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ABSTRACT
Dynamic flexible job shop scheduling (DFJSS) is an important and a
challenging combinatorial optimisation problem. Genetic program-
ming hyper-heuristic (GPHH) has been widely used for automat-
ically evolving the routing and sequencing rules for DFJSS. The
terminal set is the key to the success of GPHH. There are a wide
range of features in DFJSS that reflect different characteristics of
the job shop state. However, the importance of a feature can vary
from one scenario to another, and some features may be redundant
or irrelevant under the considered scenario. Feature selection is a
promising strategy to remove the unimportant features and reduce
the search space of GPHH. However, no work has considered fea-
ture selection in GPHH for DFJSS so far. In addition, it is necessary
to do feature selection for the two terminal sets simultaneously. In
this paper, we propose a new two-stage GPHH approach with fea-
ture selection for evolving routing and sequencing rules for DFJSS.
The experimental studies show that the best solutions achieved by
the proposed approach are better than that of the baseline method
in most scenarios. Furthermore, the rules evolved by the proposed
approach involve a smaller number of unique features, which are
easier to interpret.
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1 INTRODUCTION
Job shop scheduling (JSS) [4] is an important combinatorial opti-
misation problem, which aims to optimise resource allocation. In
the job shop floor, we expect to complete the processing of jobs (i.e.
each job consists of a sequence of operations) in the shortest time,
thus to improve its productivity. In flexible job shop scheduling,
the machine resource is more flexible than ordinary JSS in that an
operation can be processed on more than one machine. Thus, the
machines need to be properly assigned to the operations (routing)
and all the operations should be processed in an effective order
(sequencing). In addition, in the real-world, the scheduling process
is conducted under dynamic events such as job arrivals over time
[29] and machine breakdown [1, 21], which is known as dynamic
flexible job shop scheduling (DFJSS).

Over the years, lots of approaches have been proposed for solving
the JSS problems. There are three major types of scheduling meth-
ods. In the early days, exact methods such as dynamic programming
[6] and integer linear programming [25] have been investigated.
On one hand, exact methods aim at finding optimal solutions. On
the other hand, these techniques are too time-consuming when the
problems are getting large. In addition, it is hard for exact methods
to handle dynamic problems where a lot of real time decisions are
needed to be made quickly. Subsequently, heuristic methods which
are able to find a good but not necessarily optimal solution have
been applied. These methods are much quicker and can be used to
solve large scale problem in a reasonable time. However, it cannot
be used efficiently to handle dynamic problems. Dispatching rules,
as priority functions, might be the most popularly used heuristic
for JSS. It is very simple to implement and handle dynamic problem
efficiently. It is noted that in DFJSS, a dispatching rule consists of a
routing rule (for machine assignment) and a sequencing rule (for
operation sequencing).

However, manually designing dispatching rules is very time-
consuming and heavily relies on domain knowledge which is not al-
ways available. Genetic programming (GP) [12], as a hyper-heuristic
method, has been successfully applied to automatically evolve dis-
patching rules for JSS [9, 19, 23]. The evolved rules by GP are the
combination of terminals and functions. It is noted that the selec-
tion of the terminals and functions is critical for GP to succeed. In
a given problem, the feature set should be defined carefully so that
irrelevant information is not considered. The inclusion of irrele-
vant information can easily convert a problem that is amenable to
efficient algorithmic solutions into one that is intractable. On the
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other hand, it is important that the feature set is large enough to in-
clude all information that is relevant to solve the problem. In DFJSS,
there are many characteristics (e.g. machine-related, job-related
and system-related) that may be useful. However, it is unknown
whether each of them will be actually useful, and some of them
may be redundant and irrelevant in the considered scenarios. For
example, the weights of jobs are not important in minimising mean-
flowtime (i.e. the average time to process a job), but it plays an
important role in minimising mean-weighted-flowtime (i.e. the
average time to process a job taking its weight into account). Fur-
thermore, two feature sets (one for evolving routing rules and the
other for evolving sequencing rules) should be optimised simul-
taneously. This makes it more challenging for designing proper
terminal sets in DFJSS.

