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Abstract. Dynamic job shop scheduling has a wide range of applica-
tions in reality such as order picking in warehouse. Using genetic pro-
gramming to design scheduling heuristics for dynamic job shop schedul-
ing problems becomes increasingly common. In recent years, multitask
genetic programming-based hyper-heuristic methods have been devel-
oped to solve similar dynamic scheduling problem scenarios simultane-
ously. However, all of the existing studies focus on the tree-based genetic
programming. In this paper, we investigate the use of linear genetic pro-
gramming, which has some advantages over tree-based genetic program-
ming in designing multitask methods, such as building block reusing.
Specifically, this paper makes a preliminary investigation on several
issues of multitask linear genetic programming. The experiments show
that the linear genetic programming within multitask frameworks have a
significantly better performance than solving tasks separately, by sharing
useful building blocks.
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1 Introduction

Job shop scheduling (JSS) is a typical combinatorial optimization problem and
has a large commercial value in manufacturing systems. There are a set of
machines and a set of jobs in the job shop. The job shop processes the set of jobs
by the given machines so that some objectives, such as tardiness and makespan,
are optimized. For dynamic job shop scheduling (DJSS), there are some dynamic
events such as new job arrivals, which need to be considered when making sched-
ules. In DJSS with new job arrivals, the information of the new jobs is not known
in advance. Such characteristic requires optimization techniques to be able to
make an instant reaction (e.g., re-scheduling or repairing existing schedules)
to the newly arrived jobs. It also limits the application of some existing exact
optimization algorithms such as branch-and-bound and dynamic programming
whose computation burden may be too large for the instant reaction.
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Hyper-heuristic methods (HH) have been successfully applied to many appli-
cations [18]. They try to search a suitable scheduling heuristic for a certain prob-
lem by selecting or recombining some existing scheduling heuristics [6]. Different
from heuristic methods whose search space consists of solutions (i.e., complete
schedules), HH methods search in a heuristic space given by users. Specifically,
the heuristics in JSS are also known as dispatching rules. It has been shown
that HH methods can obtain more sophisticated and effective priority dispatch-
ing rules than human designed ones in DJSS [1,5,28]. Genetic programming-
based hyper heuristic (GPHH) is one of the most popular branches of HH meth-
ods [5,14]. Specifically, for GPHH, scheduling heuristics are encoded into genetic
programming (GP) individuals. These heuristics will be modified by genetic
operators and evaluated on problem instances. The performance of heuristics on
the problem instances will be regarded as the fitness of those heuristics. The
quality of scheduling heuristics are improved generation by generation.

Although there have been many advanced techniques to assist GPHH to
find more effective heuristics in solving a certain DJSS problem [15,24-26], it is
a tedious and expensive task for GPHH methods to search effective heuristics
for each single scenario. In recent years, some researchers found that sharing
knowledge among different scenarios is a potential research direction to enhance
GPHH in solving different DJSS scenarios [16,22]. Given that many DJSS sce-
narios share similarities in objective functions or job shop environments, they
may require the same building blocks (e.g., subtrees in tree-based GP) to form
an effective scheduling heuristic.

Evolutionary multitask optimization is an emerging topic of evolutionary
computation area, which aims to fully utilize the search information among dif-
ferent tasks [20]. The evolutionary multitask methods will accept more than one
optimization tasks and solve them simultaneously by an evolutionary computa-
tion method within a unified search space. The evolutionary multitask optimiza-
tion has a wide spectrum of applications nowadays, such as vehicle routing [2,29],
time series prediction [7,11], and robot path planning [21]. The evolutionary mul-
titask techniques in these applications are validated to be more effective than
solving the problems separately.

