A Preliminary Approach to Evolutionary Multitasking for
Dynamic Flexible Job Shop Scheduling via
Genetic Programming

Fangfang Zhang, Yi Mei
School of Engineering and Computer
Science, Victoria University of
Wellington, New Zealand
{fzhang,yi.mei}@ecs.vuw.ac.nz

ABSTRACT

Genetic programming, as a hyper-heuristic approach, has been suc-
cessfully used to evolve scheduling heuristics for job shop schedul-
ing. However, the environments of job shops vary in configurations,
and the scheduling heuristic for each job shop is normally trained
independently, which leads to low efficiency for solving multiple
job shop scheduling problems. This paper introduces the idea of
multitasking to genetic programming to improve the efficiency of
solving multiple dynamic flexible job shop scheduling problems
with scheduling heuristics. It is realised by the proposed evolu-
tionary framework and knowledge transfer mechanism for genetic
programming to train scheduling heuristics for different tasks si-
multaneously. The results show that the proposed algorithm can
dramatically reduce the training time for solving multiple dynamic
flexible job shop tasks.

CCS CONCEPTS

« Computing methodologies — Planning under uncertainty;

KEYWORDS

Evolutionary Multitasking, Knowledge Transfer, Genetic Program-
ming Hyper-heuristics, Dynamic Flexible Job Shop Scheduling.

ACM Reference Format:

Fangfang Zhang, Yi Mei, Su Nguyen, and Mengjie Zhang. 2020. A Pre-
liminary Approach to Evolutionary Multitasking for Dynamic Flexible
Job Shop Scheduling via Genetic Programming. In Genetic and Evolution-
ary Computation Conference Companion (GECCO °20 Companion), July
8-12, 2020, Cancin, Mexico. ACM, New York, NY, USA, 2 pages. https:
//doi.org/10.1145/3377929.3389934

1 INTRODUCTION

In flexible job shop scheduling, n jobs J = {Ji1, J2,..., Jn} need
to be processed by m machines M = {My, My, ..., M, }. Each job
Jj has an arrival time at(J;) and a sequence of operations O; =
(0j1,Oja, ..., Oj;). Each operation Oj; can only be processed by one

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

GECCO ’20 Companion, July 8-12, 2020, Canciin, Mexico

© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-7127-8/20/07.

https://doi.org/10.1145/3377929.3389934

Su Nguyen
Centre for Data Analytics and
Cognition, La Trobe University,
Melbourne, Australia
P.Nguyen4@latrobe.edu.au

Mengjie Zhang
School of Engineering and Computer
Science, Victoria University of
Wellington, New Zealand
mengjie.zhang@ecs.vuw.ac.nz

of its optional machines 7(Oj;) and its processing time 5(Oj;) de-
pends on the machine that processes it. In dynamic flexible job
shop scheduling (DFJSS) [4], not only the routing decision and
sequencing decision need to be made simultaneously, but also dy-
namic events are necessary to be taken into account when making
schedules. This paper focuses on one dynamic event that new jobs
arrive at the job shop dynamically and stochastically.

Tree-based genetic programming (GP) [2], as a hyper-heuristic
approach, has been successfully applied to evolve scheduling heuris-
tics for JSS automatically [3, 5]. However, the training efficiency of
GP in solving multiple job shop tasks is still limited. One reason
is that the configurations of job shop scenarios vary from one sce-
nario to an other, and the training processes of scheduling heuristics
for different tasks are often treated independently under different
environments.

Evolutionary multitasking [1] was proposed to address multi-
ple related tasks simultaneously using a single representation and
framework. The main feature is that the knowledge from different
tasks can be transferred with each other during the evolutionary
process. However, they are mostly applied to benchmarks with
continuous, numeric optimisation problems rather than discrete,
combinatorial optimisation problems. In DFJSS, the different job
shop tasks with the same objective but with different configura-
tions can be considered as different but related tasks to be optimised
together. This paper introduces the idea from evolutionary multi-
tasking but incorporates with GP as a hyper-heuristic algorithm to
evolve scheduling heuristics for the related DFJSS tasks simultane-
ously. It is a new attempt for evolutionary multitasking to explore
tree-based heuristic search space for discrete, combinatorial opti-
misation problems.

