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Abstract—Dynamic flexible job shop scheduling (DFJSS) con-
siders making machine assignment and operation sequencing
decisions simultaneously with dynamic events. Genetic program-
ming hyper-heuristics (GPHH) have been successfully applied to
evolving dispatching rules for DFJSS. However, existing studies
mainly focus on evolving deterministic dispatching rules, which
calculate priority values for the candidate machines or jobs and
select the one with the best priority. Inspired by the effectiveness
of training stochastic policies in reinforcement learning, and the
fact that a dispatching rule in DFJSS is similar to a policy
in reinforcement learning, we investigate the effectiveness of
evolving stochastic dispatching rules for DFJSS in this paper.
Instead of using the ‘“‘winner-takes-all”’ mechanism, we define a
range of probability distributions based on the priority values
of the candidates to be used by the stochastic dispatching rules.
These distributions introduce varying degrees of randomness. We
empirically compare the effectiveness of GPHH in evolving the
stochastic dispatching rules with different probability distribu-
tions, as well as evolving the deterministic dispatching rules. The
results show that the evolved deterministic rules perform the best.
We argue that this is because unlike the traditional reinforcement
learning methods, the current GPHH does not store the quality
(value function) of any particular state and action during the
simulation, and thus cannot fully take advantage of the feedback
given by the simulation. In the future, we will investigate better
ways to make better use of the information during the simulation
in GPHH to further improve its effectiveness.

I. INTRODUCTION

Scheduling is one of the most important tasks that allo-
cates resources to jobs, which benefits manufacturing a lot
(e.g. reducing production costs, improving delivery speed and
customer satisfaction). In job shop scheduling (JSS), machines
are the most important resources in a job shop floor and
a set of jobs (i.e. each job has a sequence of operations)
are expected to be processed by a number of machines. JSS
aims to maximise the efficiency of machines, thus to reduce
the costs. An operation can only be processed on a specific
machine in classical JSS.

In the literatures, different types of JSS such as dynamic JSS
(DJSS) and flexible JSS (FJSS), which are the extensions of
classical JSS, have been investigated. In DJSS, dynamic events
such as machine breakdown [1] and job arrival over time [2],
[3] are considered during the scheduling process. In FJSS, the

machine resource is more flexible that an operation can be
processed on a set of machines. This leads itself to a more
complex problem. In FJSS, two decisions, which are machine
assignment decision and operation sequencing decision, have
to be decided. Machine assignment (routing) is to allocate
a ready operation to an appropriate machine while operation
sequencing (sequencing) aims to select one operation in its
queue of a specific machine as the next operation to be
processed. FJSS is an NP-hard problem [4]. The investigation
on dynamic flexible job shop scheduling (DFJSS) is more
practical. However, most of the related work about FJSS [5],
[6] are conducted in static environments which are not the
normal cases in real-world. The research on DFJSS is still on
a very early stage. In this paper, for DFJSS, only job arrival
event is considered because of it is the most frequent and
common factor in the shop floor.

Many techniques to search for optimal solutions, which are
known as exact approaches such as dynamic programming [7]
and branch-and-bound [8], have been investigated to solve JSS
problems. However, they are too time-consuming, especially
when the problems are getting large. Heuristic search methods
such as tabu search and genetic algorithms have been proposed
to find “near-optimal” solutions for solving JSS problems [9],
[10] with a reasonable time. However, it is hard for the above
methods to handle dynamic events where a lot of real time
decisions are needed to be made quickly. It is noted that
dispatching rules have been widely adopted for solving DJSS
problems due to their ability to handle dynamic events, ease
of implementation and low time complexity. In general, a
dispatching rule, as a priority function, is used to calculate
the priority value of each candidate (e.g. each job in the
queue when a machine becomes idle), and then decide the
next candidate based on the priority values.

Manually designing dispatching rules is time consuming,
and heavily rely on human expertise and domain knowledge. In
the last decade, genetic programming (GP) has been the dom-
inating technique to automatically evolve dispatching rules for
JSS. A general GP-based hyper-heuristic (GPHH) framework
was presented in [11]. The unique feature of GPHH approach
is that the search space is heuristic rather solution. The main



goal is to improve the generalisation of the evolved dispatching
rules. It has been successfully used in some applications such
as timetabling [12] and job shop scheduling [13], [14]. For
DFIJSS, we have two types of rules to evolve, i.e. the routing
rule and the sequencing rule. However, the previous studies
mainly focus on evolving sequencing rule by fixing the routing
rule [6]. Actually, this can be done by either co-evolving
them by cooperative co-evolution [15], or using multi-tree
GP (MTGP) [2] that stores two trees in each GP individual.
Thus, the routing rule and sequencing rule can be evolved
simultaneously. This paper will conduct based on MTGP
framework which is the state-of-the-art method for DFJSS.