To adapt multitask techniques to GPHH methods for dynamic scheduling,
several GPHH-specific multitask techniques are proposed. For example, Park
et al. [16] proposed a niched GP to improve the generalization ability with
different machine breakdown levels (i.e., different optimization tasks). Specif-
ically, the term “niched” means the GP method has a light-weight grouping
mechanism. Every group in niched GP is assigned to a specific task. The breed-
ing and selection of GP population were also designed based on these groups.
Besides, Zhang et al. respectively made an investigation on multitask GPHH
methods [23] and proposed a multitask multi-population GPHH method to
design dispatching rules for dynamic flexible JSS [22]. To improve the train-
ing efficiency and precisely share the search information, Zhang et al. [27] fur-
ther proposed a surrogate-assisted multitask GPHH method. Their designed
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surrogate model successfully enhances the GPHH in terms of test performance
and convergence speed.

However, most of existing studies of multitask GPHH are designed based on
tree-based GP [13]. Since the tree-like structures usually only have one output,
GP individuals have to be assigned to a specific task in the off-the-shelf evolu-
tionary multitask optimization frameworks. On the other hand, linear genetic
programming (LGP) [4], which can reuse useful building blocks easily, may be
more suitable for multitask optimization. Though LGP has some advantages over
tree-based GP in designing multitask frameworks, none of the existing studies
apply LGP to multitask optimization frameworks.

To consolidate the foundation of applying LGP to multitask framework, this
paper serves as a preliminary work to investigate the performance and behaviour
of linear genetic programming with multitask optimization frameworks. Basi-
cally, this paper makes an investigation about several key issues of developing
multitask linear genetic programming-based hyper heuristic (LGPHH). These
issues are summarised into the following three research questions:

— Which existing multitask framework (e.g., multifactorial evolutionary frame-
work and multitask multi-population framework) is most suitable with
LGPHH?

— How effective is LGPHH compared with the existing tree-based GPHH for
multitask DJSS?

— How does multitask LGPHH share information among the individuals for
different tasks?

The rest of the paper is organised as follows. Section 2 gives the introduction
to DJSS, LGP, and two existing multitask frameworks. Section 3 develops two
LGPHH-based multitask methods for solving DJSS problems. The experiment
settings and the result analysis are respectively introduced in Sect.4 and 5.
Finally, Sect. 6 draws out some conclusions.

2 Background

2.1 Dynamic Job Shop Scheduling

DJSS with new job arrival start with an empty job shop whose set of machines
M are given beforehand. The jobs will come into the job shop to form the job set
J over time. Their information cannot be known until their arrival. Every job j
has a sequence of operations (01, ..., 0j;, ..., 051, ) (1 < i < 1;), an arrival time «,
a due date d;, and a weight w;. The operation o;; will be processed by a certain
machine 7(0;;) € M with a processing time §(0;;). A machine can only process
one operation at any time and its process is assumed to be uninterruptable.
The operation sequence of job j specifies the process order of those operations.
0ji+1(1 +1 <1;) can only be processed after oj; is completed.

This paper mainly considers the flowtime and the tardiness as the perfor-
mance metrics of the job shop. To formulate these metrics, we denote the actual
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R(): R] - y
R2: min(x, Ro)

S

R(): maX(Rl, R2)
©O® ®

Fig. 1. An example program of LGP

starting time of an operation oj; as x(0j;) and denote the finishing time of job
j as ¢j, where ¢; = x(0j1,) + d(0j1;). The flowtime and the tardiness are further
specified as maximum flowtime (F}, 4. ), mean flowtime (Fieqn ), mean weighted
flowtime (W F,eqn), maximum tardiness (1,4, ), mean tardiness (Tinean), and
mean weighted tardiness (WT,,cqn ). They are formulated as below.

