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Abstract. Dynamic flexible job shop scheduling (DFJSS) is a very im-
portant problem with a wide range of real-world applications such as
cloud computing and manufacturing. In DFJSS, it is critical to make
two kinds of real-time decisions (i.e. the routing decision that assigns
machine to each job and the sequencing decision that prioritises the
jobs in a machine’s queue) effectively in the dynamic environment with
unpredicted events such as new job arrivals and machine breakdowns.
Dispatching rule is an ideal technique for this purpose. In DFJSS, one
has to design a routing rule and a sequencing rule for making the two
kinds of decisions. Manually designing these rules is time consuming and
requires human expertise which is not always available. Genetic program-
ming (GP) has been applied to automatically evolve more effective rules
than the manually designed ones. In GP for DFJSS, different features
in the terminal set have different contributions to the decision making.
However, the current GP approaches cannot perfectly find proper com-
binations between the features in accordance with their contributions.
In this paper, we propose a new representation for GP that better con-
siders the different contributions of different features and combines them
in a sophisticated way, thus to evolve more effective rules. The results
show that the proposed GP approach can achieve significantly better
performance than the baseline GP in a range of job shop scenarios.

Keywords: Representation · Dispatching rules · Dynamic flexible job
shop scheduling · Genetic programming.

1 Introduction

Job shop scheduling (JSS), as an important optimisation problem, has received a
great deal of attention from both academics and industry researchers. It captures
practical and challenging issues in real world scheduling tasks such as managing
grid/cloud computing [1] and designing manufacturing processes [2]. JSS aims
to make a schedule to process a number of jobs with a set of machines. Each
job consists of a sequence of operations which need to be processed one by
one. Classical JSS assumes that one operation can be processed on only one
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specific machine. Thus, the task is to schedule the operations in the queue of the
machines.

Flexible job shop scheduling (FJSS) is different from the classic JSS in that
each operation can be processed by multiple candidate machines. Therefore,
FJSS includes two sub-tasks, which are machine assignment and operation se-
quencing. Machine assignment is to select an appropriate machine for each op-
eration from its candidate machines. Operation sequencing is to determine the
order of processing the allocated jobs in each machine to obtain feasible and
satisfactory solutions. FJSS is NP-hard [3].

In practice, the JSS problems are typically in dynamic environment. For
instance, the jobs arrive over time and their attributes are not completely known
until they arrive in the shop floor. There are also other types of dynamic events
in JSS problem such as order cancellations [4] and machine breakdowns [5]. In
this paper, we focus on dynamic new job arrivals because it is the most frequent
and common factor in the shop floor. The challenge of dynamic flexible job shop
scheduling (DFJSS) is how to capture both the machine assignment (routing)
decision and operation sequencing (sequencing) decision simultaneously along
with the new jobs arriving over time.

Exact approaches to search for optimal solutions, such as dynamic program-
ming [6] and branch-and-bound [7], are too time-consuming and inapplicable for
solving large scale JSS problems. Therefore, heuristic search methods such as
tabu search [8] and genetic algorithm [9] have been commonly adopted to find
“near-optimal” solutions in a reasonable time. However, heuristic search meth-
ods are not suitable for solving DFJSS problems because of their lack of ability
to react to the dynamic events in real time. Dispatching rules are promising in
this case because of their low time complexity, the ease of implementation and
the ability to cope with dynamic situations in the job shop. Since the term dis-
patching rule has been used in different contexts, it is worth highlighting that the
concept of a dispatching rule in DFJSS consists of a routing rule and a sequenc-
ing rule (i.e. two kinds of rules). The dispatching rules are normally designed
manually, which is very time-consuming and requires human expertise which is
not always available. In addition, many manually designed dispatching rules are
relatively simple and normally restricted to some specific assumptions [10] and
have difficulties in handling complex practical scenarios [11, 12]. Genetic pro-
gramming (GP) has been proven to be a dominating method to automatically
design dispatching rules for JSS [11, 13, 12, 14]. In order to evolve both the rout-
ing rule and sequencing rule for DFJSS, GP was hybridised with the cooperative
co-evolution framework to co-evolve the two kinds of rules [15, 16].

