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Abstract—Genetic programming (GP) has achieved great suc-
cess in evolving effective scheduling rules to make real-time
decisions in dynamic flexible job shop scheduling (DFJSS). To
improve generalization, a commonly used strategy is to change
the training simulation(s) at each generation of the GP process.
However, with such a simulation rotation, GP may lose potentially
promising individuals that happen to perform poorly in one
particular generation. To address this issue, this paper proposed a
new multi-tree GP with archive (MTAGP) to evolve the routing
and sequencing rules for DFJSS. The archive is used to store
the potentially promising individuals of each generation during
evolution of genetic programming. The individuals in the archive
can then be fully utilized when the simulation is changed in
subsequent generations. Through extensive experimental tests,
the MTAGP algorithm proposed in this paper is more effective
than the multi-tree GP without archive algorithm in a few
scenarios. Further experiments were carried out to analyze the
use of the archive and some possible guesses were ruled out.
We argue that the use of archives does increase the diversity
of the population. However, the number of individuals in the
archive that ranked in the top five of the new population is
small. Therefore, the archive may not be able to greatly improve
the performance. In the future, we will investigate better ways
to use the archive and better ways to update individuals in the
archive.

Index Terms—dynamic flexible job shop scheduling, genetic
programming, archive

I. INTRODUCTION

Job shop scheduling (JSS) [1] is an important combinatorial

optimization problem that has the purpose of optimizing re-

source allocation. Flexible job shop scheduling (FJSS) [2] is an

extension of JSS, and the problem is more complex. In FJSS,

an operation can be processed on a set of optional machines. It

is well known that FJSS is NP-hard [3]. In the real world, the

scheduling process is carried out under dynamic events, such

as the arrival of new jobs, order cancellations or modifications,

processing time uncertainties, and machine breakdowns, which

is known as dynamic flexible job shop scheduling (DFJSS) [4],

[5]. DFJSS is a more complex problem than FJSS and it is

an attractive aspect of manufacturing systems, which has been

intensively studied in the previous decades.

In this work, we consider DFJSS with new job arrivals, that

the information about the job is unknown until the job arrives.

Over the years, many approaches have been proposed to solve

the DFJSS problem. Dispatching rules are the most widely

used methods in the industry to deal with the DFJSS problem

because of its simplicity of implementation and ability to react

in real time. Many empirical studies [6]–[9] have shown the

success of using dispatching rules for the DFJSS problem.

Although dispatching rules have the advantage of generating

schedules instantaneously, their design involves demanding

experimental studies and is very difficult. Hyper-heuristics

[10] has been applied to generate high-level heuristics by

selecting or combining a set of low-level heuristics. These

new high-level heuristics are then applied to solve various

types of NP-hard problems. Genetic programming hyper-

heuristics (GPHH), as a hyper-heuristic method, has been

widely used to automatically evolve dispatching rules that

produce high quality schedules for DFJSS. Literature reviews

[11]–[17] have been conducted to show the advantages of

the dispatching rules evolved by genetic programming. To

improve the generalization of the dispatching rules evolved

by GP, most existing methods [11], [14], [15], [18] typically

change the training DFJSS simuations during the GP training

process. In other words, the random seeds of the DFJSS

simulations are reset in each new generation. This strategy

is similar to the mini-batch learning [19], which splits the

training set into mutually exclusive subsets (i.e., batch), and

uses a different subset in each training step. Although such

simulation rotation has shown its effectiveness in previous

studies, it still has limitations. One major limitation is that the

GP does the individual selection purely based on the fitness at

the current generation. As a result, some potentially promising

individuals may be lost if they happen to have poor fitness for

the simulation in the current generation.

