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Abstract—Dynamic flexible job shop scheduling (DFJSS) is one
of the well-known combinational optimisation problems, which
aims to handle machine assignment (routing) and operation
sequencing (sequencing) simultaneously in dynamic environment.
Genetic programming, as a hyper-heuristic method, has been
successfully applied to evolve the routing and sequencing rules
for DFJSS, and achieved promising results. In the actual pro-
duction process, it is necessary to get a balance between several
objectives instead of simply focusing only one objective. No
existing study considered solving multi-objective DFJSS using
genetic programming. In order to capture multi-objective nature
of job shop scheduling and provide different trade-offs between
conflicting objectives, in this paper, two well-known multi-
objective optimisation frameworks, i.e. non-dominated sorting
genetic algorithm II (NSGA-II) and strength Pareto evolutionary
algorithm 2 (SPEA2), are incorporated into the genetic program-
ming hyper-heuristic method to solve the multi-objective DFJSS
problem. Experimental results show that the strategy of NSGA-II
incorporated into genetic programming hyper-heuristic performs
better than SPEA2-based GPHH, as well as the weighted sum
approaches, in the perspective of both training performance and
generalisation.

I. INTRODUCTION

Job shop scheduling (JSS) is well-known as a typical com-
binatorial optimisation problem [1], which aims to increase
productivity by optimising the processing sequence of tasks.
In JSS, a number of jobs which consist of a sequence of
operations need to be processed by a set of machines and
each operation can only be processed on a predefined machine.
However, in the real world, normally an operation can be
processed by more than one machine. This leads to the need
for the routing process (i.e. assign operation to a machine),
which is the so-called flexible job shop scheduling (FJSS).
FJSS is a hard problem because machine assignment (routing)
and operation sequence (sequencing) should be addressed
simultaneously.

In real-world manufacturing system, the working envi-
ronment is dynamically changing by unpredictable real-time
events, such as job arrival over time, machine breakdown and
order cancellation. FISS that takes dynamic events into con-
sideration is named as dynamic flexible job shop scheduling
(DFISS). In this paper, for DFJSS, only job arrival event which

is the most frequent and common factor in the shop floor, is
taken into consideration. Dynamic scheduling is the key to
solving the DFJSS problem.

Exact approaches such as integer programming [2] and
mathematical programming [3], which aim to search for op-
timal solutions, have been used to handle the JSS problem.
However, they are too time-consuming, especially when the
problems are getting large. Heuristic search methods such
as simulated annealing and genetic algorithm [4] have been
investigated to search “near-optimal” solutions for solving the
JSS problem with a reasonable time. However, they are faced
with the problem of rescheduling and it is hard for them
to handle dynamic events where lots of real time decisions
are needed to be made quickly. It is worth mentioning that
dispatching rule might be the most popular used heuristic to
solve the DJSS problem. Dispatching rule, as priority function,
is applied to calculate the priority values of operations at the
decision point and chose operation with highest priority value
as the next operation to be processed. However, manually
designing dispatching rules is hard and time-consuming, and
it is impractical for human to design all kinds of dispatching
rules for use in different environments.

Hyper-heuristic [5] is an automated methodology for select-
ing or generating heuristics to solve hard computational search
problems. Genetic programming (GP), as a hyper-heuristic
method, was investigated to evolve dispatching rules in [6]
for the first time. A general GP-based hyper-heuristic (GPHH)
framework was presented in [7], [8]. The unique feature of
GPHH is that its search space is heuristic instead of solution.
The purpose for using GPHH is to improve the generalisation
of dispatching rules by generating new heuristic using existing
heuristics. It has successfully solved many problems in differ-
ent fields such as timetabling [9] and job shop scheduling [10],
[11]. For DFJSS, routing rule (for machine assignment) and
sequencing rule (for operation sequencing) are needed to work
together to get a schedule. To the best of our knowledge, GP
with multi-tree representation is the state-of-the-art approach
to evolve these two rules simultaneously [12].

