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Abstract—Dynamic flexible job shop scheduling (DFJSS) is a
complex and challenging combinatorial optimisation problem. In
DFJSS, job operations have to be processed on a set of machines,
and thus machine assignment and operation sequencing decisions
need to be made simultaneously in dynamic situations. Genetic
programming (GP), as a hyper-heuristic approach, has been
widely used to learn scheduling heuristics for DFJSS automati-
cally. However, the traditional GP parent selection method based
on fitness value only may not be sufficiently effective, since not all
the subtrees of a GP individual are meaningful and can contribute
to the goodness of the individual. This paper proposes a new
GP algorithm with a novel fitness function by incorporating the
subtree importance into the parent selection method. Specifically,
the subtree importance is measured by the correlation coefficient
between the behaviour of subtrees and the GP individual. The
proposed algorithm is expected to improve the effectiveness of
GP by capturing more useful subtrees for producing offspring
to the next generation. This paper uses nine DFJSS scenarios
to examine the effectiveness of the proposed algorithm. The
results show that the proposed algorithm achieves slightly better
performance in some of the scenarios while no worse in all other
scenarios. Further analyses, including the effect of the designed
fitness function and sizes of the learned scheduling heuristics, are
also conducted.

Index Terms—Parent Selection, Fitness Function, Genetic Pro-
gramming, Dynamic Flexible Job Shop Scheduling.

I. INTRODUCTION

Job shop scheduling (JSS) [1] is an important but chal-
lenging optimisation problem in computer science. In JSS,
the task is to process a number of jobs (e.g., each job has
a sequence of operations) by a set of machines. Flexible JSS
[2] is an extension of JSS, where there are two decisions (i.e.,
machine assignment and operation sequencing) need to be
made simultaneously. Dynamic flexible job shop scheduling
(DFJSS) [3] aims to optimise the machine resource under a
dynamic environment with unpredicted events, such as new
job arrivals [4]. DFJSS is an NP-hard problem [5].

Traditional solution optimisation methods such as mathe-
matical programming [6] and meta-heuristics [7] cannot solve
DFJSS effectively due to their high computational complexity
and inability to react to dynamic events efficiently. Scheduling
heuristics such as dispatching rules [8]–[10], on the other hand,
are promising techniques to tackle the dynamic environment
efficiently. Rather than optimising an inflexible solution in
advance, scheduling heuristics make decisions (e.g., machine
assignment and operation sequencing) on-the-fly based on the
latest information that incorporates all the dynamic events
that have occurred so far. This way, scheduling heuristics can

generate the schedule in real time. In DFJSS, the routing rule
(i.e., for machine assignment) and the sequencing rule (i.e.,
for operation sequencing) work collaboratively to make the
schedules.

However, it is very challenging to manually design effective
scheduling heuristics that consider all the complex interactions
with the various job shop attributes. Genetic Programming
(GP), as a hyper-heuristic approach [11]–[13], is an effec-
tive method to automatically evolve scheduling heuristics
for DFJSS. In DFJSS, GP is used to learn a routing rule
for machine assignment and a sequencing rule for operation
sequencing simultaneously.

This paper focuses on improving the effectiveness of GP
in evolving scheduling heuristics for DFJSS. Particularly, it
has been known that the traditional GP approaches evolve
individuals with a large number of redundant branches, which
can negatively affect the search effectiveness (e.g., swapping
redundant branches of two parents is highly likely to generate
useless offspring). There are several studies [14]–[18] that de-
velop different types of biased/guided genetic operators rather
than crossing over or mutating parents randomly. Compared
with designing genetic operators, guiding the search of an
algorithm with fitness function is easy to be implemented.
Furthermore, selecting proper parents that are led by the
fitness function, is the prerequisite for the genetic operators
to generate good offspring. This paper aims to address this
issue from a different angle, i.e., the fitness perspective.

When defining the fitness function, in addition to the raw fit-
ness (i.e., the DFJSS objectives), we also consider the potential
of generating promising offspring as a parent. Specifically, in
the tree-based crossover and mutation operators, a sub-tree of
the parent is selected and replaced by another sub-tree from
the other parent (crossover) or randomly generated sub-tree
(mutation) [19]. Therefore, a more promising parent should
be more likely to have its useful building blocks swapped to
the other parent in crossover, and less likely to have its useful
building blocks destroyed in crossover or mutation.

