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Abstract. Dynamic flexible job shop scheduling (DFJSS) has been widely
studied in both academia and industry. Both machine assignment and
operation sequencing decisions need to be made simultaneously as an op-
eration can be processed by a set of machines in DFJSS. Using scheduling
heuristics to solve the DFJSS problems becomes an effective way due to
its efficiency and simplicity. Genetic programming (GP) has been suc-
cessfully applied to evolve scheduling heuristics for job shop scheduling
automatically. However, the subtrees of the selected parents are ran-
domly chosen in traditional GP for crossover and mutation, which may
not be sufficiently effective, especially in a huge search space. This paper
proposes new strategies to guide the subtree selection rather than pick-
ing them randomly. To be specific, the occurrences of features are used
to measure the importance of each subtree of the selected parents. The
probability to select a subtree is based on its importance and the type
of genetic operators. This paper examines the proposed algorithm on
six DFJSS scenarios. The results show that the proposed GP algorithm
with the guided subtree selection for crossover can converge faster and
achieve significantly better performance than its counterpart in half of
the scenarios while no worse in all other scenarios without increasing the
computational time.

Keywords: Guided subtree selection - Scheduling heuristic - Dynamic
flexible job shop scheduling - Genetic programming.

1 Introduction

Job shop scheduling (JSS) [I] is an important combinatorial optimisation prob-
lem that can be applied to almost all areas of our lives such as manufacturing
[2] and cloud computing [3]. The task in JSS is to process a number of jobs by
a set of machines. Each job has a sequence of operations. The goal of JSS is
to find a good schedule to complete the processing task. An effective scheduling
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decision-making scheme is the key to enhancing the competitiveness of a modern
enterprise. Flexible JSS (FJSS) [], as a variant of JSS, better reflects the real-
world applications than ordinary JSS. In FJSS, one operation can be processed
on a set of machines. Except for choosing an operation as the next operation to
be processed by an idle machine (operation sequencing), we need to assign an op-
eration to a particular machine (machine assignment). These two decisions need
to be made simultaneously. In addition, many practical scheduling problems are
changing over time, for example, due to new job arrivals [BJ67]. Dynamic FJSS
(DFJSS) is to consider flexible JSS under dynamic environments.

Scheduling heuristics such as dispatching rules [8] are widely used to handle
DFJSS. A scheduling heuristic is a heuristic that works like a priority function
to evaluate the priorities of operations and machines. To be specific, in DFJSS, a
machine that has the highest priority value based on the routing rule (i.e. routing
scheduling heuristic) will be assigned a job to be processed. An operation with
the highest priority value based on the sequencing rule (i.e. sequencing scheduling
heuristic) will be chosen as the next operation to be processed. There are some
rules such as SPT (i.e. shortest processing time) and WIQ (i.e. the workload in
the queue of a machine) which have been identified as effective rules for JSS.
However, they are manually designed by experts, which is time-consuming. In
practice, it is hard to manually design effective rules due to the complexity and
diversity of the investigated job shop environments.

Genetic programming (GP) [9], as a hyper-heuristic (GPHH) method, has
been successfully applied to automatically evolve scheduling heuristic for JSS
[TOJI1]. GP uses crossover, mutation and reproduction to generate offspring for
the next generation. In a typical subtree-based crossover, offspring are created by
swapping the subtrees of the parents. On the other hand, mutation is generally to
maintain diversity within the population and prevent premature convergence. In
the common subtree-based mutation, an individual (i.e. parent) is selected, and
an offspring is generated by replacing one of its subtrees with a new randomly
generated subtree.

In traditional GP, subtrees (i.e. function nodes) are randomly chosen to gen-
erate individuals. However, the importance of subtrees in each individual can
be different. Some subtrees are redundant or less important and removing them
might not affect the fitness of an individual too much. On the other hand, some
subtrees play important roles for an individual, and losing them will cause con-
siderable loss to the fitness. It may not be an effective way to randomly select
subtrees without considering the importance of subtrees. To this end, this pa-
per proposes subtree selection strategies for crossover and mutation to help GP
improve the effectiveness of generating new offspring.

