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Abstract. Flexible job shop scheduling problem can be regarded as an
optimization problem in production scheduling that captures practical
and challenging issues in real-world scheduling tasks such as order pick-
ing in manufacturing and cloud computing. Given a set of machines and
jobs, FJSS aims to determine which machine to process a particular job
(by routing rule) and which job will be chosen to process next by a par-
ticular machine (by sequencing rule). In addition, dynamic changes are
unavoidable in the real-world applications. These features lead to diffi-
culties in real-time scheduling. Genetic programming (GP) is well-known
for the flexibility of its representation and tree-based GP is widely and
typically used to evolve priority functions for different decisions. How-
ever, a key issue for the tree-based representation is how it can capture
both the routing and sequencing rules at the same time. In this paper,
to address this issue, we proposed to use multi-tree GP (MTGP) to
evolve both routing and sequencing rules together. In order to enhance
the performance of MTGP algorithm, a novel tree swapping crossover
operator is proposed and embedded into MTGP. The results suggest
that the multi-tree representation can achieve much better performance
with smaller rules and less training time than cooperative co-evolution
for GP in solving dynamic FJSS problem. Furthermore, the proposed
tree swapping crossover operator can greatly improve the performance
of MTGP.

Keywords: Multi-tree representation · Flexible job shop scheduling ·
Dynamic changes · Genetic programming.

1 Introduction

The rapid development of globalization and information technologies has made
our world a Global Village, where the interest of countries is interconnected.
The core of the connection highly relies on international trade. Thus, it brings
more opportunities and also thrives competition among companies. The study
of allocating the jobs to machines and determining the order of processing the
allocated jobs on each machine to optimize criteria such as flowtime, tardiness
or customer satisfaction will benefit the companies by increasing their efficiency,
profit or reputation.
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Flexible job shop scheduling (FJSS) problem is an extension to classical Job
Shop Scheduling (JSS) problem. The FJSS task, as its name suggests, assumes a
more flexible situation. It reflects a production environment where it is possible
to run an operation on more than one machine. This special trait causes the
problem to become more complicated than classical JSS because we not only
have to decide where to allocate jobs, but also need to decide which job to be
processed next simultaneously. FJSS is an NP-hard problem [2].

In addition, dynamic changes are inevitable in the real-world applications.
For example, it is obvious that job orders are unpredicted or cannot be accurately
predicted for companies, especially taking uncertain factors such as price impact,
asymmetric information, rush hours and indefinite events into consideration.
That is to say, we could not know job information until the job arrives. Dynamic
flexible job shop scheduling (DFJSS) was born for considering this situation.

All these characteristics make DFJSS problem much more challenging than
standard JSS and FJSS problems. Thus, the exact optimization methods such
as mathematic programming [15] are often inapplicable, especially to large scale
instances. Under this circumstance, heuristic search methods such as tabu search
[14], genetic algorithm [16], simulated annealing [18] become more and more
popular. These methods can get better performance in achieving reasonable
solutions in less time. However, the biggest drawback is their lack of capability
to adapt to the dynamic environmental change.

In order to reduce computational complexity and cope with dynamic changes,
Dispatching Rules (DRs) have been widely applied [6, 10, 13]. When a machine
becomes idle and has waiting operations in its queue, DRs will be triggered
to select the operation with highest priority to be processed next. In this way,
computation is carried out only at each decision point and decisions can be made
efficiently.

However, lots of DRs are designed manually [17] and manual design has its
inherent weaknesses. For instance, it highly relies on domain knowledge and
it is very demanding on labour and time. Fortunately, Genetic Programming
(GP) has been proven to be an effective hyper-heuristic method, which can au-
tomatically design DRs for scheduling [1, 9, 10, 12] that are much better than the
manually designed ones. However, the existing works mainly focus on evolving
the sequencing rule (the rule to select which waiting operation will be processed
next when a machine becomes idle) without considering the routing rule (the
rule to select which machine will be chosen to allocate the ready operations).