The problem can be addressed by using feature selection to
choose only informative features based on different scenarios. Fea-
ture selection is an important part of data processing which can be
used to enhance the quality of the feature space, thus to simplify
the learned model, speed up the learning process and improve the
performance. It has been successfully used to solve classification
[8, 24, 26], clustering [13] and regression [7, 31] problems. Although
GP itself can automatically perform feature selection for JSS, its
ability is limited. For example, even in the best rule evolved by GP,
there are still some irrelevant features. More advanced techniques
are needed in this area.

To the best of our knowledge, little is yet known about using fea-
ture selection in JSS. Mei et al. proposed a feature ranking approach
in [17] and feature selection approach with niching and surrogate
techniques in [15] to evolve dispatching rules. The results showed
that using only the features selected by the proposed approach
can lead to significantly better evolved rules without sacrificing
its efficacy. However, the approach was only investigated in the
JSS problems and only one feature set was involved. There are
some challenges and gaps for feature selection in solving the DFJSS
problems as follows.

(1) The simulation is different by nature and surrogate cannot
be directly used. That means the feature selection can be
very time-consuming or inaccurate.

(2) We need to consider both routing and sequencing rules and
do feature selection for two terminal sets rather than one
terminal set.

Moreover, there is no work about using feature selection to solve
the DFJSS problem. It is important to consider feature selection as
a part of the evolutionary process to avoid introducing feature bias
into the model.

1.1 Goals
This paper aims to develop a two-stage GP approach where the
terminals chosen using feature selection are used to improve perfor-
mance of GP during the evolutionary optimisation. The two-stage
framework is expected to help GP find more effective rules. In
particular, we have the following research objectives.

(1) Propose a novel two-stage framework for GP with feature
selection to evolve routing and sequencing rules simultane-
ously.

(2) Verify the effectiveness of the proposed algorithm by compar-
ing with genetic programming with cooperative coevolution
(named as CCGP) which was proposed for DFJSS in [28].

(3) Analyse the proposed approach in terms of the number and
the quality of the selected features.

2 BACKGROUND
In this section, the problem description, the mechanism of dispatch-
ing rules, the main processes of GP and the challenge of feature
selection for solving the DFJSS problems are illustrated.

2.1 Dynamic Flexible Job Shop Scheduling
Given a set of machines M = {M1,M2, ...,Mm } and jobs J =
{J1, J2, ..., Jn }, flexible job shop scheduling [14] aims to determine
which machine to process a particular job and which job will be cho-
sen to process next by a particular machine. To be specific, each job
Jj has a sequence of lj (lj <=m) operationsO j = (O j1,O j2, ...,O jlj ).
Each operation Oi j can only be processed by one of its own op-
tional machines π (Oi j ) and its processing time δ (Oi j ) depends on
the machine that processes it. For the dynamic job shop scheduling
problem, jobs arrive in the job shop over time and their informa-
tion can only be known when they arrive. In DFJSS, the machine
assignment and operation sequencing tasks are considered at the
same time taking the dynamic events into account.

2.2 Dispatching Rules for Dynamic Flexible Job
Shop Scheduling

In order to follow the order constraint, only ready operations are
allowed to be allocated to machines. Naturally, operations become
ready when one of two different events occur. The first one is the
first operation of a job. The second one is the subsequent operation
whose proceeding operation is just finished.

A dispatching rule consists of a routing rule and a sequencing
rule in DFJSS. Once a ready operation becomes ready (routing de-
cision point), it will be allocated to the machine with the highest
priority which is calculated by the routing rule. Once a machine
becomes idle (sequencing decision point), the sequencing rule will be
triggered to select the operationwith the highest priority as the next
task. In this way, new decisions are only made at decision points
based on the current information, which is more efficient and can
handle dynamic events well. On one hand, each operation will be
allocated to a machine by a routing rule first and then selected by a
sequencing rule later. On the other hand, at each decision point, the
corresponding routing rule and sequencing rule will be triggered.
It means the routing and sequencing processes are conducted in an
interactive way.