The overall goal of this paper is to develop novel guided subtree selection
strategies based on the occurrence of features for crossover and mutation to help
GP find more effective scheduling heuristics for DFJSS efficiently. The proposed
algorithms are expected to speed up the convergence of GP and find effective
rules in a shorter time. In particular, this paper has the following research ob-
jectives:
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— Develop guided subtree selection strategies both for crossover and mutation
with the information of the occurrence of features to improve the effectiveness
of the evolutionary process.

— Verify the effectiveness and efficiency of the proposed GP algorithm with the
guided subtree selection strategy by comparing its performance and conver-
gence curve with the baseline GP counterpart.

— Analyse how the subtree selection strategy affects the evolutionary process
of GP.

2 Background

2.1 Dynamic Flexible Job Shop Scheduling

In FJSS problem [12], n jobs J = {Ji, Jo, ..., Jn} need to be processed by m
machines M = {M;, My, ..., M,,}. Each job J; has an arrival time at(J;) and
a sequence of operations O; = (Oj1,Oj2, ..., 0j;). Each operation Oj; can only
be processed by one of its optional machines 7(0,;) and its processing time
0(0;;) depends on the machine that processes it. It indicates that there are two
decisions which are routing decision and sequencing decision in FJSS. In DFJSS,
not only the two decisions need to be made simultaneously, but also the dynamic
events are necessary to be taken into account when making schedules. This paper
focuses on one dynamic event (i.e. continuously arriving new jobs). That is, the
information of a job is unknown until its arrival time.

2.2 Genetic Programming Hyper-heuristic for DFJSS

A hyper-heuristic [I3] is a heuristic search method that secks to select or generate
heuristics to efficiently solve hard computational search problems. The unique
characteristic is that the search space of hyper-heuristic is heuristics instead of
solutions. Hyper-heuristic is often incorporated with machine learning techniques
to achieve its goal.

GP, as a hyper-heuristic method [I4], has been successfully applied to more
informative scheduling heuristics for combinatorial optimisation problems such
as packing [I5I6], timetabling [I7], arc routing [18], and JSS [T9/20/2T22].
Scheduling heuristics, including routing and sequencing rules, are needed in
DFJSS in our research. To follow the sequence constraint of operations of a
job, we only start to allocate an operation when it becomes a ready operation.
There are two sources of ready operations. One is the first operation of a job.
The second is the operation that its proceeding operation is just finished. Once
an operation becomes a ready operation (routing decision point), it will be al-
located to the machine by the routing rule. When a machine becomes idle, and
its queue is not empty (sequencing decision point), the sequencing rule will be
triggered to choose the next operation to be processed.

Although GP has been successfully applied to DFJSS [19120], to the best
of our knowledge, little research has been conducted on genetic operators to
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improve the effectiveness of generating offspring. To this end, this paper aims to
propose subtree selection strategies for both crossover and mutation to help GP
evolve more effective scheduling heuristics for DFJSS.

3 The Proposed GP with Subtree Selection

Fig. 1 shows the flowchart of the proposed algorithm. The main process is the
same as the traditional GP. There are three different parts. After evaluating
all the individuals in the population, the occurrence of each feature is counted
based on promising individuals. The occurrence information of features is used
to calculate the importance of subtrees of the selected parents. During the evo-
lutionary process, crossover and mutation are conducted based on the proposed
corresponding subtree selection strategies. In this way, when generating new
offspring by crossover and mutation, the subtrees are selected with guidance.

Initialisation
4>| Population Evaluation }>| Occurrence of Features

| Parent Selection |

| Subtree Importance Calculation |< -----------------

Evolution

Reproduction
Crossover with Guided Subtree Selection
Mutation with Guided Subtree Selection

Fig.1: The flowchart of the proposed algorithm.

According to the proposed algorithm framework, the three research questions
in this paper are how to extract feature information to assess the importance
of subtrees, how to measure the importance of subtrees, and how to apply the
subtree importance information to crossover and mutation. These three questions
are studied in the following three sections, separately.