In GP for DFJSS, different features in the terminal set have different contri-
butions to the decision making. For example, the feature named WIQ (work in
queue, i.e. the total processing time of operations in the queue of a machine) is
known to be a dominating feature for making the routing decision, as intuitively
a machine with lighter workload should be preferred [17]. On the other hand, ma-
chine ready time is another important feature for routing decisions, i.e., it tends
to be better to assign the operation to a machine that can become idle in the
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earliest time. However, the contribution of machine ready time should be smaller
than WIQ. Intuitively, a machine with a lighter workload but a later ready time
should still be better than a machine with a heavier workload but an earlier
ready time. However, the existing GP approaches fail to properly combine the
features in accordance with their contributions. As a result, the evolved routing
rules usually focus too much on WIQ, but overlook the other non-dominating
features. The schedules obtained may become ineffective over the longer term
when facing the real-world shop environments.

In this paper, we aim to develop a new representation for routing rule to
help GP evolve more effective rules for DFJSS. In particular, we consider the
following research objectives:

– Develop a novel component that can appropriately take the information of
workload of machines into consideration.

– Propose a novel representation that tends to take into account the effect of
the dominating feature WIQ and other non-dominating features properly.

– Verify the effectiveness of proposed GP approach with new representation
by comparing its performance with the baseline GP.

– Analyse the rules evolved by the proposed GP approach.

2 Background

2.1 Dynamic Flexible Job Shop Scheduling

Given a set of machines M = {M1,M2, ...,Mm} and jobs J = {J1, J2, ..., Jn},
FJSS aims to determine which machine to process a particular job and which
job will be chosen to process next by a particular machine. To be specific, each
job Jj has a sequence of lj (lj <= m) operations Oj = (Oj1, Oj2, ..., Ojlj ). Each
operation Oij can only be processed by one of its own optional machines π(Oij)
and its processing time δ(Oij) depends on the machine that processes it. Then
FJSS is to find an effective schedule subject to the following constraints:

1) The (j + 1)th operation of Ji (denotes by Oi(j+1)) can only be processed
after its preceding operation Oij has been processed.

2) Each operation Oij can be processed on one of the corresponding set of
machines π(Oij) ⊆M with δ(Oij).

3) Each machine can process at most one operation at a time.
4) The scheduling is non-preemptive, i.e. the processing of an operation can-

not be stopped or paused until it is completed.
For the dynamic job shop scheduling problem, jobs arrive in the job shop

over time and their information can only be known when they arrive.

2.2 Dispatching Rules in Dynamic Flexible Job Shop Scheduling

In DFJSS, a routing decision situation will be generated when a new job arrivals
or an operation is finished and its subsequent operation becomes a ready oper-
ation. A sequencing decision situation will be derived when a machine becomes
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idle and its queue is not empty. Two kinds of dispatching rules are needed in
DFJSS, which are routing rule and sequencing rule, respectively. The quality of
a schedule depends highly on how well the routing rule and the sequencing rule
work together. The routing rule will be triggered to decide which machine to al-
locate the operation when a routing decision situation is derived. The sequencing
rule will be triggered to determine which operation in its queue will be chosen
to process next when a sequencing decision situation is derived. Once the trigger
conditions are met, the corresponding decisions will be made immediately.

The machine or operation with the highest priority assigned by routing or
sequencing rule is identified respectively. Once one operation is finished, its infor-
mation related to objectives will be recorded to its corresponding job. After all
the operations are processed, the recorded information related to all jobs is ob-
tained. Finally, the fitness can be calculated based on the information according
to different objectives.