Based on the above considerations, we define a new measure
of the potential of individuals to generate promising offspring
in terms of the likelihood of reusing and destroying useful
building blocks from a GP tree in genetic operators. Then, we
define a new fitness function based on the raw fitness and the
potential of individuals to generate promising offspring.

The overall goal of this paper is to develop a new fitness
function for GP to evolve scheduling heuristics for DFJSS
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more effectively and efficiently. The specific research objec-
tives of this paper are as follows.

1) We propose a scheme to identify the useful building
blocks (sub-trees) of a tree based on the correlation of
the phenotypic behaviours on a set of decision situations.

2) We develop a measure on the potential of generating
good offspring based on the sub-tree correlation, posi-
tion and size. Briefly speaking, a tree whose building
blocks have higher correlations, and are smaller and at
a position farther away from the root node tends to have
a higher potential to generate good offspring.

3) We define a new fitness function based on the raw fitness
and the new measure on the potential of individuals. The
new fitness function is used for parent selection.

4) We propose a new GP with the new fitness function, and
verify its effectiveness on a range of DFJSS scenarios.

II. BACKGROUND

A. Dynamic Flexible Job Shop Scheduling

JSS aims to improve the production efficiency in a
shop floor [20]. In DFJSS problem, m machines M =
{M1,M2, ...,Mm} are used to process n jobs J =
{J1, J2, ..., Jn}. Each job Jj consists of a sequence of op-
erations Oj = (Oj1, Oj2, ..., Oji). An operation Oji can be
processed by one of its candidate machines π(Oji) and its
processing time δ(Oji) depends on the machine that processes
it. In this paper, we focus on the dynamic event that job can
arrive over time. That is, the information of a job is unknown
until it arrives at the job shop. The following constraints must
be satisfied in the problem.

• The order of operations for each job is predefined, and
one cannot start processing an operation until all its
precedent operations have been processed.

• Each operation can be processed only by one of its
candidate machines.

• Each machine can process at most one operation at a
time.

• The scheduling is non-preemptive, i.e., once start, the
processing of an operation cannot be stopped or paused
until it is completed.

We consider three common objectives, i.e., mean-flowtime
(Fmean), mean-tardiness (Tmean), and mean-weighted-
tardiness (WTmean), which are calculated as follows.

• Fmean =
∑n

j=1 {Cj rj}
n

• Tmean =
∑n

j=1 Max{0,Cj dj}
n

• WTmean =
∑n

j=1 wj∗Max{0,Cj dj}
n

Where Cj is the completion time of job Jj , rj is the release
time of Jj , dj is the due date of Jj , wj is the weight of Jj ,
and n is the number of jobs to be processed.

B. Scheduling Heuristics For DFJSS

Scheduling heuristic consists of a routing rule and a se-
quencing rule in DFJSS [21]. Due to the DFJSS constraints,

-
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Fig. 1: An example of tree-based representation of sequencing
and routing rule, where x, y, z and u are features, and -, *, /
are functions.

the allocation of machines is only performed for ready op-
erations. There are two kinds of operations that will become
ready operations. One is the first operation of a job arrived
at the shop floor, and the other is the subsequent operation
whose preceding operation is just finished. Once an operation
becomes a ready operation, the operation will be allocated to
the machine with the highest priority according to the routing
rule. When a machine becomes idle, and the queue of the
machine is not empty, at this point, the sequencing rule will
be applied to calculate the priority value of each operation in
its queue. The highest priority operation in the queue of the
machine will be chosen for the next processing.

C. Genetic Programming Hype-heuristics

GP has been widely used to handle the dynamic JSS
problem due to it advantages of learning scheduling heuristics
[13], [22]–[24]. One is its flexible representation, so we do not
need to define the structure of rules in advance. The other is
that the tree-based programs obtained by GP provide us with
opportunities to understand the behaviour of the evolved rules.
That is very important for real-world applications [17].

1) Individual Representation: Each GP individual is rep-
resented as a tree, which is essentially a combination of the
job shop state attributes. Fig. 1 gives an example of the tree-
based routing rule and sequencing rule. A routing rule (i.e.,
x ∗ y − z) is applied to calculate the priority value of each
candidate machine of a ready operation. The machine with
the best priority value is selected to process the operation. In
addition, a sequencing rule (i.e., u/y) is applied to calculate
the priority value of each operation in the queue of an idle
machine, if operations are waiting in its queue. The operation
with the best priority is selected to be processed next.

