2022 IEEE Congress on Evolutionary Computation (CEC) | 978-1-6654-6708-7/22/$31.00 ©2022 IEEE | DOI: 10.1109/CEC55065.2022.9870323

Genetic Programming for Vehicle Subset Selection
in Ambulance Dispatching

Jordan MacLachlan ¥ , Yi Mei

, Fangfang Zhang™

, Mengjie Zhang

School of Engineering and Computer Science, Victoria University of Wellington, New Zealand
{jordan.maclachlan, yi.mei, fangfang.zhang, mengjie.zhang} @ecs.vuw.ac.nz

Abstract—Assigning ambulances to emergencies in real-time,
ensuring both that patients receive adequate care and that the
fleet remains capable of responding to any potential new emer-
gency, is a critical component of any ambulance service. Thus far,
most techniques to manage this problem are as convoluted as the
problem itself. As such, many real-world medical services resort
to using the naive closest-idle rule, whereby the nearest available
vehicles are dispatched to serve each new call. This paper explores
the feasibility of using a genetic programming hyper heuristic
(GPHH) in order to generate intelligible rules of thumb to select
which vehicles should attend any given emergency. Such rules,
either manually or automatically designed, are evaluated within a
novel solution construction procedure which constructs solutions
to the ambulance dispatching problem given the parameters of
the simulation environment. Experimental results suggest that
GPHH is a promising technique to use when approaching the
ambulance dispatching problem. Further, a GPHH-evolved rule’s
interpretability allows for detailed semantic analysis into which
features of the environment are valuable to the decision making
process, allowing for human dispatching agents to make more
informed decisions in practice.

Index Terms—Hyper Heuristic, Genetic Programming, Ambu-
lance Dispatch, Evolutionary Computation

I. INTRODUCTION

Ambulance dispatching is a critical challenge faced by many
modern municipalities. Typically, policies in practice dispatch
multiple crews to a single job so excess paramedics can
perform auxiliary functions such as communicating with the
public, drawing medication, advising leading staff or rotating
through CPR. In the event of a medical emergency, two
decisions must be made to ensure both that the fleet is appro-
priately deployed and that the patient receives sufficient care in
a reasonable time. First, the call is triaged: given information
provided from witnesses on site, a medically trained call-taker
assigns the call an urgency code (e.g. purple, red, orange,
green, etc.). Second, given the emergency’s location and the
newly acquired urgency code, a dispatcher selects and directs
a number of vehicles to the call. The latter is the decision
making process of interest in this work.

Current representations of emergency medical services
(EMS) problems are diverse. Broadly speaking, EMS trans-
portation research can be categorised into one of three prob-
lems: a) set covering, b) vehicle allocation, or c) vehicle
dispatching (or more broadly, subset selection). Covering
problems aim to identify the location of facilities a priori, such
as to minimise the response time to any possible emergency
[1]. Vehicle allocation problems aim to allocate a fleet of
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vehicles to a geographically set number of facilities such as to
best handle an incoming call load [2] in an a priori and/or real-
time manner. It is not uncommon to see these problems solved
sequentially [3]. Ambulance dispatching, however, must be
solved in response to emergencies as they occur, which is a
hard optimisation problem.

Consider a graph of arc-connected nodes. A subset of nodes
are designated hospitals, to which a fraction of patients must
be transferred. Likewise a subset of nodes are facilities, at
which a limited number of idle ambulances are permitted to
wait. The objective of ambulance dispatching is to identify
a subset of idle vehicles such that given a new arc-based
emergency, a) the emergency demand requirements are met
in minimal time, b) the first response time is minimised, and
c) the first response time to the next (unknown) emergency
is minimised. Several constraints must be adhered to during
this process. For example, at least one ambulance of each
required fype must be present for its component of the total
required treatment duration prior to the emergency being
deemed complete. More ambulances of a type (up to the
maximum) will speed up this process.

Often, in practice, selecting the closest idle vehicle is
deemed an acceptable dispatching strategy. Sending the closest
idle vehicle is easy to implement, understand, and audit,
so it remains popular. However, it has been long-known
that the closest-idle method is not always the most reliable
technique [4], [5]. Somewhat counter-intuitively, instead, we
must consider foregoing an optimal arrival time to the current
patient in order to possibly serve the non-existent next patient,
better. This principle is clearly evident in air rescue services,
where often such resources are extremely limited and only
deployed as a last resort [6], increasing the odds the equipment
is available to those that absolutely need it.

