
1

Evolving Scheduling Heuristics via Genetic
Programming with Feature Selection in Dynamic

Flexible Job Shop Scheduling
Fangfang Zhang, Student Member, IEEE, Yi Mei, Senior Member, IEEE, Su Nguyen, Member, IEEE,

and Mengjie Zhang, Fellow, IEEE

Abstract—Dynamic flexible job shop scheduling (DFJSS) is a
challenging combinational optimisation problem that takes the
dynamic environment into account. Genetic programming hyper-
heuristics (GPHH) have been widely used to evolve scheduling
heuristics for job shop scheduling. A proper selection of the
terminal set is a critical factor for the success of GPHH. However,
there is a wide range of features that can capture different
characteristics of the job shop state. Moreover, the importance of
a feature is unclear from one scenario to another. The irrelevant
and redundant features may lead to performance limitations.
Feature selection is an important task to select relevant and
complementary features. However, little work has considered
feature selection in GPHH for DFJSS. In this paper, a novel
two-stage GPHH framework with feature selection is designed to
evolve scheduling heuristics only with the selected features for
DFJSS automatically. Meanwhile, individual adaptation strate-
gies are proposed to utilise the information of both the selected
features and the investigated individuals during the feature
selection process. The results show that the proposed algorithm
can successfully achieve more interpretable scheduling heuristics
with fewer unique features and smaller sizes. In addition, the
proposed algorithm can reach comparable scheduling heuristic
quality with much shorter training time.

Index Terms—Feature Selection, Genetic Programming,
Hyper-heuristics, Interpretability, Dynamic Flexible Job Shop
Scheduling.

I. INTRODUCTION

Job shop scheduling (JSS) [1] is an important research
problem which captures practical issues in real-world

scheduling tasks such as manufacturing processes [2], [3]
and cloud computing [4], especially in large-scale production
environments. JSS is to process a number of jobs (each job
has a sequence of operations) by a set of machines, where
each operation can only be processed by a specific machine.
Flexible JSS (FJSS) [5], as an extension of JSS, is closer
to reality. Different from in JSS, an operation in FJSS can
be processed by more than one candidate machine, and the
processing time on each machine is different. In FJSS, two
kinds of decisions need to be made simultaneously. One is
machine assignment (i.e., assign an operation to a machine)
and the other is operation sequencing (i.e., choose the next
operation to be processed when a machine becomes idle).

The authors are with the Evolutionary Computation Research Group at the
School of Engineering and Computer Science, Victoria University of Welling-
ton, Wellington 6140, New Zealand (e-mail: Fangfang.Zhang@ecs.vuw.ac.nz;
Yi.Mei@ecs.vuw.ac.nz; Mengjie.Zhang@ecs.vuw.ac.nz;). Su Nguyen is with
the Centre for Data Analytics and Cognition, La Trobe University, Australia
(e-mail: P.Nguyen4@latrobe.edu.au)

Unlike in JSS and DJSS, dynamic FJSS (DFJSS) aims to
make decisions of both machine assignment and operation
sequencing under a dynamic environment with unpredicted
events such as new job arrivals [6], [7] and machine breakdown
[8], [9]. DFJSS is an NP-hard problem [10] and cannot be
solved efficiently with exact optimisation methods such as
dynamic programming [11] and integer linear programming
[12]. Approximate solution optimisation methods such as sim-
ulated annealing [13], tabu search [14], genetic algorithm [15],
and particle swarm optimisation [16], [17], which aim to
find a near-optimal solution have been applied for static JSS
and FJSS. However, they cannot effectively handle dynamic
environment, which requires real-time response. Scheduling
heuristics such as priority-based dispatching rules [18], are
the most popularly used heuristics for DFJSS. Scheduling
heuristics are used to make real-time decisions based on the
priority values of machines or operations at the decision points.
A scheduling heuristic in DFJSS consists of a routing rule
for machine assignment and a sequencing rule for operation
sequencing [3]. There are some advantages of using scheduling
heuristics. First, scheduling heuristics can make decisions in
real-time, thus can handle dynamic problems well. Second, the
scheduling heuristics can be implemented to real-world appli-
cations easily. Last but not least, domain knowledge can be
easily incorporated with priority-based scheduling heuristics.
However, it is hard to manually design effective rules due to
the complexity of the investigated job shop environment.

Genetic programming (GP), as a hyper-heuristic (GPHH)
method, has been successfully applied to automatically evolve
scheduling heuristics for JSS, including FJSS and DFJSS [7],
[19], [20], [21]. Except for scheduling heuristics, to the best of
our knowledge, there are no other strategies in typical GPHH
related to handling the dynamic features of the problems. A
GP individual is a priority function, typically represented as a
tree. GP evolves a population of such trees using a terminal
set (i.e., the leaf nodes, reflecting the features of the job shop
state) and a function set (i.e., non-leaf nodes, indicating the
operations to combine the features in the priority function).
The terminal set is a critical factor in the success of GPHH
[3]. A compact terminal set can improve the effectiveness of
GPHH. In DFJSS, a wide range of features about the job
shop state (e.g., the processing time of each operation and the
idle time of each machine) can be considered as terminals.
However, the importance of a feature depends on job shop
scenarios and objectives to be optimised. In practice, it is

2

usually unknown which features are useful, which are not
and which are more important than others. Therefore, existing
studies typically place all the possible job shop features in
the terminal set. As a result, the evolved rules tend to have a
large number of different features, making it hard to interpret
the rules [22]. Besides, a large terminal set with redundant
or unrelated features leads to exponentially large and noisy
search space, and negatively affects the capability of GP in
searching the solution space.

To address the above issues, this paper proposes to use fea-
ture selection in GPHH for DFJSS. Feature selection [23] has
been successfully used for different tasks such as classification
[24], [25], [26], clustering [27], and regression [28]. It is noted
that feature selection can not only reduce the search space of
GP but also potentially improve the interpretability of evolved
scheduling heuristics in DFJSS. The fewer features involved
in scheduling heuristics, the easier it is to interpret the rules,
as there are potentially fewer and hopeful less complicated
relationships between the features. The frequency of terminals
has been widely considered in feature selection based on
the assumption that GP can automatically perform feature
selection [29]. However, the embedded feature selection ability
in GP is limited. The redundant branches in GP are likely to
mislead the accuracy of feature selection, which can weaken
the ability of problem-solving, such as the classification accu-
racy in the classification problems [29].

To the best of our knowledge, little is yet known about using
feature selection in the variations of JSS. Feature selection
based on the frequency of terminals was introduced to help
GP to evolve dispatching rules for dynamic JSS in [30]. A
novel feature importance measure instead of frequency was
firstly introduced in [31] to select features for the dynamic
JSS problem. Then, an efficient feature selection was proposed
in [32] based on the feature importance measure in [31].
However, these approaches are only related to dynamic JSS.
The feature selection technique was firstly used for DFJSS
in [33]. In [33], a GPHH approach with feature selection
was proposed for DFJSS, which involves two feature sets.
However, the main drawback in [33] is that the selected
features are only used to guide the behaviour of GP by
mutation operator. It does not change the evolution sufficiently,
which greatly limits the influence of the feature selection. This
points to an important question how to apply the selected
features effectively after obtaining a great feature set. It is
still an important but an unexplored research topic in DFJSS.

The feature selection in GPHH for DFJSS is different from
and more challenging than the traditional machine learning
tasks, as the data is not available and the data should be
generated before applying feature selection. The current state-
of-the-art feature selection approach [32] used a short GP pro-
cess with surrogate and niching techniques to evolve a diverse
set of good GP individuals as the data for feature selection.
Then the features were selected based on their importance to
these individuals. There are two types of information obtained
from the feature selection process. The first is the selected
features, and the second is the promising individuals found
during the feature selection process (i.e., the final population
in this study). Most existing algorithms [34], [35] only use the

first one and re-initialise the population using selected features.
To improve effectiveness, this paper proposes novel algorithms
to employ both types of information. Specifically, individual
adaptation strategies are proposed to utilise the information of
the selected features and examined individuals.

The overall goal of this paper is to develop an effective
feature selection approach with novel individual adaptation
strategies via genetic programming to automatically evolve
more interpretable routing and sequencing rules simultane-
ously for DFJSS efficiently. The proposed algorithms are
expected to help GPHH find more interpretable rules only
with selected features without sacrificing the performance.
Specifically, this work has the following research objectives:

1) Develop a new two-stage GPHH framework to utilise
the information of both the selected features and the ex-
amined individuals during the feature selection process.

2) Propose novel individual adaptation strategies that in-
herit the information of the examined individuals during
the feature selection.

3) Analyse how the proposed algorithms influence the
effectiveness and interpretability of the evolved rules.

4) Analyse how the proposed individual adaptation strate-
gies influence the efficiency of the proposed algorithms.

II. BACKGROUND

A. Dynamic Flexible Job Shop Scheduling

In FJSS problem, n jobs J = {J1, J2, ..., Jn} need to be
processed by m machines M = {M1,M2, ...,Mm}. Each job
Jj has an arrival time at(Ji) and a sequence of operations
Oj = (Oj1, Oj2, ..., Oji). Each operation Oji can only be
processed by one of its optional machines π(Oji) and its
processing time δ(Oji) depends on the machine that processes
it. It indicates that there are two decisions which are routing
decision and sequencing decision in FJSS. In DFJSS, not only
the two decisions need to be made simultaneously, but also the
dynamic events are necessary to be taken into account when
making schedules. This paper focuses on one dynamic event
(i.e., continuously arriving new jobs). That is, the information
of a job is unknown until its arrival time.

B. Genetic Programming Hyper-heuristics for JSS

A hyper-heuristic [36] is a heuristic search method that
seeks to select or generate heuristics to efficiently solve
hard computational search problems. The unique characteristic
is that hyper-heuristic works on heuristic space rather than
solution space. GPHH [37] has been successfully applied
to evolve informative scheduling heuristics for combinational
optimisation problems such as packing [38], timetabling [39],
[40], arc routing [41], and dynamic JSS [42], [43], [44], [45].
At the beginning, a population of individuals with a size of
popsize are randomly initialised. In GP, the fitness of the ith

individual fitnessindi
is evaluated as follows. First, a simula-

tion (training instance) is run with the individual indi to obtain
the schedule Si. Then, the fitness of the individual is assigned
as the objective value (e.g., max-flowtime, mean-flowtime, and
mean-weighted-flowtime) of the obtained schedule Obj(Si).