To address the issue above, this paper proposes to use

an archive in GPHH to store potential individuals of each

generation. Archive is an important technique that has been

used to assist in solving some scheduling problems. Existing

works mainly use archive to store and maintain the solutions

obtained during the optimization procedure for multi-objective

problem [20]–[22]. The use of archive helps to find better

solutions in the evolutionary process and to compare the

distance of these solutions, i.e., to analyze whether the result

is trapped in a local optimum. In this paper, the archive is

used to store individuals during the evolution process.978-1-7281-8393-0/21/$31.00 ©2021 IEEE
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The overall goal of this paper is to develop an effective GP

method with archive to automatically evolve better dispatching

rules for DFJSS. The main contributions of this paper are listed

as follows:

• A multi-tree GP method with archive (MTAGP) to evolve

dispatching rule is proposed. This method considers not

only individuals in the current generation, but also indi-

viduals in the archive.

• Proper strategies are designed to update the archive

and the archive is used during the GP process to store

potential individuals (dispatching rules) acquired during

the evolutionary process in each generation.

• The effectiveness of the proposed algorithm was verified

and the experimental results are analyzed by comparing

it with the multi-tree GP without archive (MTGP).

II. BACKGROUND

A. Dynamic Flexible Job Shop Scheduling

In the shop floor, there are a set of machines M =
{M1,M2, ...,Mm}. In a DFJSS problem, the jobs J =
{J1, J2, ..., Jn} arrive at the shop floor over time. Each job Ji
has a sequence of operations Oj = {Oj1, Oj2, ..., Ojlj}. Each

operation Oji can only be processed by one of its optional ma-

chines π(Oji) ⊆ M and its processing time σ(Oij) depends

on the machine that processes it. Each operation Oji cannot

be processed until its preceding operation Oj,i−1 has been

completed. DFJSS aims to determine which operation will be

chosen to process next by a idle machine (i.e., a machine that

is not processing any operation) and which machine will be

chosen to process the ready operation (an operation with its

preceding operation already completed). In DFJSS, the jobs

arrival to the shop floor dynamically, and the information of

a job (e.g., operations, processing time of each operation, due

date) is unknown until the job is arrived.

There are a variety of objectives that can be considered in

DFJSS, such as the total tardiness, makespan, mean flowtime,

total flowtime , etc. In this paper, We consider max flowtime,

mean flowtime, and mean weighted flowtime as the three ob-

jectives in the DFJSS problem. Here, we use Fmax, Fmean,

and WFmean to represent the max flowtime, mean flowtime,

and mean weighted flowtime, respectively. The objective func-

tion is shown in the following.

• Minimisation Fmax = max {C1 − r1, ..., Cn − rn}

• Minimisation Fmean =
∑

n
j=1

(Cj−rj)

n

• Minimisation WFmean =
wj×

∑
n
j=1

(Cj−rj))

n

where, rj , wj and Cj are the release time, weight and

completion time of the job j.

In addition, some normal assumptions, such as no recircu-

lation of jobs, no alternate routing and no machine breakdown

are taken into considered in this work.

B. Dispatching Rules for Dynamic Flexible Job Shop Schedul-

ing

A dispatching rule is a priority function used to calculate the

priority of the candidate machines or operations based on the

current system state and the state of the candidate machines

and operations. In DFJSS, a dispatching rule consists of a

routing rule and a sequencing rule which is used when the

decision point is arrived. In DFJSS, there are two kinds of

decision points. Once a machine becomes idle (sequencing

decision point), preceding operation decided by the sequencing

rule will be selected as the next task for this machine. Once an

operation becomes ready (routing decision point), preceding

machine determined by the routing rule will be selected

to process this operation. The most commonly considered

features by the dispatching rules include WIQ (the works in

queue), PT (the processing time of operation), SL (the slack)

and so on [23], [24]. Dispatching rule is an efficient method

to make fast decisions at decision points and can cope well

with dynamic events.

C. Genetic Programming Hyper-heuristics

Hyper-heuristic as a heuristic search method aims to select

or generate heuristics to efficiently tackle hard computa-

tional search problems. Hyper-heuristics are often used in

conjunction with machine learning techniques to meet their

goals. GP, as a hyper-heuristic method, with the advantages

of flexible representations, has been successfully applied to

evolve dispatching rules for solving DFJSS problem [25], [26].