2 THE PROPOSED ALGORITHM

This paper defines the tasks with the same objective but with dif-
ferent utilisation levels as related tasks to be optimised together.
A larger utilisation level leads to a more complex scheduling task.
The algorithm groups the GP individuals for optimising different
tasks by dividing the entire population into several subpopulations.
The individuals in the same or different subpopulation are used to
optimise the same or different task. Assuming k tasks (i.e. Py, Py, ...
, P;) are desired to be solved simultaneously, the population of GP
is equally divided into k subpopulations (i.e. Subpops, Subpopa, ...,
Subpopy.) and each subpopulation aims to solve the corresponding
task only. On one hand, the evolutionary process of each subpopula-
tion is independent, and the individuals in different subpopulations


https://doi.org/10.1145/3377929.3389934
https://doi.org/10.1145/3377929.3389934
https://doi.org/10.1145/3377929.3389934

GECCO ’20 Companion, July 8-12, 2020, Canctin, Mexico

are evolved respectively. On the other hand, different subpopula-
tions assist with each other by sharing their knowledge with others.
The output of a GP run consists of k best evolved rules (i.e. indi‘,
ind;, s ind;;),

The crossover with the parents from different subpopulations
is used to transfer knowledge between different tasks instead of
transferring the whole individuals. This paper defines a transfer
ratio tr to control the frequency to transfer knowledge from other
subpopulations, and simply transfer knowledge at each generation.
If knowledge transfer mechanism is triggered (rand <= tr), the
first parent parent; will be selected from the current subpopula-
tion, and the other parent parent, will be selected from one of the
other subpopulations. Only the offspring derived from parent; is
kept to the next generation for the current subpopulation. Other-
wise (rand > tr), two parents will be selected from the current
subpopulation to produce two offspring for new subpopulation.

From a knowledge transfer perspective, for a subpopulation
with a complex task, introducing knowledge from a simple task
can speed up its convergence, since the evolved rules with simple
task have good quality easier. For a subpopulation with a simple
task, learning knowledge from a complex task can help increase
the quality of individuals since the evolved rules with a complex
task are more comprehensive. In general, the knowledge transfer is
supposed to benefit all of the involved tasks.

3 EXPERIMENTS AND RESULTS

The terminal and function sets for GP, the parameter setting for
GP, and the simulation in [4] are adopted. For simplicity, two tasks
are solved simultaneously in this paper. The population of GP
consists of two subpopulations, and the number of individuals
are set to 512 for each subpopulation. This paper sets the transfer
ratio tr to 0.6, since it is a reasonable setting according to our
preliminary work. For the sake of convenience, Fmax and Fmean
indicate max-flowtime and mean-flowtime, respectively. The tasks
with the same objective but with different utilisation levels are
solved simultaneously.

Two algorithms are compared in this paper. The GP with multi-
tree representation [4] (MTGP) algorithm is selected as the baseline
algorithm. The proposed algorithm based on multitasking, is named
MTMTGP, since it involves multi-tree representation GP (MTGP),
and multitasking GP (MTGP). Note that MTGP works with one
population with 1024 individuals while MTMTGP operates with
two subpopulations with 1024 individuals (i.e. 512 individuals for
each subpopulation). In addition, MTGP solves four tasks with four
GP runs, while MTMTGP handles four tasks with two GP runs.

“=”,“+” and “=” indicate the result is significantly better than,
worse than or similar to its counterpart based on wilcoxon rank-
sum test with a significance level of 0.05 over 30 independent runs.