2.3 Related Work

In recent years, GP has been widely used to automatically design dispatching
rules for solving JSS problems [18, 19]. Tree-based GP is commonly used in many
studies [20, 21]. In 2007, Tay and Ho [2] proposed a GP approach to evolve
priority rules for FJSS with multiple objectives by combining them into a single
function. Hildebrandt et al. [11] then used GP to evolve dispatching rules in
different simulations for the single objective of meanflow time. The results show
that the evolved rules perform very well in different scenarios. However, the early
studies only aim to evolve sequencing rule by fixing the routing rule. Cooperation
co-evolution was applied to GP to evolve the rules at the same time in [15]. The
results show that the evolved rules are more effective.

However, in the standard GP, all the features are considered equally in the
terminal set. The WIQ feature is a dominating factor [17, 22] that is much more
important than other features for routing decisions, therefore, the routing rules
tend to select the machine with minimal WIQ. In this case, WIQ tends to be
dominant and overweights the other non-dominating features. However, there
are many other features in the job shop and they might be less important than
WIQ, but still contribute to the routing decisions. Using them improperly could
lead to suboptimal performance.

3 The Proposed GP Approach

In order to identify effective combinations of the features with different impor-
tance, this paper considers to separate WIQ from other features, thus to expect
GP can focus more on non-dominating features during the evolutionary process.

A new representation for routing rule is designed to learn dispatching rules
which can take more information of non-dominating features. It is noted that the
representation design only applies on routing rule. In this section, the proposed
representation is presented first, followed by the designed components.
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3.1 Representation

The routing rule is defined as the product of two parts, which are named as com-
ponent 1 and component 2 (i.e. the details will be given in section 3.2). Compo-
nent 1 is predefined and component 2 is evolved by GP approach automatically.
The motivation of this design is to separate the WIQ with non-dominating fea-
tures. It is worth mentioning that a machine with smallest priority value (i.e.
highest priority) will be chosen in this paper. Multiplication is used here to com-
bine these two components together as it is a more appropriate combination
operator than addition and subtraction. Specifically, the value of component 2
might be much larger than the value of component 1. An example of the routing
rule is shown in Fig. 1. The terminals and functions in Fig. 1 will be described
in section 4.2.

WISWIQ

MWT

TIS NIQ

/

_
+

*

component 1 component 2

1

1 /

/

Fig. 1: An example of routing rule with new representation.

3.2 Components Design

The goal of component 1 is to extract the information of the current state solely
related to the workload of machines. To this end, component 1 is designed not
only to consider the information of WIQ, but also to consider the workload
distribution of machines in the system. The workload ratio (i.e. workload of
one machine over the entire workload in the system) that can help measure the
distribution of allocated jobs of machines. This is to prevent a solution from
assigning too much work on a single machine. Thus, the design of component
1 needs to meet two requirements. Firstly, it can be used to indicate the infor-
mation of workload of individual machines properly. Secondly, it should express
the difference of the workload of different machines in the system appropriately.

Under the above consideration, the expression of the proposed component 1 is
shown in Eq. (1), where WIQ stands for the total processing time of operations
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in the queue of a machine, and WIS (work in system. i.e. the total processing
time of operations in the queue of all machines) denotes the sum of the workload
of all the machines in the job shop. The component2 is the value (VGP ) obtained
by GP method.

component1 = 1/(1−WIQ/WIS) (1)

component2 = VGP (2)

Priority = component1 ∗ component2 (3)

As shown in Eq. (1), component 1 has the following two characteristics. Firstly,
it can ensure that all the values obtained by Eq. (1) are larger than 1. It means
that component 1 will enlarge the value obtained by the GP approach. In other
words, component 1 plays a role of a penalty coefficient. Secondly, the penalty of
each machine is different. The heavier the workload of a machine, the severer the
punishment is given to that machine. This way, a machine with a lighter workload
tends to have a smaller priority value, and is more likely to be selected.

