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ABSTRACT
Dynamic flexible job shop scheduling (DFJSS) aims to make deci-
sions for machine assignment and operation sequencing simulta-
neously to get an effective schedule under dynamic environments.
Genetic programming hyper-heuristic (GPHH) has been success-
fully applied to evolve scheduling heuristics for the DFJSS problem.
Parent selection plays an important role in GPHH for generat-
ing high-quality offspring. Traditional GPHHs select parents for
crossover purely based on fitness (e.g., tournament selection). This
might be too greedy to get good offspring and the selected parents
might have similar structures/behaviours. In this paper, a GPHH
method with a new diverse partner selection (DPS) scheme is pro-
posed, namely GPDPS, for DFJSS. Specifically, we first define a new
multi-case fitness to characterise the behaviour of each schedul-
ing heuristic for DFJSS. Then, the newly proposed DPS method
selects a pair of complementary high-quality parents for crossover
to generate offspring. The experimental results show that GPDPS
significantly outperforms the GPHH method on most of the DFJSS
scenarios, in terms of both test performance and convergence speed.
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1 INTRODUCTION
Dynamic flexible job shop scheduling (DFJSS) [13] aims to optimise
the machine assignment and operation sequencing under dynamic
environments, such as new job dynamic arrivals. Each job has a
number of operations that need to be processed by a set of machines.
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DFJSS is a challenging optimisation problem. There are two kinds of
decisions in DFJSS. One is the routing decision (allocate machine to
a ready operation), and the other is the sequencing decision (select
the operation for an idle machine to process next).

Scheduling heuristics are widely used to generate effective sched-
ules in real-time [8]. In DFJSS, a scheduling heuristic has a routing
rule and a sequencing rule. At each decision point, the routing
rule/sequencing rule prioritises each candidate machine/operation,
then the highest priority machine/operation is selected. However,
manually designed scheduling heuristics highly rely on experts,
and the designing process is time-consuming. Genetic program-
ming hyper-heuristic (GPHH) [5] has been successfully applied for
solving job shop scheduling problems automatically [1, 6, 7, 9, 12]

GPHH generates new individuals following a process of fitness
evaluation, parent selection, crossover, mutation, and reproduc-
tion until the termination criteria is met, then retaining the best
individual obtained as the final output. During the process, parent
selection plays an important role in identifying promising indi-
viduals that carry good genes [4]. Tournament selection [3] is the
classical parent selection method that selects parents based on their
fitness. Tournament selection selects the parents independently,
without considering the relationship between the selected parents.
As a result, it may select high-quality parents with very similar
structures/behaviours. Crossover is an important GP operator. To
generate good offspring, the parents for crossover should not only
have high fitness by themselves but also complement with each
other. To consider the complementation of parents, diverse partner
selection (DPS) is proposed to find more high-quality combinations
of parent pairs and has shown success in solving some optimisation
problems [2]. However, DPS cannot be directly applied to evolving
scheduling heuristics for DFJSS.

In this paper, we aim to propose a novel GPHH method with a
new DPS scheme (GPDPS) to select a pair of complementary high-
quality parents for crossover to solve the DFJSS problem effectively.

2 PROPOSED APPROACH
2.1 The Overall Framework
The proposed GPDPS method takes the following steps to generate
the scheduling heuristics. At first, a population of individuals is
initialised by the ramped-half-and-half method. Then, at each gener-
ation, individuals are evaluated by the newly developed multi-case
fitness evaluation. The multi-case fitness evaluation calculates both
the standard fitness and a list of case-fitness. After the multi-case
fitness evaluation, the case-fitness values in the list are normalised
by the fitness normalisation step. Then, a number of elites with
top standard fitness are selected to the next generation directly.
Afterward, the breeding process is conducted to generate offspring
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through parent selection and genetic operators. Specifically, the
parents for mutation and reproduction are selected by the tradi-
tional tournament selection, while the parents for crossover are
selected by the newly developed DPS operator based on the nor-
malised list of case-fitness. Note that the crossover and mutation
rates are adjusted based on the number of times that the suitable
second parent fails to be selected by DPS. The operator rate tuning
strategy is the same as the original method [2]. Specifically, each
time DPS fails to select suitable parents, the crossover (mutation)
rate is decreased (increased) by 1/𝑝𝑜𝑝𝑠𝑖𝑧𝑒 . After the entire breeding
process, the crossover and mutation rates are reset to the default
values. The above steps are repeated until a stopping criterion is
met, and the best individual is returned.

2.2 The Multi-case Fitness Evaluation
The newly proposed multi-case fitness evaluation strategy has two
purposes. First, it calculates the standard fitness of the individual,
which will be used for elitism selection and select parents for mu-
tation and reproduction. Second, it calculates a list of case-fitness
values to characterise the behaviour of the individual in different
cases. Such a list will be used to select parents for crossover.