3.1 Training Time

The training time (CPU time) is an important criterion to measure
the efficiency of an algorithm. Less training time means that the
algorithm is more efficient to get a solution for a problem. Table
1 shows that the training time of MTMTGP for solving two tasks
in each multitasking scenario is dramatically reduced, and its total
training time for two tasks is roughly half of that of MTGP. The

Fangfang Zhang, Yi Mei, Su Nguyen, and Mengjie Zhang

Table 1: The mean (standard deviation) of the training time
(in minutes) of MTGP and MTMTGP for solving four tasks.

Task MTGP MTMTGP

task1 <Fmax,0.85> 64(9)
task2  <Fmax,0.95> 67(12)

scenario 1 65(10)(-)

taskl ~ <Fmean,0.85>  61(11)

scenario 2 k2 <Fmean0.95>  64(13)

60(10)(-)

Table 2: The mean (standard deviation) of the objective
values of MTMTGP, g5 and MTMTGP 95 with and without
knowledge transfer on test instances in four DFJSS tasks.

Task MTMTGP, 55 MTMTGPy o5
without with without with
<Fmax,0.85> 1252.21(44.44) 1235.04(40.51) / /
<Fmax,0.95> / / 2018.93(93.22)1965.24(38.45)(-)
<Fmean,0.85> 386.26(3.16) 384.67(1.17)(=) / /
<Fmean,0.95> / / 560.74(9.48) 552.39(4.90)(-)

main reason is that MTMTGP handles tasks simultaneously rather
than independently.

3.2 The Effectiveness of Knowledge Transfer

Table 2 shows that the quality of the evolved rules with knowledge
transfer are significantly better than its counterpart without knowl-
edge transfer in three out of four tasks. Specifically, the performance
of MTMTGP,_g5(with) is better than MTMTGP,_g5(without) in half
tasks, while the performance of MTMTGPy 95(with) is better than
MTMTGPy g5(without) in all tasks. This indicates that the knowl-
edge obtained with the task with lower utilisation level is useful
for the task with higher utilisation level, and vice versa.

4 CONCLUSIONS

The goal of this paper was to develop an efficient GP hyper-heuristic
algorithm based on multitasking optimisation to evolve effective
scheduling heuristics for distinct DFJSS tasks simultaneously. The
efficiency and effectiveness of the proposed algorithm are verified
by comparing the training time and the quality of evolved rules for
each task. The preliminary results show that the proposed algorithm
MTMTGP can dramatically reduce the computational time of GP,
and seem to achieve comparable scheduling heuristics for solving
multiple DFJSS tasks. The training time needed for solving the tasks
in a multitasking scenario is less than half of its counterpart.

REFERENCES

[1] Abhishek Gupta, Yew-Soon Ong, Liang Feng, and Kay Chen Tan. 2017. Multiobjec-
tive Multifactorial Optimization in Evolutionary Multitasking. IEEE Transactions
on Cybernetics 47, 7 (2017), 1652-1665.

[2] John R Koza and Riccardo Poli. 2005. Genetic programming. In Search Methodolo-
gies. Springer, 127-164.

[3] SuNguyen, Mengjie Zhang, Mark Johnston, and Kay Chen Tan. 2014. Genetic Pro-
gramming for Evolving Due-Date Assignment Models in Job Shop Environments.
Evolutionary Computation 22, 1 (2014), 105-138.

[4] Fangfang Zhang, Yi Mei, and Mengjie Zhang. 2018. Genetic programming with
multi-tree representation for dynamic flexible job shop scheduling. In Proceedings
of the Australasian Joint Conference on Artificial Intelligence. Springer, 472-484.

[5] Fangfang Zhang, Yi Mei, and Mengjie Zhang. 2019. A Two-Stage Genetic Pro-
gramming Hyper-heuristic Approach with Feature Selection for Dynamic Flexible
Job Shop Scheduling. In Proceedings of the Genetic and Evolutionary Computation
Conference. IEEE, 347-355.



	Abstract
	1 Introduction
	2 The proposed algorithm
	3 Experiments and Results
	3.1 Training Time
	3.2 The Effectiveness of Knowledge Transfer

	4 Conclusions
	References