- Fmaw = manE(J(cj (_ ‘T)()Ojl))

— Fovean = %

WE _ ZjeJ(le—T(Ojl))'wj
mean — 7

— Tmaz = maneJ(maX(Cj — dj, O))

T _ 2 jey(max(c;—d;,0))
mean — ‘J‘
- WT _ 2 jeg(max(c;—d;,0)-w;)
mean — ‘J‘

2.2 Linear Genetic Programming

LGP [4] is a GP variant which has been successfully applied to classification [3,
9,12,17] and symbolic regression problems [8,19]. LGP individuals are sequences
of register-based instructions. The instructions in a same sequence are executed
sequentially to form a completed computer program. The linear arrangement
of instructions and the sequential execution are two core meaning of the term
“linear”. For every single instruction in LGP, it contains three parts: source
register, operation, and destination register. The values in the source registers
serve as the inputs of the operation. The output from the operation is assigned
to the destination register and passed to the subsequent instructions. To output
the final result, at least one output register is needed for LGP. By default, the
first register is regarded as the output register. Figurel is a simple example
of LGP individual to represent a mathematical formula “max(zy, min(z, —y))”.
Ry, R; and R, are three registers. They serve as both source and destination
registers. These registers are initialized by a certain value, such as zero in this
example. The LGP individual can also be transformed into a directed acyclic
graph (DAG) to be more compact.

The evolutionary framework of LGP is quite similar with the one of standard
GP. But because of the different representation, LGP has two kinds of different
genetic operators from standard GP [13]. The first type of genetic operators is
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macro variation. The term “macro” means that this kind of genetic operators
produce offspring mainly by affecting the total number of instructions. The other
type of genetic operators is micro variation. Contrarily, micro variation does not
change the total number of instructions, but only changes the primitives inside
instructions to produce offspring.

2.3 Related Work

In the literatures, there are two popular evolutionary multitask frameworks for
existing GPHH methods. One is multifactorial evolutionary algorithm (MFEA)
and the other is multitask multi-population GPHH (M2GP).

Multifactorial Evolutionary Algorithm. MFEA was firstly proposed by
Gupta et al. [10]. The main idea of MFEA is to use an evolutionary algorithm
with a single population of individuals to solve different optimization tasks simul-
taneously. All of these individuals are encoded into a unified search space and
can be transformed into a problem-specific representation to solve different tasks.
To evolve the individuals for different tasks simultaneously, MFEA introduces
four key properties, i.e., factorial cost, factorial rank, scalar fitness, and skill
factor. Based on these properties, the effectiveness of an individual in solving a
certain task can be represented by the factorial cost and rank. The individuals
good at solving different tasks can be identified by different skill factors. The
individuals with different skill factors can also make a fair comparison together
based on the scalar fitness. To enable individuals to share the information among
different tasks, Gupta et al. developed an assortative mating algorithm which
allows individuals with different skill factors to perform crossover with a pre-
defined probability. A vertical cultural transmission is also developed together
with the assortative mating to propagate the skill factor from parent individuals
to offspring.

Multitask Multi-population GPHH. M2GP is proposed by Zhang et al. [22],
which is a GP-specific multitask optimization framework. Specifically, M?GP
splits a GP population into several sub-populations, each for a single task. Every
sub-population evolves GP individuals with the conventional evolutionary frame-
work of GP. GP individuals in M?GP are trained on different problem instances
in different generations. GP individuals in M?GP share their knowledge by swap-
ping sub-trees across different sub-populations. Different from MFEA in which
individuals may change their skill factor (i.e., corresponding task) by imitat-
ing different parents, GP individuals in M2GP only evolve for a certain task
and will not migrate to the other sub-populations. To improve the efficiency of
multitask learning, M?GP further proposes an origin-based offspring reservation
strategy, which only keeps the offspring generated based on the parent from
the corresponding sub-population and discards the other offspring in crossover.
The empirical results show that M2GP has a better performance than MFEA in
solving dynamic flexible JSS problems.
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Fig. 2. Flowchart of MF-LGPHH

3 Multitask LGPHH

In this paper, we aim to make a preliminary investigation on the performance and
the behaviour of LGP with off-the-shelf GPHH-specific multitask optimization
techniques. Specifically, two multitask LGPHH methods are developed based on
MFEA and M?GP respectively.