While filtering calls into their respective urgency codes has
an extensive foundation in medical and paramedic research [7],
[8], vehicle subset selection does not. A “multiple-response”
strategy was proposed in [9], allowing several vehicles to
attend each event. Their work focuses on identifying which
type of vehicle(s) should attend an emergency then identifying
the specific response vehicles. They integrate into the reward
function both set coverage theory and a function indicating the
vehicle type’s utility relative to task urgency. Such complex
methods have proven effective to date and have therefore been
extended, as in [10], to further iterate on the method.

However, the “closest-idle” heuristic is successful because
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of its simplicity which is a characteristic current alternatives
lack. Various manually designed heuristics have been proposed
to overcome the bias toward short-term thinking of the closest-
idle policy [11], [12]. Such heuristics aim not to always
generate an optimal solution, but instead to quickly provide
a high quality one. However, manually-designed heuristics are
costly to develop as they rely heavily on the domain knowledge
of experts. While these particular designs may be fast to deploy
and provide a “good enough” solution in many cases, we
suspect better, more generalisable rules exist.

The Genetic programming hyper heuristic (GPHH) algo-
rithm has proven effective at exploring the heuristic space
of complex problems. GPHH utilises Darwinian theory to
combine a primitive set of functions and state variables
to form program trees that are used in a simulation to
construct solutions. In both scheduling and routing, GPHH
learns heuristics that repeatedly compete at state-of-the-art
level [13]-[15]. GPHH evolves an effective decision-making
heuristic [16] employed within a domain-dependent solution
construction procedure (SCP) [17]. The SCP of this work is
an ambulance dispatching simulation environment. Despite its
potential applicability to this problem domain, to the best of
our knowledge, GPHH has not been applied to ambulance
dispatching.

The primary goal of this paper is to perform an exploratory
analysis of whether GPHH is fit for ambulance dispatching.
There are several sub-objectives associated with this goal:

1) Formulate a baseline mathematical representation of the
real-world problem faced by ambulance personnel.

2) Design a solution construction procedure to simulate am-
bulance dispatching in line with the new problem model.

3) Implement a pilot GPHH, including the design of several
novel terminal features.

4) Examine the effectiveness of the new SCP and GPHH in
comparison to existing manually designed rules.

We define the new problem in Section II-A before exam-
ining the existing literature in Section II-B and providing an
overview of the general GPHH algorithm in Section III-A.
Section III-B outlines the SCP and the implementation-specific
aspects of the GPHH. We present our experiments and perform
high-level analysis in Section V before closing with our
intended research direction.

II. BACKGROUND
A. Problem Definition: Ambulance Dispatching Problem

An ambulance dispatching problem (ADP) instance occurs
on a directed graph G = (V, A) consisting of vertices V' and
arcs (directed edges) A. Let I C V be the set of homogeneous
facilities, each with a maximum vehicle capacity Q). Let H C
V' be the set of homogeneous hospitals, to which the necessary
patients be transferred. Hospitals may double as facilities, in
which case |F'N H| > 0. Each arc ¢ € A has a positive
traversal time t,.

A fleet of respondent vehicles R attend to calls. Three
distinct subsets Ry, Ro, R3 C R, respectively distinguish Ad-

vanced, Basic, and Community Life Support vehicles, denoted

ALS, BLS, and CLS. Both ALS and BLS vehicles can transport

one patient to hospital while CLS vehicles have zero capacity.
Each emergency call ¢ € C has several characteristics:

e an arrival time m; in minutes since “midnight”;

o an arc on which the call has occurred a; € A;

e a point af; € [0,1] along a; denoting precisely where the
emergency occurred (in lieu of a street address);

« a demand vector d; of non-negative integers, indicating the
number and types of vehicles required in order to provide
adequate care: d; = [d},d?,d3];

e a positive treatment time 7; required per unit of demand,
thus total required treatment time is 7;d;; and,

e a binary variable h; € {0,1} indicating whether a patient
requires hospitalisation.