The whole process of GP can be divided into two phases,

namely the training process and the test process. The output

of the training process is a heuristic, which in DFJSS is the

dispatching rule. Then, the evolved dispatching rule is used

as the input to the test process, which allows measuring the

performance of the dispatching rule.

The traditional evolutionary process of genetic program-

ming includes three main processes which are population

evaluation, selection, and evolution (reproduction, crossover,

mutation). In particular, crossover and mutation are two ex-

tremely important processes that determine the evolutionary

direction of populations and the merit of their solution. In this

paper, archive is used to select dominant populations and thus

further influence the direction of crossover and mutation.

D. Related Work

Existing methods [9], [11], [12], [14], [15], [24], [26] that

use GP for solving DFJSS problem generate new training

DFJSS simuation to evaluate individuals in each generation.

The individuals of each generation are obtained based on

the population breeding of the previous generation. However,

previously eliminated individuals may perform well in sub-

sequent simulations. Therefore, in order to take advantage

of individuals already generated in the process of breeding,

a multi-tree GP method with archive (MTAGP) is proposed.

Archive techniques are mainly applied in multi-objective prob-

lems [27]–[30]. For example, Nguyen et al. employ an external

archive to store the non-dominated scheduling policies for

solving multi-objective DFJSS [31]. New individuals will be

created from parents in the archive through crossover, which

will help to focus the search for non-dominant scheduling

policies in the early stages of the evolution. Zhang et al.
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Fig. 1. The flowchart of the proposed MTAGP method.

incorporate strength Pareto evolutionary algorithm 2 into the

GPHH method to solve the multi-objective DFJSS problem

[32] with archive assisted. In a word, the archive plays an

important role in solving multi-objective problems.

However, to the best of our knowledge, there is currently

no method to store promising individuals during GP evolution

using archive.

III. THE NEW APPROACH

In this section, the framework of the proposed MTAGP is

illustrated first. Then, the mechanism of archive update is de-

scribed. Finally, the niching and surrogate assisted mechanism

is introduced.

A. The Main Framework of the Proposed Method

The multi-tree GP proposed in [23] is used as the basic

framework. Then, this paper improves the multi-tree GP with

the help of niching, named MTGP which is used as the

baseline method. Further, improve the MTGP with archive,

which is named as MTAGP. The flowchart of the MTAGP is

shown in Figure 1.

The main processes of GP, including selection, replication,

and mutation are adopted from the classical GP method. The

main differences between the proposed MTAGP and MTGP

are shown as follows.

1. The individuals evaluated in the population evaluation

process include individuals from the current population as well

as individuals in the archive. When the population evaluation

is completed, the individuals in the archive are evaluated based

on the surrogate model.

2. The individuals in the population are mixed with the

individuals in the archive, and the good individuals with the

Algorithm 1: Update the archive for each generation

G.
Input: The archive: arc, the archive update rate: Rarc, the archive

size: Sarc, the population: pop
Output: The archive: arc

1 int num = 0;
2 while num < Rarc × population size do

3 for i = 0; i < pop.size(); i++ do
4 if arc.size() < Sarc then

5 Check if popi is repeat with the individuals in arc;
6 if Is NOT repeated then
7 arc.add(popi)
8 end

9 else

10 For each individual in arc, normalise rank and
generation;

11 arc.remove(max(rank + 1/(generation+ 1)));
12 Check if popi is repeat with the individuals in arc;
13 if Is NOT repeated then

14 arc.add(popi)
15 end

16 end

17 end

18 num++;
19 end

20 return arc

population size are selected based on the rank to continue

the following process. Therefore, the parent individuals in

the crossover and mutation process include individuals in the

current population as well as individuals in the archive.

In this work, the archive plays an important role in new

population selection as well as breeding process, contributing

to the evolution of quality individuals.