2) Process of GP: GP improves the quality of individuals
generation by generation. GP starts with a population of ran-
domly initialised individuals, called individual initialisation.
All individuals are evaluated with fitness function, named
fitness evaluation. Then, parents are selected to generate
offspring to the next generation (i.e., parent selection). During
the evolution process, new offspring are produced based on
the selected parents along with the genetic operators, i.e.,
crossover, mutation and reproduction. If the stopping criterion
is not met, the newly generated individuals will be moved to
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Fig. 2: The flowchart of the proposed method.

the next generation. Otherwise, the best learned scheduling
heuristic will be reported as the output of a GP algorithm.

Cooperative coevolution based GP (CCGP) was investigated
to evolve routing and sequencing rules simultaneously in [25].
The proposed GP algorithm in this paper was conducted based
on CCGP, which will be described in the next section.

III. THE PROPOSED METHOD

The proposed GP with the new fitness function is described
in this section. First, we introduce the overall flowchart of
the algorithm. Then, we describe the components in detail,
especially the new fitness function.

A. The Overall Framework

Fig. 2 shows the flowchart of the proposed method, which
is named CCGP with sub-tree importance (sCCGP). It fol-
lows the existing CCGP process, which maintains two sub-
populations, one for the routing rule and the other for the
sequencing rule. The details can be found in [25]. It starts with
initialising the sub-populations randomly. Then, at each gen-
eration, it first evaluates the individuals in the sub-populations
based on a set of training DFJSS simulations. In the CCGP
framework, to evaluate a routing (sequencing) rule, it is paired
with the best sequencing (routing) rule from the previous gen-
eration. For the first generation, we just randomly choose one
sequencing or the routing rule from the current generation as
the best ones. The raw fitness of an individual is calculated as
the objective function value (e.g., mean-flowtime) of the gen-
erated schedule. Afterwards, for each individual represented
as a tree, the correlation coefficient between the behaviour
of each sub-tree and itself is calculated based on a set of
decision situations. Then, the adjusted fitness of the individual
is calculated as a weighted aggregation of the raw fitness and
the correlation coefficient of its sub-trees. After the fitness
evaluation, the parent selection is conducted to select parent

individuals for breeding. The tournament selection is used.
Specifically, k candidate individuals are randomly sampled
from the population, and then the candidate with the best
adjusted fitness is selected. Next, the offspring individuals are
generated by applying the genetic operators (e.g., crossover,
mutation and reproduction) to the parents. In addition, some
top individuals in terms of raw fitness are selected as elites.
The evolutionary process continues until the stopping criterion
(i.e., maximal number of generations) is reached.

The main difference between the newly proposed algorithm
and the existing GP methods is the fitness function (high-
lighted in Fig. 2). The existing GP methods typically use
the raw fitness, while the proposed method uses the adjusted
fitness, which is a weighted aggregation of the raw fitness and
the sub-tree correlation.

B. New Fitness Evaluation

Given a GP tree T, its fitness function is defined as follows.

fit(T) = fraw(T)− α× C(T), (1)

where fraw(T) is the raw fitness of T, which is the same as the
fitness function of the existing GP methods. Specifically, given
a training DFJSS simulation sim and its paired individual rule
Tpair, the raw fitness is calculated as

fraw(T) = obj(sim(T,Tpair)), (2)

where sim(T,Tpair) is the schedule generated by applying
T and Tpair to the simulation, and obj(·) is the objective
function, such as mean flowtime or makespan.

The component C(T) reflects the potential of T to generate
promising offspring by genetic operators. Specifically, if a tree
is more likely be swap its useful building blocks to other trees,
and less likely to have its useful building blocks destroyed by
the genetic operators, then it should have a higher C(T) value.

To this end, we define C(T) based on two aspects. The
first is the identification of useful building blocks of the tree.
Here, a sub-tree is considered a useful building block if it
greatly contributes to the tree itself, i.e., it shows consistent
behaviour with the entire tree. On the other hand, a sub-tree is
a redundant branch if its behaviour is independent of the entire
tree. We adopt the method in [17] to identify useful building
blocks based on the behaviour correlation. The second aspect
is the likelihood of a building block being transferred to other
parents and destroyed by genetic operators. We propose a new
measure to estimate such likelihood of a building block (sub-
tree) based on its size and position in the tree.

