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Abstract—Dynamic flexible job shop scheduling is a challeng-
ing combinatorial optimisation problem, that aims to optimise
machine resources for producing jobs to meet some goals. There
are two important kinds of decisions that the scheduling process
needs to make under dynamic environments, i.e., the routing
decision for machine assignment and the sequencing decision
for operation ordering. Genetic programming hyper-heuristic
has been successfully applied for solving the dynamic flexible
job shop scheduling problem with the advantage of automat-
ically evolving good scheduling heuristics. Parent selection is
an important process for genetic programming, intending to
select good individuals as parents to generate offspring for the
next generation. Traditional genetic programming methods select
parents for crossover based on only fitness (e.g., tournament
selection). In this paper, a new parent selection (i.e., cluster
selection) method is proposed to select parents not only with good
fitness but also with different behaviours. The proposed cluster
selection is combined with genetic programming hyper-heuristic
to study whether considering different behaviours in parent
selection will improve the effectiveness of the evolved scheduling
heuristics. The experimental results show that increasing the
number of unique behaviours in the population cannot help
evolve effective scheduling heuristics. Further analysis shows
that considering behaviour to select parents does increase the
number of unique behaviours in the population. However, it gives
individuals with poor fitness more probability to be selected to
generate offspring. This might be the reason why the proposed
method cannot outperform the baseline method.

Index Terms—dynamic flexible job shop scheduling, genetic
programming, cluster selection, diversity

I. INTRODUCTION

Dynamic flexible job shop scheduling (DFJSS) [1] is an
important combinatorial optimisation problem, that aims to
allocate operations of jobs to a set of machines to optimise
some goals, such as minimise mean flowtime, minimise max
tardiness, and so on. There are two important kinds of decision
points where DFJSS needs to make suitable decisions, that are
the routing decision points and the sequencing decision points
[2]. A routing decision point is defined as the moment once
an operation becomes ready, and a machine is needed to be
recommended to process the ready operation. A sequencing
decision point represents the moment once a machine becomes
idle, and an operation is needed to be selected from the waiting
queue of this machine to be processed next. For the DFJSS
problem, jobs arrive dynamically which means the system
state is different for different decision points which makes
the problem complex and difficult [3].

For solving the DFJSS problem, some early proposed meth-
ods for solving job shop scheduling problems, such as exact
methods (e.g., mathematical programming [4] and branch-and-
bound [5]) and some heuristic search methods (e.g., genetic
algorithm [6] and tabu search [7]) are not applicable, because
of the large scale and high dynamic particularity of DFJSS.
Recently, scheduling heuristics are widely and popularly used
to handle the DFJSS problem [8] with the advantages of
reacting in real-time based on the latest information. However,
designing good scheduling heuristics requires domain knowl-
edge from expert and the design process is time-consuming.

Genetic programming hyper-heuristic (GPHH) [9] has been
widely applied to automatically evolve scheduling heuristics
for solving job shop scheduling problems [10]–[12] because of
a number of advantages. Firstly, the flexible representation of
GPHH gives more possibilities to explore scheduling heuristics
with different structures. Secondly, GPHH does not require
rich domain knowledge. Thirdly, scheduling heuristics evolved
by GPHH have good interpretability. GPHH generates new
individuals following a process of fitness evaluation, parent
selection, genetic operators (i.e., reproduction, crossover, and
mutation) until the termination criteria is reached, and then
retains the best individuals obtained as the final output. In this
process, parent selection performs an important role to identify
promising individuals carrying good genes [13].

Currently, the widely used parent selection method for
GPHH is tournament selection [14]. Tournament selection
selects an individual as the parent depending on only one
criterion, i.e., the fitness of the individual. On the other
hand, GP tends to converge quickly, and the population tends
to be filled with high-fitness individuals with very similar
structures/behaviours. As a result, it is likely that individ-
uals with similar structures/behaviours will be selected as
the parents for crossover. Some papers study the selection
pressure of tournament selection [15], [16] in order to get good
results. However, still, only the fitness is used as the basis for
comparison. A good parent selection method needs to support
the evolutionary process of producing high-quality offspring
but also ensure the diversity of the population. The phenotypic
(behaviour) diversity is more widely studied than genotypic
diversity because the former can show the characterisation of
an individual (scheduling heuristic) more accurately than the
latter. In DFJSS, the phenotypic diversity is usually denoted
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by the unique phenotypic characterisation (PC) [17] in the
population. The PC of an individual is composed of a vector
of decisions made by this individual on some decision points.
Some studies increase the phenotypic diversity in the popu-
lation by the niching technique which can clear individuals
with similar PC but poor fitness [18]. Some studies increase
the phenotypic diversity of the population by proposing new
parent selection methods, such as batch tournament selection
[19] and lexicase selection [20], [21]. These methods select
parents based on different training subsets or different orders
of training cases. However, the above methods cannot always
ensure that the selected parents for crossover have dissimilar
behaviours. For crossover, if the selected two parents carry
genes that behave similarly, it is easy to produce offspring
that can at best maintain a similar level to the parents and the
search cannot progress sufficiently. Therefore, it is important
to make sure that the two parents selected for crossover have
dissimilar behaviours.