B. Archive Update Strategies

We need to update the archive when the selection process is

finished for each generation. First, we define the archive update

rate, i.e., how many individuals need to be updated each time

the archive is updated. Also, we define the archive size, i.e.,

the maximum number of individuals the archive can have. We

denote the archive update rate and archive size by Rarc and

Sarc, respectively. Then, the following update strategies will

be applied to update the archive.

• For each generation, the number of individuals we update

is decided by Rarc×population size. When the archive

is not full, we select high quality individuals to be

added to the archive. At the same time, we record which

generation this individual come from and its rank in that

generation.

• When the archive is full, we delete the worst individual

from the archive based on rank and generation recorded.

Then add a new high quality individual.

• Each time we update an individual in the archive, we

need to first check if the individual is a duplicate of an

individual in the archive, thus ensuring the diversity of

individuals in the archive.

The details of the procedure to update the archive is given

in Algorithm 1.
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C. How to Use the Archive?

The archive is used after the population evaluation process

and will affect the crossover and mutation process.

First, when the population evaluation process is finished, we

need to evaluate the archive. We evaluate the archive using a

surrogate model. That is, we build a surrogate model at each

generation based on the current simulation and then evaluate

the fitness of each individual in the archive. Then, we combine

the individuals in the population and the individuals in the

archive. Then, we mix the individuals in the population and

the individuals in the archive, and rank the individuals from

good to poor based on fitness. Finally, we select the former

population size individuals from the mixed individuals as the

new population for subsequent breeding process. In this way,

we can expand the diversity of the population.

Second, since the new population contains individuals from

both the original population and the archive, the parents of the

crossover and mutation processes also contain individuals from

both the original population and the archive. Thus, crossover

and mutation processes are also controlled by the individuals

in the archive. In this way, we expect higher quality individuals

to be evolved.

D. Niching and Surrogate-Assisted Strategies

In addition to the use of archive, niching and surrogate

methods are also used in this paper. Niching is used to avoid

the evolution from falling into a local optimum. Surrogate

model is used to evaluate the individuals in the archive, thus

speeding up the evaluation process.

1) Niching: Based on the clearing method in [33], in this

paper, we use niching technique by adding a clearing process

with a radius δ = 0 and a capacity k = 1 after traditional

fitness evaluation. Specifically, δ = 0 means that for each

considered individual, all the remaining individuals with zero

distance (i.e., clones) are cleared. In this paper, phenotypic

characterization (PC) [34] is used to calculate the distance

between different individuals. The representation of PC is a

vector of numerical values, which represents the behavior of

individual (GP tree). k = 1 means that for each individual in

the diverse set, no other individual is within the radius around

it. In this way, we can reduce the number of poor individuals

in the crowded region of the search space and increase the

diversity of the population.

2) Surrogate: The algorithm proposed in this paper is

computationally time-consuming due to the use of the archive,

which indirectly increases the population size. Therefore, in

order to accelerate the evolution of GP with archive, this

paper use surrogate model in [34] to estimate the fitness of

each individual in the archive. The surrogate model helps

to compute approximations of the fitness function efficiently.

Specifically, how should we build and use the surrogate

model? We build the surrogate model at each generation. In

the surrogate model, the number of machines is 10 and the

number of jobs is 500. For each generation, we first use the

fixed rule (WSPT for sequencing rule, WIQ for routing rule)

to generate 20 decision situations, where WSPT means the

shortest processing time of the operation with considering the

job weights and the meaning of WIQ can be seen in Table

I. Then we calculate the PC of each individual in population,

respectively, and save them as the nearest neighbor surrogate

model. When we evaluate the fitness of each individual in

the archive, we calculate the PC of each individual first. We

then use the PC as the input of the surrogate model, and the

distance to all individuals in the population can be calculated

using the euclidean distance between PC. The fitness of the

most similar individual was returned as the estimated fitness

of the individual in the archive. In this way, we expect the

efficiency of archive evaluation to be greatly improved.

IV. EXPERIMENTAL DESIGN

To investigate the effectiveness (the objective values on

test instances) of the proposed MTAGP algorithm in different

scenarios, a set of experiments was conducted.