3.1 Multi-factorial LGPHH

Multi-factorial LGPHH (MF-LGP) is developed based on MFEA. The evolu-
tionary framework of MF-LGP is shown in Fig.2 where the dark boxes are the
key differences from basic LGPHH methods. Initially, LGP individuals are ran-
domly generated and evaluated on all different DJSS tasks to identify their skill
factors. The minimum ranking among different tasks is regarded as the fitness of
LGP individuals (i.e., scalar fitness). In every generation, parent individuals are
randomly selected from the population. The offspring are generated by a newly
developed LGP-specific assortative mating algorithm. This algorithm generates
offspring by mutating instructions or exchanging instruction segments of parent
individuals based on the skill factors of parents and a predefined random mating
probability (rmp). The skill factors of offspring are also updated by inheriting
from one of the parents. To improve the training efficiency, every LGP individual
will be evaluated on only one corresponding DJSS scenario, which is specified by
the skill factor. The performance of LGP heuristic is regarded as the fitness of
individuals. Then, both of parent and offspring individuals are concatenated into
an intermediate population. The best individuals of the intermediate population
will be selected greedily and form the new population in next generation. To
ensure the fitness of LGP individuals are comparable, all LGP individuals are
evaluated on a same DJSS problem instance.

To be more specific, the newly developed LGP-specific assortative mating
(shown in Algorithm 1) is designed based on [10] and the three basic genetic
operators of LGP (i.e., crossover, macro mutation, and micro mutation). The
algorithm accepts two randomly selected parents from the population. If the two
parent individuals have the same skill factor or a randomly generated number is
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Algorithm 1: Assortative Mating for MF-LGP

Input: Two selected parents p, and pp, crossover rate r., and a random mating
probability rmp.
Output: Two offspring ¢, and c¢p.
1 Generate two random numbers randl and rand2 between 0 and 1;
// crossover
2 if (po and py have same skill factor) or (randl < r.) then
Perform LGP crossover on p, and p, to produce two offspring ¢, and cp;
4 Perform vertical cultural transmission on the skill factors of ¢, and cp;

/ macro mutation

5 else if rand2 < 0.5 then

Apply LGP macro mutation on p, and ps respectively to produce offspring
Cq and cp;

~

// micro mutation

7 else

8 Apply LGP micro mutation on p, and ps respectively to produce offspring
Cq and cp;

9 Return ¢, and ¢;.

smaller than the random mating probability, the crossover is performed on the
parent individuals to produce offspring. The skill factors of offspring are updated
based on the vertical cultural transmission proposed in [10]. If the two parents
have different skill factors and the random mating probability is not satisfied,
macro and micro mutation will be performed. In this algorithm, macro and
micro mutation have the same probability in producing offspring. Since macro
and micro mutation only accept one parent individual each time, the skill factor
of the generated offspring is the same as that of the parent in mutation.

However, MF-LGP only uses one DJSS problem instance during evolution,
and the performance of MF-LGP may be limited by the insufficient training
instances. To have a comprehensive investigation, a MFEA-based LGPHH with
GP selection paradigm is also developed. It replaces the selection paradigm of
conventional MFEA into the one of standard GP, which applies tournament
selection to select parents and replaces the old population by offspring. Since
there is no concatenation of parents and offspring, the problem instances can be
rotated every generation. This variant of MFEA-based LGPHH is denoted as
MF'LGProtate-

3.2 Multitask Multi-population LGPHH

In this paper, we extend M2GP to LGP to develop a new algorithm called
MZ2LGP. The flowchart of M2LGP is shown in Fig. 3. The dark boxes in Fig. 3 also
highlight key differences from basic LGP. Basically, it firstly initializes multiple
populations of LGP individuals randomly. The individuals in a sub-population
are only evaluated on a certain DJSS scenario. When the stopping conditions are
not satisfied, M2LGP reproduces offspring by origin-based offspring reservation
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Fig. 3. Flowchart of M2LGP

strategy or basic LGP genetic operators based on a probability specified by
a random mating probability. The sub-populations are then replaced by the
offspring. The DJSS problem instance is rotated every generation. Finally, the
best LGP individuals in the different sub-populations are outputted to test data.