A solution to an ADP instance is represented by a binary
matrix X where x;; = 1 indicates that vehicle j is assigned to
call 7 and x;; = 0 otherwise. The start and completion time of
each vehicle for each call can be calculated from a simulation
with non-delay strategy. The objective of ADP is to minimise
the mean response time (r;) plus true treatment time (7;) over
all calls. 7; is defined as the time between the first vehicle
arriving on scene and when the patient is either discharged or
en route to hospital. The objective is defined by Equation 1.

ICl

1
min @Z(ri+fi)- 9]
i=1

We enforce several constraints to ensure a solution is valid:

« A vehicle can be assigned to an emergency only after the
call is received.

o A vehicle can arrive at an emergency only after the time
it is assigned.

« A vehicle can only be assigned to a single emergency at
a time.

« An emergency must receive the required treatment time
7; from each requested vehicle.

« No excess vehicles may be sent to an emergency, however
fewer than the requested number may attend.

« Once an ambulance arrives on site one must remain until
treatment is complete.

o All values of X must lie in the binary domain.

The above model is designed for the ambulance dispatching
problem, however at its core, this task is simply a Subset
Selection Problem. Remaining in an emergency context, we
may similarly apply such a model to police or fire dispatching.
In principle, our goal is to design a GPHH capable of selecting
several members of a larger group.

B. Related Work

1) Ambulance Dispatching: we break the ambulance dis-
patching literature into two: those whose goal is to generate
a solution to a specific instance and those whose goal is to
generate a method that in itself can generate a solution to any
instance.
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Several evolutionary methods have been employed to solve
instances directly, in particular PSO [18], ant colony opti-
misation [19], [20], and genetic algorithms [21]. Principles
such as the Petal Algorithm [22]-[24] have been important
in the development of this space [18]. Often, such problem
considerations include stochastic travel times, considering
real-world aspects such as traffic and speed limit restrictions.
Stochastic programming is often applied to this area [9],
[10], [25], [26], usually optimising both vehicle allocation
in a first stage, then dispatching in a second. The authors
of [9] introduce the concept of multiple response, whereby
the model can send several vehicles to a single emergency.
This is a very important real-world consideration as often
having several paramedic staff on hand is critical to managing
and obtaining all relevant information from witnesses on-site.
In [10], the same authors additionally consider non-transport
vehicles which are often used to handle non-urgent calls that
do not require hospitalisation.

We have found three heuristics specific to ambulance dis-
patch. First, choose the closest-idle ambulance, however serve
patients in severity order. Further, an ambulance en-route or
present at a non-urgent call may be redirected should another
vehicle be capable of replacing it within a given response
time threshold [12]. Second, a region (a discretised “demand”
node) is said to be more prepared if more vehicles are nearby.
A more prepared region is able to contribute more vehicles
to a new emergency [11]. Third, select the ambulance that
can respond within a given response time threshold while also
minimising marginal coverage; a function of both emergency
demand and the availability quotients of neighbouring vehicles

[5].

2) Genetic Programming Hyper Heuristic: The principle of
the GPHH method is to use GP to evolve low-level heuristics
[16], [27] that in turn construct solutions to a given problem.
i.e. GPHH searches the space of heuristics.

GPHH has been extensively applied to transportation prob-
lems. In arc routing, heuristics are used as routing policies,
determining an idle vehicle’s next task [17], [28]. GPHH for
arc routing has been used alongside other learning strategies
such as ensemble learning [29], niching [14], and transfer
learning [30], [31]. GPHH is also extremely effective in job
shop scheduling both in its standard [32], [33] and multi-
task representations [34]. Likewise, GPHH for scheduling has
been paired with other learning techniques such as surrogate-
assisted cooperative co-evolution [35].

There are many other fields in which GPHH has proven
effective. Project scheduling [36], bi-level cloud pricing opti-
mization [37], flow-shop scheduling [38], and online resource
allocation [39] offer but a few examples. The intent here is to
highlight the flexibility of GPHH. Such a breadth of success in
tasks not dissimilar to ambulance dispatching award us some
confidence that GPHH will adapt well to this problem.

Algorithm 1 The general framework of the GPHH
1: Randomly initialise a population of heuristics;
2: while the stopping criterion is not met do
Evaluate the current population via a suitable SCP;
Generate a child population via genetic operators;
Select individuals from both the parent and child
populations to form the next generation.

[ N NOS)

TABLE I
THE NEWLY PROPOSED TERMINAL UNITS FOR THE AMBULANCE
DISPATCHING SCP.