First, this section describes parameter settings of GP and

the simulation model used in this paper. Then, the test per-

formance is analyzed by comparing the results obtained by

MTAGP and MTGP.

A. Parameter Settings for Genetic Programming

In our experiments, Table I shows the terminal set of GP.

The terminals are set to represent the features associated

with the job, operation and machine. The function set is

{+,−,×,÷,max,min} [35]. The arithmetic operators have

two arguments. The “÷” operator is protected division and

returns 1 if it is divided by zero. The max and min functions

take two arguments and return the maximum and minimum

values of their arguments, respectively. The other parameters

of MTAGP are set as shown in Table II.

In this paper, the archive size is set as 512, which is half of

the population size (1024). That is, it is expected that at most

half of the individuals in the new population will come from

the archive, i.e., the archive can play an important role and

also the original population will be able to continue to evolve.

At the same time, the archive update rate is set as 0.015, which

means that there are 1024 × 0.015 ≈ 15 individuals will be

added to the archive or updated in the archive. The reason why

the archive update rate is set as 0.015 is that, in this way, we

can ensure that the potential individuals at each generation can

be retained until the last generation, i.e., we can take advantage

of the potential individuals of the first generation in the last

generation. At the same time, when the archive is full, the

archive can also be updated to a certain extent, so that the

individuals that have existed in the archive for a long time

can be replaced with different individuals.

B. Simulation Model

In this paper, we use the simulation model as the experimen-

tal model to study the impacts of DFJSS. This paper assumes

that in our simulation, there are 5000 jobs to be processed by

10 machines. A new job will arrive over time for the DFJSS

simulation according to a Poisson process with rate λ. Each

job has a different number of operations that are generated
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TABLE I
THE TERMINA SET.

Notation Description

NIQ the number of operations in the queue
WIQ the work in the queue
MWT the waiting time of the machine = t - MRT

PT the processing time of the operation
NPT the median processing time for next operation
OWT the waiting time of the operation = t - ORT
WKR the work remaining
NOR the number of operations remaining

W the job weight
TIS time in system = t - releaseTime

TABLE II
THE PARAMETER SETTINGS OF GP.

Parameter Value

Population size 1024
Number of generations 51

Method for initialising population ramped-half-and-half
Initial minimum/maximum depth 2 / 6

Elitism 5
Maximal depth 8
Crossover rate 0.80
Mutation rate 0.15

Reproduction rate 0.05
Parent selection Tournament selection with size 7

Terminal/non-terminal selection rate 10% / 90%
The archive size 512

The archive update rate 0.015

randomly from a uniform discrete distribution between 2

and 10. Additionally, the importance of the jobs may vary,

expressed by different weights. The weights for 20%, 60%

and 20% of the jobs are set to 1, 2 and 4, respectively. The

processing time for each operation is assigned according to a

uniform discrete distribution in the range of [1, 99]. The due

date factor is set to 1.5.

The utilization level is an important factor in simulating

different scenarios. Utilisation level refers to how busy the

machine is. The larger the utilization, the busier the machine

and the harder the corresponding problem. In this paper,

we consider six different scenarios. These scenarios include

three objectives (i.e., max flowtime, mean flowtime, and mean

weighted flowtime) and two utilization levels (e.g., 0.85 and

0.95).

To ensure the accuracy of the data collected, warm-up jobs

(the first 1000 jobs) were used to obtain typical situations

occurring in long-term simulations of the DFJSS system, with

jobs arriving in a continuous arrival way. In this paper, data

were collected for the next 5000 jobs. When the 6000th

job is completed, the simulation stops. Also, we generate

only one replication throughout the evolution, but change the

random seed during each generation of GP to improve the

generalizability of the evolved dispatching rules.