3

Initialisation

Stage 1 Stop?

Population Evaluation

with Niching and

Surrogate

Selection

Reproduction

Crossover

Mutation

Evolution

Feature Selection

Evaluation

Final Population

Reservation

Routing

Feature Set

Sequencing

Feature Set

Stage 2 Stop?

Selection

Reproduction

Crossover

Mutation

Evolution

Initialisation with

Individual Adaptation

End
YesNo Yes No

Stage 1 Stage 2

/

+ z

x y

/

+ z

1 y

r|x=1r

Fig. 1. An example of a GP individual with three features (e.g., x, y and z)
and two arithmetic operators (e.g., + and /).

GP can automatically generate computer programs to solve
problems without rich domain knowledge. An example of a
GP individual [46] with three features (e.g., x, y and z) and two
arithmetic operators (e.g., + and /) can be found in Fig. 1. The
corresponding scheduling heuristic of this individual is x+y

z ,
and it will be used to prioritise the candidates, either machines
or operations. There are some advantages of using GPHH for
JSS, including DFJSS. One is its flexible representation. The
structures of rules are not necessary to be designed in advance.
The other is that the tree-based programs obtained by GP
provide us opportunities to understand the behaviour of the
rules, which is important for real-world applications.

C. Feature Selection

The performance of GP heavily relies on a proper selection
of the terminal set [3]. In the terminal set, features (terminals)
are not equally important. Besides, some features may be
irrelevant, redundant or noisy, and the original features are
typically not informative enough. All of these factors may
lead to various performance limitations. Feature selection is
an effective process for selecting a subset of relevant and
complementary features [26], [47]. Feature selection algo-
rithms are generally classified into three categories [26]: filter
approaches, wrapper approaches, and embedded approaches.

However, there are some challenges which make traditional
feature selection methods not directly applicable in DFJSS.
First, the task (i.e., prioritising operations or machines) in
DFJSS and the training instance are different from the tradi-
tional machine learning tasks. The training data are generated
with the simulation execution in DFJSS while the training
data already exist in the traditional machine learning tasks.
In this case, filter approaches can not be applied since it is
impossible to measure the importance of each feature based on
filter measures such as entropy [48] and Pearson’s correlation
[49]. Second, it is much more computationally expensive if
applying wrapper classifier in DFJSS than that of in traditional
machine tasks. Specifically, running a GP process to obtain a
reliable estimation of the best objective value of a terminal
set is much slower than training a classifier (e.g., decision
tree) in traditional machine tasks. Besides, in most embedded
approaches, GP can handle both the feature selection and the
regression [28], [50] or classification [51] tasks. However, they
are the supervised problems, and feature selection is rarely
used in the variations of JSS.

This paper extends the feature selection framework in [33]
to only use selected features to evolve rules for DFJSS.
In addition, this paper proposes novel individual adaptation
strategies to help GPHH explore more interpretable rules only
with selected features without losing the qualities of the rules.

III. THE PROPOSED ALGORITHM

This section describes the proposed two-stage GP algorithm
for DFJSS. The framework of the proposed algorithm is first
illustrated, followed by the details of its key components.

A. Two-stage Framework

To utilise the information of both the selected features and
investigated individuals during the feature selection process,
this paper proposes a two-stage GP with feature selection and
individual adaptation strategies. We introduce the framework
in [6] with two subpopulations to evolve routing and sequenc-
ing rules simultaneously with the cooperation coevolutionary
strategy for DFJSS. Thus, we can get two selected feature sub-
sets, one for the routing rule, and the other for the sequencing
rule. They are to measure the characteristics of the routing and
sequencing rules, respectively. The flowchart of the two-stage
framework is shown in Fig. 2. In stage 1, the conventional
evaluation, selection and evolutionary operators are used. In
stage 2, the initialisation and mutation are different. The
initialisation adapts the final population of stage 1 as part of
the initial population, and randomly generates the remaining
individuals using the selected features. The mutation operator
generates random sub-trees using the selected features only.

When using the feature selection method proposed in [32],
a diverse set of good individuals are required to achieve high
accuracy of the feature selection. The reason is that the good
individuals in GP can be repeated, choosing all of them may
be biased to specific features. Stage 1 is designed to obtain
a population with such individuals for feature selection. The
output of stage 1 is an informative population. After stage 1
is completed, feature selection is conducted based on the final
population obtained in stage 1.

Stage 2 is developed for making use of the information
(i.e., final population and selected features) obtained in stage
1 to evolve more effective and interpretable rules. This paper
develops a number of novel individual adaptation strategies
to initialise the population in stage 2 that consists only of
the selected features without deteriorating the performance
much. It is noted that the selected features will be used in
two situations in stage 2. One is to generate new individuals
for building a new population during the initialisation process
by the ramped half-and-half method. The other is to generate
a new sub-tree by the grow method with only the selected
features as the terminals to replace a selected subtree of a
parent by mutation. Readers interested in the genetic operators
of GP can refer to [46].

B. Stage 1

Extra feature selection process will make the approach more
computationally expensive because more individual evalua-
tions are needed. To reduce extra computing costs, a niching
based and surrogate assisted method was proposed for feature
selection in [32]. Simply speaking, niching technique main-
tains the diversity of individuals by building different niches
and controlling the number of individuals in each niche. The
method aims to get a diverse set of good individuals quickly

4

Initialisation

Stage 1 Stop?

Population Evaluation

with Niching and

Surrogate

Selection

Reproduction

Crossover

Mutation

Evolution

Feature Selection

Evaluation

Final Population

Reservation

Routing

Feature Set

Sequencing

Feature Set

Stage 2 Stop?

Selection

Reproduction

Crossover

Mutation

Evolution

Initialisation with

Individual Adaptation

End
YesNo Yes No

Stage 1 Stage 2

/

+ z

x y

/

+ z

1 y

r|x=1r

Fig. 2. The flowchart of two-stage genetic programming with feature selection
and individual adaptation strategies (i.e., the reddish font parts are the main
steps of the proposed algorithm).

for feature selection with surrogates, which is a simplified
version of the original problem by only reducing the number
of jobs. The surrogate technique was designed based on the
assumption that the knowledge of solving simpler or auxiliary
problems can be transferred to the original problems [52]. This
paper applies the idea but explores it to the dynamic flexible
JSS. The process is designed as stage 1 to get a diverse set
of good individuals in this paper. In the original simulation,
there are 5000 jobs and 10 machines. In the surrogate model,
we shorten the simulation to 500 jobs and 5 machines.

C. Feature Selection

This paper applies the feature selection idea in [32]. There
are three main steps in this feature selection method. First,
top ten individuals in the population based on fitness values
are selected as a diverse set of good individuals baseInds.
Second, the importance of each feature is measured according
to its contributions to the fitness of the individuals in baseInds
and an individual in baseInds will vote for a feature if the
feature has contributions to it. Finally, if a feature can get
more than half of the votes, the feature will be selected. The
pseudo-code of feature selection is shown in Algorithm 1.

The Importance of Features. The importance of a feature
f is measured by its contributions to a set of individuals
baseInds (from line 4 to line 11). To calculate the contribution
of a feature f to an individual r (i.e., denoted by Cr

f), the
feature f is first replaced with the constant of one, then the
contribution is calculated as the difference between the fitness
before and after the replacement, as shown in Eq. (1).

Cr
f = fitness(r|f = 1)− fitness(r) (1)

This paper is seeking to minimise the objective value. If Cf >
0, it means the fitness becomes worse without the measured
feature, and the measured feature is an important feature. Thus,
the measured feature can get one vote from the individual r.

Fig. 3 shows an example of a GP individual r with three
features (x, y, and z). To examine the importance of feature x,
x is firstly be replaced with 1, and the contribution of feature
x is defined as Cr

x = fitness(r|x = 1)− fitness(r).

Algorithm 1: Feature selection

1: Input : A diverse set of good individuals (baseInds) from stage 1
Output: The selected features F

2: set F ← {}
3: for i = 1 to |features| do
4: votefi ← 0 // the number of votes for feature fi
5: for j = 1 to |baseInds| do
6: Calculate the contribution Cfi of feature fi
7: ind ← baseIndsj
8: if Cind

fi
> 0 then

9: votefi ← votefi +1
10: end
11: end
12: if votefi > 0.5 ∗ |baseInds| then
13: T ← T ∪ fi
14: end
15: end
16: return F

Initialisation

Stage 1 Stop?

Population Evaluation

with Niching and

Surrogate

Selection

Reproduction

Crossover

Mutation

Evolution

Feature Selection

Evaluation

Final Population

Reservation

Routing

Feature Set

Sequencing

Feature Set

Stage 2 Stop?

Selection

Reproduction

Crossover

Mutation

Evolution

Initialisation with

Individual Adaptation

End
YesNo Yes No

Stage 1 Stage 2

/

+ z

x y

/

+ z

1 y

r|x=1r

Fig. 3. An example of how to examine the contribution (denoted as Cx) of
a feature x for an individual r.

Feature Selection Decision. This paper makes two exten-
sions of the feature selection method in [32] to fit the DFJSS
problems. First, two sets of individuals obtained from two sub-
populations for evolving routing rules and sequencing rules are
selected, respectively. Second, the feature selection method is
applied for selecting the routing feature set and the sequencing
feature set based on the two sets of individuals, respectively.
Feature f is selected if it makes positive contributions to at
least 50% of the selected individuals baseInds (from line 12
to line 14).

D. Stage 2

Another important task is to inherit the information of the
promising individuals in the final population of stage 1 while
removing the unselected features in stage 2. To this end, we
propose two strategies to adapt the individuals in the final
population of stage 1 to stage 2. The idea is to generate
new individuals with only the selected features but still have
the same or similar behaviour with the promising individuals
obtained in stage 1.