Event Context

Arrival Rate The global rate at which calls have been
arriving thus far.

ArrivalTime The time (minutes since midnight) at which
this call arrived.

CurrentTime The current time (minutes since midnight).

DistClosestAlt Time the closest other vehicle (of the can-
didate’s type) is from the emergency.

ElapsedTime The minutes since this call arrived.

EnRoute A binary output indicating whether the can-
didate is currently assigned and travelling to
a different emergency.

Hospital Req A binary value to indicate whether this call
requires hospitalisation.

AssignedDef The number of vehicles of the candidate’s
type yet to be assigned to this call.

Demand The number of vehicles of this vehicle’s
type required to attend this call.

FracBusy The percentage of vehicles of this type that
are currently performing a task.

PresentDef The number of vehicles of the candidate’s
type yet to arrive at this call.

QueueClearance The number of vehicles of the candidate’s
type required to clear the queue.

TimeDistance The time required for the candidate vehicle
to travel to this emergency.

TimeRemaining Given the vehicles currently present, how

much longer until the task is complete?

III. PROPOSED GPHH FOR AMBULANCE DISPATCHING
A. A New Genetic Programming Hyper Heuristic

Algorithm 1 shows an overview of the GPHH process [17],
[28], [40]. In the context of ambulance dispatching, Algorithm
1 evolves dispatching policies; heuristics in the form of priority
trees. A dispatching policy is used to evaluate the state, given
a new call, and identify the precise vehicle(s) of each type that
should respond. To evaluate the effectiveness of each dispatch
policy, each is used to generate solutions to a set of training
instances that change each generation. The fitness of the policy
is set as the mean fitness value across its training set. Subtree
crossover, subtree mutation, and reproduction constitute the
genetic operators and the stopping criterion is reaching the
maximal number of generations.

1) Genetic Programming Primitive Set: in order for a
GPHH to successfully learn a domain, it must be provided
with building blocks containing sufficient state information
(terminals) from which it can evaluate the current environment.
Our terminal set is described by Table I.

Functions operate on terminals. The function set used in
this work consists of {+, —, *, %, min, max,if}, where %
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Fig. 1. The events system framework of the Solution Construction Procedure
for Ambulance Dispatching. With relation to event triggering time, orange
arrows indicate transitions that involve positive processing time; red, otherwise
orange transitions that may be interrupted in order to serve a new, more urgent
call (e.g. a vehicle en route to call A being redirected to call B); and blue,
transitions that occur instantaneously. Black dotted lines show the passing of
vehicles to and from the idle vehicle set.

represents protected division (x/0 = 1), and ¢f returns
the output of subtree 1 if subtree O is greater than 0 and
subtree 2 otherwise. {+, —, *, min, maz} take their traditional
arithmetic meanings. Together, the terminal and function sets
constitute the primitive set.

B. A New Solution Construction Procedure

An SCP is a simulated invocation of a specified problem.
In this case, that defined in Section II-A. While an SCP
may abstract away from a real-world problem, ensuring an
approximate representation is critical to the feasibility of
applying a learned policy in practice.

1) Event Management for Ambulance Dispatching: Figure
1 shows a high-level overview of the SCP for ambulance
dispatching. The SCP is a simulation where each discrete
vehicle constructs a chain of temporally linear sequential
events. Table II provides additional context for each of these
events. Algorithm 2 shows the procedural steps by which the
execution of these events is handled, which follows closely that
of [17], [28], [40]. The pseudocode for a CallProcessing
event is shown in Algorithm 3 as an example of when and
how the GPHH-evolved dispatch policies are used to make
decisions.

IV. EXPERIMENT DESIGN

In order to verify the effectiveness of the proposed GPHH
method, we use two existing manually designed rules from the
literature. First, the standard closest-idle rule (CIDP). This will
allow us to compare our performance against many existing
ambulance dispatching services internationally. Second, we
borrow the concept of preparedness [11] and modify it to suit
our particular use case. Instead of identifying the preparedness
of each facility as in the original work, we calculate each

TABLE II
THE EVENT SET CREATED DURING THE SOLUTION CONSTRUCTION
PROCEDURE FOR AMBULANCE DISPATCHING.