V. RESULTS

A. Test Performance

To verify the effectiveness of the proposed algorithm

(MTAGP, multi-tree GP with archive) in this paper, it is

<Fmax, 0.95, 1.5> <Fmean, 0.95, 1.5> <WFmean, 0.95, 1.5>
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Fig. 2. Convergence curves of test fitness on six scenarios.

compared with the MTGP algorithm (multi-tree GP without

archive). Also, in order to make the results realistic and

credible, for each scenario, 30 times of training is performed,

and for each training, 30 times of testing is performed. Then

the Wilcoxon rank sum test with a significance level of 0.05

was used to verify the performance of the proposed method.

“−/+” indicates that the corresponding results are significantly

better than, or worse than the results of the comparison

algorithm. In addition, to accurately verify the usefulness of

the archive, we also conducted experiments on the MTAGP

without surrogate assisted methods, that is, to exclude the

impact of the potentially inaccurate evaluation of the archive

due to the use of the surrogate model. The test results are

shown in Table III and Figure 2 shows the convergence curves

of the three algorithms in six different scenarios.

Based on the comparison results, we can see that the

MTAGP algorithm with surrogate assisted performs basically

the same as the MTGP algorithm in most scenarios (i.e.,

<Fmax, 0.85>, <Fmean, 0.85>, <Fmax, 0.95>, <Fmean,

0.95>, <WFmean, 0.95>). However, in one scenario (i.e.,

<WFmean, 0.85>), the MTAGP algorithm with surrogate as-

sisted shows an advantage and achieves a better performance.

Also, we can see that the MTAGP algorithm without

surrogate performs also basically the same as the MTGP

algorithm in most scenarios (i.e., <Fmax, 0.85>, <WFmean,

0.85>, <Fmax, 0.95>, <Fmean, 0.95>, <WFmean,0. 95>).

However, in one scenario (i.e., <Fmean, 0.85>), the MTAGP

algorithm without surrogate achieved a better performance.

Also, according to the convergence curves in Figure 2, we

can see that the MTAGP algorithm without surrogate shows

a remarkable convergence trend in Scenario <Fmean, 0.85>
and achieves better objective function values.

B. Archive Analysis

The main innovation of this paper is the use of archive.

Therefore, this section analyzes the individuals in the archive

in the MTAGP algorithm. There are totally 512 individuals in

archive (Sarc = 512) after the whole training process. Figure 3

shows the generation that each individual in the archive is from
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TABLE III
THE BEST AND MEAN (STANDARD DEVIATION) RESULTS OF 30 INDEPENDENT RUNS OF MTAGP AND MTGP FOR SIX SCENARIOS.

Scenario
MTGP MTAGP MTAGP without surrogate

Best Mean(std) Best Mean(std) Best Mean(std)
<Fmax, 0.85> 1173.14 1241.49(41.28) 1173.32 1235.13(44.73) 1173.95 1247.54(39.93)
<Fmax, 0.95> 1896.30 1966.72(72.47) 1892.24 1978.92(73.63) 1885.85 1962.15(36.86)
<Fmean, 0.85> 383.12 386.78(3.44) 383.30 387.52(4.24) 382.54 385.39(2.66)(-)

<Fmean, 0.95> 545.24 552.93(6.34) 545.71 553.35(6.24) 547.69 554.01(7.13)
<WFmean, 0.85> 826.54 834.65(7.79) 826.31 833.94(9.70)(-) 826.03 833.73(9.35)
<WFmean, 0.95> 1095.54 1113.18(15.73) 1097.37 1119.64(20.31) 1100.14 1113.40(10.37)

<Fmax, 0.95, 1.5> <Fmean, 0.95, 1.5> <WFmean, 0.95, 1.5>

<Fmax, 0.85, 1.5> <Fmean, 0.85, 1.5> <WFmean, 0.85, 1.5>
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Fig. 3. The Rank versus from which generation of individuals in archive on
six test scenarios.