An example of the combination mechanism is shown as follows. We assume
there are two candidate machines for one operation. The value obtained by orig-
inal GP approach are VGP1 and VGP2. The workloads of these two machines are
denoted by WIQ1 and WIQ2. At one decision point, the workload in the entire
shop floor (WIS, i.e. work in system) is the same for all the machines. According
to the Eq. (1), (2) and (3), the different situations of the proposed representa-
tion are shown in Table 1, where C() stands for the relationship between the
corresponding elements. In Table 1, “ =, >,< ” are used to show the relation-
ship between VGP1 and VGP2, WIQ1 and WIQ2, component1 and component2,
Priority1 and Priority2.

Table 1 shows how the difference between machines workload (WIQ) can
influence the final priority value (Priority) under different situations categorised
by VGP . All the cases of VGP1 = VGP2 and most cases of VGP1 > VGP2 and
VGP1 < VGP2 have the same trend that the WIQ is positively correlated with
component1 and Priority. This means a machine with lighter workload will get
a smaller component 1 and final priority value, and vice versa. This ensures
that the priority values obtained by GP is well considered. There are some
special cases as follows. When VGP1 > VGP2 (VGP1 < VGP2), if WIQ1 < WIQ2

(WIQ1 > WIQ2), the final priority value (Priority) is not sure and depends
on the accurate result according to Eq. (1), (2) and (3). Thus, on one hand, the
machine with heavier workload but small VGP still has chance to have a small
priority value, and thus be selected. On the other hand, the machine with a poor
VGP can also be selected if its workload is very light.

Overall, the proposed priority function with the above two components is
expected to consider the effect of both the workload of machines (in component
1) and the other features (in component 2), and combine them together properly
by multiplication.
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Table 1: The situations of the final priority values with the proposed components.

C(VGP ) C(WIQ) C(component1) C(Priority)

< < <
= = = =

> > >

< < ?
> = = >

> > >

< < <
< = = <

> > ?

4 Experiment Design

This work applies the framework (i.e. cooperative evolution genetic program-
ming, CCGP) in [15], which is the current state-of-the-art algorithm of DFJSS
to evolve routing and sequencing rules simultaneously. The proposed algorithm,
which is named as rCCGP, is compared with CCGP [15] to verify its effectiveness
on different job shop scenarios using three commonly used objectives, namely:
(1) max-flowtime, (2) mean-flowtime, and (3) mean-weighted-flowtime.

To verify the performance of the evolved rules, we will use the test beds based
on dynamic flexible simulation model [23, 24]. In order to test the effectiveness
and robustness of proposed algorithm, six simulation scenarios based on the
three objectives and two utilisation levels (3 ∗ 2) are investigated.

4.1 Simulation Configuration

For dynamic simulation, commonly used configuration is adopted. In the job
shop, there are ten machines, which has been proven to be a good showcase for
job shop environment. There are 5000 jobs that need to be processed by ten
machines. In order to get a steady state, a warm up period of 1000 jobs is used
and we collect data from the next 5000 jobs. The new jobs keep coming until
the 6000th job is finished. In each problem instance, jobs arrive stochastically
according to a Poison process with rate λ and the average processing time for
machines has mean µ. The utilisation is the proportion of time (p) that a machine
is busy as shown in Eq. (4). Two utilisation levels (i.e. 0.85 and 0.95) are used
in this paper.

p = λ ∗ µ ∗ PM (4)

In Eq. (4), PM is the probability of a job visiting a machine. For example, if
each job has two operations and there are ten machines, PM is 2/10.

Different weights are set to jobs to indicate the urgency or importance of jobs
(weight 1 (20%), weight 2 (60%), weight 4 (20%)). Uniform discrete distribution
between 1 and 10 is designed for deciding both the number of operations per job
and the number of candidate machines per operation. In addition, processing



8 Fangfang Zhang, Yi Mei, and Mengjie Zhang

time of each operation will follow uniform discrete distribution between 1 and
99. In this work, the processing time of each operation is the same for all the
candidate machines.

4.2 Parameter Settings

In our experiment, the terminal set and function set in [24] are adopted. The
details are shown in Table 2. It is worth mentioned that “/” is the protected
division that returns 1 if divided by 0.