1) Sub-tree Behaviour Correlation: First, we need to char-
acterise the behaviour of a (sub-)tree. Here, we adopt the
commonly used phenotypic characterisation, which is based on
a list of decision situations [17]. A decision situation is defined
as a decision point when a routing/sequencing decision is made
by the rule. It can be represented as a matrix D, where each
row Di,∗ stands for a candidate (machine/operation) and each
column D∗,j indicates a feature. In other words, an element
Dij means the value of feature j of candidate i in this decision
situation.
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TABLE I: An example of behaviour calculation in a decision
situation.

T = A1 +A2/A3

D A1 A2 A3 T(D) b

Candidate 1 100 150 3 150 1
Candidate 2 130 110 2 185 2
Candidate 2 140 100 2 190 3

TABLE II: An example of correlation coefficient of sub-trees
in the decision situation shown in Table I.

(Sub-)Tree b Correlation

T = A1 +A2/A3 [1, 2, 3] N/A

A1 [1, 2, 3] 1

A2 [3, 2, 1] −1
A3 [3, 1, 1] −0.87

A2/A3 [1, 3, 1] 0

Applying a tree T to a decision situation D results in
a vector T(D), where T(Di,∗) is the priority value of the
candidate i. Finally, we obtain the behaviour of T in D as the
sorted index list of the candidates in the ascending order of
the priority values. Table I shows an example of the behaviour
calculation of a tree T = A1 + A2/A3 (A1, A2 and A3 are
job shop attributes) in a decision situation. It can be seen
that in this decision situation, T(D) = [150, 185, 190] and
b = [1, 2, 3].

We can calculate the behaviour vector for each sub-tree.
For example, in Table I, the tree has four sub-trees A1, A2,
A3 and A2/A3. We can calculate the behaviour vectors in
this decision situation as b(A1) = [1, 2, 3], b(A2) = [3, 2, 1],
b(A3) = [3, 1, 1] and b(A2/A3) = [1, 3, 1]. Then, we can
calculate the Spearman correlation coefficient [26] between
the behaviour vectors of each sub-tree and the entire tree as
shown in Table II. For the sake of convenience, we simply call
“Spearman correlation coefficient” as “correlation” without
loss of generality. We can see that both A1 and A2 show
completely consistent behaviour (one positive and the other
negative) with T. A3 has slightly weaker correlation than A1

and A2, and A2/A3 is completely uncorrelated of T.
2) Sub-tree Weights: In addition to the correlation on

behaviour, another important aspect of sub-tree quality is its
size and position in the tree. It is commonly known that a
larger sub-tree that is closer to the root node tends to behave
more consistently with the entire tree [17]. However, it also
tends to contain more redundant branches and useless genetic
materials. This could affect the effectiveness of the genetic
operators in exchanging useful building blocks. In other words,
if a sub-tree is smaller and at lower positions that are far away
from the root node, then the sub-tree is more likely to be
selected to exchange and less likely to be destroyed by the
crossover/mutation operators.

Fig. 3 shows an example GP tree with four subtrees with
at least a depth of 2 (ignoring the terminals). Assume that T2,
T3 and T5 have consistent behaviour (correlation of 1) with

T1

T2 T5

T3 T4

Fig. 3: An example of a tree with four sub-trees with at least
a depth of 2.

T1

T2 T9

T3 T6

T4 T5

T.. Ti

Layer 1

Layer 2

Layer 3

Layer 4T7 T8

Fig. 4: An example of a tree and its layers.

the entire tree, T3 is considered to be better than T2 and T5.
Compared with T2, T3 has a smaller size, and its position
is farther away from the root node. Thus, it has a higher
probability of being swapped to other parents. Specifically,
there are three nodes that can swap T3 (T3, T2 and T1),
while only two nodes swapping T2 (T2 and T1). T3 also has
a smaller probability of being destroyed than T2. To destroy
T3, the cutting point must be one of the two child nodes of T3

(probability of 2/11). However, there are six child nodes that
can destroy T2 (probability of 6/11). T5 has the same size as
T3, thus having the same probability to be destroyed. However,
it is closer to the root node than T3. As a result, it is less likely
to be swapped to other parents (only two possibilities, T5 and
T1 versus three possibilities of T3).