3.1 The Occurrences of Features

An advantage of GP is that it can automatically select important features to
build individuals. The features of individuals with good fitness are more likely to
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Fig. 2: The occurrence of features in the top three individuals.

be important features. On the other hand, the individuals that contain important
features are more likely to be promising individuals. This means that the features
involved in promising individuals can be used to measure the importance of
subtrees.

In this paper, the occurrence of features in the top ten individuals is further
used to assess the importance of subtrees. Our preliminary studies show that
top ten individuals tend to have promising fitness which is good for detecting
feature characteristics. Another advantage of using the occurrence information
of features is that we do not need to put too much extra effort to obtain useful
information since the information is already generated during the evolutionary
process.

Fig. 2 shows an example of how to extract feature occurrence information
based on three individuals. These three individuals contain different numbers of
features and have different structures. Assuming that they are top three individ-
uals in the population based on the fitness. According to the three individuals,
the occurrence of features in all three individuals is counted. The occurrences of
feature A, B, and C are 5, 3, and 2, respectively. This information will be used
to measure the importance of subtrees in an individual.

3.2 The Importance of Subtrees

An individual (i.e. a tree) can be considered to be composed of multiple subtrees.
After a function node is selected, the subtree is determined. The importance
of subtrees is measured from bottom to top, and this paper uses the concept
score to indicate the importance of a subtree. Each feature has its occurrence
information at the bottom level of an individual, and the score of their parent
node (i.e. the importance of subtree) is set as the average occurrence number of
its child nodes. Assuming that importance (i.e. occurrence) of feature A, B and
C are ranked as A > B > C. If only considering the simplest subtrees (i.e. depth
is two) and only take two features, there will be three possible combinations for
the subtree which are A and B, A and C, and B and C. The importance of the
subtrees should be ranked as subtree(A, B) > subtree(A, C) > subtree(B, C).
Fig. 3 shows an example of how to measure the importance of each subtree for
an individual. For example, the subtree; (i.e. in the bottom-left corner) contains
two features (i.e. A and B), the score of their parent node is set as 4 (i.e. (5 +
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Fig.3: The importance (i.e. score) of subtrees in an individual.

3) / 2). The importance of subtrees is assigned as the average scores of its two
subtrees (i.e. subtree; and subtrees). By analogy, all score of subtrees will be
assigned, as shown in Fig. 3.

Taking the subtrees that the depth is two into consideration, there are three
subtrees (i.e. indicated by subtree 1, 2 and 4), whose importance are marked as
4, 3.5 and 2.5, respectively. The importance of subtree 1, 2 and 4 are ranked
as subtree; > subtrees > subtreey, which is consistent with the importance
measurement design. When looking at all the subtrees, the importance rank of
all subtrees in this individual is subtree; > subtrees > subtrees > subtrees >
subtreey.

3.3 Subtree Selection

Based on the importance of subtrees, the probability of the subtrees that will
be selected can be calculated. There are two different techniques to calculate
the probability for different purposes (i.e. one for mutation, and the other for
both crossover and mutation). The probability is designed proportionally to the
scores.

Fig. 4 shows the two different techniques to calculate the probability of each
subtree in an individual. Fig. 4 (a) shows the technique that tends to choose the
important subtree (i.e. the subtree with a larger score, the higher the probability
it will be selected). Let us continue with the previous example in Fig. 3, there are
five subtrees with score [3.125, 3.75, 2.5, 4, 3.5]. If we prefer to choose the impor-
tant subtree, the larger the score of the subtree, the higher the probability it will
have. First, we sum up the total score (i.e. 16.875 = 3.1254+3.75+2.54+4+3.5).
Then, the probability of subtrees is assigned as [0.185, 0.222, 0.148, 0.237, 0.207]
(i.e. [3.125/16.875, 3.75/16.875, 2.5/16.875, 4/16.875, 3.5/16.875]). The rank
of probability of subtrees is subtree; > subtrees > subtrees > subtrees >
subtreey.