Table 2: The terminal and function sets.

Terminals Description

NIQ The number of operations in the queue
WIQ Current work in the queue
MWT Waiting time of a machine

PT Processing time of an operation
NPT Median processing time for next operation
OWT The waiting time of an operation
WKR Median amount of work remaining of a job
NOR The number of operations remaining of a job

W Weight of a job
TIS Time in system

functions +, −, ∗, /, max, min

The GP parameter settings follow the standard setting that have been used in
most existing studies [20, 22, 15]. The population size is 1024 and the maximum
depth of programs is 8. The crossover, mutation and reproduction rates are 0.80,
0.15 and 0.05, respectively. The rates of terminal and non-terminal selection are
0.10 and 0.90. Tournament selection is set as parent selection method with a
tournament size of 7. The learning process continues until the generation reaches
the maximum number of generations, which is set to 51.

5 Results and Discussions

The proposed GP approach with respect to the test performance and distribu-
tion of average objective value is investigated. 50 independent runs are executed,
which assures that the results represent the average behavior instead of extreme
situations. Then, the evolved rules are analysed. The (−,+) marks show whether
our proposed approaches converge significantly better or poorer than the basic
approach in Wilcoxon rank sum test with a significance level of 0.05. Better
results of min and max values are shown in bold. For the convenience of descrip-
tion, <obj, uti> indicates the simulation scenarios, where obj and uti are the
objective and the utilisation level.
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5.1 Test Performance of Evolved Rules

The comparison of the performance of the evolved rules obtained by rCCGP
and CCGP are shown in Table 3. The statistical tests show that the evolved
rules obtained by rCCGP are significantly better than the rules obtained by
CCGP in four (scenario <Tmax, 0.95>, <Tmean, 0.85>, <WTmean, 0.85>
and <WTmean, 0.95>) out of six scenarios. In scenario <Tmax, 0.85>, the
performance is quite similar between rCCGP and CCGP with respective to the
mean(sd), min and max value. In scenario <Tmean, 0.95>, although the rules
evolved by rCCGP is not significantly better, the min, mean(sd) and max value
are all better than their counterparts. In addition, rCCGP can reach better
best-case and worse worst-case performance than CCGP in most cases.

Table 3: The mean(standard error), min and max of the objective value of rCCGP and
CCGP over 50 independent runs for six dynamic scenarios.

Scenario mean(sd) min max
rCCGP CCGP rCCGP CCGP rCCGP CCGP

<Tmax,0.85> 1202.96(28.34) 1202.36(30.98) 1158.79 1152.97 1273.17 1270.26
<Tmax,0.95> 1864.83(30.69)(-) 1883.66(36.67) 1813.77 1829.47 1942.71 2034.34
<Tmean,0.85> 384.36(2.28)(-) 385.81(2.58) 382.31 382.72 396.83 395.81
<Tmean,0.95> 550.32(4.80) 552.14(6.46) 543.18 545.64 569.43 577.49

<WTmean,0.85> 828.30(6.02)(-) 829.38(3.47) 823.08 824.68 856.29 839.67
<WTmean,0.95> 1107.63(12.47)(-) 1110.72(10.77) 1095.88 1097.74 1169.34 1143.34

5.2 Distribution of Average Objective Value

Fig. 2 shows the violin plot of the average objective value obtained by rCCGP
and CCGP. When further looking into the violin plot in Fig. 2, we can see that in
most scenarios, the value obtained by rCCGP are distributed at lower positions
compared with the value achieved by CCGP expect for scenario <Tmax, 0.85>.
Although in <Tmean, 0.85>, <WTmean, 0.85> and <WTmean, 0.95>, there
are some outliers which are higher than the maximum outlier in CCGP, the
number of outliers is still smaller than their counterparts. Except for the outliers,
the value obtained by rCCGP are more concentrated than that of CCGP, even
in scenario <Tmax, 0.85>. This suggests that the performance of GP with the
proposed new representation is more stable and effective.