Based on this consideration, we divide a tree into different
layers, as shown in Fig. 4. The root node is in layer 1, its child
nodes are in layer 2, and so on. Obviously, for each node in
the tree, we have

layer(node) = depth(node) + 1 (3)

Giving the same correlation coefficient in behaviour, a sub-tree
in a larger layer tends to be better to choose.

The sub-tree correlation component C(T) is defined based
on the correlation and layer of the sub-trees. Given a set of
decision situations D, the calculation of C(T) is shown in
Algorithm 1, |D| in line 12 indicates the number of decision
situations. For each decision situation D ∈ D, it first calculates
the behaviour vectors of the tree and all its sub-trees Ti ∈ T,
and then calculates the correlation coefficient between each
sub-tree and the entire tree. Then, for a decision situation D,
the component C(T;D) is calculated as the weighted sum of
the absolute correlation coefficient and the layer of the sub-
trees (line 8) which is normalised by the sum of the sub-tree
layers. It repeats the process for all the decision situations,
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Algorithm 1: Calculation of C(T)
Input : A GP tree T, a set of decision situations D
Output: C(T)

1 C(T)← 0;
2 for D ∈ D do
3 Calculate the behaviour vector b(T) of T in D;
4 Set C(T;D) = 0, L = 0;
5 foreach sub-tree Ti ∈ T do
6 Calculate the behaviour vector b(Ti);
7 Calculate the correlation coefficient θ(b(Ti),b(T));
8 C(T;D)← C(T;D) + |θ(b(Ti),b(T))| · layer(Ti);
9 L← L+ layer(Ti);

10 C(T;D)← C(T;D)/L;
11 C(T)← C(T) + C(T;D);

12 C(T)← C(T)/|D| ;
13 return C(T);

and finally set C(T) as the average value over all the decision
situations.

IV. EXPERIMENT STUDIES

To verify the effectiveness of the newly proposed fitness
function and the resultant new sCCGP algorithm, we conduct
experiments on a range of DJFSS scenarios and compare
with the baseline CCGP algorithm [25] with the raw fitness
function. We first give the experiment setup and parameter
settings, and then show the results and discussions.

A. DFJSS Scenarios and Simulation Configuration

In the experiments, we consider the following DFJSS sim-
ulations. In the job shop, there are 10 machines. The jobs
arrive at the shop floor over time. The job arrivals follow the
Poisson process, i.e., the gaps between subsequent job arrivals
follow an exponential distribution. For each job, the number
of operations is randomly sampled from 1 to 10 (10 is the
maximal number of machines). For each operation, the set of
candidate machines is randomly sampled as a subset of the 10
machines, and the processing time on each candidate machine
is randomly sampled from a uniform discrete distribution
between 1 and 99. The job weights are randomly sampled
from a distribution so that 20%, 60% and 20% of the jobs
have a weight of 1, 2 and 4, respectively. The due date factor
of each job is set to 1.5. We consider a simulation with a
sufficiently large number of job arrivals to measure the steady-
state performance. To this end, we start with an empty shop
floor, run 1000 job arrivals as a warm-up stage, and then
collect the information of the next 5000 job arrivals to measure
the performance of the scheduling heuristics. This simulation
configuration has been commonly used in the studies of
dynamic scheduling [27], [28].

Here, we characterise different DFJSS scenarios by the
utilisation level and objective function. The utilisation level
is a parameter that reflects the percentage of time that the
job shop is busy via controlling the frequency of job arrivals
in the Poisson process. The objective function can affect the
effectiveness of different scheduling heuristics. For example,
the shortest processing time heuristic works well for the mean

TABLE III: The parameter setting of GP.
Parameter Value

Number of subpopulations 2
Subpopulation size 500

The number of generations 51
Number of elites for each subpopulation 5

Initialisation method ramped-half-and-half
Initial minimum / maximum depth 2 / 6

Maximal tree depth 8
Crossover / Mutation / Reproduction rate 80% / 15% / 5%

Tournament parent selection size 7
Terminal / non-terminal selection rate 10% / 90%

TABLE IV: The terminal and function sets of GP.

Terminals Description

NIQ The number of operations in the queue
Machine-related WIQ Current work in the queue

MWT Waiting time of a machine

PT Processing time of an operation
Operation-related NPT Median processing time for next operation

OWT Waiting time of an operation

WKR Median amount of work remaining of a job
Job-related NOR The number of operations remaining of a job

W Weight of a job
TIS Time in system

Functions +, −, ∗, / as usual meaning, / is protected division
max, min

flowtime objective, while the first-come-first-serve heuristic
can perform better for the maximal flowtime objective.