2.3 Genetic Programming Hyper-heuristics
A hyper-heuristic [3, 5] is a heuristic search method that seeks to
select or generate heuristics to efficiently solve hard computational
search problems. The unique feature is that hyper-heuristics search
in a search space of heuristics. Hyper-heuristic is often incorporated
with machine learning technique to achieve its goal. In JSS, a hyper-
heuristic method aims at improving the generalisation of evolved
rules to enhance the performance. GP, as a hyper-heuristic method,
has been successfully applied to evolve dispatching rules for solving
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Figure 1: The overall process of genetic programming hyper-
heuristics for dynamic flexible job shop scheduling.

JSS problems [2, 10, 11, 18, 19, 30]. There are some advantages of
using GP as a hyper-heuristic method. The first one is its flexible
representation (i.e. tree structure). It is not necessary to define the
structure of priority functions in advance. The second one is that the
tree-based programs provide us the opportunities to understand the
behaviour of the evolved rules, which is important for real-world
applications.

Figure 1 shows the overall processes of GP hyper-heuristics for
solving the JSS problems. There are two phases in the whole pro-
cess, i.e. the training process and the test process. The output of the
training process is a heuristic (i.e. a dispatching rule) rather than a
solution. Then, in the test process, the dispatching rule serves as
the input. Based on the evolved dispatching rules, a schedule is gen-
erated and the performance (i.e. objective value) of the dispatching
rule can be measured.

2.4 Feature Selection
Feature selection is an effective process for selecting a subset of
relevant features by removing irrelevant, redundant and misleading
features [27]. It has been successfully used to solve classification
[24, 26], clustering [13] and regression [7, 31] problems. In a job
shop floor, there are many characteristics that can be used for GP,
however, it is not known which are more important in a specific
case. On one hand, it is better to include all relevant features of the
problem to help GP to evolve rules. On the other hand, the search
space grows exponentially as more terminals are included. Feature
selection is a good technique for handling this problem faced in
DFJSS.

GP has the capability of finding hidden relationships between a
subset of features. It can simultaneously identify relevant features
and evolve the best tree using the relevant features in an adaptive
evolutionary process. However, from our preliminary work, even
in this way, GP still contains some irrelevant features in the best
individual. Its ability can be further improved by feature selection
technique.

However, there are some challenges to apply feature selection
in DFJSS. Firstly, the bounds of the objectives are not clear and it
is hard to measure the importance of a feature. Secondly, the task
in DFJSS (i.e. prioritising operations or machines) is different from
the traditional machine learning task (e.g. classification, regression
and clustering), which makes traditional feature selection methods
not directly applicable.
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Figure 2: The flowchart of two-stage genetic programming
with feature selection.

3 THE NEW APPROACH
In this section, the proposed two-stage framework is illustrated
first. Then, the mechanism of feature selection is described. The
whole proposed approach is the incorporation of feature selection
and the two-stage framework.

3.1 Two-stage Framework
Existing works [15, 17] about feature selection for dynamic JSS
were mainly presented in an offline way. It means that feature selec-
tion is always applied as a pre-processing step to get a promising
subset of terminals first and then the selected terminals are used
in another independent GP run to solve the problems. In terms
of GP with feature selection, there are some drawbacks of the of-
fline way. Firstly, this will waste some generated good structures
of individuals which have been generated in the process of feature
selection. Secondly, the evaluation in GP is very time-consuming
and GP with feature selection will make this phenomenon even
worse. These facts foster the motivation to propose a more effective
mechanism for GP with feature selection. In this paper, in order
to take advantage of effective structures already generated in the
process of feature selection and save evaluations, a two-stage ge-
netic programming approach with feature selection is proposed.
The flowchart of the proposed approach, which is named as FSGP,
is shown in Figure 2.