For DFJSS, a crucial issue is how it can evolve both routing and sequencing
rules simultaneously. The representation is the crux of the applicable algorithm.
There are two main reasons. Firstly, an appropriate representation is definitely a
rudimentary factor for an algorithm to build a solution. Secondly, the representa-
tion determines the size of the search space and there is a clear trade-off between
the complexity of the representation and the ability of GP to explore the search
space. These two facts foster the motivation to propose a more suitable repre-
sentation for DFJSS. To our best of knowledge, Cooperative Co-evolution (CC)
was firstly embedded into GP to evolve routing and sequencing rules together
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[19]. The proposed CCGP in [19] is the current state-of-the-art algorithm of
DFJSS. However, the CC approach cannot fully capture the interaction between
the routing and sequencing rules. Research in this area is still in a very early
stage and little work has been reported on this important aspect. Dealing with
multiple interdependent decisions, especially in dynamic environment, is always
difficult but also creates opportunities to find the real global optimal solution.
This is particularly challenging when multiple decisions need to be made at the
same time.

In this paper, GP with multi-tree representation is introduced to evolve rout-
ing and sequencing rules together and a novel tree swapping crossover operator
is proposed to evolve more effective rules.

1.1 Goals

In this paper, we aim to find more effective routing and sequencing rules for
DFJSS based on GP with a multi-tree representation. In particular, we have the
following research objectives.

– Introduce GP with multi-tree representation (MTGP) for evolving the rout-
ing and sequencing rules simultaneously.

– Propose a novel tree swapping crossover operator for the MTGP algorithm
according to the feature of DFJSS problem. The MTGP with the newly
proposed tree swapping crossover is denoted as sMTGP.

– Compare the performance of MTGP, sMTGP and CCGP to verify the ef-
fectiveness of the multi-tree representation and the novel tree swapping
crossover operator.

– Analyse the rules evolved by MTGP, sMTGP and CCGP.

1.2 Organization

The rest of the paper is organized as follows. Section 2 gives the background
introduction. Then, the proposed MTGP and sMTGP are introduced in Section
3. Experiment is designed in Section 4, and results with discussions are shown
in Section 5. Finally, conclusions and future work are given in Section 6.

2 Background
2.1 Dynamic Flexible Job Shop Scheduling

In the basic version of job shop scheduling (JSS) problem, n jobs need to be
processed by m machines. Each job consists of a sequence of operations and a
machine can process at most one operation at a time. For each operation, it can
be processed at a specified machine. In essence, the JSS problem is based on the
assumption that only one machine is able to run a particular operation.

FJSS breaks through the constraints of resources uniqueness: each operation
can be processed by more than one machine and its processing time depends on
the machine that processes it. Thus, FJSS can improve the production efficiency,
shorten the ordering cycle and increase the rate of orders delivered on time.

In real life, industry is in a dynamic environment, for instance, in terms of
a factory, the orders will arrive over time. Actually, there are some methods to
predict the information of incoming jobs to reduce uncertainty, thus to improve
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the accuracy of decisions. However, the gap between prediction and reality is
always inevitable and sometimes they have a very wide difference. It is indicated
that when dealing with the real-world applications, dynamic changes should be
taken into consideration.

2.2 Rules for Dynamic Flexible Job Shop Scheduling

This paper aims to involve two kinds of rules for DFJSS, which are routing
and sequencing rules, to make decisions at decision points. A routing rule is
triggered when a new job arrives or when an operation is completed and its
next operation becomes ready to be processed to allocate ready operation to a
particular machine. When a machine is free and there are operations waiting, an
operation in its queue will be chosen by a sequencing rule to be processed next.

Machine 1

Machine 2

Machine 3

O43

O62

Routing Rule

O32 O22

O81

O71 O42

O63

O11

Operations

Sequencing Rule

Ready Operations

Job n

Unknown Jobs 

Machines

O52

O63
O62

Next Operation

Fig. 1. An example of decision process of DFJSS.

Fig. 1 shows an example of decision process of DFJSS. In the figure, the solid
lines stand for what is happening and the dotted lines indicate what will happen.
There are three machines in the job shop and each job can be processed by any
machine. Each job consists of several operations in a certain order. In the current
system state, the operations (O32, O52, O22, O71, O42, O62 and O11) have been
allocated to different machines by the routing rule. Then, each machine uses
the sequencing rule to decide the next operation to be processed, e.g. machine 3
selects O62. After O62 is completed, its subsequent operation O63 becomes ready,
and will be allocated by the routing rule.