In the experiments, we consider three different utilisation
levels (i.e., 0.75, 0.85 and 0.95) and three different objectives,
i.e., Fmean, Tmean and WTmean. A utilisation level of 0.75
corresponds to the least busy shop floor (easiest scheduling
problem), while 0.95 leads to the busiest shop floor (hardest
scheduling problem). As a result, we have 3× 3 = 9 different
DFJSS scenarios. We denote each scenario as “obj-ul”. For
training, we use one training simulation per generation, and
rotate its random seed at each generation. After the best
scheduling heuristics are trained, they are tested on 50 unseen
test simulations to calculate the test performance.

For each DFJSS scenario, each compared algorithm is run
30 times independently, and their results are compared under
the statistical significance test, i.e., Wilcoxon test.

B. Parameter Settings

We adopt the common GP parameter settings, which is
shown in Table III. Note that there are two subpopulations,
one for routing rule and the other for sequencing rule. The
terminal set and function set are shown in Table IV following
the suggestions in [29], [30].

C. Parameter Sensitivity Analysis

In the new fitness function, the parameter α is important to
balance the raw fitness and the new measure C(T) of potential
in offspring generation. For example, if α = 0, then the new
measure is completely ignored, and sCCGP is reduced to the
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t est p erf or m a n c e ( e. g., o n < W T m e a n, 0. 8 5 > a n d < W T m e a n,
0. 9 5 > ). We c o n d u ct a Wil c o x o n r a n k s u m t est t o c o m p ar e t h e
r es ults of t h e t hr e e α v al u es, b ut fi n d n o si g ni fi c a nt diff er e n c e.
T h us, w e si m pl y s el e ct α = 0 .5 f or s u bs e q u e nt e x p eri m e nts.

D. R es ults a n d Dis c ussi o ns

Ta bl e V s h o ws t h e m e a n a n d st a n d ar d d e vi ati o n of t h e t est
p erf or m a n c e of t h e 3 0 i n d e p e n d e nt r u ns of C C G P a n d t h e
b as eli n e s C C G P ( α = 0 .5 ) o n t h e ni n e D FJ S S s c e n ari os.
F or e a c h s c e n ari o, w e c o n d u ct t h e Wil c o x o n r a n k s u m t est
wit h a si g ni fi c a n c e l e v el of 0 .0 5 t o c o m p ar e t h e r es ults of
C C G P a n d s C C G P. I n Ta bl e V, t h e n ot ati o n “ ≈ ” i n di c at es
t h at t h er e is n o st atisti c al si g ni fi c a n c e b et w e e n t h e r es ults of
t h e t w o al g orit h ms. Fr o m Ta bl e V, w e c a n s e e t h at f or all t h e
s c e n ari os, t h e t w o al g orit h ms s h o w st atisti c all y c o m p ar a bl e
t est p erf or m a n c e. T his s h o ws t h at t h e n e w fit n ess d o es n ot
s e e m t o si g ni fi c a ntl y aff e ct t h e s e ar c h a bilit y of C C G P, a n d

T A B L E V: T h e m e a n (st a n d ar d d e vi ati o n) of t h e a v er a g e
o bj e cti v e v al u es of t h e 3 0 i n d e p e n d e nt r u ns of C C G P a n d
s C C G P ( α = 0. 5) f or t h e D FJ S S s c e n ari os.

S c e n a ri o C C G P s C C G P

< F m e a n, 0. 7 5 > 3 3 6. 2 3( 1. 2 6) 3 3 6. 1 3( 1. 3 5)( ≈ ) ( p = 0. 4 8)

< F m e a n, 0. 8 5 > 3 8 4. 6 9( 1. 6 3) 3 8 5. 0 5( 2. 2 9)( ≈ ) ( p = 0. 7 1)

< F m e a n, 0. 9 5 > 5 5 0. 9 4( 5. 7 9) 5 5 1. 6 7( 4. 7 7)( ≈ ) ( p = 0. 2 9)

< T m e a n, 0. 7 5 > 1 3. 2 8( 0. 4 0) 1 3. 5 1( 0. 7 6)( ≈ ) ( p = 0. 3 7)