Specifically, the evolution of M2LGP produces offspring by three basic kinds
of LGP genetic operators. The pseudo code of the evolution is shown in Algo-
rithm 2. To share the search information, the origin-based offspring reservation
strategy proposed by Zhang et al. is also extended to LGP crossover. When the
random number is smaller than rmp, LGP selects two parent individuals from
different sub-populations. Then, LGP exchanges the instruction segments of the
parent individuals and only retains the offspring from the parent individual of
the corresponding sub-population. The old sub-population will be replaced by
the newly generated offspring population.

4 Experiment Design

4.1 Multitask DJSS Scenarios

Based on the categorization in [22], there are two types of multitask settings
in DJSS, i.e., heterogeneous and homogeneous multitask optimization. Specifi-
cally, heterogeneous multitask problems contain a set of DJSS problems whose
optimization objectives are different but having a same utilization level. On the
contrary, the DJSS problems in homogeneous multitask problems have a same
optimization objective but different utilization levels. We develop three scenar-
ios for each type of multitask settings. These six scenarios are listed in Table 1.
The notation “<z,y>" denotes a task whose optimization objective is x and
utilization level is y.

There are 10 machines for every problem instance. The new arrival jobs
have a sequence of operations whose length ranges from 2 to 10. The processing
time of operations is a continuous value from 1 to 99. Every job has a weight.
Specifically, 20%, 20%, and 60% of the new jobs have a weight of 1, 4, and 2
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Algorithm 2: Evolution of M?LGP

Input: The population of the current generation pop, crossover rate r., macro
mutation rate rmacro, micro mutation rate rmicro, and a random mating
probability rmp.

Output: An updated LGP population.

1 for all sub-population s in pop do

2 Initialize an empty sub-population sy;

3 Load elite individuals from s to s, by an elitism selection;

4 while size of s, < size of s do

5 Generate a random number randl between 0 and 1;

6 Use tournament selection to select a parent individual p, from s;

// crossover

7 if randl < r. then
8 Generate a random number rand2 between 0 and 1;
9 if rand2 < rmp then
10 Select p, from another sub-population s'(s’ # s) by tournament
selection;
// origin-based offspring reservation
11 Swap an instruction segment from p; to p, to produce offspring
Ca;
12 | sn=snU{ca};
13 else
14 Select pp from s by tournament selection;
15 Perform LGP crossover on p, and p, to produce two offspring c,
and cp;
16 | sn = snU{ca,cn};
// macro mutation
17 else if randl < r¢ + Tmacro then
18 Apply LGP macro mutation on p, to produce offspring c,;
19 | sn=snU{ca};
// micro mutation
20 else if randl < r¢ + Tmacro + Tmicro then
21 Apply LGP micro mutation on p, to produce offspring cq;
22 | Sn=8n U{ca};
23 else
24 L reproduce pg to Sn.
25 S = Sn;

26 Return pop.
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Table 1. Problem settings of the multitask scenarios

Scenarios taskl task2 task3

homogeneous multitask
homoFmean <Frmean,0.95> <Fmean,0.85> <Fmean,0.75>
homoTmean <Tmean,0.95> <Tmean,0.85> <Tmean,0.75>
homoWTmean <WThean,0.95> <WThean,0.85> <WThean,0.75>
heterogeneous multitask
heteFTMax <Fmaz,0.95> <Tmaz,0.95>
heteFTMean  <Fiean,0.95> <Tmean,0.95>
heteWFTMean <W Fiean,0.95> <WThean,0.95>