The main steps, which are evaluation, selection and evolution,
are the same as the classical GP algorithm. The difference is that
there is a check point (i.e. generation 50) for separating the whole
GP process into two stages. In the first stage (i.e. before generation
50), GP proceeds with a niching evaluator and a surrogate model.
The output of stage 1 is a ready population for feature selection.
At generation 50, feature selection mechanism will be invoked to
select two sets of informative terminals for evolving routing and
sequencing rules, respectively. That means the terminals set both
for evolving routing and sequencing rules are reset. In the second
stage (i.e. after generation 50), the population will be evaluated
without niching and surrogate techniques. The mutation operator
samples from the selected terminals rather than the entire terminal
set while generating the new sub-tree. The main process of the
second stage is the same as the classical GP.
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In conclusion, the two-stage GP approach contains two consec-
utive phases. The first stage is mainly for feature selection with
niching and surrogate techniques. In the second stage, the obtained
information in the first stage is well utilised by inheriting its evolu-
tionary process. In addition, selected features are used to guide the
search space during the subsequent evolutionary search.

3.2 Niching Based and Surrogate-assisted
Feature Selection

An effective feature selection with niching and surrogate for dy-
namic JSS was proposed in [15]. In this paper, we apply the idea
but with a number of adjustments to dynamic flexible JSS.

3.2.1 Niching. For feature selection, the first question is how
to measure the importance of a feature. It has two factors. One is
the observed individuals which are used as the baseline to analyse
the features. The other is the way of measuring the importance of a
feature. Both of them are critical for selecting features.

Clearing [22] (i.e. used to reduce the number of poor individuals
in crowded areas within the search space), as a niching technique,
is applied to get a diverse set of good individuals as samples for
selecting informative features. Following the suggestions in [15], it
is conducted by adding a clearing process with a radius σ = 0 and
a capacity k = 1 after traditional fitness evaluation. This aims at
investigating more features instead of falling into local optimum. It
is worth mentioning that two sets of individuals (i.e. one set from a
sub-population) are selected. Then, the feature selection procedure
is conducted on the two sets, separately.

The contributions of features for individuals are then calculated
to decide which feature will be chosen. The contributions are de-
fined proportional to the importance of features for the fitness
values. For example, 20 individuals are selected as observed indi-
viduals. There are three main steps for defining the contribution of
a feature. Firstly, the measured feature is replaced by one in all 20
individuals. The fitnesses of all new individuals (i.e. the measured
feature is replaced by one) are obtained. Secondly, the fitness dif-
ferences of 20 individual after and before replacing the measured
feature to one are calculated as shown in Eq. (1). Note that this
paper is seeking to minimise the objective value. If f itnessd > 0,
it means the fitness becomes worse without the measured feature.
That is to say, this measured feature is very important. The larger
the f itnessd value, the more important the feature is. Thirdly, the
fitnesses of 20 individuals are normalised as shown in Eq. (2) and
act as the voting weights as shown in Eq. (3). If f itnessd > 0.001,
the weight will be assigned to the measured feature as voting score.
Finally, a feature is selected if the total weight voting for it is larger
than the total weight not voting for it.

f itnessd = f it(r |t = 1) − f it(r ) (1)

n(r ) =
1

1 + f it(r )
(2)

w(r ) =max

{
n(r ) − nmin
nmax − nmin

, 0
}

(3)

3.2.2 Surrogate. The proposed feature selection is computa-
tional expensive. In order to handle this, the half shop surrogate
model [20] is applied to reduce the computation time for feature

Table 1: The terminal set.

Notation Description

NIQ The number of operations in the queue
WIQ Current work in the queue
MWT Waiting time of a machine
PT Processing time of an operation on a specified machine
NPT Median processing time for the next operation
OWT The waiting time of an operation
WKR Median amount of work remaining for a job
NOR The number of operations remaining for a job
W Weight of a job
TIS Time in system

Table 2: The parameter setting of GP.

Parameter Value

Number of subpopulations 2
Subpopulation size 512

Method for initialising population ramped-half-and-half
Initial minimum/maximum depth 2 / 6

maximal depth of programs 8
Crossover/Mutation/Reproduction rate 80% / 15% / 5%

Parent selection Tournament selection with size 7
Number of generations in FSGP 100
Number of generations in CCGP 100

Number of generations in the first stage 50
Terminal/non-terminal selection rate 10% / 90%

selection. The surrogate model aims to improve the efficiency by
simplifying the problemmodel. In this paper, in the surrogate model,
the number of machines is five (i.e. in test process, the number of
machines is ten) and the number of jobs is 500. In this case, the com-
putational complexity of the feature selection is greatly reduced.
Specifically, a generation of GP during feature selection takes about
10% of the time of a generation of the standard GP.