< T m e a n, 0. 8 5 > 4 0. 2 7( 1. 8 5) 3 9. 9 7( 1. 4 8)( ≈ ) ( p = 0. 6 8)

< T m e a n, 0. 9 5 > 1 7 5. 4 9( 2. 8 5) 1 7 5. 8 1( 3. 8 5)( ≈ ) ( p = 0. 6 5)

< W T m e a n, 0. 7 5 > 2 7. 0 4( 1. 0 5) 2 6. 7 7( 0. 7 2)( ≈ ) ( p = 0. 4 3)

< W T m e a n, 0. 8 5 > 7 5. 8 2( 3. 8 3) 7 5. 3 8( 3. 1 0)( ≈ ) ( p = 0. 8 5)

< W T m e a n, 0. 9 5 > 2 9 4. 5 8( 9. 6 5) 2 9 6. 6 1( 9. 2 6)( ≈ ) ( p = 0. 1 2)

< W T m e a n, 0. 7 5 > < W T m e a n, 0. 8 5 > < W T m e a n, 0. 9 5 >

< T m e a n, 0. 7 5 > < T m e a n, 0. 8 5 > < T m e a n, 0. 9 5 >

< F m e a n, 0. 7 5 > < F m e a n, 0. 8 5 > < F m e a n, 0. 9 5 >

C C G P s C C G P C C G P s C C G P C C G P s C C G P
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Fi g. 6: Vi oli n pl ots of t h e a v er a g e o bj e cti v e v al u es o n t est
i nst a n c es of C C G P a n d s C C G P (α = 0 .5 ).

s C C G P t e n ds t o s el e ct si mil ar s u bs ets ( c o m p ar e d wit h C C G P)
of i n di vi d u als as p ar e nts t o g e n er at e offs pri n g.

Fi g. 6 s h o ws t h e vi oli n pl ots of t h e t est p erf or m a n c e of
C C G P a n d s C C G P. A g ai n, t h e vi oli n pl ots s h o w n o si g ni fi c a nt
diff er e n c e b et w e e n C C G P a n d s C C G P. T h e m e a n/ m e di a n
of t h e t w o al g orit h ms s e e ms t o b e v er y cl os e t o e a c h
ot h er. I n t er ms of o utli ers, t h e fi g ur e s h o ws t h at s C C G P
s e e ms t o p erf or m b ett er i n t er ms of o utli ers ( o n < F m e a n,
0. 7 5 > , < F m e a n, 0. 9 5 > , < T m e a n, 0. 8 5 > , < W T m e a n, 0. 7 5 > ,
< W T m e a n, 0. 8 5 > a n d < W T m e a n, 0. 9 5 > ). T his s u g g ests t h at
s C C G P t e n ds t o p erf or m m or e st a bl y t h a n C C G P.

Fi g. 7 s h o ws t h e c o n v er g e n c e c ur v es of t h e t est p erf or m a n c e
of C C G P a n d s C C G P. Fr o m t h e fi g ur e, w e c a n s e e t h at t h e n e w
fit n ess f u n cti o n c o ul d h el p s C C G P c o n v er g e f ast er t h a n C C G P
f or s o m e i nst a n c es. F or < F m e a n, 0. 7 5 > , t h e t est p erf or m a n c e
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Fig. 7: Convergence curves of the average objective values on
test instances of CCGP and sCCGP (α = 0.5).

of sCCGP converges much faster than CCGP, although it is
finally similar with CCGP. For <Tmean, 0.85>, the curve of
sCCGP is always below that of CCGP, showing the advantage
of sCCGP during the entire evolutionary process. For the
remaining scenarios, the convergence curves of the two algo-
rithms are very similar at the beginning. sCCGP tends to be
stuck into local optima and show slightly worse performance
than CCGP on some scenarios (e.g., <Tmean, 0.75> and
<Fmean, 0.95>). We will investigate why the advantage of
the new fitness function tends to disappear at the later stage
of the evolution.

E. Further Analyses

1) Effect of New Fitness Function: To further understand
how the new fitness function changes the behaviour of the
algorithm, we select some populations in different generations
of sCCGP, and draw the scatter plot of the raw fitness versus
new fitness of the top 100 individuals in the population. We
consider the top 100 individuals since they are most likely to
be selected as parents. Fig. 8 shows a scatter plot including
the fitness of subpopulations for both routing and sequencing
rules in the <Fmean, 0.85> scenario. The red line y = x is
given as a reference.