In the shop floor, there are many objectives to be optimised.
In this case, one may prefer to achieve a trade-off between



different objectives rather than focusing on only one objective.
In previous works, there are mainly two kinds of methods to
handle multi-objective problem. An intuitive approach is the
weighted sum method which combines all objectives into one
single objective by predefined weights. The main drawback
of this method is that the weights are not always available.
In contrast, the Pareto-based methods aim to achieve a set of
optimal solutions for users. In the reported literatures, multi-
objective DFJSS has not yet been well considered.

For multi-objective problems, a decision maker may not
want to have a huge number of Pareto optimal solutions at
high computational cost [13]. They are often interested in
obtaining a small number of evenly distributed solutions at low
computational cost. Non-dominated sorting genetic algorithm
II (NSGA-II) [14], [15] and strength Pareto evolutionary
algorithm 2 (SPEA2) [16] are two common candidates for
multi-objective methods in this purpose.

In this paper, we will incorporate the strategies of NSGA-
Il and SPEA2 into GPHH with multi-tree representation. It
is worth mentioning that multi-tree representation is used to
optimise routing rule and sequencing rule simultaneously by
assigning two trees to one individual. This is the first time
that the strategies of Pareto-based multi-objective approaches
are incorporated into GPHH to handle DFJSS problems by
evolving a set of combinations of routing and sequencing rules
at the same time.

A. Goals

The overall goal of this paper is to incorporate the strategies
of NSGA-II and SPEA?2 into GPHH framework with multi-
tree representation to achieve a trade-off between different
objectives in the DFJSS problem. To achieve this, it has the
following research objectives in this paper.

1) Design new approaches that incorporate the strategies
of NSGA-II and SPEA2 into GPHH with multi-tree
representation for DFJSS, respectively.

2) Compare the performance of the proposed methods.

3) Analyse the consistency of rule behaviour between train-
ing process and test process.

II. BACKGROUND

In this section, the mechanism of how dispatching rule
works for DFJSS is described and related works about FJSS,
dynamic job shop scheduling (DJSS) and DFIJSS are discussed.

A. Dispatching Rules for DFJSS

In traditional job shop scheduling, dispatching rule generally
refers to sequencing rule. However, in DFJSS, a dispatching
rule consists of a routing rule and a sequencing rule. Machine
assignment will be done according to the priorities of machines
obtained by routing rule. Operation sequencing will be made
based on the priorities of operations obtained by sequencing
rule. There are several unique features of using dispatching
rule to solve DFJSS.

1) A dispatching rule, as a priority function, is time efficient

and easy to implement. This leads itself to react dynamic
events quickly without rescheduling.

2) A routing rule will be triggered to choose a machine for
an operation when a new job comes or an operation is
finished and its subsequent operation becomes a ready
operation.

3) A sequencing rule will be triggered to choose an opera-
tion to be processed next when a machine becomes idle
and its queue is not empty.

4) On one hand, all the operations will be allocated by
routing rule first and then handled by sequencing rule
for processing. On the other hand, once the conditions
of rule triggers are met, the corresponding routing and
sequencing action will be executed. That means the
routing process and sequencing process are conducted in
an interactive way.

5) The priorities of machines and operations are not fixed
over time but can change dynamically as scheduling
proceeds.

B. Related Work

There are many studies about solving DJSS [11], [17] and
FISS problems with GPHH [18], [19]. However, in FIJSS,
the routing rule is fixed and only sequencing rule is evolved.
Yska et al. [20], [21] proposed a new GPHH algorithm with
cooperative coevolution to explore the possibility of evolving
both routing and sequencing rules together. The results showed
that co-evolving the two rules together can lead to much more
promising results than evolving the sequencing rule only. This
is the first work that considered to evolve routing rule and
sequence rule at the same time by GP. Zhang et al. [12], [22]
proposed to evolve these two rules for DFJSS by assigning
two trees to an individual. The results shows that GP with
multi-tree representation is more effective and efficient than
cooperative coevolution strategy. However, all of them work
on single objective problem and there are a few literatures that
work on FJSS, DJSS and DFJSS based on multiple objectives.