The first individual adaptation strategy is to simply replace
each unselected feature with a constant of one. This can com-
pletely remove the unselected features from the individuals,
while still keeping their structures as much as possible. If a
feature is not selected, it is expected to have little contribution
to a majority of individuals, and thus replacing them by one
would not change the fitness much. A potential drawback is
that the average quality of individuals in the first generation of
stage 2 might not be as well as the last generation of stage 1.
One reason is that the unselected features might still have some
contributions to the quality of the individuals slightly. Another
reason is that replacing a number of unselected features in an

5

New individual
Promising individual

Phenotypic characterisation in decision situation 1

P
h

e
n

o
ty

p
ic

 c
h

a
ra

c
te

ri
sa

ti
o

n

 i
n

 d
e
c
is

io
n

 s
it

u
a

ti
o

n
 2

Fig. 4. The process of mimicking individuals by generating new individuals
only with selected features.

individual by one will change the structure of an individual
a lot, which is more likely to change the behaviour of the
individual in certain ways.

The second individual adaptation strategy is based on the
idea of “mimicking”. Specifically, it randomly generates a
large number of individuals with only the selected features.
For each promising individual in the final population of stage
1, it is replaced by the randomly generated individual that
has the closest behaviour with it. The behaviour is defined
as the phenotypic characterisation [53], which is a numeric
vector. Since the calculation of phenotypic characterisation is
much cheaper than a full fitness evaluation, it is affordable to
generate a large number of individuals for mimicking.

Fig. 4 shows an example of the process of mimick-
ing individuals, where the phenotypic characterisation is 2-
dimensional. Two decision situations are used to generate the
phenotypic characterisation. A decision situation is when a
rule is to make a decision (e.g., a machine becomes idle or an
operation becomes ready). Briefly speaking, the phenotypic
characterisation of a decision is defined as the rank of the
machine or operation selected by an individual in the sorted list
of the benchmark rules (e.g., SPT (shortest processing time)
for sequencing decisions, and WIQ (work in the queue) for
routing decisions). Interested readers to phenotypic character-
isation can find more details in [53]. The stars indicate the
promising individuals in stage 1 that need to be mimicked. A
large number of new individuals (i.e., denoted as circles) are
generated only with the selected features. The new individuals
which are closest to the mimicked individuals will be chosen
to replace the promising stage 1 individuals.

It is noted that it is not always possible to find individuals
with the same behaviour (i.e., the distance between two
individuals equals zero). The new individuals that have the
most similar behaviours with promising individuals so far will
be saved to the new population. For the rest of the elements
(individuals) in the new population which are still empty will
be randomly initialised with selected features. Finally, a new
population only with the selected features is obtained.

It is noted that it is not meaningful to adapt all the individ-
uals obtained from stage 1. Only the “promising” individuals

Fig. 5. The selected promising individuals based on knee-point.

are adapted in this paper. If the number of adapted individuals
is too small, there will be too many randomly generated
individuals, and the performance will be close to purely re-
initialisation. If it is too large, it will bring some noise, and
increase the training time.

This paper identifies the promising individuals using the
knee point, which is a parameter-free approach. The knee point
can be used as a demarcation point. The individuals whose
fitnesses are smaller (i.e., minimising problem) than that of
knee point are selected as promising individuals. An example
can be found in Fig. 5. First, the individuals in the population
are sorted based on fitness values in ascending order, and a
curve related to fitness values is obtained. Second, a line is
generated by connecting the points with the smallest and the
largest fitness value. Then, the distance between each point
on the curve and the line is calculated. The point that has the
largest distance to the line is selected as the knee point, and
the individuals whose fitness value is smaller than that of the
knee point are selected to be adapted. Note that if there is
more than one knee point, the knee point that has the largest
distance to the generated line will be selected.

IV. EXPERIMENT DESIGN

To investigate the effectiveness (the objective value on test
instance), efficiency (the training time) in different scenarios of
proposed individual adaptation strategies, a set of experiments
have been designed.

A. Simulation Model

Simulation is an effective method to investigate complex
problems [54]. The simulated environment in this paper is used
as an experimental model to study factors affecting DFJSS.
This paper assumes that there are 5000 jobs that need to
be processed by ten machines in our simulation. For DFJSS
simulation, new jobs will arrive over time according to a
Poisson process with rate λ. Each job has a different number of
operations that are randomly generated by a uniform discrete
distribution between one and ten. In addition, the importance
of jobs might be different, which are indicated by weights. The
weights of 20%, 60%, and 20% of jobs are set as one, two,

6

TABLE I
THE TERMINAL SET.

Notation Description

NIQ The number of operations in the queue
WIQ Current work in the queue
MWT Waiting time of a machine

PT Processing time of an operation on a specified machine
NPT Median processing time for the next operation
OWT The waiting time of an operation
WKR Median amount of work remaining for a job
NOR The number of operations remaining for a job

W Weight of a job
TIS Time in system

and four, respectively. The processing time of each operation
is assigned by uniform discrete distribution with the range
[1,99]. The number of candidate machines for an operation
follows a uniform discrete distribution between one and ten.

Utilisation level (p) is an essential factor to simulate differ-
ent scenario environments. The bigger the utilisation level, the
busier the job shop. To make sure the accuracy of collected
data, warm-up jobs (first 1000 jobs) are used to get typical
situations occurring in a long-term simulation of a dynamic
job shop system and jobs arrive as a continuous arrival
process. This paper collects data from the next 5000 jobs.
The simulation stops when the 6000th jobs is finished.

B. Parameter Setting

In our experiment, the terminal set of GP is shown in
Table I. The terminals are set as the features that indicate
the characteristics related to machines (e.g., NIQ, WIQ, and
MWT), operations (e.g., PT, NPT, and OWT), and jobs (e.g.,
WKR, NOR, W, and TIS). The function set is {+, −, ∗, /,
max, min}, following the setting in [31], [55]. The arithmetic
operators take two arguments. The “/” operator is protected
division, returning one if divided by zero. The max and min
functions take two arguments and return the maximum and
minimum of their arguments, respectively. The other parameter
settings of GP are shown in Table II.

C. Comparison Design

Five algorithms are taken into comparison in this paper.
The cooperative coevolution genetic programming (CCGP)
[6] (i.e., without feature selection and individual adaptation
strategies) is selected as the baseline algorithm. The algorithm
that was proposed in [33] (CCGP2) is also compared. CCGP2

only applies the selected features in stage 2 by mutation, and it
is used to verify whether mutation operator will affect the per-
formance. The proposed algorithms which incorporate with in-
dividual adaptation strategies are named as CCGP2a(mimic)
(i.e., mimicking the behaviour of promising individuals) and
CCGP2a(rep) (i.e., replacing the unselected features by one
directly). To verify the effectiveness of CCGP2a(mimic) and
CCGP2a(rep), the algorithm (i.e., named as CCGP2a(rand))
that generates new population in stage 2 by randomly initial-
ising all individuals is also compared. This is because using
the selected features to re-initialise the new population in
stage 2 randomly is the most straightforward way to eliminate
unselected features intuitively.

TABLE II
THE PARAMETER SETTING OF GP.

Parameter Value

Number of subpopulations 2
Subpopulation size 512

Method for initialising population ramped-half-and-half
Initial minimum/maximum depth 2 / 6

maximal depth of programs 8
Crossover/Mutation/Reproduction rate 80% / 15% / 5%

Parent selection Tournament selection
with size 7

Number of generations in stage 1 and stage 2 50 / 50
Terminal/non-terminal selection rate 10% / 90%

D. The Measurement for Comparision

In order to verify the effectiveness and efficiency, the
proposed algorithms are tested on six different scenarios. The
scenarios consist of three objectives (e.g., max flowtime, mean
flowtime, and mean weighted flowtime) and two utilisation
levels (e.g., 0.85 and 0.95). For the sake of convenience,
Fmax, Fmean, and WFmean stand for the max flowtime,
mean flowtime, and mean weighted flowtime, respectively. The
objective functions are shown as follows.
• Minimisation Fmax = max{C1, Ci, ..., Cn}
• Minimisation Fmean =

∑n
i=1 {Ci−ri}

n

• Minimisation WFmean =
∑n

i=1 wi∗{Ci−ri}
n

where Ci is the completion time of job Ji, ri is the release
time of Ji, and wi is the weight of Ji.

The evolved rule is tested on 50 different test instances
and the average objective value across the 50 test instances
is reported as the test performance of a rule, which can be a
good approximation of the true performance of the rule.

V. RESULTS AND DISCUSSIONS

Wilcoxon signed-rank test with a significance level of 0.05
is used to verify the performance of proposed algorithms.
In the following results, “-”, “+”, and “=” indicate the
corresponding result is significantly better than, worse than
or similar with its counterpart. To be specific, CCGP2 is
compared with CCGP while CCGP2a(rand), CCGP2a(rep),
and CCGP2a(mimic) are compared with CCGP2. It is worth
mentioning that this paper does not focus on the improvement
of effectiveness but on the improvement of achieving more
interpretable rules with fewer unique features and smaller size
without losing the effectiveness.

A. Performance of Evolved Rules

Table III shows the mean and standard deviation of in-
volved five algorithms according to 30 independent runs in
six dynamic flexible scenarios. CCGP2 which only makes
use of selected features by mutation operator achieves similar
performance with CCGP. One possible reason is that the GP
itself can detect important features automatically. The other is
that there is not much difference when only applying selected
features by mutation with a small rate. However, the drawback
is that the evolved rules by CCGP2 still contain unselected

7

TABLE III
THE MEAN (STANDARD DEVIATION) OF THE OBJECTIVE VALUE OF THE FIVE ALGORITHMS OVER 30 INDEPENDENT RUNS FOR SIX DYNAMIC SCENARIOS.

Scenario CCGP CCGP2 CCGP2a(rand) CCGP2a(rep) CCGP2a(mimic)

<Fmax,0.85> 1223.83(41.78) 1225.41(43.51)(=) 1314.87(121.35)(+) 1237.53(81.28)(=) 1238.34(99.27)(=)
<Fmax,0.95> 1959.24(46.63) 1998.09(115.26)(=) 2054.56(204.36)(+) 2032.85(145.16)(=) 2034.08(153.61)(=)
<Fmean,0.85> 385.42(2.65) 384.77(1.32)(=) 387.34(2.23)(=) 385.07(1.24)(=) 385.14(1.87)(=)
<Fmean,0.95> 553.65(7.89) 552.88(6.78)(=) 559.21(8.21)(+) 553.07(6.31)(=) 551.20(6.11)(=)
<WFmean,0.85> 830.74(6.89) 829.58(5.56)(=) 833.02(6.15)(+) 830.11(5.42)(=) 831.51(6.52)(=)
<WFmean,0.95> 1109.89(13.07) 1110.86(12.01)(=) 1112.35(12.91)(=) 1109.58(7.96)(=) 1112.94(14.62)(=)

features. It does not make it easier to interpret the rules since
more features are still involved in the rules.