Fig. 4 (b) shows the technique that tends to choose the unimportant subtree
(i.e. the subtree with a larger score, the lower the probability it will be selected).
If we prefer to choose the unimportant subtree, the larger the score of the subtree,
the lower the probability it will have. Thus, the score is converted to [1/3.125,
1/3.75,1/2.5, 1/4, 1/3.5] first. Then, we sum up the total score and get the final
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Fig.4: Two different ways to calculate the probability of each subtree for an
individual. (a) tends to choose important subtree while (b) tends to choose
unimportant subtree.

probability as we just mentioned. The probabilities of subtrees are shown beside
the function nodes. The rank of probability of subtrees is subtreey > subtrees >
subtreesg > subtreesz > subtree;.

Crossover with Guided Subtree Selection. For the crossover, there are
two parents (i.e. parent; and parents) which are both promising individuals
that are selected as parents. Without loss of generality, this paper assumes that
parent; is no worse than parents. The unimportant subtree from parent; is
expected to be swapped with an important subtree from parents to make parent;
an even better individual. Therefore, for parent;, the larger the score of the
subtree, the lower the probability it will have. For parents, the larger the score
of the subtree, the higher the probability it will have.

Mutation with Guided Subtree Selection. For mutation, we expect to
make the parent produce a better individual by replacing unimportant subtree
with a newly generated subtree. We prefer to choose an unimportant subtree,
and a larger score of the subtree leads to a lower probability it will be chosen.

3.4 Summary

The purpose of the proposed algorithms is to improve the effectiveness of crossover
and mutation by introducing subtree selection strategies instead of choosing sub-

trees randomly. The occurrence information of features is utilised to measure the

importance of subtrees. Then, the subtrees importance information is used to

determine the probability that the subtrees will be selected along with the char-

acteristics of crossover and mutation.

4 Experiment Design

To investigate the effectiveness of the proposed subtree selection strategies for
crossover and mutation, a set of experiments have been conducted. In this sec-
tion, the experiment design is shown in detail.
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4.1 Simulation Model

Assuming that there are 5000 jobs need to be processed by ten machines. The im-
portance of jobs might be different, which are indicated by weights. The weights
of 20%, 60%, and 20% of jobs are set as one, two and four, respectively. The num-
ber of operations of each job varies by a uniform discrete distribution between
one and ten. The processing time of each operation is set by uniform discrete
distribution with the range [1, 99]. The number of candidate machines for an
operation follows a uniform discrete distribution between one and ten.

In each problem instance, jobs arrive stochastically according to a Poisson
process with rate A. To improve the generalisation ability of the evolved rules for
DFJSS problems, the seeds used to stochastically generate the jobs are rotated
in the training process at each generation. In addition, in order to make sure the
accuracy of the collected data, a warm-up period of 1000 jobs is used.

4.2 Parameter Settings

In our experiment, the terminal and function set are shown in Table 1. The
“/” operator is protected division, returning one if divided by zero. The other
parameter settings of GP are shown in Table 2.

Table 1: The terminal and function sets.

Terminals Description
NIQ The number of operations in the queue
Machine-related WIQ Current work in the queue
MWT Waiting time of a machine
PT Processing time of an operation
Operation-related NPT Median processing time for next operation
OWT The waiting time of an operation
WKR The median amount of work remaining of a job
Job-related NOR The number of operations remaining of a job
W% Weight of a job
TIS Time in system
functions +, —, %, /, max, min as usual meaning

4.3 Comparison Design

Four algorithms are taken into the comparison in this paper. The cooperative co-
evolution genetic programming (CCGP) [B] which can be used to evolve routing
rule and sequencing rule simultaneously, is selected as the baseline algorithm.
Our proposed algorithm, which incorporates subtree selection strategy into the
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Table 2: The parameter setting of GP.

Parameter Value
Number of subpopulations 2
Subpopulation size 512
Method for initialising population ramped-half-and-half
Initial minimum/maximum depth 2/6
Maximal depth of programs 8
The number of elites 10
Crossover/Mutation/Reproduction rate 80% / 15% / 5%
Parent selection Tournament selection with size 7
Number of generations 51
Terminal /non-terminal selection rate 10% / 90%

crossover, is named as CCGP€ (i.e. choose subtrees for crossover). The algorithm
that incorporates subtree selection into the mutation (i.e. choose subtrees for
mutation) is called CCGP™. The proposed algorithm, which incorporates sub-
tree selection by both crossover and mutation, is named as CCGP™. CCGP¢,
CCGP™ and CCGP™ are compared with CCGP, respectively.