1) Multi-objective FJSS: An approach which makes use of
particle swarm optimisation to assign operations to machines
and simulated annealing algorithm to schedule operations on
each machine was proposed to solve FISS problems with
multi-objective in [23]. However, weighted sum method was
used to handle multi-objective problem and the two processes
were conducted in two separate phases. Hybridisation of multi-
objective particle swarm optimisation and local search was
proposed to solve FISS problems based on priority by dividing
the particle into two parts in [24]. The first and second parts
are designed for routing and sequencing respectively. However,
this method cannot handle dynamic event with rescheduling.
A teaching-and-learning based hybrid genetic-particle swarm
optimisation was proposed to solve FJSS in [25]. Actually,
the routing decision was made by a predefined rule (i.e. Least
Processing Time). Tay et al. used GP to evolve dispatching
rules for solving FJSS problems. However, the routing rule
was fixed [18].

2) Multi-objective DJSS: A hybrid genetic algorithm and
tabu search was proposed to solve multi-objective DJSS
problem by rescheduling when unexpected disruptions occur



[26]. Nguyen et al. introduced to use cooperative coevolu-
tion genetic programming to automatically design scheduling
policies for dynamic multi-objective job shop scheduling with
the strategies of non-dominated sorting genetic algorithm
II, strength Pareto evolutionary algorithm 2 and harmonic
distance-based multi-objective evolution [11]. Later, Nguyen
et al. used local search heuristics to enhance the quality of
evolved dispatching rules [27]. However, all of them related
only to dynamic job shop scheduling problem and the coopera-
tive coevolution has potential assumption that the two evolved
rules are independent, which is not the case in DFJSS.

3) Multi-objective DFJSS: NSGA-II was applied to solve
DFISS problems with random machine breakdowns in [28].
This paper mainly focused on investigate the robustness of
scheduling based on utilising the available information about
machine breakdowns. In addition, four commonly used rules
were used to decide the sequence of operations. However, the
sequencing rule was fixed and reschedule was needed to handle
the dynamic event. A multi-objective evolutionary algorithm
based approach was proposed to solve DFJSS in [29]. The
main problem is that rescheduling is triggered at each dynamic
event point which is time-consuming and cannot react quickly,
especially in large scale problem.

In summary, there are four limitations in the previous
literatures.

a) The works [23] using weighted sum are not always

applicable, as the weights may not be available.

b) The works [23] handle routing and sequencing decisions
one by one in two phases, which is not practical in real
life.

c¢) The works [18], [23], [25], [28] handle routing and
sequencing decisions simultaneously, however, only one
rule is optimised while the other is fixed as an intuitive
rule.

d) The works [24]-[26], [28], [29] using heuristic search
methods face the shortcomings of not being able to solve
dynamic problems without rescheduling.

To the best of our knowledge, there is no approach that can
successfully solve the problems as described above in the
four limitations. To this end, this paper aims to handle these
limitations well.

III. MULTI-OBJECTIVE GPHH FOR DYNAMIC FLEXIBLE
JOB SHOP SCHEDULING

This section describes the proposed new GPHH methods to
solve DFJSS problems by evolving routing rule and sequenc-
ing rule simultaneously. We will first introduce how routing
rule and sequencing rule are represented in GP. Then, the
proposed multi-objective GPHH with multi-tree representation
methods incorporated with the strategies of NSGA-II, SPEA2
will be illustrated.

