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Abstract. Genetic programming (GP) has been widely used for auto-
matically evolving priority rules for solving job shop scheduling problems.
However, one of the main drawbacks of GP is the intensive computation
time. This paper aims at investigating appropriate surrogates for GP
to reduce its computation time without sacrificing its performance in
solving dynamic flexible job shop scheduling (DFJSS) problems. Firstly,
adaptive surrogate strategy with dynamic fidelities of simulation models
are proposed. Secondly, we come up with generation-range-based surro-
gate strategy in which homogeneous (heterogeneous) surrogates are used
in same (different) ranges of generations. The results show that these two
surrogate strategies with GP are efficient. The computation time are re-
duced by 22.9% to 27.2% and 32.6% to 36.0%, respectively. The test per-
formance shows that the proposed approaches can obtain rules with at
least the similar quality to the rules obtained by the GP approach with-
out using surrogates. Moreover, GP with adaptive surrogates achieves
significantly better performance in one out of six scenarios. This paper
confirms the potential of using surrogates to solve DFJSS problems.

Keywords: Surrogate · Dynamic flexible job shop scheduling · Genetic
programming.

1 Introduction

Flexible job shop scheduling (FJSS) is an extension to classical job shop schedul-
ing (JSS). However, in FJSS, one operation can be processed on more than one
machine rather than a specified machine. In order to tackle the FJSS problem,
two decisions, which are a machine-specific decision and a job-specific decision,
have to be made. The machine-specific decision is to allocate a ready opera-
tion to an appropriate machine while the job-specific decision aims to select one
operation as the next to be processed. FJSS is NP-hard [3].

In practice, the environment is usually dynamic and jobs arrive in the job
shop over time without prior information. Dynamic job shop scheduling (DJSS)
was proposed for considering this situation. Dispatching rules, as priority func-
tions, have been widely adopted for solving DJSS problems [2, 4], due to the
ability to react in real time. A comprehensive comparison of dispatching rules
can be found in [9]. Dynamic flexible job shop scheduling (DFJSS) considers
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both the characteristics of FJSS and DJSS. Naturally, two kinds of dispatch-
ing rules are needed in DFJSS, which are routing rule (machine-specific) and
sequencing rule (job-specific), respectively. In this case, the quality of DFJSS
schedule depends highly on how well the routing rule and the sequencing rule
work together. However, dispatching rules are normally manually designed. That
is, the design of dispatching rules is domain-dependent and time-consuming.

Genetic programming (GP) has been successfully applied to automatically
evolve dispatching rules for JSS [5, 7]. However, a challenge of using GP is the
intensive computation time. Surrogate-assisted evolutionary computation with
efficient computation models, known as surrogates, provides a promising means
of handing complex applications [1, 8]. The challenge is how to design appropriate
surrogates with cheaper computation time that can represent the original models
well.

1.1 Goals

To address the challenge above, this paper has the following research objectives.

– Propose adaptive surrogates for GP (ASGP) approach to operate linearly
diverse surrogates with different fidelities in the search process.

– Design generation-range-based surrogates for GP (GSGP) that uses homo-
geneous (heterogeneous) surrogates in the same (different) predefined ranges
of generations.

– Verify the effectiveness and efficiency of the proposed algorithms.

– Compare the learning processes of the proposed two algorithms with stan-
dard GP without surrogates.

2 The Proposed Surrogate Strategies

2.1 Adaptive Surrogates

In this section, adaptive surrogates are proposed for GP and the corresponding
algorithm is named as ASGP. The basic idea is to deliberately enlarge accuracy
of the surrogate models by building up a very simple surrogates at the early
stage. As the evolutionary optimization proceeds, the accuracy of the surrogates
increases gradually and smoothly expecting that the performance of approxi-
mated surrogate models is consistent with the original model.

Let Njob and Nwarmup represent the number of jobs and warmup jobs, respec-
tively. At the ith generation, the number of jobs and warmup jobs are denoted
as Njob,i and Nwarmup,i. The expressions of Njob,i and Nwarmup,i are shown as
Eq. (1) and Eq. (2), respectively. In this way, the number of jobs and warmup
jobs will increase linearly.