4 EXPERIMENTAL STUDIES
In this section, the parameter setting for GP and the used simulation
model will be described first. Then, the test performance of proposed
approach is verified followed by the analysis of selected features.

4.1 Parameter Setting of Genetic Programming
In our experiment, the terminal set of GP is shown in Table 1 [16].
The features indicate the characteristics related to jobs, machines
and system. The function set is {+, −, ∗, /, max , min}, following
the setting in [16]. The arithmetic operators take two arguments.
The “/" operator is protected division, returning one if divided by
zero. Themax andmin functions take two arguments and return
the maximum and minimum of their arguments, respectively. The
other parameter settings of GP are shown in Table 2.

4.2 Simulation Configuration
Simulation has been broadly used to investigate complex problems.
The simulated environment is used as an experimental model to
study factors affecting DFJSS. Problem instance for an instantiation
of the problem scenario with a particular pseudo-random number
generator seed is actually a simulation model.

In this paper, there are 5000 jobs need to be processed by ten
machines. For DFJSS simulation, new jobs will come over time
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Table 3: The best and mean(standard deviation) of the objec-
tive value of FSGP and CCGP over 50 independent runs for
six dynamic scenarios.

Scenario FSGP CCGP
Best Mean(sd) Best Mean(sd)

<Tmax,0.85> 1158.38 1217.15(49.07) 1156.91 1222.84(62.91))
<Tmax,0.95> 1819.23 1906.03(84.44) 1829.64 1893.68(66.40)
<Tmean,0.85> 383.16 386.69(3.84) 383.34 385.91(2.83)
<Tmean,0.95> 545.72 552.33(6.42)(-) 546.40 554.73(6.91)
<WTmean,0.85> 824.98 831.77(9.86) 825.57 829.45(6.03)
<WTmean,0.95> 1094.67 1108.84(15.82) 1094.97 1106.86(11.54)

according to a Poisson process with rate λ. Each job with differ-
ent weights has several operations (i.e. follow a uniform discrete
distribution between one and ten). The job weight indicates the
importance of a job and 20%, 60% and 20% jobs will get weight
1, 2 and 4, respectively. The processing time of each operation is
assigned by uniform discrete distribution with the range [1,99]. The
number of candidate machines for an operation follows a uniform
discrete distribution between one and ten.

It is noted that utilisation is the proportion of time that a machine
is busy. The expression is shown in Eq. (4). In Eq. (4), µ is the average
processing time of the machines. PM is the probability of a job
visiting a machine. For example, PM is 2/10 if each job has two
operations.

p = λ ∗ µ ∗ PM (4)

In addition, in order to make sure the accuracy of collected data,
warm up jobs (i.e. 1000) are used to get a steady state of the job shop
floor and we collect data from the next 5000 jobs. The simulation
stops when the 6000th jobs is finished.

4.3 Test Performance
We use the term scenario to describe the combination of prop-
erties defining the shop. In order to verify the effectiveness and
robustness of proposed approach, it will be tested in six different
scenarios. The scenario consists of three different objective (i.e.
max-flowtime, mean-flowtime and mean-weighted flowtime) and
two utilisation levels (i.e. 0.85 and 0.95). For the convenience of
description, Tmax, Tmean and WTmean are used to indicate max-
flowtime, mean-flowtime and mean-weighted flowtime, respec-
tively. Wilcoxon signed rank test with a significance level of 0.05 is
used to verify the performance of proposed approach. In the follow-
ing results, “-/+" indicate the corresponding result is significantly
better or worse than the counterpart.