The proposed algorithms are tested on siz different scenarios. The scenarios
consist of three objectives (i.e. max flowtime, mean flowtime, and mean weighted
flowtime) and two utilisation levels (i.e. 0.85 and 0.95) [20]. For the sake of
convenience, Fmax, Fmean, and WFmean are used to indicate max flowtime,
mean flowtime, and mean weighted flowtime, respectively. The evolved best rule
at each generation is tested on 50 different test instances, and the mean objective
value of them is reported as the objective value of this best rule. This aims to
guarantee the accuracy of measuring the performance.

5 Results and Discussions

Thirty independent runs are conducted for the comparison. Wilcoxon rank-sum
test with a significance level of 0.05 is used to verify the performance of proposed
algorithms. In the following results, “-” and “4” indicate the corresponding
result is significantly better or worse than its counterpart. If there is no mark
there, that means the performance between them is similar.

5.1 Performance of Evolved Rules

Table 3 shows the mean and standard deviation of the objective value of the
four algorithms over 30 independent runs for six DFJSS scenarios. CCGP® per-
forms significantly better than CCGP for three scenarios (i.e. <Fmean,0.85>,
<WFmean,0.85> and <WFmean,0.95>). For the remaining three scenarios,
CCGP¢ performs as well as the CCGP. In scenario <Fmax,0.85>, although
CCGPE€ does not achieve significantly better performance than that of CCGP,
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Table 3: The mean (standard deviation) of the objective value of CCGP, CCGP¢,
CCGP™, and CCGP™ over 30 independent runs for six DFJSS scenarios.

Scenario CCGP CCGP*¢ ccap™ cCcGpe

<Fmax,0.85> 1211.84(35.27) 1211.68(30.21) 1217.81(28.24) 1215.76(26.41)
<Fmax,0.95> 1942.06(31.70) 1944.84(31.52) 1936.62(23.11) 1955.04(56.65)
<Fmean,0.85>  386.07(3.53) 384.80(1.67)(-) 384.40(2.02)(-) 384.88(1.60)(-)
<Fmean,0.95> 550.99(5.28)  551.94(4.94)  551.20(4.70)  551.12(3.87)
(
(

<WFmean,0.85> 832.46(7.25) 829.70(4.83)(-) 832.03(7.33)  830.14(4.26)
<WFmean,0.95> 1110.04(10.82) 1107.59(12.49)(-) 1109.44(12.33) 1107.76(8.08)(-)

the mean and standard deviation are smaller than that of CCGP (i.e. still better).
However, CCGP™ performs significantly better than that of CCGP only in sce-
nario <Fmean,0.85> and achieves better performance in scenario <Fmax,0.95>.
In general, it seems like it is not that effective to apply subtree selection strategy
to mutation as it does not get better results in most scenarios. The effectiveness
of CCGP“™ is similar to CCGP°. Its performance might be mainly due to the
role played by applying subtree selection strategy into the crossover.

<Fmax, 0.85> <Fmean, 0.85> <WFmean, 0.85>
840.0- "8,

- 837.5-
Q
g -
3 835.0
2
= 832.5-
3
'E 830.0-
3 20 30 40 50 20 30 40 50 20 30 40 50
=3
§ <Fmax, 0.95> <Fmean, 0.95> <WFmean, 0.95>
[
>
b= N 1130- \
& 2000~ s \ Mgy
-8 1125- .\ )\
% 1980~ \ 1120~
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CCGP -+  CCGP® - CCGP" CCGP™"

Fig.5: The convergence curves of CCGP, CCGP¢, CCGP™, and CCGP™ from

generation 20 to generation 50 in six scenarios.