The performance of CCGP2a(rand) is significantly worse
than that of CCGP in most scenarios. One reason might be that
a completely new population which has worse performance
(i.e., a new start), is generated for stage 2. It is hard to achieve
good performance compared with CCGP (i.e., actually evolved
by 100 generations). CCGP2a(mimic) and CCGP2a(rep)
(i.e., only with selected features) can achieve similar perfor-
mance with CCGP2 in most scenarios. It indicates that the
proposed adaptation strategies are effective to take advantage
of the population information from stage 1.

It is noted that all the algorithms have larger vari-
ances in scenario <Fmax,0.85> and <Fmax,0.95>, espe-
cially the algorithms with feature selection (e.g., CCGP2,
CCGP2a(rand), CCGP2a(rep), and CCGP2a(mimic)). One
possible reason is that max flowtime is more sensitive to the
worst case of processing jobs than mean flowtime. The other
is that the selected features might be not that good for all the
problems which will lead to some outliers.

Fig. 6 shows the convergence curves of the average
objective value on unseen instances of CCGP, CCGP2,
CCGP2a(rand), CCGP2a(rep), and CCGP2a(mimic) ac-
cording to 30 independent runs in different scenarios. In all
scenarios, CCGP2a(mimic), and CCGP2a(rep) can mimic
the behaviours well (i.e., shown at generation 50) that the per-
formance does not decrease too much. CCGP2a(mimic) can
achieve almost the same performance in <Fmax,0.95> in the
following several generations of generation 50 compared with
CCGP2. Compared with CCGP2a(mimic), CCGP2a(rep)
even can get almost the same performance with CCGP2

in all scenarios. This means that CCGP2a(rep) has a more
promising inheritance ability.

In general, the effectivenesses of CCGP2a(mimic) and
CCGP2a(rep) are better than that of CCGP2a(rand). Both
CCGP2a(mimic) and CCGP2a(rep) can inherit the individ-
uals’ information well from stage 1 to stage 2.

B. Rule Size Analysis

The rule size is defined as the number of nodes in this
paper, and the rule with a smaller size is preferred. There are a
number of advantages of evolving smaller rules. First, smaller
rules can save the training time. Second, smaller rules tend
to be more interpretable by decision makers, particularly the
floor operators of the job shop. Third, smaller rules are more
acceptable by decision makers than larger rules due to the less
complexities. Last but not the least, smaller rules are easier to

Fig. 6. The curves of average objective value on test instances of the five
algorithms according to 30 independent runs in different scenarios.

implement to real-world applications, which are more efficient
to make real-time decisions with dynamic events compared
with larger rules.

Fig. 7 and Fig. 8 show the curves of the sizes (i.e., the
mean value of 30 independent runs at each generation) of
routing rules and sequencing rules. Both for routing rules
and sequencing rules, the rule sizes of CCGP2a(mimic) and
CCGP2a(rand) decrease dramatically at the beginning of
stage 2 due to the individual adaptation strategies, especially
the routing rules. It is noted that the size of the routing
rules of CCGP2a(rep) is not that small compared with
CCGP2a(mimic) and CCGP2a(rand). This is because the
structures of the large rules are still kept.

The size of the best routing rules obtained by
CCGP2a(mimic) is smaller than that of other algorithms
in most scenarios (e.g., <Fmax,0.85>, <Fmean,0.85>,
<Fmean,0.95>, <WFmean,0.85>, and <WFmean,0.95>).
However, the size of the best routing rules of CCGP2a(mimic)
is similar with that of other algorithms in <Fmax,0.95>. This
may be because Fmax with a higher utilisation level (i.e.,
0.95) is more difficult to be optimised due to its sensitiveness
to the worst case (i.e., the longest finished time among all

8

●

●
●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●
●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●●

●
●●

●

●
●

●●
●

●
●●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●●
●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●●
●

●

●●

●

●

●

●

●
●

●

●

●●

●●
●●

●●
●

●
●

●

●●
●

●

●●

●
●

●●●

●

●

●

●●
●●●●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●●

●
●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●
●

●●
●

●●●

●●

●

●

●
●

●

●●

●●

●●●
●

●●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●
●

●
●

●

●
●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
●●

●●
●

●

●
●

●

●

●

●

●

●●

●
●

●●

●

●

●
●

●

●
●

●

●
●

●●
●

●
●●●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●●●

●

●
●

●

●

●

●●

●
●

●●

●

●

●

●
●

●●

●
●

●●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●
●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●●●●
●●●

●

●●

●●

●

●

●

●

●
●●●

●●●

●

●

●
●●

●
●●

●●
●

●
●●●

●

●
●

●

●

●

●
●

●

●

●

<WFmean, 0.85> <WFmean, 0.95>

<Fmean, 0.85> <Fmean, 0.95>

<Fmax, 0.85> <Fmax, 0.95>

0 25 50 75 100 0 25 50 75 100

0 25 50 75 100 0 25 50 75 100

0 25 50 75 100 0 25 50 75 100

20

30

40

50

60

70

20

30

40

50

60

70

20

40

60

20

30

40

50

60

70

30

40

50

60

70

20

30

40

50

60

70

Generation

S
iz

e
of

 R
ou

tin
g

R
ul

e

● CCGP CCGP2 CCGP2a(rand) CCGP2a(rep) CCGP2a(mimic)

Fig. 7. The curves of the best routing rule sizes of the population of the five
algorithms according to 30 independent runs in different scenarios.

TABLE IV
THE MEAN (STANDARD DEVIATION) OF THE RULE SIZES OBTAINED BY
CCGP, CCGP2 AND CCGP2a(mimic) OVER 30 INDEPENDENT RUNS

FOR SIX DYNAMIC FLEXIBLE SCENARIOS.

Scenario CCGP CCGP2 CCGP2a(mimic)

<Fmax,0.85> 122.07(30.60) 123.80(26.72) 112.60(25.75)
<Fmax,0.95> 117.27(25.22) 117.27(28.72) 112.27(31.38)
<Fmean,0.85> 115.73(24.91) 125.07(18.18) 108.93(26.32)
<Fmean,0.95> 121.27(17.60) 118.53(28.08) 110.47(22.31)
<WFmean,0.85> 116.87(23.88) 115.67(26.53) 115.73(26.31)
<WFmean,0.95> 127.40(24.40) 125.67(23.84) 121.47(22.80)

jobs). Compared with the curves of the sizes of sequencing
rules, the proposed individual adaptation strategies have a
great impact on the size of routing rules. The sizes of the best
sequencing rules obtained by CCGP2a(mimic) is similar
with that of other algorithms.

Note that routing rule and sequencing rule work together in
DFJSS. It makes sense to take a routing rule and a sequencing
rule as a pair to measure the rule size. This is because a
smaller routing rule and a larger sequencing can have the
same ability for DFJSS compared with a larger routing rule
and a smaller sequencing rule based on our observation.
Based on the analyses as mentioned easier, it turns out that
CCGP2a(mimic) can achieve similar performance with small
rule size. The rule sizes of only three algorithms (e.g., CCGP,
CCGP2, and CCGP2a(mimic)) are further compared.

Table IV shows the mean and standard deviation of the
rule sizes (i.e., routing rule plus sequencing rule) evolved
by CCGP, CCGP2, and CCGP2a(mimic) according to 30
independent runs. It shows that the rule sizes obtained by
these three algorithms are similar. The main difference of the
evolved rules is that the rules evolved by CCGP2a(mimic))

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●
●●

●
●

●

●

●
●●●●●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●●●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●●

●

●
●

●●

●

●

●●

●

●●

●

●

●

●

●●
●

●
●●

●

●

●●●

●

●

●

●

●●●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●
●

●

●

●
●

●●

●

●
●●

●

●
●

●

●
●

●
●

●

●
●

●●●

●

●

●
●

●

●

●●

●
●

●
●

●

●●

●

●
●

●
●

●●
●

●●●

●
●

●●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●
●●

●
●●

●

●

●

●
●

●

●●
●

●

●

●

●
●

●

●

●

●
●●

●

●
●

●

●●●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●●

●

●
●●●

●

●

●
●

●●●
●

●

●
●

●

●

●●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●
●

●●

●

●
●

●

●

●

●●
●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●●●

●
●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●●

●●

●

●

●

●

●
●

●
●

●
●●

●

●

●
●●

●
●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●
●●

●

●

●
●

●●

●

●

●

●

●
●●

●
●●

●
●

●●
●

●●

●●●

●●
●

●

●
●●●

●

●
●●

●

<WFmean, 0.85> <WFmean, 0.95>

<Fmean, 0.85> <Fmean, 0.95>

<Fmax, 0.85> <Fmax, 0.95>

0 25 50 75 100 0 25 50 75 100

0 25 50 75 100 0 25 50 75 100

0 25 50 75 100 0 25 50 75 100

20

30

40

50

10

20

30

40

50

10

20

30

40

50

60

20

30

40

50

60

20

30

40

50

20

40

60

Generation

S
iz

e
of

 S
eq

ue
nc

in
g

R
ul

e

● CCGP CCGP2 CCGP2a(rand) CCGP2a(rep) CCGP2a(mimic)

Fig. 8. The curves of the best sequencing rule sizes of the population of the
five algorithms according to 30 independent runs in different scenarios.

only contain selected features (i.e., fewer features) while the
rules evolved by CCGP and CCGP2 consist of all features
possibly. The rule sizes are further studied in next subsection.

C. Unique Feature Analysis

The number of unique features in the rules is one of the
indicators of the complexity of evolved rules. The unique
feature means the feature that is needed to construct the rules.
The smaller the number, the easier to interpret the rules.