From the figure, we can see that for all the populations
in different generations (i.e., early, middle and late stages of
the evolution) and for both sequencing and routing rules, the
points in the scatter plot are distributed highly parallel with
the y = x line. This indicates that after subtracting the term
α × C(T), the fitness tends not to change significantly, and
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Fig. 8: The raw fitness versus new fitness of some populations
in sCCGP based on top 100 individuals in <Fmean, 0.85>.

TABLE VI: The mean (standard deviation) of sequencing rule
sizes of CCGP and sCCGP (α = 0.5) over 30 independent runs.

Scenario CCGP sCCGP
<Fmean, 0.75> 36.53(17.15) 36.67(18.40)(≈)
<Fmean, 0.85> 48.00(17.11) 43.40(17.78)(≈)
<Fmean, 0.95> 44.00(17.41) 41.00(17.76)(≈)
<Tmean, 0.75> 46.67(15.65) 29.13(14.20)(–)
<Tmean, 0.85> 50.53(15.57) 40.07(17.53)(–)
<Tmean, 0.95> 48.87(16.14) 42.20(23.43)(–)
<WTmean, 0.75> 50.80(20.01) 43.53(19.64)(≈)
<WTmean, 0.85> 51.73(15.51) 43.60(15.84)(–)
<WTmean, 0.95> 45.60(17.02) 48.47(13.04)(≈)

the relative orders of the individuals often stay the same after
subtracting the new term. In other words, in the tournament se-
lection, we will often select the same individual as the parent,
no matter whether the raw fitness or the new fitness is used.
This explains why sCCGP shows very similar performance
with CCGP. Other scenarios show similar patterns.

Although most of the time the new fitness changes little,
we can still see the effect in some places. For example,
in generation 25, the new fitness can better distinguish the
individuals whose raw fitness are around 400.8 and those
around 401.4.

2) Rules Size: Tables VI and VII show the size of the
best sequencing and routing rules obtained by CCGP and
sCCGP, where notations “≈” and “−” indicate similar and
smaller sizes, respectively. From the table, we can see that
sCCGP manages to obtain much smaller sequencing rules for
a number of scenarios (<Tmean, 0.75>, (<Tmean, 0.85>,
<Tmean, 0.95> and <WTmean, 0.85>). For the remaining
scenarios, the sequencing rules also tend to be smaller. This
shows that the new fitness function can help sCCGP generate
more compact offspring for the sequencing rules. The routing
rules have roughly the same size.
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TABLE VII: The mean (standard deviation) of routing rule
size of CCGP and sCCGP (α = 0.5) over 30 independent runs.

Scenario CCGP sCCGP
<Fmean, 0.75> 62.00(19.10) 59.93(16.29)(≈)
<Fmean, 0.85> 64.13(18.05) 56.60(15.95)(≈)
<Fmean, 0.95> 58.80(14.32) 63.67(14.78)(≈)
<Tmean, 0.75> 56.47(16.63) 53.87(16.58)(≈)
<Tmean, 0.85> 63.33(18.86) 56.67(14.64)(≈)
<Tmean, 0.95> 56.40(13.75) 60.27(15.36)(≈)
<WTmean, 0.75> 61.00(16.62) 61.27(15.41)(≈)
<WTmean, 0.85> 61.20(19.08) 58.33(19.80)(≈)
<WTmean, 0.95> 60.87(12.18) 64.27(16.06)(≈)

V. CONCLUSIONS AND FUTURE WORK

This paper aims to improve the effectiveness of CCGP to
evolve scheduling heuristics for DFJSS. This goal has been
successfully achieved by proposing a new fitness function
that incorporates the potential of an individual to retain its
useful building blocks. The experimental results show that the
proposed sCCGP algorithm with the new fitness function can
obtain smaller rule sizes, especially for the sequencing rule,
while keeping comparable test performance. This shows the
effectiveness of the new fitness function in generating more
compact offspring.

In future, we will investigate adaptive fitness functions to
achieve a better balance between the raw fitness and the
potential of the tree structure, so that the new fitness function
can distinguish more individuals with similar raw fitness. We
will also extend the current sub-tree contribution mechanism
to other methods, such as feature construction in DFJSS.
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