(x-axis) and its rank in that generation (y-axis). According to

Figure 3, it can be seen that, at the beginning of GP evolution,

the number of individuals in the archive does not reach the

set value of the archive size. Therefore, the unduplicated top

15 individuals (no duplication with individuals in the archive,

Rarc × population size = 15) in each generation are added

directly to the archive. When the number of individuals in the

archive reaches the set size, the unduplicated top 15 individuals

in each generation are updated to the archive, while avoiding

duplication of individuals in the archive.

In this paper, the breed elite size is 5. Based on Figure 3, the

potential individuals (top 5 individuals) in archive from each

generation is shown in red circle. We can see that, for each

generation, basiclly the top 5 individuals are add to the archive

and not be deleted during the whole process of GP evolution.

These potential individuals may contribute in the breeding

process. In the six scenarios, for each generation, basically

top 5 individuals were all retained. However, according to the

comparison results in Section V-A, it can be seen that the

potential individuals retained in the archive did not play a

significant role.

C. The Sizes of Evolved Rules

According to the investigation, the smaller the size of the

evolved dispatching rule, the better the interpretability of the

dispatching rule [36]. Therefore, this subsection analyzes the

size of the dispatching rules evolved by the three algorithms.

The mean (standard deviation) results of routing rule size and
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Fig. 4. The mean number of unique features in routing rules per tree.

<Fmax, 0.95, 1.5> <Fmean, 0.95, 1.5> <WFmean, 0.95, 1.5>

<Fmax, 0.85, 1.5> <Fmean, 0.85, 1.5> <WFmean, 0.85, 1.5>

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
10

20

30

40

20

30

40

10

20

30

20

30

20

30

40

50

20

30

40

Generation

Th
e 

M
ea

n 
N

um
be

r o
f S

eq
ue

nc
in

g 
R

ul
es

 S
iz

e

MTAGP MTAGP without surrogate MTGP

Fig. 5. The mean number of unique features in sequencing rules per tree.

sequencing rule size of 30 independent runs of MTAGP (with

and without surrogate assisted) and MTGP for six scenarios

is shown at Table IV. Figure 4 and Figure 5 show the

convergence curves of routing rule size and sequencing rule

size during the evolution, respectively. Based on Table IV,

Figure 4 and Figure 5, we can see that except <Fmax, 0.85>,

in all other scenarios, the MTAGP algorithm and the MTGP

algorithm have essentially the same sequencing rule size and

routing rule size. That is, the use of archive does not affect

the size of the dispatching rules evolved by GP, i.e., it does

not affect the interpretability of the dispatching rules evolved

by GP.
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TABLE IV
THE MEAN (STANDARD DEVIATION) RESULTS OF ROUTING RULE SIZE AND SEQUENCING RULE SIZE OF 30 INDEPENDENT RUNS OF MTAGP AND MTGP

FOR SIX SCENARIOS.

Scenario
Routing Rule Size Sequencing Rule Size

MTGP MTAGP MTAGP without surrogate MTGP MTAGP MTAGP without surrogate

<Fmax, 0.85> 43.00(20.86) 53.13(15.29)(+) 46.72(17.29) 47.60(19.11) 45.53(15.26) 40.31(17.78)
<Fmax, 0.95> 48.53(15.33) 47.27(17.33) 43.60(19.06) 39.93(18.37) 35.07(12.47) 40.13(18.02)
<Fmean, 0.85> 50.60(17.87) 48.80(16.94) 50.00(14.96) 32.60(17.70) 33.47(16.14) 33.33(17.39)
<Fmean, 0.95> 52.07(17.42) 51.87(15.46) 45.73(13.02) 33.80(17.17) 31.27(13.41) 33.40(15.20)
<WFmean, 0.85> 49.73(17.02) 48.52(19.45) 46.13(15.51) 38.13(18.47) 38.24(21.18) 32.13(16.41)
<WFmean, 0.95> 50.87(18.78) 54.47(13.47) 50.53(14.70) 33.60(13.49) 36.20(15.35) 29.87(14.06)

TABLE V
THE GENERATIONS WITH DUPLICATE INDIVIDUALS IN ARCHIVE AND

POPULATION, AND THE NUMBER OF DUPLICATE INDIVIDUALS AND

ARCHIVE SIZE.