Event Context

CallProcessing Created upon receipt of a new call. A dis-
patch policy selects the vehicle(s) that will
attend, creating one C'allGoT o for each.
Created when a vehicle has been assigned to
a call. Creates a Call Arrival to trigger at
a calculated arrival time. May be interrupted
by a Clall Processing event.

Triggers when a vehicle arrives at an emer-
gency. Calculates an estimated finish time,
updates other vehicles assigned to this call
(i.e. with the new completion time; en route
vehicles may not need come) and creates
either a HospGoT o or CallCompletion
depending on C}, this vehicle’s type, and
whether there are already vehicles present.
Created when a vehicle has been designated
as the transfer vehicle, or when waiting
for another ambulance type to complete its
service allocation. Executes on call comple-
tion, creating a HospArrival.

Triggered when a vehicle arrives at a hospi-
tal, creating another HospArrival to trig-
ger after 20 mins (a default value to account
for transferring the patient Duty of Care to
hospital staff).

Triggered when a vehicle not assigned
to transfer the patient has completed
its component of the task. Creates a
CallConsideration event.

Created when a vehicle actively becomes
idle. It considers serving all emergen-
cies that have already arrived but do
not currently have enough vehicles as-
signed. Creates either a FacilityGoT o or
a CallGoTo event.

Created when there are no suitable emer-
gencies for a newly idle vehicle to attend.
Creates a Facility Arrival event to trigger
at the expected arrival time. May be inter-
rupted by a Call Processing event.
Updates the vehicle’s location and incre-
ments the facility’s current vehicle load.

CallGoTo

CallArrival

HospGoTo

HospArrival

CallCompletion

CallConsideration

FacilityGoT o

Facility Arrival

Algorithm 2 The solution construction procedure for ambu-
lance dispatching.

Input: A problem instance I (with n calls), the ambulance fleet R, and
dispatch policy h(.).
Output: A solution X = (n, m)
: Initiliase an empty event queue I' and simulation state &
: for each vehicle » € R do
I' < new FacilityGoTo event at time 0

1
2
3
4: while I' is not empty do
5
6
7

€ < top (min start time) element removed from I"
trigger € to update X and &

: return X = (n,m)

candidate vehicle’s “preparedness”: the fraction of the graph
that it uniquely covers within a given response time threshold
(RTT = 6 minutes). We denote this policy the Preparedness
Dispatch Policy (PDP). The calculation of PDP is shown in
Algorithm 4.

There is one distinct graph in Arc Routing’s EGL-G dataset
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Algorithm 3 Triggering a C'all Processing event.

Input: the emergency e, state £, dispatch policy h(.), and current time w.
1: R; < the idle vehicle set from &

2: Ry <« filter infeasible candidates from R;

3: if Ry is empty then return null

4: iter < empty priority queue

5: for each candidate r in Ry do
6: pr < h(r,e) > Apply the dispatch policy
7: add [r, pr] to iter

8: while iter is not empty do

9: top < highest rated element of iter
10: veh < top[0]

11: Duveh,e  topll]

12: if e has enough of veh type vehicles then

13: continue

14: if veh is en route to a call then > Should we interrupt this vehicle?
15: miniPool < a new candidate set containing only veh

16: Update &, removing curr as veh’s current task

17: Dveh,curr < h(veh, curr) > Apply the dispatch policy
18: if pyen,e < Pveh,curr then > Yes, interrupt
19: Remove veh’s previous event from the event queue I'

20: ' < new CallGoT o(w, veh, e)

21: Update &, adding e as veh’s current task

22: else > No, don’t interrupt
23: Update &, returning curr as veh’s current task

24: else if veh at or en route to a facility then

25: Update &, adding e as veh’s current task

26: Update &, leaving facility

27: T < new CallGoTo(w, veh, e)

28: else

29: Update &, adding e as veh’s current task

30: T < new CallGoTo(w, veh, €)

31: if e’s demand is not satisfied then

32: Y+ e > Add e to the waiting call queue.

Algorithm 4 The calculation of the Preparedness policy.