Fig. 5 shows the convergence curves of the average objective value on the
test instances of the four algorithms. To better show the performance of the
proposed algorithms, only the curves between generation 20 and 50 are shown
in Fig. 5. Except for max-flowtime related scenarios (i.e. <Fmax,0.85> and



Guided Subtree Selection for Genetic Operators in GP for DFJSS 11

<Fmax,0.95>) and scenario <Fmean,0.95>, the three proposed algorithms (i.e.
CCGP¢, CCGP™, and CCGP“) can achieve better performance than that of
CCGP. In <Fmean,0.85>, all the proposed three algorithms show their advan-
tages in both convergence speed and final performance, especially CCGP™. In
scenario <WFmean,0.85>, CCGP® has the best convergence speed and perfor-
mance. In scenario <WFmean,0.95>, CCGP™ convergence faster than CCGP*
before generation 30 roughly, however, it loses to CCGP¢ after generation 30.
Finally, CCGP¢ achieves better performance than that of CCGP™. For minimis-
ing max-flowtime, the proposed three algorithms have no obvious advantages.
It might be because max-flowtime is more sensitive to the worst case, which is
more complex and hard to optimise.

Summary. Based on the results, CCGP¢ is the most promising algorithm
which shows the effectiveness of improving the crossover operator by subtree
selection strategy. CCGP™ is not as promising as CCGP€. One possible reason
is that the mutation rate is low and can not affect the evolutionary process too
much. That might also be the reason why the performance of CCGP®™ is similar
to that of CCGP°. The other possible reason is that mutation aims to maintain
the diversity of the population, and it is better not to guide its direction.

5.2 The Probability Difference

The main idea in this paper is to differentiate the probability of subtrees to be
chosen instead of choosing subtrees randomly. The probability difference (Ps —
P,) is defined as the difference between the assigned probability (Ps) and the
uniform probability (P,) of the selected subtree. The probability difference can
be positive, negative, and zero. If the probability is a positive number, that would
mean the current subtree is selected with a higher chance compared with uniform
probability. If the probability is a negative number, that means the current
subtree is selected with a lower chance compared with uniform probability. If
the probability is zero, that means the assigned probability is the same as the
uniform one, which will not affect the crossover and mutation operators.

This paper takes CCGP¢ in scenario <WFmean,0.85> as an example to show
how the proposed subtree selection strategy affects the selection probability on
crossover since CCGP¢ performs significantly better than other algorithms in this
scenario. Fig. 6 shows the histogram plot of the probability difference in early
generation (i.e. generation 1), middle generation (i.e. generation 25) and late
generation (i.e. generation 45) of CCGP® in scenario <WFmean, 0.85> based
on 30 independent runs. The small in the subtitles means the smaller the score
of the subtree, the higher probability it will be chosen (i.e. for parent; in the
crossover). The big in the subtitles means the larger the score of the subtree, the
higher probability it will be chosen (i.e. for parents in the crossover). In general,
most of the probability differences are positive numbers and much larger (i.e.
more than 0.5) than uniform probability. At the early state (i.e. generation 1), the
probability difference is not that higher than that of in the late generation (i.e.
generation 25 and 45). This means that the proposed subtree selection strategy
for crossover can successfully influence the selection of nodes of individuals.
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Fig.6: The histogram plot of probability difference of CCGP® in generation 1,
25, and 45 in scenario <WFmean, 0.85> based on 30 independent runs.

Fig. 7 shows the histogram plot of the probability difference in generation
1, 25, and 45 of CCGP™ in scenario <Fmean, 0.85> based on 30 independent
runs. There are only three blocks because CCGP™ only works on the mutation
to choose the unimportant subtree (i.e. the smaller the score of the subtree, the
higher probability it will be chosen). It is obvious that the number of subtree
selections is not that high as that in Fig. 6, because the mutation rate is lower
than the crossover rate. The same trend is shown in Fig. 6, the probability
difference is becoming larger and larger as the number of generations increases.