Table 2. The terminal set

Notation | Description

NIQ the number of operations in the queue of a machine

WIQ the total processing time of operations in the queue of a machine
MWT the waiting time of the machine

PT the processing time of the operation

NPT the processing time of the next operation

OWT the waiting time of the operation

NWT the waiting time of the next to-be-ready machine
WKR the total remaining processing time of the job
NOR the number of remaining operations of the job

WINQ total processing time of operations in the queue of the machine which
specializes in the next operation of the job

NINQ number of operations in the queue of the machine which specializes in the next
operation of the job

rFDD the difference between the expected due date of the operation and the system

time
rDD the difference between the expected due date of the job and the system time
A% the weight of the job
TIS the difference between system time and the arrival time of the job
SL the difference between the expected due date and the sum of the system time
and WKR

respectively. During the simulation, the first 1000 jobs will be regarded as warm-
up jobs to ensure that heuristics are evaluated in a steady state of job shops.
The performance of a heuristic is evaluated by the subsequent 5000 jobs. For
every scenario, 30 independent runs with different random seeds are carried out,
and each output heuristic is tested on 50 unseen DJSS instances.



172 Z. Huang et al.

4.2 Comparison Methods

To investigate the three research questions, two comparison methods are devel-
oped. Firstly, a baseline method of LGPHH is adopted. It simply runs the
LGPHH for each single task separately. In other words, there is no knowl-
edge transfer among the tasks. LGPHH serves as a baseline for other multitask
optimization techniques. Secondly, the state-of-the-art GPHH-specific multitask
method, M2GP, is adopted. M2GP is based on tree-based GP.

Table 3. The mean (and standard deviation) of test performance in all multitask
scenarios

Scenario Task LGPHH M2GP M2LGP MF-LGP  MF-LGPotate
homo <Fmean,0.95>  1584.4(21.0) 1569.3(10.5) 1577.0(12.8) 1609.8(26.7) 1580.6(13.2)
Fmean <Fmean,0.85> 870.7(6.8) 861.5(2.7) 863.8(3.5) 874.4(6.1) 867.2(5.6)
<Fmean,0.75> 658.7(1.7) 654.8(1.3) 655.0(1.6) 656.9(2.2) 655.8(1.7)
homo <Tmean,0.95> 1129.3(8.7)  1125.1(15.1) 1125.3(11.9) 1165.3(26.9) 1134.3(13.8)
Tmean <Twmean,0.85> 427.1(5.9) 415.9(2.1) 417.1(2.9) 429.4(7.0) 419.2(4.2)
<Tmean,0.75> 218.9(1.7) 215.0(1.1)  215.2(1.0) 217.9(2.1) 215.7(1.3)
homo  <WTmean,0.95> 1817.0(29.4) 1771.6(27.7) 1804.9(27.3) 1839.2(24.9) 1787.5(26.3)
WTmean «WT,,.qn,0.85>  731.1(9.1) 724.5(4.8) 731.2(4.6) 745.5(12.0) 728.5(6.4)
<WTmean,0.75>  394.3(2.5) 391.5(1.6) 393.8(2.0) 400.2(4.1) 392.6(2.2)
heteF T <Frmax,0.95> 4470.5(108.0) 4551.7(173.5) 4450.1(114.2) 4794.1(203.6) 4461.0(96.0)
Max <Tmaz,0.95>  3945.2(117.3) 3991.2(117.1) 3878.4(90.5) 4272.7(170.8) 3849.6(82.3)
heteFT  <Fpean,0.95>  1579.8(10.6)  1570.2(8.4) 1570.1(11.7) 1620.1(31.0) 1572.2(15.0)
Mean <Tmean,0.95>  1132.9(23.0)  1119.1(9.7) 1121.8(13.5) 1167.0(28.1) 1122.1(14.0)