5.3 Rule Analyses

Routing Rule. The proposed strategy for GP approach only works on routing
process directly. The results show that the number of occurrences of the feature
WIQ appeared in the final routing rules evolved by rCCGP is much lower than
that of evolved by CCGP. For instance, in scenario <WTmean, 0.95>, the num-
ber of occurrences for feature WIQ in 50 best routing rules of CCGP (131) is
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Fig. 2: Violin plot of average objective value obtained by rCCGP and CCGP.

41% lighter than in rCCGP (93). This is consistent with our expectation as in
the proposed rCCGP, the workload of machines is considered in component 1,
so that the GP-evolved component 2 can be more focused on the other features.

Fig. 3 shows the simplified component 2 of one promising routing evolved by
rCCGP in the scenario <Tmax, 0.95>. It obtains a Tmax of 1831. There is no
WIQ in the GP evolved rule (component 2). The component 2 consists of four
parts and these four parts are added together. So, we can analyses them one by
one. The details are shown in Eq. (5) - (8). Note that based on the definition
in Table 2, PT and NPT for all the candidate machines of an operation are
equal in our experiment. NOR for a job is also the same for routing at the
decision point. In addition, TIS and WKR are equal for an ready operation. In
summary, by definition given in Table 2, at any routing decision situation, the
PT , NPT , NOR, TIS and WKR features can be treated as constants, as they
are the same for all the candidate machines. Adding or subtracting a constant
can be removed from the priority function, since it will not change the relative
preference between machines. In our experiment, the smaller the priority value,
the higher the priority.

part1 =1 +max{min{NIQ,MWT}, PT −MWT}
−min(W,MWT +NOR)

(5)

The first part is shown as Eq. (5). Obviously, 1 and W are small constants,
and thus min(W,MWT + NOR) equals W in most cases since W is usually
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smaller than MWT + NOR. Therefore, Eq. (5) can be further simplified as
max{min{NIQ,MWT}, PT −MWT}. It shows that the routing rule prefers
machines with larger MWT , i.e. the earlier available machine (MWT = current
time - machine ready time).

part2 = PT ∗ (1 +NIQ)− 2 ∗MWT −NOR+min{NPT, TIS} (6)

The second part can be presented as Eq. (6). After ignoring some variables that
can be considered as constants, Eq. (6) can be further simplified to PT ∗NIQ−
2 ∗MWT . It means the routing rule prefers machines with smaller NIQ (i.e.
number of operations in the queue) and larger MWT .

part3 =NPT +WKR

−min{NIQ ∗ PT,max{min(NIQ,MWT ), PT −MWT}}
(7)

The third part is described as Eq. (7). It can be simplified as -min{NIQ ∗
PT,max{min(NIQ,MWT ), PT −MWT} after ignoring the first two constant
terms. In addition, no matter whatmin{NIQ∗PT,max{min(NIQ,MWT ), PT−
MWT} returns, it will be cancelled out by the same component in part1 or part2.

part4 =
MWT ∗ (PT +NPT +min{NIQ,MWT})

OWT ∗W
(8)

The last part can be denoted as Eq. (8). OWT (i.e. the waiting time of an
operation) for a ready operation in routing process equals zero in our experiment
(i.e. the details are shown in section 2.2), therefore, the part4 will return 1 (i.e.
protected division).

According to the analysis mentioned above, this routing rule can be roughly
simplified as max{min{NIQ,MWT}, PT −MWT}−2∗MWT or PT ∗NIQ−
2 ∗MWT .

Table 4 shows the number of times (proportion) a feature appears in the
routing rule mentioned above and the counterpart in scenario <Tmax, 0.95>.
The number of occurrences of features in the routing rule evolve by rCCGP and
CCGP are 39 and 25, respectively. The number of designed terminals is 10 and
the details can be seen in Table 2. The number of considered features in rCCGP
(8) is more than that of evolved by CCGP (6). It suggests that the proposed GP
approach can pay more attention to other features to get more information, thus
to improve its performance. It is worth mentioning that the number of features
considered in rCCGP is nine in fact because we consider WIQ by component 1.