3 Genetic Programming with Multi-tree Representation
The choice of which representation to use when dealing with a problem using
GP is vital. Tree-based GP is a popular way in previous research and multi-tree
representation [7] as a special structure has been applied to classifier design [3,
11] and feature manipulation [8].

In multi-tree representation, each individual is represented as a list trees.
Taking advantage of this feature to solve DFJSS problems, routing and sequenc-
ing rules can be denoted by different trees in one individual. According to this,
multi-tree representation naturally lends itself to DFJSS. The pseudo-code of
MTGP is given in Algorithm 1.
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Algorithm 1: Pseudo-code of MTGP

// Initialization
1 while Nind < Popsize do
2 foreach individual
3 Initialize each tree //Randomly initialize each tree by ramp half-and-half
4 end
// Evolution
5 while Stopping criteria not met do
6 Evaluate the individuals
7 Copy the elites to the new population
8 Select individuals based on fitness value
9 Generate offsprings by applying crossover/mutation/reproduction operators
10 end
11 return best individual

In this paper, we use the multi-tree representation that one individual con-
tains two trees to match our problems. To be specific, the first tree is used to
indicate the sequencing rule and the second tree denotes the routing rule. The
fitness of one individual depends on the two trees working together. In the case
of multi-tree representation, the evolutionary algorithm must come to a decision
as to which trees the genetic operator will be applied.

In classical multi-tree representation, the genetic operators are defined to act
upon only one tree in an individual at a time. Other trees are unchanged and
copied directly from the parents to the offsprings. Genetic operators are limited
to a single type of trees at a time in the expectation that this will reduce the
extent to which they disrupt “building blocks” of useful code. However, when
coping with DFJSS problem, such a crossover operator has the following issues.

Firstly, the crossover operation only happens between one type of trees of the
parents, therefore, the offsprings generated might not be substantially different
from their parents. Thus, the population will lose its diversity and the ability of
exploration will decrease.

Secondly, the crossover operation cannot improve the diversity of the combi-
nations of routing and sequencing rules. In DFJSS, a good rule cannot be “good”
by itself, but should behave well when collaborating with the other rule. Thus,
the diversity of combinations is an important factor for achieving good solutions.

In order to overcome these shortcomings and make the algorithm more in
line with the properties of DFJSS, a new tree swapping crossover operator is
proposed. Fig. 2 shows the tree swapping crossover operator, which shares the
same process with the classical crossover operator except that the unselected
trees (the same type) are also swapped with each other. Fig. 2 shows two parents
(parent1 and parent2) are selected to generate offsprings and the second type
(T2) of trees is selected for crossover. The dotted circles mean that the subtrees
are chosen and will be swapped. The standard crossover operator will stop here.
But for the tree swapping crossover operator, the other type of trees is also
swapped. Thus, two offsprings (Offspring1 and Offspring2) are generated.

This will bring two benefits. The first is that useful blocks are not easily
broken. The second is the pairs or combinations of routing and sequencing rules
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T1 T2 T1 T2

Parent 1 Parent 2

T1 T2 T1 T2

Offspring 1 Offspring 2

Fig. 2. Tree swapping crossover operator for multi-tree representation.

examined in sMTGP are much more diverse. That is to say, the population of
sMTGP will become more diverse compared with MTGP. More importantly,
this point matches well with the characteristics of the DFJSS.

4 Experiment Design

4.1 Parameter Settings

In our experiment, time-invariant terminals in [10], were adopted. The details
are shown in Table 1. Six functions {+, −, ∗, /, max, min} are selected in
the function set, in which “/” is the protected division that returns the largest
double positive number if divided by 0. All of them take two operands.

Table 1. The terminal set.

Notation Description

machine-related NIQ The number of operations in the queue
WIQ Current work in the queue
MWT Waiting time of a machine

PT Processing time of an operation on a specified machine
job-related NPT Median processing time for the next operation

OWT The waiting time of an operation
WKR Median amount of work remaining for a job
NOR The number of operations remaining for a job

W Weight of a job
system-related TIS Time in system

For fair comparison, the parameters in MTGP and sMTGP are the same as
in [19]. The crossover, mutation and reproduction rates are 0.80, 0.15 and 0.05,
respectively. The rates of terminal and non-terminal selection are 0.10 and 0.90.
Tournament selection was set as parent selection method with a tournament size
of 7.