Essentially, a dispatching rule plays a role similar to a
policy in reinforcement learning, which decides the next action
to take given any state during the simulation. In DFJSS,
the simulation is a dynamic flexible scheduling process with
unpredicted job arrivals. The goal of GPHH is to evolve the
best dispatching rule that makes the best decision in each
decision situation during the simulation, and finally leads to
the solution (i.e. schedule) with the optimal objective value. In
other words, to evolve the best dispatching rule, we also aim
to identify the best decisions during the simulation. However,
due to the dynamic nature of the simulation, it is impractical
to know the best decision on-the-fly. Therefore, given any
particular decision situation during the DFJSS simulation, it
may be necessary to explore different decisions to gain a
higher confidence on the best decision to make.

To address this issue, a commonly used strategy in rein-
forcement learning is to train a stochastic policy [16], which
selects from the candidate actions based on some probability
distributions. In this way, each candidate action has a non-zero
probability to be selected, and thus the corresponding solution
has a chance to be explored. However, in the context of
evolving dispatching rules using GPHH, the previous studies
mainly focused on evolving deterministic dispatching rules
with the “winner-takes-all” strategy (i.e. always select the
candidate with the best priority). Inspired by the success
of training stochastic policy in reinforcement learning and
the similarity between dispatching rules and policies, it is
reasonable to believe that stochastic dispatching rules should
be able to explore more potential solutions than deterministic
dispatching rules.

This paper aims to use GPHH to evolve stochastic dispatch-
ing rules. It is worth mentioning that deterministic dispatching
rules are a special type of stochastic dispatching rules. Dif-
ferent probability distributions (multinomial distribution and
the distribution provided by softmax function, representing
different degrees of introduced randomness) will be used by
the stochastic rules. The GP-evolved stochastic rules will
be analysed. Specifically, we aim to answer the following
question.

Whether stochastic dispatching rule can perform better than
deterministic dispatching rule?

Based on the question, in particular, it has the following
research objectives in this paper.

1) Propose a new flexible GPHH framework to evolve
stochastic dispatching rules.

2) Define a range of probability distributions to be used by
the stochastic rules to make decisions (including the top-k
multinomial distribution and softmax function).

3) Empirically compare the influence of different probability
distributions (different degrees of randomness) on the
performance of the GPHH.

4) Analyse the GPHH-evolved stochastic rules, in particular
the convergence of the decisions they make.

5) Investigate the effect on the performance if we turn the
stochastic dispatching rule into deterministic rule during
testing.

The rest of the paper is organised as follows. In Section
II, a brief introduction of the JSS problem, GPHH and the
mechanism of dispatching rules for FISS are given. Detailed
descriptions of the proposed stochastic policy are given in
Section III. The design of experiments is shown in Section
IV and results with discussions are provided in Section V.
Finally, Section VI concludes the paper.

II. BACKGROUND

In this section, different types of JSS problems will be
described firstly. Then, the GPHH approach will be illustrated
followed by the mechanism of dispatching rule for solving the
DFIJSS problem.

A. Job Shop Scheduling

1) Classical Job Shop Scheduling: In the classical JSS, n
jobs need to be scheduled on m machines, while trying to
minimise the objective such as the makespan (i.e. the total
time to completely process all jobs). For each job, there is
a set of operations which need to be executed in a specific
order and each operation can be processed at a specified
machine. In essence, the classical JSS assumes that only one
machine is able to process a particular operation. Some basic
or commonly used definitions and notations are described as
follows.

parameters:

o n: the number of jobs in the job shop

o m: the number of machines in the job shop

e M: the set of machines in the job shop

e N: the set of operations in the job shop

 %: index of job

e j: index of operation

o [;: the number of operations for each job, [; <=m

e 0;; = (041,02, ..., Oilj): the set of operations of job;

o w;: the weights of job;

e dj;: the due date of job;

o 0(O;j): the processing time of operation O;;

o m(0;;): the machine that processes operation O;;

o w(0;;): the optional machines of O;;, m(O;;) € M. This
parameter is used in flexible JSS which will be described
later.