MWT, which occurs 15 times, is the most frequently seen feature (15/39 =
0.38) of the evolved rule by rCCGP. For CCGP, MWT is also the most popularly
used one, however, in terms of the proportion, it is less considered than that of
in rCCGP (0.28 < 0.38). rCCGP and CCGP pay different attention to different
features (i.e. the features have different importance in rCCGP and CCGP).

Sequencing Rule. The corresponding sequencing rule of the routing rule com-
pared in last section is observed here. This is mainly to investigate what effect
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Table 4: The number of occurrences (proportion) of features in one promising routing
rule evolved by rCCGP (component 2) and CCGP in scenario <Tmax,0.95>.

Feature Count (rCCGP) Count (CCGP)

MWT 15 (0.38) 7 (0.28)
PT 6 (0.15) 0(0.00)
NIQ 5 (0.13) 6 (0.24)
NPT 3 (0.08) 0 (0.00)
TIS 3 (0.08) 2 (0.08)
W 3 (0.08) 0 (0.00)

NOR 2 (0.05) 2 (0.08)
OWT 2 (0.05) 5 (0.20)
WKR 0 (0.00) 0 (0.00)
WIQ 0 (0.00) 3 (0.12)

total 39 25

routing rule will have on sequencing rule. The sequencing rule evolved by rCCGP
and CCGP are shown in Fig. 4 and Fig. 5. The size (i.e. number of nodes) of
the sequencing rule is 45 evolved by rCCGP while the sequencing rule evolved
by CCGP in the same scenario is 67. Obviously, the sequencing is much smaller.
When looking at the sequencing rule evolved by rCCGP, the most popular pat-

+

min /

- +

PT W WKR max

WKR min

max PT

OWT -

PT W

+ +

+ +

max +

WKR NPT min max

WIQ NOR min NIQ

WIQ NOR

* -

W W PT W

* /

W W NIQ WKR

Fig. 4: The corresponding sequencing rule of the routing rule mentioned in last section
evolved by rCCGP in the scenario <tmax, 0.95>.

tern is PT −W followed by W ∗W and min{WIQ,NOR}. WIQ/W appears
most often (i.e. six times) followed by PT −W in the sequencing rule evolved by
CCGP. It means if the workload is not well considered in routing process, the
machine might be assigned too many tasks. Thus, the sequencing rule should
take WIQ into account. Intuitively, a machine with lots of work should take
different processing strategy compared with a machine has fewer tasks.
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6 Conclusions and Future Work

The goal of this paper was to help GP evolve more effective dispatching rules
for DFJSS. The goal has been successfully achieved by developing a new repre-
sentation. The new representation is based on the domain knowledge that the
workload of a machine WIQ is the dominating feature for making the routing
decision. To fully explore the best way of using the other non-dominating fea-
tures, the new representation was designed as a combination of two parts, one
solely related to the workload of machines, and the other focused on the other
non-dominating features. This way, GP can focus on exploring more appropriate
ways of using the other features than the dominating feature.

The results show that the proposed GP approach with new representation
can achieve significantly better performance in most of the involved scenarios.
To be specific, the distributions of average objective values obtained by rCCGP
in five out of six scenarios are better than that of in CCGP. This means the
proposed new representation works well in almost all the examined instances. It
confirms the effectiveness of the proposed component for workload information
and the combination strategy. It is also known that the routing rule obtained
by rCCGP can focus more on the non-dominating features with the proposed
new representation. In addition, the evolved corresponding sequencing rule is
also affected to consider different information and tended to be smaller than
its counterpart. Overall, the results demonstrate that the proposed way of us-
ing domain knowledge successfully helps GP evolve more effective routing and
sequencing rules for DFJSS.

In the future, more strategies will be investigated to make full use of the
information provided by features. In addition, useful techniques will be adopted
to inspect the evolved rules.
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