The learning process continued until the generation met the maximum gen-
eration, which was set to 51. The 30 independent runs test results were reported
as the system performance.

4.2 Simulation Configuration

For dynamic simulation, the configuration is given in Table 2, which has been
commonly used in existing studies [5, 10]. In order to improve the generalization
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ability of the evolved rules, the seeds used to stochastically generate the jobs are
rotated in the training process in each generation.

Table 2. Dynamic simulation configuration.

Parameter Value

Number of machines 10
Number of jobs/warmup jobs 5000/1000
Number of operations per job Uniform discrete distribution between 1 and 10

Available machines per operation Uniform discrete distribution between 1 and 10
Job arrival process Poisson process

Utilization level 0.85, 0.95
Processing time Uniform discrete distribution between 1 and 99

Job weights weight 1 (20%), weight 2 (60%), weight 4 (20%)
Due date factor 4

4.3 Comparison Settings

In our research, three algorithms were involved. CCGP [19] is built on GP with
cooperative co-evolution and MTGP is the proposed algorithm that introduces
GP with multi-tree representation to evolve routing and sequencing rules to-
gether. sMTGP is the improved MTGP with the tree swapping crossover. More-
over, a typical performance indicator for JSS is the flowtime, i.e., the sum of
the total waiting time and the total processing time for one job. In this paper,
we used three different kinds of variations of flowtime to measure the perfor-
mance of the proposed algorithms, namely Max-Flowtime, Mean-Flowtime and
Mean-weighted-Flowtime. Also, different scenarios were used to measure their
robustness.

For the DFJSS problem, in our case, it is impossible to get the best known
(lower bound) objective value of the instances. So, benchmark routing rule
(LWIQ, Least Work in Queue, select the machine with the least work in its
queue) and sequencing rules (SPT, Shortest Processing Time, choose the job
with shortest processing time, for mean-flowtime; FCFS, First Come First Serve,
the job comes first will be processed firstly, for max-flowtime and mean-weighted-
flowtime) [4], were applied to get a baseline objective value for each instance.
The reason for choosing them is that they show better performance than others
in previous work [6] and often be chosen as benchmark rules [19]. Here, the rel-
ative performance ratio was defined as the average normalized objective value
obtained by evolved rules over the counterpart got by benchmark rules. Thus,
in our case, the smaller the fitness value, the better.

5 Results and Discussions

5.1 Optimization Performance

In our experiment, six scenarios were set to test the performance of MTGP,
sMTGP and CCGP. The best pair of rules of the last generation was tested
on test data set to measure its performance. The test data set consists of 50
dynamic simulations with different random seeds. In addition, Wilcoxon test at
the 5% level was used for comparison between the three algorithms. First of all,
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MTGP and sMTGP were compared with CCGP respectively to measure the
feasibility of multi-tree based GP. Then, sMTGP and MTGP were compared for
analysing the effectiveness of proposed tree swapping crossover operator.
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Fig. 3. The boxplot of average normalized objective value obtained by sMTGP, MTGP
and CCGP on test data set.

All the mean value obtained by MTGP and sMTGP are better than CCGP
and all the standard deviation value are smaller than the counterparts. Wilcoxon
test results show that sMTGP is significantly better than CCGP only in two
scenarios (Max-Flowtime-0.85-4, Mean-Flowtime-0.85-4). It is interesting that
MTGP got better mean value than CCGP, but none of the instances of MTGP
is significantly better than CCGP.

When further looking into the boxplot in Fig. 3, one can see that CCGP has
many more outliers than MTGP and sMTGP. This is because CCGP cannot
handle well the interactions between routing and sequencing rules directly, thus
can be stuck into poor local optima more often. The reason why there is no statis-
tical significance between MTGP and CCGP is that the two algorithms showed
very similar performance except the outliers. Fig. 3 clearly shows that multi-tree
representation managed to dramatically reduce the probability of outliers.

According to these observations, the performance of GP with the multi-
tree representation is more stable than GP with cooperative co-evolution. Also,
Wilcoxon test results show that sMTGP is significantly better than MTGP
in four scenarios (Max-Flowtime-0.85-4, Mean-Flowtime-0.85-4, Mean-weighted-
Flowtime-0.85/0.95-4). It means that the proposed tree swapping crossover op-
erator can effectively improve the performance of MTGP.