variables:



o C};: the completion time of job;

o 7(O;j): the release time of operation O;;. It is the time
that jth operation of job; is allowed to start. In our
research, for the first operation of each job, it is set to
zero. Otherwise, it is set to the completion time of its
preceding operation.

constraints:

o The (j+1)th operation of job; (denotes by O;(; 1)) can
only be processed after its preceding operation O;; has
been processed.

o Each machine can only process at most one operation at
a time.

o The scheduling is non-preemptive, i.e. the processing
of an operation cannot be stopped or paused until it is
completed.

objectives:

e Minimisation the maximum makespan: Cp,qx =

max{C1,C;,...,Cp}

e . n Ci—d;,0
e Minimisation of mean tardiness: 2z mazd }

n

e Minimisation the maximum flowtime:
maticq2,.. 310 — i}
e . >, {Ci—r}
o Minimisation of mean flowtime: ==-"——=
o Minimisation of mean weighted flowtime:

i wir{Ci—ri}
n

The last three objectives are used as the measures of
schedules obtained in this paper. Classical job shop scheduling
implies that the information of all the jobs is known in advance
for making decisions. With available information, this makes
it easier for us to get a promising schedule. However, this is
not practical in the real-world factories.

2) Dynamic Job Shop Scheduling: In practice, the envi-
ronment is usually dynamic and jobs arrive in the job shop
over time without prior information. In fact, the classical JSS
problem is static JSS. In DIJSS, at any given time point, only
the information of the jobs that have arrived before the time
point is available. This characteristic is opposite to static job
shop scheduling.

3) Flexible Job Shop Scheduling: The FJSS problem is
an extension to classical JSS problem. However, the machine
resource is more flexible and an operation can be processed on
more than one machine, which leads itself to a more complex
problem. Thus, except for the constraints mentioned above, for
FJSS, there is a relaxation of the machine resource constraint.

o Each operation O;; can be processed on one of the
corresponding set of machines 7(0;;) € M with §(O;;).
In order to tackle the FJSS problem, two decisions, which are
a machine assignment decision and an operation sequencing
decision, have to be made. The machine assignment decision is
to allocate a ready operation to an appropriate machine while
the operation sequencing decision aims to select one operation
as the next to be processed when a machine becomes idle and
there are operations in its queue.
4) Dynamic Flexible Job Shop Scheduling: DFISS consid-
ers both the characteristics of FISS and DJSS. DFJSS is more

challenging since not only does the specific machine need to
be determined but also the processing sequence of operations
should be decided simultaneously along with the new arrival
jobs over time. DFJSS is strongly NP-hard [17].

B. Genetic Programming Hyper-heuristic

Hyper-heuristic is an automated methodology for selecting
or generating heuristics to solve hard computational search
problems [11]. There are two main categories of hyper-
heuristics, which are heuristic selection and heuristic genera-
tion [18]. Heuristic selection methodologies aim at choosing or
selecting existing heuristics while heuristic generation method-
ologies aim at generating new heuristics from components
of existing heuristics. Heuristic generation is popular adopted
to generate more comprehensive rules for JSS. The area of
automated heuristic or hyper-heuristics [18] have been proven
to be promising for designing heuristics. The main difference
between hyper-heuristic methods and other methods is that
hyper-heuristic methods explore the “heuristic search space”
rather than the solution space. A most state-of-the-art survey
of existing studies on hyper-heuristics and its applications can
be found in [19], [20].

Algorithm 1: Pseudo-code of GP to evolve dispatching rules for
JSS

Input : Training instances

Output: The best evolved rule ind*

while N,;,q < Popsize do

1:

2: \ Initialisation: Randomly initialise each individual
3 end

4 set ind* < null and fitness(ind*) < +oo

5. gen <0

6. while gen < mazGen do

7 Evaluation: Evaluate the individuals

8: for i = I to |Individual| do

9: if fitness; < fitness;,q+ then

10: | ind* < ind;

11 end

12: end

13: Evolution: Generate new population by genetic operators
14: gen < gen +1

15: end

16: return ind*

GP is a domain-independent approach that can automat-
ically generates computer programs to solve problems. The
flexible representation of GP makes it a good candidate to
evolve dispatching rules (hyper-heuristic) for the JSS prob-
lems. As a population based evolutionary computation tech-
nique, the main steps of GP for evolving dispatching rules are
shown in Algorithm 1.

routing rule

Fig. 1. An example of one individual of GP for DFJSS.