Njob,i =

{
Njob ∗ 1

maxGen−1 gen = 0

Njob ∗ Gen
maxGen−1 1 ≤ Gen < maxGen

(1)

Nwarmup,i =

{
Nwarmup ∗ 1

maxGen−1 gen = 0

Nwarmup ∗ Gen
maxGen−1 1 ≤ Gen < maxGen

(2)
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2.2 Generation-range-based Surrogates

For the ASGP, at each generation, different surrogate models are applied. In
this section, generation-range-based surrogates is proposed for GP (GSGP) to
explore whether a fixed interval change can be more efficient. In this paper, the
number of jobs and warmup jobs of the original simulation model are set to 5000
and 1000, respectively. We set every ten generations into a range. The setting
details of different surrogates used in different generations are shown in Table 1.

Table 1. The setting of generation-range-based surrogates.

Generation ranges Njob,i Nwarmup,i

[0, 10) 500 100
[10, 20) 1000 200
[20, 30) 1500 300
[30, 40) 2500 500
[40, 50] 5000 1000

3 Experiment Design

In our experiment, the terminal and function sets in [6] are adopted. It is worth
mentioned that “/” is the protected division that returns the largest double
positive number if divided by 0. For dynamic simulation, commonly used config-
uration is adopted [10]. This paper presents the results obtained by the proposed
two approaches and CCGP approach [10], which is the state-of-the-art algorithm
for DFJSS, using three objectives, namely: (1) max-flowtime, (2) mean-flowtime,
and (3) mean-weighted-flowtime. The smaller the result, the better.

4 Results and Analyses

The (−,+) marks show whether our proposed approaches converge significantly
better or poorer than CCGP approach in Wilcoxon rank sum test (p ≤ 0.05),
respectively. For the convenience of description, < obj, uti > indicates the sim-
ulation scenarios, where obj and uti are the objective and the utilization level.

4.1 Test Performance of Evolved Rules

Table 2 shows that ASGP and GSGP algorithms are no significantly worse than
CCGP in general. The mean value obtained by ASGP are about equal with the
value obtained by CCGP in all scenarios. It is noted that ASGP significantly
outperforms CCGP in scenario < tmean, 0.85 >. This clearly shows the potential
of using surrogates to improve the performance of GP. It also indicates that the
surrogates (approximation models) may not be always harm.

For GSGP, the mean value obtained are smaller than CCGP in four (scenario
1, 2, 3, 5) out of six scenarios. In addition, the variances obtained by GSGP are
smaller than CCGP in five (scenario 1, 2, 3, 5, 6) out of six scenarios.

4.2 Training Time

Table 3 shows the computation time (reductions produced by surrogates com-
pared with CCGP) of the three algorithms. Overall, ASGP and GSGP need
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Table 2. The mean and deviation error of normalized objective value of the compared
algorithms over 30 independent runs for six scenarios.

Index Scenario ASGP GSGP CCGP

1 < tmax, 0.85 > 0.640(0.034) 0.638(0.029) 0.642(0.035)
2 < tmax, 0.95 > 0.571(0.023) 0.565(0.018) 0.568(0.030)
3 < tmean, 0.85 > 0.772(0.012)(-) 0.768(0.008) 0.772(0.015)
4 < tmean, 0.95 > 0.734(0.023) 0.738(0.022) 0.731(0.015)
5 < twt, 0.85 > 0.778(0.030) 0.772(0.010) 0.774(0.018)
6 < twt, 0.95 > 0.773(0.023) 0.774(0.024) 0.774(0.037)

less training computation times compared with CCGP. The average reductions
produced by ASGP and GSGP are 25.7% and 34.4%, respectively.

The experimental results have confirmed that ASGP can reduce the compu-
tation time by at least 22.9% in six scenarios. In both scenario 2 and scenario
3, the computation time are reduced the most (27.2%). For GSGP, it is obvious
that it can reduce more computation time (from 32.6% to 36.0%) than ASGP
(from 22.9% to 27.2%). It is not surprising because the average fidelity of ASGP
is higher than GSGP. In addition, the computation time is reduced the most
(36.0%) in scenario 1 while the least (32.6%) in scenario 5.