A. Representation

Tree based GP is widely used to solve complex problems
with the programs using tree-based representation in its popu-
lation. Fig. 1 shows an example of a tree-based representation

Fig. 1. An example of tree-based GP program.

of the program 5z + max(y — x,0). In this program, the
terminals consist of the variables {z,y} and two constants
{5,0} and the functions compose of {X,+,—,max}. The
terminals are the leaves of the tree while the functions cannot
be located at the leaves of the trees. In GP, the collections of
the terminals and functions are called ferminal set and function
set, respectively. Obviously, the program is the combination of
the components in terminal set and function set.

When using multi-tree representation, one individual can
contain more than one tree. This special trait can be utilised
to tackle different problems at the same time. For handling
the DFJSS problem, in [12], each individual contains two
trees. The first tree is used to evolve the routing rule and the
second tree is designed to evolve the sequencing rule. In this
way, these two rules can be evolved simultaneously with the
evolutionary process proceeds. An example of one individual
for DFJSS is shown in Fig. 2.

routing rule sequencing rule

Fig. 2. An example of one individual for DFJSS.

B. Multi-objective GPHH for DFJSS

In this paper, we hybridise NSGA-II and SPEA2 with
GPHH with multi-tree representation for solving multi-
objective DFJSS. The resultant algorithms are named as
NSMTGP-II and SPMTGP2, respectively.

In NSGA-II, every individual in the population has two
attributes which are non-dominated rank and crowding. The in-
dividual with better rank and smaller crowing distance will be
preferred. In SPEA2, the individual with smaller strength value
is preferred. The flowchart of NSMTGP-II and SPMTGP?2 are
shown in Fig. 3 and Fig. 4.
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IV. EXPERIMENT DESIGN

For the purpose of this study, we assume the machines
are independent from each other and the set up times and
move times between operations are negligible. The comparison
design, simulation model and parameter settings in this paper
will be illustrated as follows.

A. Comparison Design

In order to verify the performance and robustness of the
proposed approaches, six different scenarios are designed
based on three objectives (e.g. max-flowtime, mean-flowtime
and mean-weighted-flowtime) and two utilisation levels. The
details can be found in Table I. We will investigate them by
pairwise comparison. In this paper, each compared algorithm
is run 50 times independently. For a more comprehensive
comparison, we also compare NSMTGP-II and SPMTGP2
with the weighted-sum based GP (WMTGP). WMTGP sim-
ply combines the two objectives into a single one during

TABLE I
SIX SCENARIOS

Scenario Objective 1 Objective 2 Utilisation
1 max-flowtime mean-flowtime 0.85
2 max-flowtime mean-flowtime 0.95
3 max-flowtime  mean-weighted-flowtime 0.85
4 max-flowtime = mean-weighted-flowtime 0.95
5 mean-flowtime = mean-weighted-flowtime 0.85
6 mean-flowtime  mean-weighted-flowtime 0.95

the optimisation. In the experiment, we examine six weight
vectors, i.e. (0,1), (0.2,0.8), (0.4,0.6), (0.6,0.4), (0.8,0.2) and
(1,0), which correspond to different preferences between the
objectives.

B. Simulation Model

In this paper, DFJSS simulation is used to verify the
performance and commonly used configuration is adopted
[12]. The task in the simulation is to process 5000 jobs by ten
machines. In order to distinguish the importance of different
jobs, weights are assigned to each job. 20%, 60% and 20%
jobs will have weight 1, 2 and 4, respectively.

Jobs will arrive the job shop stochastically according to a
Possion process with rate A\. The number of operations of a job
and the number of candidate machines of an operation follow
a uniform discrete distribution between one and ten. Uniform
discrete distribution between 1 and 99 is applied to decide the
processing time of an operation.

The utilisation level (p) is an important indicator that shows
how busy a machine is. It can be expressed as Eq. (1). In Eq.
(1), p is the average processing time of machines. Py is the
probability of a job visiting a machine. For example, Py is
2/10 if each job has two operations.

pP=Axp* Py (1)

In order to get a steady state, a warm up period of 1000
jobs is used and we collect data from the next 5000 jobs. The
new jobs keep coming until the 6000th job is finished.