It is noted that in order to handle the DFJSS problems, each
individual consists of two trees (i.e. one for evolving routing
rule and the other for evolving sequencing rule). An example
of one individual of GP for DFIJSS is shown in Fig. 1.

C. Rules for Dynamic Flexible Job Shop Scheduling

In order to meet the sequence requirement of a job, only
ready operations can be assigned to machines. Naturally, the
ready operations have two sources. One is the first operation
of each new job. The other is the operation whose proceeding
operations have been just finished.

Routing rules and sequencing rules are needed in DFJSS.
It is noted that the dispatching rule used in DJSS in previous
research takes the same role as the sequencing rule in DFJSS.
To avoid confusion, we use the term dispatching rule to
contain two kinds of rules (i.e. routing rule and sequencing
rule) in DFJSS. Once an operation becomes ready operation
(i.e. routing decision situation), a routing rule will be triggered
to decide which machine to allocate this operation. Sequencing
rule will be triggered to determine which operation will be
chosen to process next on a specific machine, when a machine
becomes idle and its queue is not empty (i.e. sequencing
decision situation).

III. EVOLVING STOCHASTIC DISPATCHING RULE

The process of generating a schedule is similar to the
process of finding the best trajectory among lots of operations.
Deterministic dispatching rules always choose the operation
with highest priority value as the next to be processed, which
is too greedy to get a good solution in a stochastic envi-
ronment. Probability is the measure of the likelihood that an
operation will be chosen. Stochastic dispatching rule based on
probability distribution evolved by GPHH might increase the
diversity of trajectory and find a better schedule. Accordingly,
we design a stochastic dispatching rule, and the pseudo-code
of stochastic operation sequencing decision making process is
shown in Algorithm 2.

Algorithm 2: Pseudo-code of the process of operation sequenc-

ing

Input : Sequencing decision situations
A sequencing rule
Output: The selected operation O*
1. while a machine becomes idle and its queue is not empty do

2: Calculate the priority value for each operation in its queue

3 Calculate the probability for each operation based on its
priority value

4 Choose the corresponding operation O* based on its probability

5. end

6: return O*

A key step in Algorithm 2 is the way to calculate the prob-
ability for each operation (line 3) based on its priority value.
It is important to design a proper probability distribution to
control the degree of introduced randomness. In this paper, we
will investigate the effectiveness of a variety of mechanisms
to set the probabilities. The probability should be positively
correlated with priority value to make sure that operations with

higher priority are more likely to be selected. A higher priority
value gives the operation a higher precedence.

In this section, two kinds of probability distributions are
investigated. Then, the designed top-k selection with proposed
probability distributions is introduced followed by the sum-
mary of the characteristics of different strategies.

A. Multinomial Distribution

The most intuitive mechanism is to set the probability of
each operation proportional to its priority value. The detailed
steps of the multinomial distribution (i.e. also known as
proportional distribution) strategy is given as follows.

Step 1: Normalise priority values of operations into the
range [0, 1].

Normalisation is necessary because the priority values ob-
tained by dispatching rule evolved by GPHH can be negative
value, zero and positive value. This can be generalised to
restrict the range of values using Eq. (1).

(P?"ii — PTimin)

Pri; = - - 1
ner Przmam - PTZmin ( )

For the convenience of explanation, Pri; and nPri; are
used to indicate the priority value of operation i obtained by
sequencing rule and the normalised priority value of operation
i. Primqe. and Prig,;, are the maximal and minimal priority
values of the operations in the queue, respectively.

It is worth mentioning that there are two special cases (i.e.
both will cause the denominator in Eq. (1) to be zero) that
we should take care when using Eq. (1). Firstly, if there is
only one operation (i.e. Priy.. = Prim,) in the queue of
an idle machine, this unique operation will be chosen directly.
Secondly, if there are more than one candidate operations and
Pripge. = Primg,, which means all the candidate operations
have the same priorities, all the operations can be selected
with same probability. For example, if there are six operations
in the queue with same priority values, each operation will be
chosen with a probability 1/6.