Table 3 shows the best and mean (standard deviation) of the test
objective value of FSGP and CCGP in the six different scenarios.
In most of the scenarios, the best solutions achieved by FSGP are
better than that of CCGP. In <Tmax,0.85>, the mean and standard
deviation obtained by FSGP are slightly smaller than that of CCGP.
In addition, in <Tmean,0.95>, the performance of FSGP is signifi-
cantly better than its counterpart. In the remaining scenarios, FSGP
and CCGP perform at a similar level. In order to show the generali-
sation of FSGP, Figure 3 shows the training fitness versus average
normalised objective value on the test instances. The scatter plot
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Figure 3: The training fitness versus test objective scatter
plot based on the 50 final results of FSGP and CCGP.

contains the 50 final results of FSGP and CCGP. Overall, the gener-
alisation of FSGP is promising in all the examined scenarios, as the
test performance is very consistent with the training performance.

4.4 Unique Feature Analysis
The number of unique features indicates how many different fea-
tures are used in building the rules. Intuitively, the smaller the
number, the easier to interpret the evolved rules. We expect to
achieve rules with a smaller number of unique features.

Table 4: The mean and standard deviation of the number of
unique features in sequencing and routing rules of FSGPand
CCGP over 50 independent runs for six dynamic scenarios.

Scenario Sequencing Rule Routing Rule
FSGP CCGP FSGP CCGP

<Tmax,0.85> 6.38(1.52)(-) 7.14(1.50) 8.44(1.33) 8.44(1.26)
<Tmax,0.95> 6.66(1.42)(-) 7.42(1.25) 8.34(1.38) 8.48(1.25)
<Tmean,0.85> 5.16(1.48)(-) 6.86(1.70) 8.02(1.29) 8.44(1.26)
<Tmean,0.95> 6.32(1.35)(-) 6.96(1.68) 7.80(1.36)(-) 8.28(1.26)
<WTmean,0.85> 5.36(1.38)(-) 6.28(1.58) 8.12(1.30) 8.14(1.25)
<WTmean,0.95> 5.58(1.33)(-) 6.64(1.47) 8.02(1.08) 8.18(1.35)

Table 4 shows the number of unique features of the sequenc-
ing and routing rules that evolved by FSGP and CCGP in the six
scenarios. It is obvious that the number of unique features of the
sequencing rules is reduced a lot more than that of the routing
rules by FSGP. To be specific, the number of unique features of the
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Figure 4: Themeannumber of unique features in sequencing
rules evolved by FSGP in six scenarios.

sequencing rules evolved by FSGP is significantly smaller than that
of CCGP. In addition, the number of unique features in the routing
rules evolved by FSGP is significantly smaller than its counterpart
in scenario <Tmean,0.95>. In the remaining scenarios, they do not
have significant difference.

Now we further look at the convergence curve of the number
of unique features of sequencing and routing rules in different sce-
narios as shown in Figures 4 and 5. We can see that the number
of unique features of the sequencing and routing rules obtained
by FSGP and CCGP in the first stage (i.e. before generation 50) are
almost the same in all scenarios. It is noted that the evolutionary
processes of FSGP and CCGP are exactly the same but simplified
rules, for example, WIQ/WIQ is simplified as 1, are recorded in
CCGP. This means more features are counted in FSGP and it is
reasonable for the comparison here. In the second stage (i.e. after
generation 50), the number of unique features becomes smaller in
FSGP. This suggests that the selected features guide the evolution-
ary process via mutation to get more interpretable rules without
sacrificing its performance.

4.5 Feature Analysis
Figure 6 shows the selected features in the sequencing rules evolved
by FSGP over 50 independent runs in six scenarios. It shows that
PT is the most important feature for optimising all the considered
objectives. There are also some other promising feature such as TIS
and NIQ in scenario <Tmax,0.85> and <Tmax,0.95>. In scenario
<Tmean,0.85> and <Tmean,0.95>, PT and WKR are the most im-
portant features as they appear in each run. In addition, in scenario
<WTmean,0.85> and <WTmean,0.95>, in addition to PT andWRK,
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Figure 5: The mean number of unique features in routing
rules evolved by FSGP in six scenarios.

W is one of the most important features. It is consistent with our ex-
pectation because weight is an important indicator for minimising
weighted-flowtime.