Table V shows the mean (standard deviation) of the number
of unique features in routing rules in different scenarios. There
is no statistical difference between CCGP and CCGP2 related
to the number of unique features in routing rules in all scenar-
ios. This means that applying selected features only to muta-
tion is not an effective way for improving the interpretability of
evolved routing rules. In addition, no matter what kind of indi-
vidual adaptation strategy is used (i.e., CCGP2a(mimic) with
mimicking behaviour strategy, CCGP2a(rep) with replacing
by one strategy and CCGP2a(rand) with 100% randomly ini-
tialisation strategy), the number of unique features in routing
rules are significantly smaller than its counterpart.

Table VI shows the mean (standard deviation) of the number
of unique features in sequencing rules in different scenarios.
For all the algorithms (e.g., CCGP2a(mimic), CCGP2a(rep),
CCGP2a(rand), and CCGP2) that involve feature selection,
the number of unique features in sequencing rules is signifi-
cantly smaller in all scenarios, especially the individual adap-
tation strategies related algorithms (e.g., CCGP2a(mimic),
CCGP2a(rep), and CCGP2a(rand)).

Assuming that the rules evolved by CCGP2a(mimic)) with
fewer features are easier to be simplified by the algebraic

9

TABLE V
THE MEAN (STANDARD DEVIATION) OF THE AVERAGE NUMBER OF UNIQUE FEATURES OF ROUTING RULES OBTAINED BY THE FIVE ALGORITHMS

OVER 30 INDEPENDENT RUNS FOR SIX DYNAMIC FLEXIBLE SCENARIOS.

Scenario CCGP CCGP2 CCGP2a(rand) CCGP2a(rep) CCGP2a(mimic)

<Fmax,0.85> 8.40(1.33) 7.80(1.47) 6.27(1.68)(-) 6.57(1.74)(-) 6.67(1.81)(-)
<Fmax,0.95> 8.67(0.92) 8.37(1.33) 6.73(1.72)(-) 6.83(1.64)(-) 6.70(1.66)(-)
<Fmean,0.85> 8.03(1.03) 7.67(1.03) 5.70(1.62)(-) 5.83(1.46)(-) 5.63(1.52)(-)
<Fmean,0.95> 8.40(1.10) 7.87(1.14) 5.57(1.33)(-) 5.73(1.53)(-) 5.83(1.56)(-)
<WFmean,0.85> 8.27(1.23) 7.93(1.23) 5.60(1.63)(-) 6.17(2.09)(-) 5.70(1.99)(-)
<WFmean,0.95> 8.20(1.13) 7.50(1.57) 5.70(1.47)(-) 5.90(1.73)(-) 5.70(1.99)(-)

TABLE VI
THE MEAN (STANDARD DEVIATION) OF THE AVERAGE NUMBER OF UNIQUE FEATURES OF SEQUENCING RULES OBTAINED BY THE FIVE ALGORITHMS

OVER 30 INDEPENDENT RUNS FOR SIX DYNAMIC FLEXIBLE SCENARIOS.

Scenario CCGP CCGP2 CCGP2a(rand) CCGP2a(rep) CCGP2a(mimic)

<Fmax,0.85> 7.13(1.59) 6.53(1.14)(-) 5.23(1.41)(-) 5.00(1.20)(-) 5.20(1.27)(-)
<Fmax,0.95> 7.40(1.57) 6.53(1.41)(-) 4.97(1.25)(-) 5.03(1.27)(-) 5.17(1.39)(-)
<Fmean,0.85> 6.57(2.10) 5.47(1.36)(-) 3.53(1.07)(-) 3.40(1.00)(-) 3.70(1.06)(-)
<Fmean,0.95> 6.90(1.60) 6.03(1.43)(-) 4.00(1.23)(-) 3.97(1.19)(-) 3.70(0.99)(-)
<WFmean,0.85> 6.53(1.59) 5.17(1.05)(-) 4.00(0.79)(-) 3.93(0.69)(-) 4.00(0.79)(-)
<WFmean,0.95> 6.80(1.52) 5.70(1.47)(-) 4.33(0.92)(-) 4.17(0.95)(-) 4.27(0.87)(-)

TABLE VII
THE MEAN(STANDARD DEVIATION) OF TRAINING TIME (MINUTES) BY THE FIVE ALGORITHMS IN SIX DYNAMIC FLEXIBLE SCENARIOS.

Scenario CCGP CCGP2 CCGP2a(rand) CCGP2a(rep) CCGP2a(mimic)

<Fmax,0.85> 100(17) 96(14)(=) 80(15)(-) 83(13)(-) 75(10)(-)
<Fmax,0.95> 107(15) 111(20)(=) 88(13)(-) 92(15)(-) 88(12)(-)
<Fmean,0.85> 98(12) 99(13)(=) 78(11)(-) 87(12)(-) 77(12)(-)
<Fmean,0.95> 109(15) 108(16)(=) 86(11)(-) 94(16)(-) 85(12)(-)
<WFmean,0.85> 94(11) 98(11)(=) 82(9)(-) 88(15)(=) 83(15)(-)
<WFmean,0.95> 113(16) 109(16)(=) 90(13)(-) 98(16)(-) 88(13)(-)

●

●

●

●

●

●

<WFmean, 0.85> <WFmean, 0.95>

<Fmean, 0.85> <Fmean, 0.95>

<Fmax, 0.85> <Fmax, 0.95>

50

100

150

50

100

150

200

80

120

160

50

75

100

125

150

60

90

120

150

40

80

120

160

Algorithm

T
he

 S
iz

e
of

 S
im

pl
ifi

ed
 R

ul
e

CCGP CCGP2 CCGP2a(mimic)

Fig. 9. The violin plot of rule sizes (i.e., routing rule plus sequencing rule)
obtained by CCGP, CCGP2, and CCGP2a(mimic) after simplification
over 30 independent runs in six different scenarios.

transformation. Simplification aims to simplify the compli-
cated expression by some kinds of algebraic operations to
make the evolved rules easier to be interpreted. For example,
given a rule (A - B) / (A - B), it will be simplified as one.
Moreover, the rule A + B + A + A will become 3 * A + B

while the rule A * B / B will be simplified as A.
Fig. 9 shows the violin plot of rule size taking routing and

sequencing rules as a pair obtained by CCGP, CCGP2, and
CCGP2a(mimic) over 30 independent runs in six scenarios.
It shows that the rule sizes of simplified rules evolved by
CCGP2a(mimic) are much smaller than that of CCGP and
CCGP2. It indicates that CCGP2a(mimic) has more potential
to get smaller rules which are important for interpreting rules.
Note that the components produced by basic functions (e.g.,
+, -, *, /) are easier to be simplified than that of generated by
max and min.

Fig. 10 shows the scatter plot of the rule sizes of routing and
sequencing rules before and after simplification. It shows that
the routing rule sizes become much smaller (i.e., move to a
lower position) in all scenarios. In addition, the sequencing
rule sizes tend to be smaller (i.e., move to left position)
compared with the sizes without simplification in all scenarios.

In general, after simplification, CCGP2a(mimic) can
achieve smaller size routing rules and sequencing rules than
that of CCGP and CCGP2.

D. Training Time

Training time is an important criterion to measure the
efficiency of algorithms. Table VII shows the training time
of CCGP, CCGP2, CCGP2a(rand), CCGP2a(rep), and
CCGP2a(mimic). The training time of CCGP2 has no signif-
icant difference compared with CCGP2. It is obvious that the
training time of CCGP2a(rand), CCGP2a(rep) (i.e., in five

10

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

● ●
●

●

●
●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●●

●

●

●

●

●
●

●

●

●

●

●
●

●
●●

●

●

●
●●

●●
● ●

●

●
●

●

●
●

●
●

●
●

●●

●

<WFmean, 0.85> <WFmean, 0.95>

<Fmean, 0.85> <Fmean, 0.95>

<Fmax, 0.85> <Fmax, 0.95>

20 40 60 80 20 40 60 80 100

20 40 60 80 20 40 60 80

0 20 40 60 80 0 25 50 75 100

30

60

90

120

20

40

60

80

25

50

75

25

50

75

25

50

75

25

50

75

The Size of Sequencing Rule

T
he

 S
iz

e
of

 R
ou

tin
g

R
ul

e

● CCGP2a(mimic)(before) CCGP2a(mimic)(after)

Fig. 10. The scatter plot of the rule sizes of routing rules and sequencing
rules before and after simplification obtained by CCGP2a(mimic) over 30
independent runs in six different scenarios.

scenarios), and CCGP2a(mimic) decrease dramatically com-
pared with that of CCGP and CCGP2. The main difference of
training time between them is caused by the individual adapta-
tion strategy. Intuitively, for CCGP2a(rand), CCGP2a(rep)
and CCGP2a(mimic), more training time might be needed
due to the extra algorithm operators. However, it turns out
that the training time of individual adaptation strategies related
algorithms are smaller than that of CCGP and CCGP2,
especially CCGP2a(rand) and CCGP2a(mimic).

When looking at the curve of average rule size in the popu-
lation in Fig. 11, the average rule sizes over the population
of CCGP2a(rand) and CCGP2a(mimic) are smaller than
its counterparts. The reason is that all the individuals in the
population at generation 50 are re-initialised and they have
smaller sizes. The most computationally expensive part is the
evaluation and smaller rules tend to save computational time.
Thus, CCGP2a(rand) and CCGP2a(mimic) can reduce the
computational time significantly.

In general, it is noted that CCGP2a(mimic) is more ef-
ficient even more algorithm operators (e.g., feature selection
and mimicking individuals’ behaviours operations in the algo-
rithm) are involved.