Step 2: Calculate the sum of priority values of candidate

operations.
[N

sumPri = Z nPri; 2)
i=1

In Eq. (2), sum Pri stands for the sum of all the normalised
priority values of candidate operations and |N| is the number
of candidate operations in the queue.

Step 3: Calculate the probability of each operation.

In Eq. (3), Prob; stands for the probability of operation 1.

sumPri ®)

Following these three steps, the probability of an candidate
operation will be obtained. In general, the probability of an
operation can be presented as Eq. (4). This is a multinomial
distribution. The operation sequencing decision will be made
based on the obtained probabilities.

P’I“Obi _ 7’LPT’ZL

nPri;
N 4)
g‘l nPri;

Prob; =



B. Softmax Function

In probability theory, the output of the softmax function can
be used to represent a categorical distribution [21]. That is, a
probability distribution over K different possible outcomes. In
the field of reinforcement learning, it can be used to convert
values into action probabilities. The main advantage of using
softmax function is the output probabilities range. The range
will be [0, 1], and the sum of all the probabilities will be equal
to one. ,

eri

Prob; = (@)

|'N

The softmax probability of an operation is shown as Eq. (5).
It is worth mentioning that a high value will have a higher
probability than other values. Compared with multinomial
distribution, the probability distribution provided by softmax

function biases more on operations with higher priority values.

‘1 eP"'ii

C. Top-k Selection with Probability Distributions

In order to bias more towards the operations with higher
priority values, and remove the noise introduced by the less
prioritised operations, we consider to only keep the top-k
operations in terms of the priority value. Then, we can set
the probability of each top operation based on the predefined
distribution, such as the multinomial distribution and softmax
function. Obviously, the aforementioned multinomial distribu-
tion and softmax function can be considered as a special type
of the top-k selection, where k is a sufficiently large number.

D. Summary

Overall, the proposed probability distributions introduce
different degrees of randomness.
o With the same distribution, a smaller k£ value in the top-k
selection leads to a lower degree of randomness.
o The deterministic dispatching rule is a special type of
stochastic dispatching rule with k£ = 1, and has the least
degree of randomness.

IV. EXPERIMENT DESIGN

We use the MTGP [2] as the framework for evolving
the rules. The fitness of an individual in the GP population
is evaluated using discrete-event simulations of problem in-
stances of a job shop. In order to verify the performance
and robustness of proposed stochastic policies, six scenarios
are designed based on three objectives (e.g. max-flowtime
(Tmax), mean-flowtime (Tmean) and mean-weighted-flowtime
(WTmean)) and two utilisation levels (e.g. 0.85 and 0.95).
In our experiment, 50 independent runs are executed, which
assures that the results represent the average behaviour and
not extreme situations.

A. Simulation Configuration

In the job shop, there are ten machines, which has been
proven to be a good showcase for job shop environment. For
dynamic simulation, commonly used configuration is adopted
[22]. In this paper, the task is to process 5000 jobs by ten
machines. Jobs with different weights will arrive stochastically

according to a Poisson process with rate A\. Weight is a mea-
sure of the urgency or importance of jobs and 20%, 60% and
20% jobs will get weight 1, 2 and 4, respectively. The number
of operations of a job and the number of candidate machines
of an operation follows a uniform discrete distribution between
one and ten. The processing time of an operation will be
generated by uniform discrete distribution between one to 99.
It is noted that the processing time of an operation is the same
on all the candidate machines in this paper.

The utilisation is the proportion of time p that a machine is
busy. The expression is shown in Eq. (6). In Eq. (6), p is the
average processing time of machines. Py, is the probability
of a job visiting a machine. For example, P, is 2/10 if each
job has two operations.

p=Axpx Py (6)

In order to get a steady state, a warm up period of 1000
jobs is used and we collect data from the next 5000 jobs. The
new jobs keep coming until the 6000th job is finished.

B. Parameter Settings

In our experiment, the terminals are adopted in [22]. The
details are shown in Table I. The function set is {+, —, *,
/, max, min}, following the setting in [22]. The arithmetic
operators take two arguments. The “/” operator is protected
division, returning 1 if dividing by zero. The max and min
functions take two arguments and return the maximum and
minimum of their arguments, respectively.