Table 3. The average training time (reduction) of the compared algorithms over 30
independent runs for six scenarios.

Index Scenario Training Time (seconds)
ASGP GSGP CCGP

1 < tmax, 0.85 > 3399.8 (26.8%) 2969.9 (36.0%) 4642.8
2 < tmax, 0.95 > 3743.6 (27.2%) 3326.2 (35.3%) 5144.9
3 < tmean, 0.85 > 3302.5 (27.2%) 2935.0 (35.3%) 4538.5
4 < tmean, 0.95 > 3635.3 (25.0%) 3220.2 (33.6%) 4849.9
5 < twt, 0.85 > 3436.2 (22.9%) 3004.4 (32.6%) 4458.4
6 < twt, 0.95 > 3725.7 (24.8%) 3282.7 (33.8%) 4957.0

4.3 Insight the Learning Process

The lines in Fig. 1 are the average normalized objective value from 30 indepen-
dent runs. Although all GP methods start with the same population, the starting
points are different because they use different surrogates. To be specific, CCGP
get the value from surrogates with higher fidelities while ASGP and GSGP get
the value from surrogates with lower fidelities.

It is noted that both ASGP and GSGP have higher fluctuations in all scenar-
ios than CCGP, especially at the early stage of evolutionary process. For ASGP,
the fidelities of surrogate models change smoothly to handle the learning pro-
cess gradually. It is expected to meet the need of training. It is interesting that
Fig. 1 shows that ASGP and GSGP have basically the same trends in six sce-
narios. This indicates that the predefined ranges and settings of simulations in
GSGP are representative for the learning process. In addition, after generation
40, ASGP and GSGP can achieve almost the same learning ability as CCGP,
although they use surrogates with lower fidelities at previous generations.

Fig. 2 shows that CCGP can improve much faster at the beginning of the evo-
lution in six scenarios. This benefits from the precise search with full simulations
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Fig. 1. The convergence curves of the fitness obtained by ASGP, GSGP and CCGP in
training process.

●

●
●

●

●

●●

●
●

●

●
●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●

●

●

●

●

●
●

●●

●
●

●●●●●
●●●●

●●

●●

●●●●
●

●●●●●
●

●●●

●●●●●●●
●

●
●

●●●

●

●

●

●

●●
●●

●●
●●●●●●●●●

●
●●●●●●●

●●●●●●●●●●●●
●●

●
●●●●●

●●●●

●

●

●

●

●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●●

●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●

max−flowtime−0.95 mean−flowtime−0.95 mean−weighted−flowtime−0.95

max−flowtime−0.85 mean−flowtime−0.85 mean−weighted−flowtime−0.85

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

0.8

0.9

1.0

1.1

0.8

0.9

1.0

1.1

1.2

0.78

0.80

0.82

0.84

0.86

0.8

0.9

1.0

0.8

1.0

1.2

1.4

0.5

1.0

1.5

2.0

Generation

A
ve

ra
ge

 N
or

m
al

iz
ed

 O
bj

ec
tiv

e 
V

al
ue

 o
n 

Te
st

 D
at

a 
S

et

● ASGP GSGP CCGP

Fig. 2. The convergence curves of the normalized objective value obtained by ASGP,
GSGP and CCGP in test process.
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at the expense of computation time. However, after generation 10 approximately,
the test performance between these three algorithms does not differ obviously.

Overall, taking the computation time and test performance into considera-
tion, the proposed algorithms are more promising than CCGP.

5 Conclusions and Future Work

In order to tackle the intensive computation time of GP approach, this paper
proposed two different kinds of strategies of surrogates for GP to automatically
design dispatching rules for DFJSS. It is a preliminary attempt to apply surro-
gates into DFJSS. The results show that the two proposed surrogate strategies
managed to reduce computation time without deteriorating the quality of the
evolved rules. It also indicates that the proposed strategies have the potential to
help GP to achieve more promising dispatching rules.

It is important to further investigate different strategies for surrogates to
accelerate the effectiveness and efficiency of the GP approach. Function approx-
imation and evolutionary approximation will be considered in the future.
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