The calculation of the standard fitness is straightforward. On the
other hand, the key issue of designing the list of case-fitness is the
definition of cases. In DFJSS, an individual (scheduling heuristic)
is evaluated by being applied to a DFJSS simulation to generate a
schedule. Its fitness is typically set as the objective value (e.g., mean
flowtime or makespan) of the generated schedule, which is a kind
of aggregation (mean or max) over the jobs completed during the
simulation. Considering that in classification and regression, the
fitness (e.g., mean square error) is an aggregation over the training
data points, and each data point is treated as a case. Analogously,
we can consider the part of each job in the objective function as a
case for DFJSS.

We design the multi-case fitness evaluation for DFJSS in Algo-
rithm 1. Given an individual 𝑥 , a DFJSS simulation 𝑠𝑖𝑚, the number
of jobs in the simulation 𝑛 and the group size 𝑔, the multi-case
fitness evaluation strategy first applies the individual 𝑥 to the sim-
ulation to generate the corresponding schedule 𝑠𝑐ℎ(𝑠𝑖𝑚, 𝑥). Then,
it is easy to obtain the completion time 𝐶 𝑗 for each job in the gen-
erated schedule. On the other hand, based on the number of jobs
𝑛 and group size 𝑔 (assuming that 𝑛 is always divisible by 𝑔), we
can obtain the number of cases 𝑐 = 𝑛/𝑔 and the jobs in each group
(index from 𝑔 × (𝑖 − 1) + 1 to 𝑔 × 𝑖). Finally, we can calculate the
standard fitness of 𝑥 (line 6) and the fitness for each case (line 9).

2.3 Case-fitness Normalisation
To avoid biasing to any case during DPS, for each case, we normalise
the case-fitness of all individuals in the population. Specifically, for
each case 𝑖 = 1, . . . , 𝑐 , the normalisation is done by

cf𝑖 (𝑥) ←
cf𝑖 (𝑥) −min{cf𝑖 (𝑥 ′) |𝑥 ′ ∈ 𝑝𝑜𝑝}

max{cf𝑖 (𝑥 ′) |𝑥 ′ ∈ 𝑝𝑜𝑝} −min{cf𝑖 (𝑥 ′) |𝑥 ′ ∈ 𝑝𝑜𝑝}
. (1)

2.4 The New Diverse Partner Selection Method
The proposed new DPS first selects the first parent, i.e., the recipient,
by tournament selection. Then, it keeps selecting the second parent
by tournament selection and examines if the second parent has

Algorithm 1: Multi-case fitness evaluation for DFJSS.
Input: The individual to be evaluated: 𝑥 ; DFJSS simulation: 𝑠𝑖𝑚; number of

jobs in the simulation: 𝑛; group size: 𝑔.
Output: Standard fitness 𝑓 𝑖𝑡 (𝑥) ; List of case-fitness cf (𝑥) .

1 Calculate the number of cases 𝑐 = 𝑛/𝑔;
2 Run the simulation 𝑠𝑖𝑚 with the scheduling heuristic 𝑥 to obtain the

corresponding schedule 𝑠𝑐ℎ (𝑠𝑖𝑚, 𝑥) ;
3 for 𝑗 = 1→ 𝑛 do
4 Obtain the job completion time𝐶 𝑗 from 𝑠𝑐ℎ (𝑠𝑖𝑚, 𝑥) ;
5 end
6 Calculate 𝑓 𝑖𝑡 (𝑥) = obj𝑗=1,...,𝑛 (𝐶 𝑗 ) ;
7 for 𝑖 = 1→ 𝑐 do
8 Set the 𝑖th group of jobs J𝑖 = {𝑔 × (𝑖 − 1) + 1, . . . , 𝑔 × 𝑖 };
9 Calculate cf𝑖 (𝑥) = obj𝑗∈J𝑖 (𝐶 𝑗 ) ;

10 end
11 return 𝑓 𝑖𝑡 (𝑥) , cf (𝑥) ;

sufficient positive influence on the recipient. To this end, we define
𝛼 as the actual influence of the second parent to the recipient, and
𝛽 as the expected positive influence. If 𝛼 > 𝛽 , then the second
parent is confirmed as the donor, and the selection is terminated.
Otherwise, the selection is continued. In the end, the operator rates
are tuned accordingly.

Compared with the existing DPS, the main difference is on the
calculation of the 𝛼 and 𝛽 parameters. Specifically, the new 𝛼 pa-
rameter is defined as follows.