TABLE 1
THE TERMINAL SET.
Notation Description
NIQ The number of operations in the queue
WIQ Current work in the queue
MWT Waiting time of a machine

PT Processing time of an operation on a specified machine

NPT Median processing time for the next operation
OWT Waiting time of an operation

WKR Median amount of work remaining for a job
NOR The number of operations remaining for a job

w Weight of a job
TIS Time in system

The initial population is generated using the ramped-half-
and-half method with minimum depth of two and maximum
depth of six. The population size is 1024 and the maximum
generation is 51. The GP trees have a maximum depth of
eight. For the genetic operators, the crossover, mutation and
reproduction rates are 0.80, 0.15 and 0.05, respectively. The
rates of terminal and non-terminal selection are 0.10 and 0.90.
Tournament selection with a tournament size of seven is used
to select individuals for genetic operators, which is a common
setting in previous work [23].

V. RESULTS AND ANALYSES

For the convenience of description, the MTGP approach
with multinomial distribution and softmax function are named
as mMTGP and sMTGP, respectively. The approaches with
respect to the test performance are investigated and discussed.



TABLE II
THE MEAN AND STANDARD DEVIATION OF THE OBJECTIVE VALUE OF MTGP WITH MULTINOMINAL DISTRIBUTIONS OVER 50 INDEPENDENT RUNS FOR
SIX DYNAMIC SCENARIOS.

Scenario Mean(StdDev)

k = all k=3 k=2 k =1
<Tmax,0.85> 1098.14(73.20) (+) 1048.63(69.86) (+) 1011.68(52.83)  1008.95(54.91)
<Tmax,0.95> 1573.64(80.92) (+) 1418.82(51.56) 1392.88(51.21)  1405.26(44.30)
<Tmean,0.85> 365.42(2.83) 365.55(2.88) 365.71(3.07) 365.47(3.07)
<Tmean,0.95> 483.24(7.12) 485.43(7.89) 483.77(7.00) 482.52(4.91)

<WTmean,0.85>
<WTmean,0.95>

791.93(7.17)
1007.39(17.38)

791.64(6.05)
1003.88(14.67)

790.64(6.12)
1008.16(18.04)

790.02(5.31)
1003.84(17.44)

TABLE III

THE MEAN AND STANDARD DEVIATION OF THE OBJECTIVE VALUE OF MTGP WITH SOFTMAX FUNCTION OVER 50 INDEPENDENT RUNS FOR SIX
DYNAMIC SCENARIOS.

Scenario Mean(StdDev)

k = all k=3 k=2 k =1
<Tmax,0.85> 1953.52(652.67)(+) 1068.48(68.37)(+)  1047.02(61.66)(+)  1008.95(54.91)
<Tmax,0.95> 6804.21(6157.54)(+) 1430.62(66.42) 1443.74(65.34)(+)  1405.26(44.30)
<Tmean,0.85> 381.57(8.82)(+) 365.50(2.74) 365.63(3.05) 365.47(3.07)
<Tmean,0.95> 587.87(161.43)(+) 485.31(9.28) 483.54(6.77) 482.52(4.91)

<WTmean,0.85> 833.44(23.77)(+) 792.19(6.90) 791.38(6.32) 790.02(5.31)
<WTmean,0.95> 1258.08(256.76)(+) 1004.93(16.09) 1003.15(16.15) 1003.84(17.44)

In the following results, “-, +” means the result is significantly
better or worse than the counterpart in Wilcoxon rank sum test
with a significance level of 0.05.

A. Test Performance of Evolved Stochastic Rules

Table II and Table III show the mean and standard deviation
of the objective value of the stochastic dispatching rule ob-
tained by MTGP with multinominal distribution and softmax
function, respectively. It is observed that the MTGP evolving
deterministic dispatching rules is indicated as k = 1. Statistical
analysis in Table II shows that MTGP with multinominal dis-
tributions are significantly worse than deterministic policy in
three cases. In other cases, there is no significantly difference
among them.