TABLE I
THE TERMINAL SET.
Notation Description
NIQ The number of operations in the queue
WIQ The workload in the queue of a machine
MWT Waiting time of a machine

PT Processing time of an operation on a specified machine

NPT Median processing time for the next operation
OWT The waiting time of an operation

WKR Median amount of work remaining for a job
NOR The number of operations remaining for a job

w Weight of a job
TIS Waiting time in system for a job

C. Parameter Settings

In our experiment, the terminals are shown in Table II [22].
These terminals can provide the information (e.g. machine-
related, job-related and system-related) of the job shop to
help GP evolve dispatching rule. The function set consists of



TABLE III

THE MEAN AND STANDARD DEVIATION OF THE HV OF NSMTGP-II, SPMTGP2 AND WMTGP OVER 50
INDEPENDENT RUNS IN TRAINING AND TEST PROCESS IN SIX SCENARIOS

Scenario Training Test
NSMTGP-IT SPMTGP2 WMTGP NSMTGP-II SPMTGP2 WMTGP
1 0.923(0.041)*  0.889(0.046)(-) 0.787(0.061) 0.991(0.050)*  0.954(0.056)(-)  0.833(0.032)
2 0.928(0.019)*  0.908(0.022)(-) 0.505(0.050) 0.919(0.028)*  0.895(0.036)(-)  0.602(0.049)
3 0.912(0.042)*  0.877(0.056)(-) 0.723(0.079) 0.458(0.021)*  0.439(0.031)(-)  0.350(0.049)
4 0.879(0.020)*  0.857(0.033)(-) 0.494(0.062) 0.772(0.042)*  0.746(0.040)(-)  0.536(0.045)
5 0.815(0.184) 0.660(0.263) 0.904(0.054)(-)*  0.114(0.029)  0.109(0.143)(-)  0.120(0.007)
6 0.761(0.109)* 0.696(0.144) 0.737(0.059) 0.204(0.121) 0.169(0.052) 0.189(0.014)

bold The significantly better approach between NSMTGP-II and SPMTGP2.
* The significantly better approach between NSMTGP-1I and WMTGP.
" The significantly better approach between SPMTGP2 and WMTGP.

TABLE IV

THE MEAN AND STANDARD DEVIATION OF THE IGD OF NSMTGP-II, SPMTGP2 AND WMTGP OVER 50 INDEPENDENT RUNS IN TRAINING AND
TEST PROCESS IN SIX SCENARIOS

Scenario Training Test
NSMTGP-IT SPMTGP2 WMTGP NSMTGP-IT SPMTGP2 WMTGP
1 0.037(0.023)*  0.057(0.027)(-) 0.234(0.043) 0.074(0.030)*  0.088(0.027)(-) 0.153(0.017)
2 0.032(0.012)*  0.044(0.013)(-) 0.324(0.029) 0.039(0.018)*  0.055(0.022)(-) 0.351(0.045)
3 0.037(0.023)*  0.060(0.031)(-) 0.225(0.058) 0.036(0.014)*  0.053(0.025)(-) 0.214(0.015)
4 0.041(0.015)*  0.060(0.025)(-) 0.354(0.044) 0.032(0.08)*  0.035(0.009)(-) 0.066(0.013)
5 0.177(0.146) 0.305(0.233) 0.130(0.035)(-)  1.013(0.072) 1.053(0.185) 0.999(0.015)(-)
6 0.104(0.083)* 0.151(0.111) 0.144(0.055) 0.850(0.139) 0.902(0.092) 0.853(0.027)

EOld The significantly better approach between NSMTGP-II and SPMTGP2.
" The significantly better approach between NSMTGP-II and WMTGP.
" The significantly better approach between SPMTGP2 and WMTGP.

{+, —, %, /,max, min}. The “/” operator is protected division,
returning 1 if dividing by zero.