Based on the above consideration, the overall goal of this
paper is to propose a new parent selection method to increase
the phenotypic diversity in the population. The new selection
method is designed for crossover and is expected to select two
parents with different behaviours. To be specific, this paper has
the following research objectives:

• Design a new selection method for crossover that selects
parents not only based on fitness but also based on
behaviour.

• Develop a new GPHH framework with the newly pro-
posed selection method to automatically evolve schedul-
ing heuristics.

• Analyse whether considering different behaviours in par-
ent selection will improve the effectiveness of the evolved
scheduling heuristics?

II. BACKGROUND

A. Dynamic Flexible Job Shop Scheduling
In the shop floor, there are a set of heterogeneous machines

M = {M1, ...,Mp, ...,Mm} which have different processing
rates. The processing rate of the machine Mp is represented
as γ(Mp). These machines are placed in fixed locations
L = {L1, ..., Lp, ..., Lm}. In a DFJSS problem, the jobs J =
{J1, J2, ..., Jn} arrive at the shop floor dynamically. Each job
Ji has a sequence of operations Oi = {Oi1, Oi2, ..., Oik}.
Each operation Oij can only be processed by one of its
optional machine π(Oij) ⊆ M and its processing time
σMp

(Oij) = lij/γ(Mp) depends on the machine Mp ∈
π(Oij) that processes it and the workload lij it has. The release
time rj , due date dj , weight wj of the job Ji is not known
until the job arrives at the shop floor. In addition, the trans-
portation time Tp,q = disp,q/v between machines/entry/exit
depends on the distance disp,q between the location Lp of the
current machine/entry/exit and the location Lq of the selected
machine/entry/exit, and the transport speed v. DFJSS needs to
decide which machine to use to process the ready operation
and which operation to choose to process next by an idle
machine.

In this paper, we consider three objectives which are max
flowtime (Fmax), mean flowtime (Fmean), and mean weighted
flowtime (WFmean). The calculations of the three objectives
are shown as follows.

• Minimise Fmax = max {C1 − r1, ..., Cn − rn}

• Minimise Fmean =
∑n

j=1(Cj−rj)

n

• Minimise WFmean =
wj×

∑n
j=1(Cj−rj))

n

where, Cj denotes the completion time of the job Jj .
Some main assumptions and constraints are described as

follows.
• Scheduling is non-preemptive, in other words, once the

processing of an operation has started it cannot be stopped
or paused until it is completed.

• The machines will not break down and their processing
rates and locations will not change during the entire
scheduling process.

• One machine can process a maximum of one operation
at a time.

• Once the jobs have arrived on the shop floor, the sequence
of operations for each job is predetermined. An operation
can only be processed once all previous operations have
been completed and have arrived at its chosen machine.

• For each operation, only one of its candidate machines
can process it.

B. Genetic Programming Hyper-heuristics for DFJSS

GPHH [9], with the advantages of flexible representations,
has been successfully applied to evolve scheduling heuristics
for solving DFJSS problems. GPHH can be divided into two
parts, which are the training process and the test process.
After the training process, the scheduling heuristic with the
best fitness wins, and it is treated as the output of GPHH.
Then, the test process measures the performance of the output
scheduling heuristic.

GPHH starts with a population of randomly generated indi-
viduals (scheduling heuristics), and then determines the fitness
of each individual based on its ability to perform the given
task (e.g., the DFJSS problem), applying Darwinian natural
selection (survival of the fittest) to determine the winning
individual. The population also mimics the breeding process
by selecting parents first and then combining or generating
genes of individuals based on the reproduction, crossover, and
mutation, until a predetermined stopping criterion is reached.

There have been many studies using GPHH for solving
DFJSS problems. GPHH with multi-tree representation was
proposed to evolve the sequencing rule and the routing rule
for DFJSS simultaneously in [22]. In [23], GPHH with the sur-
rogate was used to automatically evolve scheduling heuristics
for DFJSS. Some works use GPHH to solve multi-objective
DFJSS to meet some goals at the same time [24], [25].