VI. FURTHER ANALYSES

A. Feature Analysis

Fig. 12 and Fig. 13 shows the selected and unselected
features of 30 runs in both sequencing rules and routing rules
in six different scenarios, respectively. For a feature, a bigger
blue area (the larger frequency the corresponding feature is
selected) means the corresponding feature is more important. It
is noted that the selected features of CCGP2, CCGP2a(rand),
CCGP2a(rep), and CCGP2a(mimic) are the same in the
same run (i.e., with same random value) since the evolutionary

●

●

●

●

●

●

●
●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●

●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●
●●●●

●●
●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●
●

●●●
●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●

●
●●

●
●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●

●●●●
●●

●

●

●

●

●

●

●

●
●

●
●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●

●

●

●

●

●

●

●

●
●●

●
●●

●●●●●
●●

●●●●●●
●●●

●●●●●
●●●●●●

●●●●●
●●●●●●

●●●●●●●●●●●

●

●

●

●

●

●

●

●
●●●●●●●●

●●●●
●

●●●●●
●●●●●●●●●●

●●
●●●●●●

●●●●●●
●

●●●●●●●
●

●●●●●●●
●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●

●

●

●

●

●

●

●
●

●
●

●
●

●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●

●●●●●●●●
●●●●●●●●●●●●

●●●
●●●●●●●●●●●

●●●●●
●●●

●●●●●●

<WFmean, 0.85> <WFmean, 0.95>

<Fmean, 0.85> <Fmean, 0.95>

<Fmax, 0.85> <Fmax, 0.95>

0 25 50 75 100 0 25 50 75 100

0 25 50 75 100 0 25 50 75 100

0 25 50 75 100 0 25 50 75 100
30

50

70

90

110

50

75

100

50

75

100

50

75

100

40

60

80

100

40

60

80

100

120

Generation

A
ve

ra
ge

 R
ul

e
S

iz
e

O
ve

r
P

op
ul

at
io

n

● CCGP CCGP2 CCGP2a(rand) CCGP2a(rep) CCGP2a(mimic)

Fig. 11. The average rule (routing rules plus sequencing rules) sizes over
population of the five algorithms in different scenarios.

processes are the same in stage 1. In each run, both for
sequencing rules and routing rules, the selected features vary
from each other based on the proposed feature selection algo-
rithm. This means that the selected features can be adjusted
adaptively with the proposed two-stage framework and that
the selected features are based on the specific problems (i.e.,
different runs).

For sequencing rules, the top three important features for
scenario <Fmax,0.85> are PT, TIS, and WKR, as shown
in Fig. 12. Except for these three features, NIQ and NOR
are also important in scenario <Fmax,0.95>. Compared with
<Fmax,0.85>, Fig. 12 shows that more features are selected
in scenario <Fmax,0.95>. It might be because a higher
utilisation level makes the problem more difficult to be op-
timised. For minimising mean flowtime (e.g., <Fmean,0.85>
and <Fmean,0.95>), PT and WKR play an important role
(i.e., they are selected in all 30 runs). When taking the mean
weighted flowtime into consideration (e.g., <WFmean,0.85>
and <WFmean,0.95>), except for PT and WKR, W is also
a significant feature. It is consistent with our intuition that
PT (i.e., processing time) and WKR (i.e., median amount of
work remaining for a job) are important factors for flowtime
related objectives. In addition, W is often chosen for minimis-
ing mean weighted flowtime rather than max flowtime and
mean flowtime. It is consistent with our expectation, since
the calculations of mean flowtime and max flowtime do not
involve W at all.

For routing rules, three features which are MWT, OWT, and
WIQ, are significant for evolving routing rules in all scenarios,
as shown in Fig. 13. It is consistent with our intuition that
the machine which has less workload (WIQ) and earlier ready
time (MWT) is preferred, since the new operation has a higher
chance to be processed early. In addition, this paper will
allocate a new operation once it becomes a ready operation

11

<WFmean, 0.85> <WFmean, 0.95>

<Fmean, 0.85> <Fmean, 0.95>

<Fmax, 0.85> <Fmax, 0.95>

M
W

T
N

IQ
N

O
R

N
P

T
O

W
T

P
T

TI
S W W
IQ

W
K

R

M
W

T
N

IQ
N

O
R

N
P

T
O

W
T

P
T

TI
S W W
IQ

W
K

R

M
W

T
N

IQ
N

O
R

N
P

T
O

W
T

P
T

TI
S W W
IQ

W
K

R

M
W

T
N

IQ
N

O
R

N
P

T
O

W
T

P
T

TI
S W W
IQ

W
K

R

M
W

T
N

IQ
N

O
R

N
P

T
O

W
T

P
T

TI
S W W
IQ

W
K

R

M
W

T
N

IQ
N

O
R

N
P

T
O

W
T

P
T

TI
S W W
IQ

W
K

R

0

10

20

30

0

10

20

30

0

10

20

30

0

10

20

30

0

10

20

30

0

10

20

30

Terminal

R
un

Unselected Selected

Fig. 12. Selected and unselected features of sequencing rules of 30 indepen-
dent runs in different scenarios.

(i.e., OWT, the operation waiting time equals zero). OWT
is naturally a very important factor for the routing process
(i.e., kind of indicator). Compared with the selected features
in sequencing rules, more features are used in routing rules
(i.e., more blue areas). It indicates that the evolved routing
rules might be more complex than sequencing rules.

Fig. 14 shows the distributions of test objective values
of the 30 independent runs of CCGP2a(mimic) in scenario
<Fmax,0.85>, categorised by whether each feature is selected
or not in sequencing rules. TIS is not selected in three runs, the
test performance is much worse when it is selected. However,
even NIQ is a relatively important feature (i.e., it is selected
in half runs roughly) and it is not selected in half runs, the test
performance is still very good. It is interesting that WKR is
not selected in three runs, however, WKR has a greater impact
on two runs while it has no effect on one run.

B. Rule Analysis

This paper takes the best routing rule and the corresponding
sequencing rule (i.e., its objective value is 1096.02) achieved
by CCGP2a(mimic) and its corresponding best rules (i.e., the
run with the same random seed) obtained by CCGP2 (i.e.,
its objective value is 1099.61) in scenario <WFmean,0.95>
as an example. This is because the objective in scenario
<WFmean,0.95> is more difficult to be optimised than other
scenarios. It is noted that the smaller the values calculated by
the rules, the more priority the machine or operation has.

<WFmean, 0.85> <WFmean, 0.95>

<Fmean, 0.85> <Fmean, 0.95>

<Fmax, 0.85> <Fmax, 0.95>

M
W

T
N

IQ
N

O
R

N
P

T
O

W
T

P
T

TI
S W W
IQ

W
K

R

M
W

T
N

IQ
N

O
R

N
P

T
O

W
T

P
T

TI
S W W
IQ

W
K

R

M
W

T
N

IQ
N

O
R

N
P

T
O

W
T

P
T

TI
S W W
IQ

W
K

R

M
W

T
N

IQ
N

O
R

N
P

T
O

W
T

P
T

TI
S W W
IQ

W
K

R

M
W

T
N

IQ
N

O
R

N
P

T
O

W
T

P
T

TI
S W W
IQ

W
K

R

M
W

T
N

IQ
N

O
R

N
P

T
O

W
T

P
T

TI
S W W
IQ

W
K

R

0

10

20

30

0

10

20

30

0

10

20

30

0

10

20

30

0

10

20

30

0

10

20

30

Terminal

R
un

Unselected Selected

Fig. 13. Selected and unselected features of routing rules of 30 independent
runs in different scenarios.

For CCGP2, in the examined run, the routing terminal set
consists of NIQ, WIQ, MWT, PT, NPT, OWT, WKR, NOR,
and W (i.e., nine features). There are six features which
are NIQ, WIQ, MWT, PT, WKR, and W, are selected as
sequencing terminal set. For the routing rules obtained by
CCGP2a(mimic), all the features in the routing terminal set
(i.e., seven features, NIQ, WIQ, MWT, PT, OWT, WKR, and
W) are used. When further looking into the sequencing rule
obtained by CCGP2a(mimic), five of them (e.g., NIQ, WIQ,
PT, WKR, and W) are involved. Fewer features are used by
CCGP2a(mimic) compared with CCGP2.

However, the evolved scheduling heuristics obtained by
CCGP2a(mimic) have better test performance than that of
CCGP2. The routing rule obtained by CCGP2a(mimic) can
be simplified, as shown in Eq. (2).

R1 =min{2 ∗NIQ,max(
NIQ ∗ PT

MWT
,

PT ∗WIQ ∗min(WIQ,WKR))}+

NIQ ∗ PT

W
−MWT

(2)

It is obvious that this routing rule is quite small after sim-
plification. In terms of the features related to machines, this
routing rule prefers to choose the machine which has a large
waiting time (i.e., MWT) and a smaller NIQ (i.e., the number
of operations in the queue) and WIQ (i.e., the workload
of machines). In terms of the features of operations, this
routing rule tends to choose the machine which can process
an operation more efficient with a smaller PT (i.e., processing

12

●
●

●
●●

●

● ●● ●

●●

●

●
●●
●

●

●

●

●

●
● ●

●

●●●●

●
●

●

●

●●

●●● ●

●

●

●
●●

●

●

●●

●

●

●

●
●

●
●

●

●
●

●

●

●

●● ●●

●
●

●

●

●

●

●

●

● ●
●

●
●

●

●

●
●

●
●

●

●●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●

●●● ●

●
●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

OWT WKR NOR W TIS

NIQ WIQ MWT PT NPT

FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE

FALSE TRUE FALSE TRUE FALSE TRUE TRUE FALSE TRUE

1200

1300

1400

1500

1200

1300

1400

1500

1200

1300

1400

1500

1200

1300

1400

1500

1200

1300

1400

1500

1200

1300

1400

1500

1200

1300

1400

1500

1200

1300

1400

1500

1200

1300

1400

1500

1200

1300

1400

1500

Selected

O
bj

ec
tiv

e
V

al
ue

 o
n

Te
st

 In
st

an
ce

s

Fig. 14. The distributions of the test objective values of the 30 independent runs of CCGP2a(mimic) in scenario <Fmax,0.85>, categorised by whether
each feature is selected or not in sequencing rules.

time). In addition, from the perspective of operation, W (i.e.,
weight that used to indicate the importance of operation) is a
constant when choosing a machine. From a machine’s point
of view, the operation which is more important with a larger
W has more priority to select a machine.

The corresponding sequencing rule obtained by
CCGP2a(mimic) is simplified, as shown in Eq. (3).