Ramped-half-and-half method is used to generate the initial
population and the minimum and maximum depth of individu-
als are two and six. There are 1024 individual in the population
and maximum generation is 51. The maximum depth of each
individual is eight. Crossover, mutation and reproduction are
three genetic operators to generate new population. Their rates
are 0.80, 0.15 and 0.05. The rates of terminal and non-terminal
selection are 0.10 and 0.90. Tournament selection with a
tournament size of seven is applied to select individuals for
genetic operators.

V. RESULTS AND ANALYSIS

In this section, the performance of the proposed approaches
will be measured. Then, further analysis of the behaviour of
the evolved dispatching rule will be conducted.

A. Test Performance of Evolved Dispatching Rules

For multi-objective problems, two widely used performance
indicators are hypervolume (HV) [16] and inverted genera-
tional distance (IGD) [27]. HV is used to measure the Pareto
front by taking the number of optimal solutions of Pareto front
and its uniformity. IGD is applied to indicate the optimal
degree (i.e. how close is the optimal solution to the true
Pareto front) and coverage of the optimal solutions. Since the
true Pareto front is unknown in this research, we will use a
reference Pareto front instead. The reference Pareto front is
generated by getting all the non-dominated dispatching rule
found by three approaches (e.g. NSMTGPII, SPMTGP2 and

WMTGP with all weight vectors) in 50 independent runs. It is
worth mentioning that the non-dominated dispatching rules of
WMTGP are generated by combining the results of WMTGP
with all weight vectors together and the computational cost of
WMTGP is six times as NSMTGP-II and SPMTGP2.

For the value of HV, the larger the better. For the value
of IGD, the smaller the better. The Wilcoxon rank sum test
with a significance level of 0.05 will be used to verify the
performance of the proposed approaches.

Table III shows mean and standard deviation of HV of the
proposed three methods in training and test process. In test
process, from scenario 1 to scenario 4, NSMTGP-II performs
significantly better than both SPMTGP2 and WMTGP in test
process. In scenario 5, NSMTGP-II is significantly better than
SPMTGP2 and SPMTGP?2 is better than WMTGP. However,
in scenario 6, there is no significantly difference among
NSMTGP-1I, SPMTGP2 and WMTGP.

Table IV shows mean and standard deviation of IGD of
the proposed three methods in training and test process. In
test process, we can see that NSMTGP-II and SPMTGP2 are
significantly better than WMTGP in four scenarios (scenario
1, 2, 3 and 4). In scenario 5, NSMTGP-II is significantly better
than SPMTGP2 and SPMTGP2 is significantly worse than
WMTGP. In addition, NSMTGP-II is not significantly better
than WMTGP. There is no significantly difference among the
proposed approaches in scenario 6.

Table III and Table IV also show that both for HV and IGD,
the training process shows much better results than that in test
process. NSMTGP-II is significantly better than SPMTGP2 in
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Fig. 5. The training HV and IGD versus test HV and IGD based on the 50 final results of NSMTGP-II and SPMTGP2 in scenario 3.

all scenarios in terms of both HV and IDG.

In order to show the generalisation of NSMTGP-II and
SPMTGP2, Fig. 5 shows the training HV (IGD) versus test
HV (IGD) scatter plot based on 50 final results of NSMTGP-
IT and SPMTGP-2 in scenario 3. From the figure, it is clear
that both the training and test HV and IGD of NSMTGP-
IT are much better that of SPMTGP2. The generalisations of
both algorithms are similar in terms of the correlation between
training and test HV and IGD.

In general, from the perspective of HV and IGD, NSMTGP-
Il is more promising among the three approaches in most
scenarios. This indicates its effectiveness and robustness.

B. Consistency of Rule Behaviour

It is interesting to investigate the behaviour consistency of
evolved rules from training process to test process. This is
very important issue in DFJSS when using GPHH because the
output of GPHH is a heuristic (dispatching rule) rather than
a solution. In practice, one can select only one heuristic from
the training performance, and expect it to show consistent test
performance in terms of the trade-off between the objectives.