C. Related Work

For the crossover operator, tournament selection is used two
times to select two parents to generate offspring. However,
as the evolutionary process goes on, the survival individuals
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based on fitness would have similar structures or behaviours to
each other. Even using different sampling strategies to select
candidate individuals in tournament selection has little impact
on selection [16]. In this case, it may cause the GPHH to
converge to the local optimum so that no better solution can
be found. In order to avoid this situation, some new techniques
and selection methods are devoted to improving the diversity
of parents selected, that is, increasing the diversity of the
population.

In DFJSS, phenotypic diversity can reflect the characterise
better than genotypic diversity. The phenotypic characteri-
zation (PC) [17] is usually used to represent the behaviour
(phenotype) of a scheduling heuristic. The phenotypic repre-
sentation is composed of a vector of numerical values, which
denotes the decisions made by the scheduling heuristic on the
selected decision points. Niching is a widely used technique to
clear individuals with the same behaviour (PC) but poor fitness
[18]. Niching can increase phenotypic diversity. However, it
cannot always select parents with more diverse behaviours.

Some studies propose new parent selection methods to
improve the phenotypic diversity. Batch tournament selection
is such a method that selects parents based on different training
subsets [19]. However, in batch tournament selection, there
is no criterion to completely ensure that the two individuals
selected must be dissimilar in behaviour. Lexicase selection
[26] was proposed to select parents by following different
orders of training cases which can increase the phenotypic
diversity of the selected parents. It has been proven that
lexicase selection can obtain better performance than tourna-
ment selection on some problems [20], [21]. However, using
multiple training cases in DFJSS to do evaluation is time-
consuming. Additionally, if the order of training cases used in
the two parent selections for crossover is the same, the same
individual will be selected as parents.

In [15], a clustering tournament selection method was
proposed for tuning the selection pressure dynamically and
automatically along with evolution. In this method, individuals
are divided into different groups, and each group is assigned
a fitness. The group with the best fitness wins the tournament,
and an individual in this group is randomly selected as a parent
to produce offspring. The method proposed in [15] obtained
good results than traditional tournament selection. However,
sometimes the selected group may have few individuals which
might lead GPHH to converge to a local optimum.

Based on the above limitations, a new parent selection
method is proposed to help GPHH select parents with good
quality and dissimilar behaviours for crossover.

III. THE NEW APPROACH

A. The Overall Framework

The overall framework of the proposed GPCS for DFJSS
is shown in Fig. 1. As with traditional GPHH algorithms,
population initialisation, fitness evaluation, elitism selection,
parent selection, reproduction, crossover, and mutation are all
main processes. The main innovation in this paper is to use

Start

Population initialisation

Fitness evaluation

Elitism Selection

Reproduction

Mutation

Evolution

Iteration stop?

End

Calculate PC of each individual 
based on 40 decision points

Divide individuals into different 
groups based on Kmeans and

similarity

Kmeans Cluster with 
an adaptive number 

of groups

Yes

No

Cluster selection for crossover

Group number adaptation

Calculate similarity between 
individuals based on the 

Pearson distance

For each group, select a parent 
based on tournament selection

Group 1 Group 2

Crossover

Parent selection
Tournament selection for 
reproduction and mutation

Fig. 1. The flowchart of the proposed GPCS method.

cluster selection to replace tournament selection to select a pair
of more diverse parents in the evolution process for crossover.

In the cluster selection, the Kmeans cluster strategy with an
adaptive number of groups is proposed and used after fitness
evaluation to divide individuals in the population into differ-
ent groups based on their behaviour similarity. Each group
contains a number of individuals with similar behaviours.
Then, when two parents are needed for crossover, the cluster
selection randomly selects two different groups, we call them
preliminary winners one and preliminary winners two. After
that, tournament selection is used to select two individuals
from preliminary winners one and preliminary winners two,
respectively. These two individuals are the parents used for
crossover.

B. Behaviour Similarity Estimation

In this paper, the decision priorities on 20 sequencing
decision points and 20 routing decision points [17] in a
fixed instance is used to estimate how similar two individuals
behave with each other. The decision priority denotes the index
sequencing of the candidate operations/machines made by the
individual (scheduling heuristic) on the decision point. For
example, if we have 3 sequencing decision points and 3 routing
decision points, each with 7 candidate operations/machines,
and the index of candidate operation/machine is between 1
and 7. Then the decision priorities for an individual x on
these decision points can be represented as Fig. 2.

It can be seen from Fig. 2, each row represents the decision
priority on each decision point which is the priority order of
candidate operations/machines. The whole table denotes the
decision priorities of the individual x. In addition, the first
column shows the final decisions on these decision points,
which represents the PC of the individual x. We can estimate
the behaviour similarity between two individuals based on the
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Sequencing
decisions

Routing
decisions

1 3 4 6 5 7 2

2 3 1 5 4 6 7

1 7 6 4 5 2 3

6 2 5 7 4 3 1

4 3 2 1 5 6 7

4 1 3 5 7 6 2

Decision priority from high to low

1

2

1

6

4

4

PC

Fig. 2. An example of the decision priorities on 3 sequencing decision points
and 3 routing decision points.

mean Pearson distances between decision priorities of the two
individuals x, y. The Pearson distance on the decision point
di is defined as the dis(x, y)i = 1− ρ(x, y)i, where ρ(x, y)i
represents the Pearson correlation which can be calculated by
Eq. (1).