Table III shows that for MTGP with softmax function, in
most cases of & = 3 and k = 2, the performance is not
significantly worse than MTGP. From the perspective of mean
values, they are slightly worse than MTGP in most scenar-
ios (e.g. <Tmean,0.85>, <Tmean,0.95>, <WTmean,0.85>
and <WTmean,0.95>). In scenario <WTmean,0.95>, when
k = 2, the obtained mean and standard deviation are slightly
better than that of deterministic policy. However, in the cases
of k = all of MTGP with proposed probability distributions,
MTGP with softmax function performs significantly worse
than MTGP and MTGP with multinomial distribution. That
is, the performance of MTGP with softmax function becomes
worse when taking all the operations as candidates. MTGP
with softmax function losses its advantage in this case. In
general, in top-k strategies, GPHH with softmax function
and GPHH with multinomial distribution have no significantly
difference. However, taking all operations into account, GPHH
with multinomial distribution is better than its counterpart.
This may be because multinomial distribution always ignore
the worst one (zero probability), but softmax function still
gives a positive probability to any of the operations. From this

point of view, multinomial distribution could be less random
than softmax and achieve better results in this case.

In addition, both Table II and Table III show that max-
flowtime is more sensitive than mean-flowtime and mean-
weighted flowtime when randomness is introduced, especially
in the scenario <Tmax,0.95> (k = all) of MTGP with
softmax function. The results also show that the performance
becomes worse as the value of k£ increases. It means if the
degree of randomness is too large, it will bring more noise and
even behaves as a random schedule, which leads itself to get
worse performance. This suggests that using probability dis-
tribution with higher randomness is too random to get better
performance than focusing on several top ranked operations.
The randomness involved should be well controlled.

In conclusion, deterministic dispatching rules are likely to
be better (at least not worse) than stochastic dispatching
rule in the scenarios we investigated. This may be because
deterministic dispatching rules can assign each individual an
exact fitness value rather than a stochastic fitness value, which
is conducive to the execution of GPHH. This is much more
obvious for the Tmax objective. The maximal flowtime is
much more sensitive to the decisions than Tmean and WT-
mean, since it highly depends on the extreme case. Therefore,
it is much more important to have an accurate evaluation for
Tmax than the other two objectives.

Fig. 2 shows the test performance of different methods
based on SsMTGP and mMTGP. From the left to right, the
methods perform better and better. On the other hand, a
method more to the right tends to be focused more on exploita-
tion (more greedier) than a method to its left. Therefore, one
can see that introducing randomness in the decision making
of dispatching rules in GPHH does not help at all. Overall,
stochastic dispatching rules evolved by GPHH cannot help
achieve better performance. It might because the underlining
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Fig. 2. The test performance of MTGP with multinomial distribution and softmax function.

training processes of GPHH and traditional reinforcement
learning are so different. GPHH can generate new rules in
a much more random way (i.e. crossover and mutation), but
traditional reinforcement learning is much more greedier (i.e.
based on gradient). Thus, we cannot see obvious benefit of
introducing further randomness by using stochastic policy
which can be great benefit to make traditional reinforcement
learning less greedier.

On the other hand, the underlying difference between the
training processes of GPHH and traditional reinforcement
learning also suggests that there could be some ways to
improve the current GPHH to further take advantage of the
detailed feedback from the simulation, such as the value
function of the states and actions during the simulation, and
adjust the dispatching rules in a more intelligent way.

B. Insight of the Decision Making Process

In order to make a better understanding of the difference of
making decisions between MTGP with multinomial distribu-
tion and softmax function, we choose mMTGP with & = 3 (i.e.
the objective value is 1003.88) and sMTGP with k£ = 3 (i.e. the
objective value is 1004.93) in scenario <WTmean,0.95> as
an example. The probability calculations of the three candidate
operations are shown in Table IV. The main difference is that

TABLE IV

THE DIFFERENCE OF PROBABILTY CALCULATIONS BETWEEN MTGP WITH
MULTINOMIAL DISTRIBUTION AND SOFTMAX FUNCTION OF k = 3.

Operation  Priority Probability
Value Multinomial Distribution  Softmax Function
[OZ) 159.65 0.7559 0.9812
Oy2 155.56 0.2441 0.0165
Os1 153.61 0 0.0023

multinomial distribution still gives job with smaller priority
value relatively larger chance than that of softmax function to
be selected. It means softmax function is more greedier than
multinomial distribution with the same & value. Thus, softmax
function should be more similar with deterministic policy.
However, it is very interesting that when taking all candidate
operations into account, MTGP with softmax function perform

worse than MTGP with multinomial distribution. As we can
see from Table IV, even the three priority values are very close,
multinomial distribution still ignore the worst operation, which
will lead to less randomness than softmax.