Gen 1 Small Gen 25 Small Gen 45 Small
400 +

300 A

200 A

Occurrence

100 -

0 -
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
Probability Difference

Fig. 7: The histogram plot of probability difference of CCGP™ in generation 1,
25, and 45 in scenario <Fmean, 0.85> based on 30 independent runs.
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5.3 The Occurrences of Features

It is interesting to see the trend of the feature occurrence that carries the in-
formation. Fig. 8 shows the curves of the occurrence of features in routing rules
during the evolutionary process of CCGP¢. The MWT (i.e. machine waiting
time) is the most important feature for the routing rules in all scenarios. The
importance of MWT is much higher than other features. In the scenarios whose
utilisation levels are 0.85, WIQ (i.e. the workload in the queue) also plays a
second important role. In the scenarios whose have a higher utilisation level (i.e.
0.95), NIQ (i.e. the number of operations in the queue) plays a significant role.
Intuitively, both WIQ and NIQ are important indicators for measuring the work-
load for machines, they might have the same functions, and one might take over
another one. However, we do not know how they work in different scenarios. It
is interesting to see that the role of NIQ is significantly higher than that of WIQ
in the scenarios that have higher utilisation level. One possible reason is that
NIQ is an important factor in busy scenarios, which is an important finding.

<Fmax, 0.85> <Fmean, 0.85> <WFmean, 0.85>
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Fig. 8: The curves of the occurrence of features in routing rules during the evo-
lutionary process of CCGP°.

Fig. 9 shows the curves of the occurrence of terminals in sequencing rules
during the evolutionary process of CCGP¢. Different from routing rules, there
are three terminals (i.e. WKR, TIS, and PT) play a vital role in minimising max-
flowtime. PT and WKR also are two important terminals in minimising mean-
flowtime and weighted mean-flowtime. Except for them, W plays a dominant role
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Fig.9: The curves of the occurrence of features in sequencing rules during the
evolutionary process of CCGP*°.

in weighted mean-flowtime, which is consistent with our intuition. In addition,
W plays its role mainly in sequencing rules instead of routing rules.

5.4 Training time

Table 4 shows the mean and standard deviation of training time of CCGP,
CCGP¢, CCGP™, and CCGP™ in six different scenarios. There is no significant
difference between the four algorithms. It means the proposed subtree selection
strategies do not need extra computational cost. This verifies the advantages of
utilising the information generated during the evolutionary process of GP.

Table 4: The mean (standard deviation) of training time (in minutes) obtained
by the involved four algorithms over 30 independent runs for six scenarios.

Scenario CCGP CCGP¢ CCGP™ CCGP™

<Fmax,0.85> 74(10) 75(11) 83(36) 75(11)
<Fmax,0.95> 86(16) 84(13) 84(12) 83(12)
<Fmean,0.85> 73(10) 73(11) 72(11) 75(13)
<Fmean,0.95> 79(11) 78(14) 77(13) 83(14)
<WFmean,0.85> 73(13) 70(10) 70(10) 73(11)
<WFmean,0.95> 82(13) 81(14) 80(14) 82(13)
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6 Conclusions and Future Work

The goal of this paper was to develop subtree selection strategies to improve
the effectiveness of crossover and mutation operators to guide GP to improve
its convergence speed and evolve more effective scheduling heuristics for DFJSS.
The goal was achieved by proposing the guided subtree selection strategy that
can utilise the information of the occurrence of features information obtained
during the evolutionary process.

The results show that using the proposed guided subtree selection in crossover
can speed up the convergence and achieve better performance in half scenarios
while no worse in all other scenarios without increasing the computational cost.
The proposed subtree selection can successfully guide GP to select important or
unimportant subtrees according to the need of genetic operators. The evolved
rules have better test performance of given complex job shop scenarios, espe-
cially for minimising mean-flowtime and weighted mean-flowtime. An advantage
of the proposed algorithms is that incorporating the occurrence of features in-
formation needs no extra computational cost. This shows the benefits of making
better use of the information during the evolutionary process. In addition, this
paper discovered that although both NIQ and WIQ can be used to measure the
workload of a machine, NIQ has an important role in busy scenarios while WIQ
has a significant role in less busy scenarios.

Some interesting directions can be further investigated in the near future.
This work already shows the potential to improve the effectiveness of crossover
by choosing subtrees. We would like to find more promising ways to select the
subtrees for crossover to further improve its effectiveness.
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