𝛼 (𝑥1, 𝑥2) =
𝑐∑︁
𝑖=1

cf𝑖 (𝑥1) − cf𝑖 (𝑥2)
max(cf𝑖 (𝑥1), cf𝑖 (𝑥2))

. (2)

It calculates the total normalised advantage of the case-fitness
cf𝑖 (𝑥2) over cf𝑖 (𝑥1) (the smaller the better, since the objective
is minimised) over all the cases. The new 𝛽 parameter is set to 0,
which means that the crossover is allowed if the second parent has
a positive influence on the recipient.

3 EXPERIMENT DESIGN
In the experiments, we test our algorithms on eight DFJSS scenarios,
which are characterised by (1) the objective to be optimised and (2)
utilisation level (how busy the shop floor is). We consider the four
objectives (max flowtime, mean flowtime, max tardiness, and mean
weighted tardiness) and two utilisation levels of 0.85 (less busy)
and 0.95 (busier). Each scenario is denoted as <obj, 𝑢𝑙>, where obj
represents the objective and 𝑢𝑙 denotes the utilisation level. For
each scenario, we train the scheduling heuristics by using a set of
simulations. Then, the trained scheduling heuristics are tested on
an unseen set of simulations.

Each simulation contains 5000 jobs that need to be processed
by 10 heterogeneous machines, whose processing rates are ran-
domly generated within the range [10, 15]. The distances between
machines and between the entry/exit point and each machine are
sampled from a uniform discrete distribution between 35 and 500.
The transport speed is set as 5. New jobs arrive over time according
to a Poisson process. The number of operations of each job is ran-
domly generated by a uniform discrete distribution between 2 and
10. The weights of 20%, 60%, and 20% of jobs are set as one, two,
and four. The workload of each operation is assigned by uniform
discrete distribution with the range [100, 1000]. The due date factor
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Table 1: The mean (standard deviation) of test performance
of 30 independent runs of the compared methods for eight
scenarios.

Scenarios GPHH GPDPS* GPDPS
<Fmax, 0.85> 1291.40(12.62) 1284.45(12.46)(-) 1284.86(19.02)(-)(=)
<Fmax, 0.95> 1375.33(16.77) 1368.16(23.17)(-) 1366.72(13.97)(-)(=)
<Fmean, 0.85> 524.54(2.93) 525.54(4.86)(=) 524.27(4.52)(=)(=)
<Fmean, 0.95> 566.69(3.23) 566.83(3.20)(=) 567.18(3.73)(=)(=)
<Tmax, 0.85> 733.27(14.69) 719.52(11.28)(-) 728.25(14.86)(=)(+)
<Tmax, 0.95> 860.42(19.09) 847.18(18.69)(-) 841.51(19.82)(-)(=)

<WFmean, 0.85> 1141.09(4.63) 1141.83(4.58)(=) 1146.52(12.33)(=)(=)
<WFmean, 0.95> 1230.70(8.91) 1232.42(11.57)(=) 1230.99(8.72)(=)(=)

is set to 1.5. The simulation uses 1000 jobs to warm up the shop
floor, and collect the information of the next 5000 jobs [10].

In our experiments, the function set is as {+,−,×,÷,𝑚𝑎𝑥,𝑚𝑖𝑛}.
The terminal set includes the features related to the transportation
time (TRANT), machines, operations, and jobs which can be seen
in [10]. For GP, the population size is set to 1024, the maximal
depth of the evolved rule is set to 8. The crossover, mutation, and
reproduction rates are 0.8, 0.15, and 0.05. For DPS, each group is
designed with 160 jobs, to find a pair of parents, the number of
times used to find a donor in DPS is set to 20. The process stops
after 51 generations. For each DFJSS instance, the proposed method
and baseline methods are run 30 times independently.

4 EXPERIMENTAL RESULTS
Two algorithms are taken into comparison in this paper. The first
is the traditional genetic programming (GPHH) [11]. The second is
a variant of GPDPS that excludes the operator rate tuning, named
GPDPS*. The comparison between GPDPS (GPDPS*) and GPHH
verifies the effectiveness of the DPS crossover parent selection. The
comparison between GPDPS and GPDPS* shows the influence of
the operator rate tuning strategy.