Fig. 6 shows the fitnesses of the Pareto front evolved by
NSMTGP-II versus their corresponding test objectives in one
of the independent runs in the first scenario. We can see that
most of test points have a good consistency with their training
points. It indicates that the user can always expect consistent
preference between the objectives on the unseen test data. The
rules evolved by SPMTGP2 have the same problem.

In order to measure the behaviour consistency, we propose
to use the ratio difference of training points and test points
as a measure. For example, if the training fitness of a rule is
(230,100) and its test objective is (150,50), the ratio difference
is 0.7 (]230/100-150/50[). The ratio here is designed to show
the different degrees (behaviours) of concentration of the
evolved rules on different objectives. Thus, the ratio difference
can be used to measure the behaviour difference between

different rules. The minimum value of ratio difference is zero,
which indicates the rules have the same behaviour. Given a set
of rules, the mean value of the ratio differences is recorded.
The smaller the value, the better.
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Fig. 6. An example of training fitness versus test objective of NSMTGP-II
in one of the independent runs of scenario 1.

TABLE V
THE MEAN AND STANDARD DEVIATION VALUE OF RATIO DIFFERENCE
BETWEEN TRAINING AND TEST FITNESSES OF NSMTGP-II, SPMTGP2
OVER 50 INDEPENDENT RUNS IN SIX SCENARIOS

Scenario Mean(StdDev)
NSMTGP-II SPMTGP2
1 0.303(0.088) 0.317(0.143)
2 2.082(0.710)  2.461(1.350)
3 0.151(0.071)  0.171(0.110)
4 1.952(0.636)  1.858(0.985)
5 0.009(0.001)  0.008(0.001)
6 0.035(0.006)  0.035(0.006)

Table V shows the mean and deviation value of ratio
difference obtained by NSMTGP-II and SPMTGP2 over 50
independent runs. We can see that there is no significantly
difference between NSMTGP-II and SPMTGP2. However, the
mean and standard deviation values obtained by NSMTGP-
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Fig. 7. Pareto fronts of NSMTGP-II, SPMTGP2 and WMTGP in different scenarios in training process.



I are smaller than that of SPMTGP2 in half scenarios. It
means that the proposed methods can evolve rules with good
behaviour consistency, especially NSMTGP-II.

C. Insight of the Distribution of Evolved Rules

The evolved Pareto front (i.e. non-dominated solutions gen-
erated by the optimal solutions of 50 independent rules) by the
proposed three approaches from scenario 1 to scenario 6 are
shown in Fig. 7. In Fig. 7, for weights setting, the first (second)
value is the weight for the objective indicated on X-axis (y-
axis). It is obvious that the evolved Pareto front by NSMTGP-
IT is significantly better than SPMTGP2 and WMTGP (i.e.
with different set of weights). It is interesting that weighted
sum method gets a good dispatching rule with the weight (0.6,
0.4) in scenario 6. It indicated in some case, weighted sum
method can get better performance, however, it is not easy to
predefine appropriate weights. In addition, it is more complex
than NSMTGP-II and SPMTGP2 method because different
independent runs should be conducted independently.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we incorporated the strategies of NSGA-II
and SPEA?2 into GPHH with multi-tree representation to solve
DFISS. To the best of knowledge, this paper is the first time
that the strategies of NSGA-II and SPEA2 was incorporated
into GPHH with multi-tree representation to solve the DFJSS
problem by evolving routing and sequencing rule simulta-
neously. In addition, we propose to use ratio difference as
a metric to measure the consistency of rule behaviour. The
experimental results showed that both the proposed methods
can work well on DFJSS. Moreover, NSMTGP-II performs
better than SPMTGP2 and the rules evolved by NSMTGP-II
have promising rule consistency.

In the future, new strategies will be proposed to improve the
performance of NSMTGP-II and new metric of rule behaviour
consistency will be also investigated.
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