Gen 1 ArcSize 2 NumRepeat 3 NumFromArc 4 Rank <5 5

6 96 1 96 1
9 144 1 136 1

36 512 0 394 4
44 512 0 370 2
49 512 0 341 1

1 Generation in the evolutionary process.
2 The number of individuals in the archive in current generation.
3 The number of repeat individuals between archive and population.
4 The number of individuals from the archive in the new population.
5 The number of individuals from the archive and ranked in the top

5 in the new population.

D. Further Analysis

Based on the above analysis, the use of archive does not

lead to a significant performance improvement of the evolved

dispatching rules. This section presents analysis of possible

reasons as to why performance was not being significantly

improved. A total of four possible reasons were proposed, and

two of them was disproved by experiment.

1) Reason 1: The individuals in archive are chosen from

the population of each generation which represents the archive

update process. During the archive update process, uniqueness

check is done to avoid adding duplicate individual into the

archive. However, we select the new population based on

the old population and archive before this process. Also, the

old population is generated based on the breeding process.

Therefore, there may be duplicate individuals between old

population and archive when we select the new population

based on the fitness. If the number of duplicate individuals is

big, then the archive will not improve the diversity, thus will

not have the potential to improve the performance.

To verify this, we counted the number of duplicate indi-

viduals in the archive and the population before evaluation.

Take an example of MTAGP method with surrogate, the results

of one of the 30 runs is shown as Table V. As we can see,

there are only a few generations in 51 generations, where the

archive contains duplicated individuals in the population, and

the number of duplicated individuals is very small compared

to the archive size, and can be ignored. This means that the

use of archive does increase the diversity of the population.

2) Reason 2: It is possible that the number of individuals

from the archive in the new population is small, so the

individuals in the archive will not have a large effect on the

subsequent crossover and mutation process.

Based on this concern, we counted the number of individ-

uals from the archive in the new population, and the number

of individuals from the archive ranked in the top five of the

new population, as shown in Table V. Based on the table, we

can see that there are many individuals in the new population

which are from the archive. However, there are a small number

of individuals from the archive ranked in the top five of the

new population. Therefore, individuals from the archive will

play a role in the subsequent crossover and mutation. However,

individuals from the archive do not outperform most of the

individuals in the population. Therefore, the poor performance

is not due to a small number of individuals from the archive.

3) Reason 3: We have seen that the use of archive does

increase the diversity of the population. In this case, another

possible reason that performance not being improved may be

because the archive plays a small role. Specifically, the use

of archive is like expanding the population size. Expanding

population size theoretically has the potential to yield better

solutions. However, with the archive based method, the di-

versity of individuals retained in the archive actually varies

less per generation than with the method of expanding the

population size (for example expanding population size from

1024 to 1024 + 512).

4) Reason 4: The strategies to update the archive may

not be suitable. Specifically, the way to delete the poor

individuals in archive based on the function max(Rank +
1/(Generation + 1)), where Rank and Generation have

been normalized, may not be suitable. We also tried a different

way to delete the poor individuals in archive based on the

function max(0.2×Rank+ 0.8/(Generation+ 1)), but the

performance still was not improved.

VI. CONCLUSIONS

In this paper, a MTGP method with archive for DFJSS

was proposed. In the process of GP evolution, an archive is

used to store potential individuals from each generation that

will be used to influence the breeding process together with

individuals in the population. This way, we can fully utilize

the potential individuals from each generation without losing

them, especially when the training simulations are changed

in each generation. The experimental results show that the
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proposed MTAGP algorithm outperforms the baseline MTGP

algorithm in a few scenarios. Furthermore, we present several

analysis on possible reasons that may have led to the lack of

significant improvement in the performance of the MTAGP

algorithm sometimes. We argue that it may be that the archive

is not being used to their full potential, or not being used in a

good way. In future work, we will investigate better ways to

use archive and conduct further experimental validations.
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