Fig. 4. shows that the sizes of evolved best sequencing rules by sMTGP and
MTGP are obviously and dramatically smaller than the best rules evolved by
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Fig. 4. The convergence curves of the average best sequencing rule size (30 runs)
obtained by sMTGP, MTGP and CCGP in each generation.
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CCGP. Also, Fig. 5 shows that the best routing rule sizes got by sMTGP and
MTGP are smaller than that of CCGP. However, there is not so much difference
compared with the changes of sequencing rule sizes. These observations confirm
the potential of using multi-tree based GP to achieve smaller size rules.

From Table 3, it is clear that sMTGP and MTGP can evolve rules with lower
time complexity than CCGP in all scenarios. In addition, for sMTGP, less train-
ing time is needed as compared to MTGP in three situations (scenario 3, 4, 6).
This is a promising finding that the multi-tree representation is computationally
cheaper than cooperative co-evolution.

Table 3. The average training time for each run of the three algorithms.

Index Scenario Training Time
sMTGP MTGP CCGP

1 Max-Flowtime-0.85-4 4459.9 4267.1 4642.8
2 Max-Flowtime-0.95-4 5057.2 4790.3 5144.9
3 Mean-Flowtime-0.85-4 4184.5 4278.0 4538.5
4 Mean-Flowtime-0.95-4 4667.6 4721.3 4849.9
5 Mean-weighted-Flowtime-0.85-4 4348.1 4181.7 4458.4
6 Mean-weighted-Flowtime-0.95-4 4585.7 4680.3 4957.0

Overall, MTGP and sMTGP (especially) undoubtedly show better ability to
solve DFJSS problem. They can obtain better and smaller rules within a shorter
training time.

5.2 Further Analysis

In the last section, the rule size relates to the best rule only. In order to explore
whether the best rule is smaller by chance or the rules in the whole population
generally become smaller, in this section, the average rule sizes in the whole
population at each generation were investigated to get a clear vision of the
changes of rule sizes.

We took the last scenario (Mean-Weighted-Flowtime-0.95-4) as an example
to further investigate the changes of rule sizes. The details are shown in Fig. 6
and Fig. 7.

Fig. 6. The convergence curves of average sequencing rule size (30 runs) obtained by
CCGP, MTGP and sMTGP in population in each generation.

As shown in Fig. 6 and Fig. 7, at the initial point, for all the three algo-
rithms, the average sizes of both rules are about equal. However, the average
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sizes obtained by CCGP are larger than others over time. Maybe in multi-tree
based GP, effective and smaller rules are more likely to be well preserved because
there is at least one rule structure will not be changed by operator at each time
during the evolution process. In addition, the average sizes obtained by MTGP
and sMTGP show the same trend basically and routing rule sizes are bigger than
sequencing rules. This is consistent with the observation in the last section.

Fig. 7. The convergence curves of average routing rule size (30 runs) obtained by
CCGP, MTGP and sMTGP in population in each generation.

6 Conclusions and Future Work

This paper tried to evolve routing and sequencing rules based on GP with multi-
tree representation simultaneously, which is one of the very first piece of work in
this field. From the experimental results, we got some interesting findings. Firstly,
in addition to performance, both the routing and sequencing rules evolved by
MTGP and sMTGP are much smaller than the rules built by CCGP, which
provides valuable study materials for analysing the rules. And also, MTGP and
sMTGP take less training time. This is an important merit because required-time
consuming training is a big limitation for genetic programming. Secondly, the
proposed tree swapping crossover operator can enhance the ability of MTGP
from the perspective of performance, rule size and training time in general.
Thirdly, for average normalized objective values on test data set, there are more
outliers obtained by CCGP. That is to say, the assumption in CCGP that routing
and sequencing rules are independent and can be involved separately, might be
not true. This indicates that when we evolve two rules at the same time, we
would better to take the interaction into consideration.

It is noted that the average rule size in the whole population becomes smaller
with multi-tree representation. The reason will be further explored in the future.
Also, it is worth interpreting and analysing the evolved rules to obtain further
useful patterns. Moreover, more suitable representations for evolving two rules
together will be investigated in the future.
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