Input: the current vehicle veh and the set of vehicles R.
1: A < new map from each vehicle to an empty set of arcs
2: A < new empty set of previously ‘covered’ tasks
3: for each Vehicle j € R do
for each Arc a € A do
if dist(j, a) < RTT then
if a not in A then
add [j, a] to A

LRk

add a to A
else
10: for each Vehicle j € R do
11: remove [j, a] from A

12: return |Afveh]| / |A]

from which we generate seven unique graphs by first removing
edges with zero-demand (providing EGL-GI and EGL-G2)
then randomly removing an additional 5%. Note that we
select the largest sub-graph should the resultant graph become
disconnected. Upon each graph, Instances are generated, each
representing one “day” in the life of an ambulance service. An
instance consists of a random number of calls throughout the
day given a temporally variant call frequency distribution (as
shown in Figure 2), a bounded random number of A/B/CLS
vehicles, and a random placing of a fixed number of hospitals
and facilities.

At each generation during training, a rule generated by
GPHH is evaluated on five different instances (i.e. five days).
This five instance set is changed at each generation in order to
force the population to continue learning. With 51 generations,

TABLE III
THE GENETIC PROGRAMMING TRAINING PARAMETERS.

Parameter Value Parameter Value
Population size 1024  Crossover rate 80%
Generations 51 Mutation rate 15%

Tournament size 7
Maximal depth 8

Reproduction rate 5%

TABLE IV
THE TEST PERFORMANCE OF THE CIDP, PDP, AND AVERAGE GPDP
DISPATCH POLICIES ON THE EGL-G DATASET.

Test Fitness

Instance V| |A] CIDP  PDP GPDP
EGL-G1-1 244 329 67.58 64.67 62.54(0.29)
EGL-G1-2 248 334 68.17 6529  63.10(0.24)
EGL-G1-3 249 336 7776 7421  71.17(0.33)
EGL-G2-1 255 358 36.88 36.08 35.99(0.01)
EGL-G2-2 254 366 36.80 36.00 35.91(0.01)
EGL-G2-3 253 354 3697 36.13  36.05(0.01)
EGL-G2-4 255 362 3690 36.08 35.99(0.01)

Overall mean  251.14 34843 5399 49.78 48.68(-)
EGL-GIl mean 247.00 333.00 71.07 68.06 65.60(0.29)
EGL-G2 mean 25425 360.00 3691 36.07 35.99(0.01)

this means there are a total of 255 instances in the ’training
set’. During testing, the best rule of each generation is applied
to 500 instances in the ’fest set’, whereby the average total cost
defines the policy’s final effectiveness. Their average fitness
determines the fitness of an algorithm on that graphical base
instance (i.e. the original EGL-GX-Y instance). We repeat
such tests using 30 unique random seeds in order to identify
statistical significance via Wilcoxon Rank Sum.

The SCP and GPHH algorithms are implemented in Java us-
ing the ECJ Library [43]. The remaining genetic programming
parameters are highlighted in Table III, following settings used
previously in the Uncertain Arc Routing literature.

V. RESULTS AND DISCUSSIONS

Table IV shows the performance of the three different
dispatch policies on the seven tested base instances. Note that
only the new method, GPDP, shows its standard deviation as
this is a measure of how variant a number of policies act
across the test set. CIDP and PDP are single policy methods so
therefore cannot be assigned such a measure. Figure 3 shows
the distribution of GPDP test fitness on a single instance, in
this case EGL-GI-1, in comparison to the fitness values of
CIDP and PDP.

We make several observations of Table IV:

e Overall, performance significantly decreases on EGL-GI-
based instances over EGL-G2-based instances (i.e. the total-
cost is higher). This is most likely because critical edges in
the EGL-GI instance files contained zero demand and were
therefore excluded from the graph prior to the random 5%
arc exclusion. Figure 4 shows the EGL-G base graphs (i.e.
the distinct graphs after removing zero-demand edges, prior
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Percentage of calls received

Hour of the day

Fig. 2. Call arrival variance in the real world. This trend is observed in the Marin County emergency dataset [41] and in several other works [9], [42].

~ T X . 4
- = ® i *f ’
£ ! ! ! ! \ m| m%’gog*o % e . ‘ .
62 63 64 65 66 67 68 NS D%\“% - > N %o@“’%dg oo
Test fitness N Pl AN
® o £8& B °
o\ "% € o . 4y °
Fig. 3. The distribution of GPDP test fitness on EGL-G1-1. The red square e~ 2/ Tpoe. o ° «
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to random edge removal), in which it is evident that critical .. B
edges are missing from the EGL-GI graph, particularly %, s . & o
through the central column (highlighted in yellow). As a Yy ™ % N !
result, traversing from one side of the graph to the other « \%’gw = \ W b s iy
would become more limited and therefore likely more L £ oog%i/ T
expensive. e ;9% AN P oooo
o PDP outperforms CIDP on all instances. This advantage is | O“’%: y ! . ZEBE
particularly evident on the EGL-GI-based instances (a mean i 4
improvement of 4.33% vs 2.22%). We therefore deduce that s
the PDP policy is better able to handle more sparse networks ¢ ° °
by identifying the vehicles that offer unique coverage to hard
to access areas of the graph. Fig. 4. All EGL-GI1 (G-2) graphs are constructed from the upper (bottom)