heteW <W Fpean,0.95> 2793.7(31.7) 2763.7(23.0) 2783.0(34.6) 2813.9(26.0) 2781.5(35.6)
FTMean <\WT,, .qn,0.95> 1803.4(30.2) 1771.4(25.6) 1799.4(35.4) 1823.1(26.5) 1792.9(33.8)
Average rank 3.40 2.09 2.51 4.42 2.57
bold font: a method is significantly better than most of other methods on a certain task.
M2LGP: Multitask Multi-population LGPHH; MF-LGP: Multi-factorial LGPHH;
MF-LGPotate: Multi-factorial LGPHH with training instance rotation.

The parameters of these methods are designed based on [22]. Basically, the
population size and the number of sub-populations vary with the number of
tasks. When there are k tasks, there will be k sub-populations for the methods
based on M?GP, and there will be totally k x 200 individuals for all LGP methods
(k x 400 individuals for tree-based GP methods). The total number of genera-
tions is 102 for LGP methods and 51 for tree-based GP methods. Every LGP
individual has a maximum of 50 instructions. Each manipulates four available
registers. The first register is regarded as the output register. To facilitate the
knowledge transfer among tasks, LGP adopts a kind of effective macro muta-
tion and a linear crossover to produce offspring. Specifically, the effective macro
mutation inserts (or removes) an effective instruction into (from) heuristics, and
will remove all ineffective instructions after mutation. The maximum crossover
length and the maximum length difference of the linear crossover are both 30.
Specifically, the crossover, macro and micro mutation rate of M2LGP are 60%,
10%, and 25% respectively. The hyper parameters of tree-based GP are set the
same as the ones of [22]. A terminal set including sixteen terminals is designed
for the GP methods, which is shown in Table 2.
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5 Results and Discussion

5.1 Test Performance

To analyze the effectiveness of multitask LGPHH, the test performance of the five
methods are compared, as shown in Table 3. A Friedman test with a significance
level of 0.05 is also applied to the test performance analysis. The average rank
below the table shows the overall ranking of all algorithms based on the Friedman
test. The p-value of the Friedman test on the test performance is 1.3e—08, which
means there is a significant difference among all of these algorithms. Therefore,
a pairwise Wilcoxon test with false discovery rate correction (by the Benjamini
and Hochberg method) and a significance level of 0.05 is further applied to every
pair of these methods. The bold results in the table highlight the methods which
are significantly better than most of other methods.

To answer the first research questions, i.e., which existing multitask frame-
work is suitable to LGPHH, the baseline LGPHH, M2LGP and the two MFEA-
based LGPHH are compared. Generally speaking, M2LGP and MF-LGP,.oaze
have a quite competitive performance with each other. They show a similar
average ranking about 2.5. They also have a significantly better performance
than the baseline method in most of the scenarios based on the Wilcoxon test.
However, the simple combination of LGPHH and MFEA does not work very
well in all these scenarios. Its average rank is 4.42 among the five algorithms.
Given that the optimization problems in the paper are minimization problems,
MF-LGP has the worst performance in most cases. The results of the three mul-
titask LGPHH methods imply that simply replacing LGPHH into the existing
multitask frameworks is not always a good way. It is likely for multitask LGPHH
to work poorly, especially when there are some unsuitable designs for LGPHH
in multitask frameworks. Based on the results, it is advisable for LGPHH to be
adopted in M?LGP and MF-LGP, otz Which enable LGPHH to have sufficient
training instances by GP selection methods.

To investigate the effectiveness of multitask LGPHH compared with tree-
based GPHH, M2GP, M2LGP, and MF-LGP,otqse are further compared. Basi-
cally, M2LGP and MF-LGP, . are less effective than the state-of-the-art
method, i.e., M2GP. The results of the average rank show that M?LGP and
MF-LGP,.1qte have a bigger value than M?GP. It implies that M?GP has a
better overall performance than the two LGPHH-based multitask algorithms.
Although the performance of M2LGP and MF-LGP,.ote are quite competitive
with M2GP in the three heterogeneous scenarios, they are inferior to M?GP in
the three homogeneous multitask scenarios based on the Wilcoxon test. The test
effectiveness of multitask LGPHH methods should be further improved.

