. 1993. 

• Eshelman, Larry (ed.). Proceedings of the Sixth International 
Conference on Genetic Algorithms. San Francisco, CA. Morgan 
Kaufmann. 1995. 

Parallel Problem Solving from Nature (PPSN) conference series 

• Schwefel, Hans-Paul and Manner, Reinhard (eds.). Parallel 
Problem Solving from Nature I. Volume 496 of Lecture Notes 
in Computer Science. Berlin. Springer-Verlag. 1991. 

• Manner, Reinhard and Manderick, Bernard (eds.). Parallel 
Problem Solving from Nature II. Amsterdam. North-Holland. 
1992. 

• Davidor, Yuval and Schwefel, Hans-Paul and Manner, Reinhard 
(eds.). Parallel Problem Solving from Nature III. Volume 866 
of Lecture Notes in Computer Science. Berlin. Springer-Verlag. 
1994. 

• Ebeling, Werner and Rechenberg, Ingo and Schwefel, Hans-Paul 
and Voigt, Hans-Michael (eds.). Parallel Problem Solving from 
Nature IV. Volume 1141 of Lecture Notes in Computer Science. 
Berlin. Springer-Verlag. 1996. 

Evolutionary Programming (EP) conference series 

• Fogel, David B. and Atmar, Wirt (eds.). Proceedings of the 
First Annual Conference on Evolutionary Programming. San 
Diego, CA. Evolutionary Programming Society. 1992. 

• Fogel, David B. and Atmar, Wirt (eds.). Proceedings of the 
Second Annual Conference on Evolutionary Programming. San 
Diego, CA. Evolutionary Programming Society. 1993. 

• Sebald, Anthony V. and Fogel, Lawrence J. (eds.). Proceedings 
of the Third Annual Conference on Evolutionary Programming. 
River Edge, NJ. World Scientific. 1994. 

• McDonnell, John R. and Reynolds, Robert G. and Fogel, David 
(eds.). Proceedings of the Fourth Annual Conference on Evo­
lutionary Programming. Cambridge, MA. MIT Press. 1995. 

• Fogel, Lawrence J. and Angeline, Peter J. and Back, Thomas 
(eds.). Proceedings of the Fifth Annual Conference on Evolu­
tionary Programming. Cambridge, MA. MIT Press. 1996. 
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IEEE International Conference on Evolutionary Computation (ICEC) 
series 

• Proceedings of the First IEEE Conference on Evolutionary Com­
putation. New York. IEEE Press. 1994. 

• Proceedings of the Second IEEE Conference on Evolutionary 
Computation. New York. IEEE Press. 1995. 

• Proceedings of the Third IEEE Conference on Evolutionary 
Computation. New York. IEEE Press. 1996. 

Foundations Of Genetic Algorithms (FOGA) series 

• Rawlins, Gregory (ed.). Foundations of Genetic Algorithms. 
San Mateo, CA. Morgan Kaufmann. 1991. 

• Whitley, Darrell (ed.). Proceedings of the Workshop on the 
Foundations of Genetic Algorithms and Classifier Systems. Vail, 
CO. Morgan Kaufmann. 1992. 

• Whitley, Darrell and Vose, Michael (eds.). Proceedings of the 
Third Workshop on the Foundations of Genetic Algorithms. 
San Mateo, CA. Morgan Kaufmann. 1995. 

• Belew, Richard and Vose, Michael (eds.). Proceedings of the 
Fourth Workshop on the Foundations of Genetic Algorithms. 
San Mateo, CA. Morgan Kaufmann. 1997. 

Artificial Life (AL) series 

• Brooks, Rodney and Maes, Pattie (eds.). Proceedings of the 
Fourth International Workshop on the Synthesis and Simulation 
of Living Systems. Cambridge, MA. MIT Press. 1994. 

European Conference on Artificial Life (ECAL) series 

• Varela, Francisco J. and Bourgine, Paul (eds.). Toward a Prac­
tice of Autonomous Systems: Proceedings of the First Euro­
pean Conference on Artificial Life. Cambridge, MA. MIT Press. 
1992. 

• Moran, Federico and Moreno, Alvaro and Merelo, Juan J. and 
Chacon, Pablo (eds.). Advances in Artificial Life. Berlin. Springer-
Verlag. 1995. 



u events 

Others 

• Cliff, Dave and Husbands, Philip and Meyer, Jean-Arcady and 
Wilson, Stewart W. (eds.). Proceedings of the Third Inter­
national Conference on the Simulation of Adaptive Behavior. 
Cambridge, MA. MIT Press. 1994. 

Q Altman, Russ and Brutlag, Douglas and Karp, Peter and Lath-
rop, Richard and Searls, David (eds.). Proceedings of the Sec­
ond International Conference on Intelligent Systems for Molec­
ular Biology. Menlo Park, CA. AAAI Press. 1994. 
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