C. Stochastic Dispatching Rule in Test Process

Another issue here is that whether probability distribution
should be included in test process. The results above are con-
ducted without randomness (i.e. probability distribution) in test
process. In other words, the rules simply selects the operation
with the highest priority value during the test simulations.
Table V shows the test results with probability distribution
and without probability distribution. In general, there is no
significantly difference because testing with stochastic policy
and testing without stochastic policy except for the scenario
<Tmax,0.85> and <Tmax,0.95> in mMTGP(k = 3). It can
be seen that in test process of MTGP with softmax function,
the mean values without probability distribution in test are
slightly smaller than that with probability distribution in half
scenarios of £ = 3 and almost all scenarios of k = 2 (in bold).
For MTGP with multinomial, it shows the same pattern.

In general, the results indicate that testing the performance
of the evolved rules, we normally can safely remove the
stochastic policy without causing performance degradation.
However, it does not mean we cannot get better performance
with probability distribution. A learned probability distribution
might help, which will be investigated in the future.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a flexible GPHH framework for
evolving stochastic dispatching rules for DFJSS, with deter-
ministic dispatching rules as a special case. The experimental
results on a wide range of probability distributions showed
that unlike in reinforcement learning, where it is effective to
train stochastic policies, under the current GPHH framework,
simply introducing more randomness in the decision making of
the dispatching rules is not an effective strategy. We argue that
this is due to the underlying difference between the training
process of GPHH and traditional reinforcement learning. On



TABLE V
THE MEAN AND STANDARD ERROR OF THE OBJECTIVE VALUE OF sSMTGP AND mMTGP (WITH AND WITHOUT PROBABILITY DISTRIBUTION IN TEST
PROCESS) OVER 50 INDEPENDENT RUNS FOR SIX DYNAMIC SCENARIOS.

Scenario sMTGP(k=3) mMTGP(k=3))
with without with without
<Tmax,0.85> 1075.44(54.53) 1068.48(68.37) 1090.22(41.48) (+)  1048.63(69.86)
<Tmax,0.95> 1437.20(50.48) 1430.62(66.42) 1545.43(40.22) (+) 1418.82(51.56)
<Tmean,0.85> 365.47(2.65) 365.50(2.74) 365.85(2.66) 365.55(2.88)
<Tmean,0.95> 485.11(8.65) 485.31(9.28) 485.98(7.38) 485.43(7.89)
<WTmean,0.85> 792.52(7.14) 792.19(6.90) 791.97(6.11) 791.64(6.05)
<WTmean,0.95>  1004.44(16.10) 1004.93(16.09) 1005.32(13.21) 1003.88(14.67)
Scenario sMTGP(k=2) mMTGP(k=2)
with without with without
<Tmax,0.85> 1051.51(52.54) 1047.02(61.66) 1011.68(52.83) 1011.68(52.83)
<Tmax,0.95> 1446.89(60.59)  1443.74(65.34) 1393.02(51.16) 1392.88(51.21)
<Tmean,0.85> 365.68(2.97) 365.63(3.05) 365.70(3.07) 365.71(3.07)
<Tmean,0.95> 483.57(6.60) 483.54(6.77) 483.74(7.02) 483.77(7.00)
<WTmean,0.85> 791.41(6.12) 791.38(6.32) 790.65(6.13) 790.64(6.12)
<WTmean,0.95>  1003.15(16.15) 1003.15(16.15) 1008.16(18.04) 1008.16(18.04)

one hand, GPHH is gradient free, and generates new rules
by random crossover and mutation. These genetic operators
may already provide sufficient exploration capability to GPHH
to explore different decisions during the simulation. On the
other hand, GPHH does not store the intermediate feedback
such as the value function of the states and actions during
the simulation, thus cannot adjust the behaviour of the rules
smoothly based on such feedback. As a result, it appears to
be the most effective to evolve deterministic dispatching rules
in GPHH, and the stochastic decisions will mainly introduce
noise in the fitness evaluation during GPHH.

Overall, the results suggest that it is not worthy evolving
stochastic dispatching rules under the current GPHH frame-
work. The discussions and analyses also suggest that we
can potentially improve the current GPHH framework by
considering more detailed information during the simulation
(such as the value function in reinforcement learning), and use
it to adjust the dispatching rules in a more intelligent way. We
will investigate this direction as our future work.
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