5.2 Example Program Analysis

To analyze how LGPHH shares useful knowledge among different tasks, we sam-
ple some example heuristics from all independent runs. Here, three heuristics
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from an independent run of M2LGP in solving homoWTmean and two heuris-
tics from an independent run of MF-LGP in solving heteFTMax are selected.
These LGP-based heuristics are transformed into DAGs and are shown in Fig. 4.
The nodes of the DAGs represent different operations or terminals (oval for oper-
ations and rectangle for terminals). Each node has at most two output edges.
These output edges accept the result from the node that it points to. The “0” and
“1” beside edges respectively denote the first and second argument of operations.
The final heuristic value is outputted from the top node.

Fig. 4. Three example programs from homoWTmean and two example programs from
heteFTMax
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(A 1))

(a) homoWTmean (b) heteFTMax

Fig. 5. Examples of common patterns in heuristics

If we have a closer look on these DAGs, some common patterns with at least
three nodes can be found among the scheduling heuristics from a same scenario.
The common patterns of these scheduling heuristics are highlighted in grey.
Figure 5 shows some example common patterns in these heuristics. For the tasks
of WTean, the three heuristics share common building blocks of dividing job
weight and adding the processing time of next operation multiple times. These
building blocks are also reused multiple times in these heuristics. It implies that
it is advisable to select the operations with large weight and short processing
time in minimizing the weighted mean tardiness. Besides, LGP-based heuris-
tics can also share some “high-level” structures of operation combinations. The
“/,4, min” structure is adopted by two of the heuristics at the top of the DAGs.
For the tasks of Fi,q; and Ty, the two heuristics share a building block of
“rFDD + max(WINQ@,—WKR)”. It implies that, to minimize the maximum
flowtime and tardiness, prioritizing the operations which are close to the due
date (i.e., small rF'DD) and have a lot of remaining work (i.e., large WK R) is
a useful strategy. Besides, the operations which do not suffer from bottle neck
machines (i.e., small WINQ) should also be processed as soon as possible. Aver-
agely, more than half of the nodes are covered by at least one repeated patterns
in these five heuristics. The results validate that LGP-based heuristics can share
useful building blocks and operation combinations in the two existing multitask
frameworks.

6 Conclusion

This paper makes an investigation of LGPHH methods with different evolution-
ary multitask frameworks. To extend LGPHH to two existing multitask frame-
works, we have developed two LGPHH-based multitask methods, which are MF-
LGP and M?LGP, based on the characteristics of LGPHH. These methods are
examined on six different multitask scenarios, including three homogeneous and
three heterogeneous scenarios. Some conclusions are drawn out based on the com-
parison. Firstly, the results show that M?GP and MFEA with training instance
rotation help LGPHH to have an effective test performance in multitask learn-
ing. It implies that LGPHH is suitable to those frameworks with more GPHH
characteristics. Secondly, the multitask LGPHH methods based on off-the-shelf
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frameworks are worse than tree-based GPHH methods in terms of test effective-
ness. Designing a multitask framework to further enhance LGPHH performance
will be our future work. Thirdly, the heuristics in multitask LGPHH can share
some common patterns. These common patterns can be both of reusable building
blocks and operation combinations. By sharing these common patterns among
different tasks, the multitask LGPHH methods can be more effective than solv-
ing these tasks separately. In our future work, more LGP characteristics will be
considered in the design of multitask frameworks, to further enhance the perfor-
mance of multitask LGPHH. For example, LGP individuals can have multiple
output registers to solve different tasks, and some selective crossovers can be
developed based on different output registers.
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