4.1 Test Performance
Table 1 gives the mean (standard deviation) results of the test per-
formance of 30 independent runs of GPDPS and baseline methods
for eight scenarios. We compare each algorithmwith the algorithms
on its left by the Wilcoxon rank-sum test with a significance level
of 0.05. The “−/+/=” indicates that the corresponding results are
significantly better than, worse than, or similar with the results of
the algorithms on its left. From the table, it can be seen that GPDPS*
can obtain significantly better performance than GPHH on four sce-
narios (<Fmax, 0.85>, <Fmax, 0.95>, <Tmax, 0.85>, <Tmax, 0.95>),
and GPDPS can get significantly better performance than GPHH
on three scenarios (<Fmax, 0.85>, <Fmax, 0.95>, <Tmax, 0.95>). Fig.
1 shows the convergence curves on the test performance of the
compared methods on the eight scenarios. We can see that GPDPS
and GPDPS* tend to converge faster than GPHH on almost all the
scenarios. This verifies the effectiveness of the new DPS method
that selects a pair of complementary parents to generate offspring.
It is noted that GPDPS and GPDPS* can obtain significantly bet-
ter performance than GPHH on most scenarios with maximum
objectives while showing similar performance with GPHH on all
the scenarios with mean objectives. This may be because mean
objectives are not easy to be optimised due to their stability.
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Figure 1: The convergence curves on test fitness of GPDPS
and baseline methods on eight scenarios.
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Figure 2: The curves on the crossover rate of the end of each
generation of GPDPS on eight scenarios.

4.2 The Effect of Operator Rate Tuning
Fig. 2 gives the curves on the crossover rate at the end of each
generation of GPDPS on the eight scenarios. It can be seen that
the crossover rate is reduced during the breeding process at each
generation but would not be reduced lower than about 0.7. Based
on the test results in Table 1, we can see that GPDPS performs
significantly worse than GPDPS* on one scenario (<Tmax, 0.85>),
and on the other scenarios, GPDPS performs similarly with GPDPS*.
The operator rate tuning is used in the traditional DPS in [2], but
no specific analysis is done to show the effect of the operator rate
tuning strategy. However, based on the above results, in DFJSS
the operator rate tuning strategy has no positive effect on the test
performance. It also shows that the decrease of the crossover rate
is less than 0.08, which means that less than 10% (80 out of 800,
each time decreased by 0.001) of the crossover fail to find suitable
parents.

5 FURTHER ANALYSIS
5.1 Parents Selection
Parents selection means the number of unique individuals selected
as parents for crossover, mutation, and reproduction among the
population. Fig. 3 shows the convergence curves on the number of
unique parents selected by GPDPS and baseline methods on eight
scenarios. It can be seen that the proposed two methods have fewer
unique parents than GPHH on all the scenarios. At the beginning of
the breeding process, the number of unique parents of the proposed
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Figure 3: The convergence curves on the number of unique
parents selected by the comparedmethods on eight scenarios.

methods is small, as the breeding process continues, the number
of unique parents increases and convergences gradually, and after
about 5 generations, there are no obvious changes, but only small
fluctuations. GPDPS and GPDPS* give a similar number of unique
parents on all generations. It is noted that for maximum objectives
and mean objectives the numerical range of the final convergence
value of the number of unique parents is different. The difference
on the number of unique parents between the proposed methods
and GPHH is about 50 on the maximum objectives, and about 100
on the mean objectives. This may be one of the reasons why the
proposed methods can get significantly better performance than
GPHH on the maximum objectives, while only similar performance
on the mean objectives (lose too much parent diversity).

5.2 Parent Combination
A parent combination denotes a unique pair of parents for crossover
on each generation. Fig. 4 gives the curves on the number of unique
parent pairs selected by the compared methods. It can be seen that
GPHH has about 450 unique parent pairs. In the beginning, the
number of unique parent pairs selected by the proposed methods is
small. As the breeding process goes on, the number of unique parent
pairs of the proposed methods increases and reaches a stability
value (around 430). Combined with the analysis of parents selection,
we can see that although the number of unique parents is really
small at the beginning of the breeding process, the number of unique
parent pairs is not that small. This may be because the proposed
method can select a smaller number of individuals as parents than
GPHH but gives them many different combinations to generate
offspring. This may be one of the reasons why the proposed method
can get significantly better performance than GPHH on most tested
scenarios.

6 CONCLUSIONS
The goal of this paper is to design a new parent selection method
to select a pair of parents with high quality and complement with
each other for crossover and help GPHH evolve effective scheduling
heuristics for solving the DFJSS problem. This goal has been suc-
cessfully achieved by the newly proposed diverse partner selection
(DPS) method and the resultant GPDPS algorithm. The GPDPS algo-
rithm is examined and compared with the baseline GPHH on eight
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Figure 4: The curves on the number of parent combinations
of GPDPS and baseline methods on eight scenarios.

scenarios. The results show that the GPDPS method can outper-
form the baseline GPHH on all the maximum objectives and achieve
similar performance on all the mean objectives. Additionally, the
further analysis gives a general understanding of how the parents
selection and parent combinations change by the newly proposed
method. Overall, the newly designed DPS method can contribute
to GPHH to generate effective scheduling heuristics.

In the future, new strategies will be proposed to help the GPDPS
method to evolve effective scheduling heuristics not only on maxi-
mum objectives but also on mean objectives.
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