o Despite the GPDP being a preliminary implementation, on ~ &aph, with 5% of edges randomly removed.
all instances, the proposed method outperforms both manual
comparison rules. ) ) )

o For a raw GPHH-based method, GPDP is particularly stable Given the requirement of multiple response for many
on the EGL-G2-based instances. Such behaviour suggests tasks, the rule may have learned to avoid sending a vehicle
that GPHH repeatedly finds a local optima and cannot to a task at Wh}Ch they simply have to wait (due to the
escape. Examining several of the best performing EGL-G2- no gap Constraint).

4 test rules would suggest this is not necessarily the case. Both rules are fundamentally different in their approach to
Figures 5 and 6 show two such rules: selecting vehicles, yet achieve a very similar test fitness.

Perhaps instead of being caught in the same local minima,

GP has reached its performance limit with the primitive set

provided, and there are multiple paths to the same objective.

Deeper analysis is required in order to understand the true

decisions being made by each rule to better understand

where differences lie.

— The first rule strongly prefers vehicles that are near to the
emergency, however additionally selects a vehicle more
frequently if its type is of high demand in the queue
or the arrival rate is high. Given the current SCP only
considers queued emergencies when a vehicle becomes
idle, this rule may have learned to select vehicles of the
needed types in order to add them to the emergency queue The size of rules generated by GP is of particular interest
pipeline. to scholars, as a smaller rule is typically faster to compute

— The second rule balances the ratio between the closest and easier for a human to parse. Figure 7 shows the average
alternative vehicle to the emergency and the candidate ve- program size across all instances. This correlates with the
hicle, preferring vehicles that have an alternative nearby. improvement in test performance observed, shown in Figure
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Fig. 6. An example of an effective rule learned on Instance EGL-G2-4.

8. Interestingly, without direct instruction to do so, the GPHH
has learned that smaller rules are more effective. This directly
tracks with one of our primary motivations for using GP: to
develop more interpretable dispatch policies.

VI. CONCLUSIONS AND FUTURE WORK

The primary goal of this work was to determine whether
the GPHH method was capable of learning dispatch policies
for Ambulance Dispatching. Specifically, could GPHH design
a policy that, given an unexpected emergency and a set
of idle ambulances, could select a better suited subset of
vehicles than the intuitive and commonly used CIDP. Without
a doubt, we have shown that GPHH can outperform such
naive dispatch methods. Having defined a mathematical model
for the Ambulance Dispatching Problem, we design a novel
SCP that adheres to the problem constraints in which we
can evaluate the effectiveness of any given dispatch policy.
The proposed SCP provides a core foundation from which
future works can build and continue to evaluate methods.
A preliminary GPHH model is proposed and assessed on a
series of instances generated from the well-known EGL-G Arc
Routing dataset against two manually designed rules, including
the closest-idle rule. GPHH is shown to perform best on all
tested instances, marking promise for the technique in the field.

There are several areas we intend to explore in future works.
First, we need to better understand several discrepancies of this
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Fig. 7. The average evolved program size.
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Fig. 8. The average GPDP test fitness.

paper: a) why there is such a fitness variation between EGL-
G1 and EGL-G2-based instances, b) why GPDP has such a
low standard deviation on EGL-G2-based instances, and c)
to gain a better understanding of how the learned dispatch
policies behave in and impact the solutions generated by the
SCP. Second, we intend to expand the problem model to step
the representation further towards reality. To do so, we shall
begin to include factors such as uncertain traversal times, duty
of care transfers, and signal, flexible ambulance demand, and
crew shift window limitations.

Finally, if you are the author of an Ambulance Dispatching
or Subset Selection method and are willing to share your
source code, we would like to use your work as a benchmark.
Please contact us via the emails above.
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