Figure 7 shows the selected features in the routing rules obtained
by FSGP over 50 independent runs in different scenarios. Compar-
ing with selected features in sequencing rules, more features are
selected, especially in scenario <Tmax,0.85> and <Tmax,0.95>.
This may be because the routing decision needs to take more ad-
vantage of the information provided by different kinds of features.
In general, MWT, OWT and WIQ are the top three features. This
is also consistent with our intuition, as a less busy machine which
becomes idle sooner should be more preferred by routing. It is in-
teresting that W (i.e. weight) is not as important for routing rules
as it is for sequencing rules.

4.6 Rule Analysis
In order to further understand the behaviour of the evolved rules
by FSGP and CCGP, in this section, we analyse the sequencing
and routing rules evolved by FSGP and CCGP. We take scenario
<Tmean,0.95> as an example, and the rules evolved for other sce-
narios show a similar pattern.

Figure 8 and Figure 9 show one of the best sequencing rules
evolved by FSGP and CCGP, respectively. It is very interesting that
the main structure of these two rules are very similar as marked
in grey colour. They are only different in some subtrees. Figure
10 shows the routing rules collaborated with the sequencing rule
shown in Figure 8. The size of the routing rule (i.e. the number of
nodes) evolved by CCGP, which is not shown here due to space
limitations, is much smaller than its counterpart.
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Figure 6: Selected features in sequencing rules of FSGP in dif-
ferent scenarios.

In our experiment, the smaller the priority value, the higher
the priority. The routing rule evolved by FSGP can be regarded as
three parts as marked in grey colour in Figure 10. The root is min
function. The routing rule can be described as follows.

rule =min{part1,part2,part3}
where,

part1 =W +WKR ∗ PT

+
PT +WKR

(WKR −T IS) ∗WIQ
−min{WKR, PT 2}

+ PT 2 − PT −T IS − 2 ∗ NIQ

(5)

part2 =PT +max{WIQ, PT } +min{WKR, PT 3} (6)

part3 =PT
2 − PT −max{WIQ, PT }} (7)

In these three parts, only the part with smallest value plays an
important role. In the routing rule, all the features are positive
numbers. In the first part, TIS (i.e. time in system) is normally
larger than WKR (i.e. median amount of work remaining for a job),
so (PT +WKR)/[(WKR−T IS)∗WIQ] is often a negative number. In
addition, there are many subtraction operators, thus the value tends
to be a negative number. The second part is definitely a positive
value and cannot become the smallest one. In the third part, the
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Figure 7: Selected features in routing rules of FSGP in differ-
ent scenarios.

square of PT is much larger than PT and WIQ, it tends to be a
positive value. In conclusion, part1 plays a significant role in the
routing rule. It can be further described as follows.

part1 =W +WKR ∗ PT

−
PT +WKR

(T IS −WKR) ∗WIQ
−min{WKR, PT 2}

+ PT 2 − PT −T IS − 2 ∗ NIQ

(8)

It shows that the routing rule normally prefers machines with
lower WIQ (i.e. work in queue) if an operation has arrived in the
job shop for a long time. In addition, from the Eq. (5), one can see
that if an operation has not stayed in the job shop system for a
long time (i.e. T IS < WKR), the routing rule prefers to assign it
to a machine with higher workload, to leave space to other more
urgent jobs. This is consistent with our intuition.

5 CONCLUSIONS
In this paper, we designed a novel two-stage genetic programming
hyper-heuristic with feature selection for solving the dynamic flex-
ible job shop scheduling problem. The proposed method is based
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Figure 8: One of the best sequencing rules evolved by FSGP in scenario <Tmean,0.95>.
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Figure 10: One of the best routing rules evolved by FSGP in scenario <Tmean,0.95>.

on the idea that promising features can benefit more for the evo-
lutionary process and can be used to guide the process effectively.
In addition, the proposed two-stage learning process was designed
to make full use of the information of the evolutionary process.
The experimental results show that the proposed approach can
achieve better solutions in most scenarios than CCGP in terms of
the best solution they can get. Moreover, the proposed method can

identify important features accurately and its evolved rules consist
of a smaller number of unique features. This is due to the effective
guidance of selected features in evolutionary process of the genetic
programming hyper-heuristic approach.

In the future, more potential useful features will be designed for
solving the DFJSS problem. In addition, more effective measure-
ments of the importance of the features will be investigated.
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