S1 =
PT +WKR

W

− W

PT
(W ∗WIQ−W +WIQ)− W

PT
∗

(W ∗WIQ+WKR+
PT +WKR

W ∗WIQ−W +WKR
)

(3)

It is noted that for all the operation in the queue of a machine,
the machine-related feature such as WIQ (i.e., the workload
of a machine) is the same for all operations. This means that
it is not a vital important feature. This sequencing rule prefers
to choose the operation with smaller PT (i.e., processing time)
and larger W (i.e., weight, the importance of an operation). It
is interesting that this sequencing rule prefers to smaller WKR
(i.e., median amount of work remaining for a job) based on
the first line of S1 while it tends to select the operations with
larger WKR based on the third line of S1 partially. It indicates
that although we can interpret the rules to some extent, it is
still hard to completely understand the behaviour of rules. We
will continue to work on this topic in the future.

The corresponding routing and sequencing rules obtained by
CCGP2, can be simplified as shown in Eq. (4) and Eq. (5),
respectively. The structures of both this routing rule and se-
quencing rule are more complex than that of CCGP2a(mimic)
even after simplification. From the perspective of the compo-
nents, the function max and min are used a lot and nested
inside each other. It is hard to know which component has
played a real role since it relies on multiple factors. It is not

easy to understand it from a human perspective.

R2 =max{NIQ2, (NIQ+NPT) ∗min(NIQ,NOR)}

−min(MWT,
WKR

MWT ∗WKR− 1
)

∗max{WKR,−MWT ∗WKR+

NIQ ∗ PT ∗max{WIQ, min(MWT,PT)
(W+WKR)

}
max{NIQ2, NOR−W+WKR

W
, NIQ+NPT
(min(NIQ,NOR))−1 }

}

(4)

S2 =NIQ(PT −W)(PT +
WKR

W
∗max{PT,

WIQ

W
,

max{WIQ, WKR
W
}

W
}) +max{WIQ

W 2
,
NIQ

W 2
+WIQ}

∗ (MWT +W +max{WKR

W 2
, NIQ− 1})

∗
max{WIQ, WKR

W
}

W

(5)

In general, the evolved scheduling heuristics obtained by
CCGP2a(mimic) are more interpretable and effective with a
smaller number of unique features and small rule sizes.

VII. CONCLUSIONS AND FUTURE WORK

The goal of this paper is to develop an effective feature
selection algorithm for evolving more interpretable rules for
DFJSS automatically via GPHH without compromising any
performance. The goal was achieved by proposing a two-
stage framework with novel individual adaptation strategies
that can utilise the information of the selected features and the
investigated individuals in the feature selection process well.

The results shows that the evolved rules by
CCGP2a(mimic) have better interpretability due to fewer
unique features in the rules and smaller rule sizes by
introducing feature selection. This is also verified by the
semantic analyses of the routing and sequencing rules
evolved by CCGP2a(mimic). In terms of training time,
CCGP2a(mimic) is more effective than that of the baseline

13

algorithm by reducing the average rule size over population.
Besides, the smaller rules achieved by CCGP2a(mimic)
can respond to scheduling needs faster in real time due
to its less complexity. In general, the proposed algorithm
CCGP2a(mimic) can efficiently evolve more interpretable
rules automatically without comprising any performance.

Some interesting directions can be further investigated in the
near future. Since the unclear question of interpretability, more
promising measurements for evaluating the interpretability of
obtained scheduling heuristics by GP are worth to be studied.
In addition, this work already shows the ability to obtain
similar performance only with selected features. We would
like to find more promising ways by local search to improve
its performance further.

ACKNOWLEDGMENT
This work was supported in part by the Marsden Fund of New Zealand

Government under Contracts VUW1509 and VUW1614, the Science for
Technological Innovation Challenge (SfTI) fund under grant E3603/2903,
and the MBIE SSIF Fund under Contract VUW RTVU1914. This work of
Fangfang Zhang was supported by China Scholarship Council (CSC)/Victoria
University Scholarship.

REFERENCES

[1] A. S. Manne, “On the job-shop scheduling problem,” Operations Re-
search, vol. 8, no. 2, pp. 219–223, 1960.

[2] C. D. Geiger, R. Uzsoy, and H. Aytuğ, “Rapid modeling and discovery of
priority dispatching rules: An autonomous learning approach,” Journal
of Scheduling, vol. 9, no. 1, pp. 7–34, 2006.

[3] J. C. Tay and N. B. Ho, “Evolving dispatching rules using genetic
programming for solving multi-objective flexible job-shop problems,”
Computers & Industrial Engineering, vol. 54, no. 3, pp. 453–473, 2008.

[4] S. Bennett, S. Nguyen, and M. Zhang, “A hybrid discrete particle swarm
optimisation method for grid computation scheduling,” in Proceedings of
the Congress on Evolutionary Computation. IEEE, 2014, pp. 483–490.

[5] P. Brucker and R. Schlie, “Job-shop scheduling with multi-purpose
machines,” Computing, vol. 45, no. 4, pp. 369–375, 1990.

[6] D. Yska, Y. Mei, and M. Zhang, “Genetic programming hyper-heuristic
with cooperative coevolution for dynamic flexible job shop scheduling,”
in Proceedings of the European Conference on Genetic Programming.
Springer, 2018, pp. 306–321.

[7] F. Zhang, Y. Mei, and M. Zhang, “Genetic programming with multi-tree
representation for dynamic flexible job shop scheduling,” in Proceedings
of the Australasian Joint Conference on Artificial Intelligence. Springer,
2018, pp. 472–484.

[8] J. Xiong, L.-n. Xing, and Y.-w. Chen, “Robust scheduling for multi-
objective flexible job-shop problems with random machine breakdowns,”
International Journal of Production Economics, vol. 141, no. 1, pp. 112–
126, 2013.

[9] J. Park, Y. Mei, S. Nguyen, G. Chen, and M. Zhang, “Investigating
a machine breakdown genetic programming approach for dynamic
job shop scheduling,” in Proceedings of the European Conference on
Genetic Programming. Springer, 2018, pp. 253–270.

[10] Y. N. Sotskov and N. V. Shakhlevich, “Np-hardness of shop-scheduling
problems with three jobs,” Discrete Applied Mathematics, vol. 59, no. 3,
pp. 237–266, 1995.

[11] H. Chen, C. Chu, and J. Proth, “An improvement of the lagrangean
relaxation approach for job shop scheduling: a dynamic programming
method,” IEEE Transactions on Robotics and Automation, vol. 14, no. 5,
pp. 786–795, 1998.

[12] F. Y.-P. Simon et al., “Integer linear programming neural networks
for job-shop scheduling,” in Proceedings of the IEEE International
Conference on Neural Networks. IEEE, 1988, pp. 341–348.

[13] P. J. Van Laarhoven and E. H. Aarts, “Simulated annealing,” in Simulated
annealing: Theory and applications. Springer, 1987, pp. 7–15.

[14] F. Glover and M. Laguna, “Tabu search,” in Handbook of Combinatorial
Optimization. Springer, 1998, pp. 2093–2229.

[15] G. V. Conroy, “Handbook of genetic algorithms,” The Knowledge
Engineering Review, vol. 6, no. 4, pp. 363–365, 1991.

[16] J. Kennedy, “Particle swarm optimization,” Encyclopedia of Machine
Learning, pp. 760–766, 2010.

[17] K. Chen, F. Zhou, and B. Xue, “Particle swarm optimization for feature
selection with adaptive mechanism and new updating strategy,” in Pro-
ceedings of the Australasian Joint Conference on Artificial Intelligence.
Springer, 2018, pp. 419–431.

[18] M. Durasevic and D. Jakobovic, “A survey of dispatching rules for
the dynamic unrelated machines environment,” Expert Systems with
Applications, vol. 113, pp. 555–569, 2018.

[19] K. Miyashita, “Job-shop scheduling with genetic programming,” in
Proceedings of the 2nd Annual Conference on Genetic and Evolutionary
Computation. Morgan Kaufmann Publishers Inc., 2000, pp. 505–512.

[20] S. Nguyen, M. Zhang, M. Johnston, and K. C. Tan, “Genetic program-
ming for evolving due-date assignment models in job shop environ-
ments,” Evolutionary Computation, vol. 22, no. 1, pp. 105–138, 2014.

[21] S. Nguyen, Y. Mei, and M. Zhang, “Genetic programming for production
scheduling: a survey with a unified framework,” Complex & Intelligent
Systems, vol. 3, no. 1, pp. 41–66, 2017.

[22] L. H. Gilpin, D. Bau, B. Z. Yuan, A. Bajwa, M. Specter, and L. Kagal,
“Explaining explanations: An overview of interpretability of machine
learning,” in Proceedings of the International Conference on Data
Science and Advanced Analytics. IEEE, 2018, pp. 80–89.

[23] I. Guyon and A. Elisseeff, “An introduction to variable and feature
selection,” Journal of Machine Learning Research, vol. 3, pp. 1157–
1182, 2003.

[24] M. Dash and H. Liu, “Feature selection for classification,” Intelligent
Data Analysis, vol. 1, no. 3, pp. 131–156, 1997.

[25] A. K. Uysal, “An improved global feature selection scheme for text
classification,” Expert Systems with Applications, vol. 43, pp. 82–92,
2016.

[26] B. Xue, M. Zhang, W. N. Browne, and X. Yao, “A survey on evolutionary
computation approaches to feature selection,” IEEE Transactions on
Evolutionary Computation, vol. 20, no. 4, pp. 606–626, 2016.

[27] A. Lensen, B. Xue, and M. Zhang, “Particle swarm optimisation
representations for simultaneous clustering and feature selection,” in
Proceedings of the IEEE Symposium Series on Computational Intel-
ligence, 2016, pp. 1–8.

[28] Q. Chen, M. Zhang, and B. Xue, “Feature selection to improve
generalization of genetic programming for high-dimensional symbolic
regression,” IEEE Transactions on Evolutionary Computation, vol. 21,
no. 5, pp. 792–806, 2017.

[29] Q. U. Ain, B. Xue, H. Al-Sahaf, and M. Zhang, “Genetic programming
for feature selection and feature construction in skin cancer image clas-
sification,” in Proceedings of the Pacific Rim International Conference
on Artificial Intelligence, 2018, pp. 732–745.

[30] R. Hunt, Genetic Programming Hyper-heuristics for Job Shop Schedul-
ing. Victoria University of Wellington, 2016.

[31] Y. Mei, M. Zhang, and S. Nguyen, “Feature selection in evolving job
shop dispatching rules with genetic programming,” in Proceedings of the
Genetic and Evolutionary Computation Conference, 2016, pp. 365–372.

[32] Y. Mei, S. Nguyen, B. Xue, and M. Zhang, “An efficient feature selection
algorithm for evolving job shop scheduling rules with genetic pro-
gramming,” IEEE Transactions on Emerging Topics in Computational
Intelligence, vol. 1, no. 5, pp. 339–353, 2017.

[33] F. Zhang, Y. Mei, and M. Zhang, “A two-stage genetic programming
hyper-heuristic approach with feature selection for dynamic flexible
job shop scheduling,” in Proceedings of the Genetic and Evolutionary
Computation Conference. IEEE, 2019, pp. 347–355.

[34] S. Gu, R. Cheng, and Y. Jin, “Feature selection for high-dimensional
classification using a competitive swarm optimizer,” Soft Computing,
vol. 22, no. 3, pp. 811–822, 2018.

[35] G. I. Sayed, A. E. Hassanien, and A. T. Azar, “Feature selection
via a novel chaotic crow search algorithm,” Neural Computing and
Applications, vol. 31, no. 1, pp. 171–188, 2019.

[36] J. Branke, S. Nguyen, C. W. Pickardt, and M. Zhang, “Automated design
of production scheduling heuristics: A review,” IEEE Transactions on
Evolutionary Computation, vol. 20, no. 1, pp. 110–124, 2016.

[37] E. K. Burke, M. R. Hyde, G. Kendall, G. Ochoa, E. Ozcan, and
J. R. Woodward, “Exploring hyper-heuristic methodologies with genetic
programming,” in Computational Intelligence. Springer, 2009, pp. 177–
201.

[38] E. K. Burke, M. R. Hyde, G. Kendall, and J. R. Woodward, “A genetic
programming hyper-heuristic approach for evolving 2-d strip packing
heuristics,” IEEE Transactions on Evolutionary Computation, vol. 14,
no. 6, pp. 942–958, 2010.

[39] M. B. Bader-El-Den, R. Poli, and S. Fatima, “Evolving timetabling
heuristics using a grammar-based genetic programming hyper-heuristic
framework,” Memetic Computing, vol. 1, no. 3, pp. 205–219, 2009.

14

[40] N. Pillay and W. Banzhaf, “A genetic programming approach to the gen-
eration of hyper-heuristics for the uncapacitated examination timetabling
problem,” in Proceedings of the Portuguese Conference on Aritficial
Intelligence, 2007, pp. 223–234.

[41] M. A. Ardeh, Y. Mei, and M. Zhang, “Genetic programming hyper-
heuristic with knowledge transfer for uncertain capacitated arc routing
problem,” in Proceedings of the Genetic and Evolutionary Computation
Conference Companion, 2019, pp. 334–335.

[42] F. Zhang, Y. Mei, and M. Zhang, “A new representation in genetic
programming for evolving dispatching rules for dynamic flexible job
shop scheduling,” in Proceedings of the European Conference on Evo-
lutionary Computation in Combinatorial Optimization. Springer, 2019,
pp. 33–49.

[43] S. Nguyen, M. Zhang, M. Johnston, and K. C. Tan, “Automatic pro-
gramming via iterated local search for dynamic job shop scheduling,”
IEEE Transactions on Cybernetics, vol. 45, no. 1, pp. 1–14, 2015.

[44] M. Durasevic and D. Jakobovic, “Evolving dispatching rules for opti-
mising many-objective criteria in the unrelated machines environment,”
Genetic Programming and Evolvable Machines, vol. 19, no. 1-2, pp.
9–51, 2018.

[45] F. Zhang, Y. Mei, S. Nguyen, and M. Zhang, “Guided subtree selection
for genetic operators in genetic programming for dynamic flexible
job shop scheduling,” in Proceedings of the European Conference on
Genetic Programming. Springer, 2020, pp. 262–278.

[46] R. Poli, W. B. Langdon, N. F. McPhee, and J. R. Koza, A field guide to
genetic programming. Lulu. com, 2008.

[47] K. Chen, F. Zhou, and X. Yuan, “Hybrid particle swarm optimization
with spiral-shaped mechanism for feature selection,” Expert Systems with
Applications, vol. 128, pp. 140–156, 2019.

[48] S. Jurado, À. Nebot, F. Mugica, and N. Avellana, “Hybrid methodologies
for electricity load forecasting: Entropy-based feature selection with
machine learning and soft computing techniques,” Energy, vol. 86, pp.
276–291, 2015.

[49] R. Saidi, W. Bouaguel, and N. Essoussi, “Hybrid feature selection
method based on the genetic algorithm and pearson correlation coeffi-
cient,” in Machine Learning Paradigms: Theory and Application, 2019,
pp. 3–24.

[50] Q. Chen, M. Zhang, and B. Xue, “Structural risk minimization-driven
genetic programming for enhancing generalization in symbolic regres-
sion,” IEEE Transactions on Evolutionary Computation, vol. 23, no. 4,
pp. 703–717, 2019.

[51] K. Nag and N. R. Pal, “A multiobjective genetic programming-based
ensemble for simultaneous feature selection and classification,” IEEE
Transactions on Cybernetics, vol. 46, no. 2, pp. 499–510, 2016.

[52] S. Nguyen, M. Zhang, and K. C. Tan, “Surrogate-assisted genetic pro-
gramming with simplified models for automated design of dispatching
rules,” IEEE Transactions on Cybernetics, vol. 47, no. 9, pp. 2951–2965,
2017.

[53] T. Hildebrandt and J. Branke, “On using surrogates with genetic pro-
gramming,” Evolutionary Computation, vol. 23, no. 3, pp. 343–367,
2015.

[54] J. P. Davis, K. M. Eisenhardt, and C. B. Bingham, “Developing theory
through simulation methods,” Academy of Management Review, vol. 32,
no. 2, pp. 480–499, 2007.

[55] F. Zhang, Y. Mei, and M. Zhang, “Surrogate-assisted genetic program-
ming for dynamic flexible job shop scheduling,” in Proceedings of the
Australasian Joint Conference on Artificial Intelligence. Springer, 2018,
pp. 766–772.

Fangfang Zhang (Student Member, IEEE) received
the B.Sc. and M.Sc. degrees from Shenzhen Uni-
versity, Shenzhen, China, in 2014 and 2017, respec-
tively. She is currently pursuing the Ph.D. degree
in computer science with the School of Engineer-
ing and Computer Science, Victoria University of
Wellington, New Zealand. She has over 20 journal
and conference papers. Her current research interests
include evolutionary computation, hyper-heuristic,
job shop scheduling, and multitasking optimisation.
Miss. Zhang is a member of the IEEE Computational

Intelligence Society and Association for Computing Machinery, and has been
severing as reviewers for top international journals and conferences. She is
also a committee member of the IEEE NZ Central Section.

Yi Mei (M’09-SM’18) is a Senior Lecturer at
the School of Engineering and Computer Science,
Victoria University of Wellington, Wellington, New
Zealand. His research interests include evolutionary
scheduling and combinatorial optimisation, machine
learning, genetic programming, and hyper-heuristics.
He has more than 100 fully referred publications,
including the top journals in EC and Operations
Research such as IEEE TEVC, IEEE TCYB, Evo-
lutionary Computation Journal, European Journal of
Operational Research, ACM Transactions on Math-

ematical Software. He serves as a Vice-Chair of the IEEE CIS Emergent
Technologies Technical Committee, and a member of Intelligent Systems Ap-
plications Technical Committee. He is an Editorial Board Member/Associate
Editor of three International Journals, and a guest editor of a special issue of
the Genetic Programming Evolvable Machine journal. He serves as a reviewer
of over 30 international journals.

Su Nguyen (M’13) received his Ph.D. degree in Ar-
tificial Intelligence and Data Analytics from Victoria
University of Wellington, New Zealand, in 2013.
Nguyen is a Senior Research Fellow and Algorithm
Lead at CDAC, La Trobe University, Australia. His
expertise includes evolutionary computation (EC),
simulation optimization, automated algorithm de-
sign, interfaces of AI/OR, and their applications in
logistics, energy, and transportation. He has 70+
publications in top EC/OR peer-reviewed journals
and conferences and his current research focuses on

novel people-centric artificial intelligence to solve dynamic and uncertain
planning tasks by combining the creativity of evolutionary computation and
power of advanced machine learning algorithms. He was the chair (2014-
2018) of IEEE task force on Evolutionary Scheduling and Combinatorial
Optimisation and is a member of IEEE CIS Data Mining and Big Data
technical committee. He delivered technical tutorials about EC and AI-based
visualisation at Parallel Problem Solving from Nature Conference (2018) and
IEEE World Congress on Computational Intelligence (2020). He served as an
editorial member of Complex and Intelligence Systems and the guest editor
of the special issue on “Automated Design and Adaption of Heuristics for
Scheduling and Combinatorial Optimization” in Genetic Programming and
Evolvable Machines journal.

Mengjie Zhang (M’04-SM’10-F’19) received the
B.E. and M.E. degrees from Artificial Intelligence
Re- search Center, Agricultural University of Hebei,
Baoding, China, and the Ph.D. degree in computer
science from RMIT University, Melbourne, VIC,
Australia, in 1989, 1992, and 2000, respectively. He
is currently Professor of Computer Science, Head
of the Evolutionary Computation Research Group,
and the Associate Dean (Research and Innovation)
in the Faculty of Engineering. His current research
interests include evolutionary computation, particu-

larly genetic programming, particle swarm optimization, and learning classifier
systems with application areas of image analysis, multi-objective optimization,
feature selection and reduction, job shop scheduling, and transfer learning. He
has published over 500 research papers in refereed international journals and
conferences. Prof. Zhang is a Fellow of Royal Society of New Zealand, a
Fellow of IEEE, and an IEEE Distinguished Lecturer. He was the chair of
the IEEE CIS Intelligent Systems and Applications Technical Committee, the
chair for the IEEE CIS Emergent Technologies Technical Committee, the
chair of Evolutionary Computation Technical Committee, and a member of
the IEEE CIS Award Committee. He is a vice-chair of the Task Force on
Evolutionary Computer Vision and Image Processing, and the founding chair
of the IEEE Computational Intelligence Chapter in New Zealand. He is also
a committee member of the IEEE NZ Central Section.