ρ(x, y)i =

∑n
j=1(Xij − µXi

)(Yij − µYi
)√∑n

j=1(Xij − µXi
)2
√∑n

j=1(Yij − µYi
)2

(1)

where, n is the number of candidate machines/operations.
Xi = [Xi1, · · · , Xin] and Yi = [Yi1, · · · , Yin] represent the
decision priority on the decision point di (each row in Fig. 2)
by two individuals, respectively. µXi

and µYi
are the average

value of Xi and Yi.
In summary, the process of calculating the behaviour simi-

larity between individuals is as Algorithm 1. Firstly, for each
individual and each decision point, we calculate the priority of
each candidate, to form the decision priority (line 2). Secondly,
for each decision point, calculating the Pearson correlation
between the decision priority of the two individuals (line 3).
At the same time, we can calculate the Pearson distance on
each decision point (line 4). Finally, the behaviour similarity
is calculated as the mean of the Pearson distance over all the
decision points (line 6).

The Pearson correlation has been used in DFJSS to measure
the importance of each subtree for an individual and has
shown success to improve the effectiveness of the scheduling
heuristics by swapping the unimportant subtree with the im-
portant subtree to do crossover [27]. Therefore, we use the
mean Pearson distances to estimate the similarity between
individuals. Based on the Eq. (1), the Pearson correlation
ρ(x, y) is always in the range of [−1, 1], so the mean Pearson
distance is always between 0 and 2. To be specific, if two
individuals have the same decision priority on all the decision
points, the mean Pearson distances between them is 0, on the
other hand, if they have very different decision priority on all
the decision points, the mean Pearson distance between them
is near 2.

C. Kmeans Cluster

This paper uses the Kmeans method to divide the population
into different groups. Different from the traditional Kmeans
method which uses the Euclidean distance to estimate the

Algorithm 1: Behaviour similarity estimation
Input: The two individuals: x and y; 40 DFJSS decision points:

D = {d1, . . . , d40}.
Output: The behaviour similarity between the two individuals:

sim(x, y).
1 for i = 1 → 40 do
2 Apply the two individual x, y on the decision point di to get

the decision priority Xi and Yi, respectively;
3 Calculate the Pearson correlation ρ(x, y)i between the decision

priorities Xi and Yi of two individuals;
4 Calculate the Pearson distance dis(x, y)i = 1− ρ(x, y)i

between the two individuals;
5 end
6 sim(x, y) =

∑40
i=1 dis(x, y)i/40;

7 return sim(x, y);

similarity between two lists of values, we use the mean
Pearson distance to estimate how similar two individuals
behave with each other, which is shown in Section III-B. The
center for each group is selected based on fitness. That is, the
decision priorities of the individual with the best fitness in a
group is set as the center.

For the Kmeans method, the group size needs to be set
in advance which might lead to different groups containing
very non-uniform numbers of individuals, for example, 100
individuals in one group and only 5 individuals in another
group. In this case, if the group with only 5 individuals is
selected to select a parent, then the individual with good
fitness will be selected many times which might lose the
diversity of selected parents. Therefore, we design an adapt
cluster number strategy to avoid this situation. That is after
the Kmeans method has divided the population into different
groups, we check the number of individuals in each group,
if a group has less than m individuals, the individuals in this
group will be moved to the other group with the most similar
behaviour by calculating the mean Pearson distance between
each individual with the center individual in the other group.
Finally, the groups without individuals will be removed.

D. Cluster Selection

The cluster selection is used to select parents only for
crossover. Different from the traditional tournament selection,
it has two steps, the first step is to select two groups randomly.
Then, in each group, the tournament selection is applied to
select a parent with the best fitness in the second step. In this
way, we can select two parents with promising fitness and
perform dissimilar with each other.

IV. EXPERIMENT DESIGN

To investigate the effectiveness (objectives on unseen test
instances) of the proposed GPCS method in different sce-
narios, this section lists the parameter setting and performs
the simulation model. In addition to the GPHH algorithm,
an algorithm with the opposite principle, GPHH with the
same cluster selection (GPSCS), is also used as a comparison
algorithm. This algorithm selects parents from the same group
for crossover, i.e., it selects two parents that perform similarly
for crossover.
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TABLE I
THE TERMINAL SET.

Notation Description
NIQ the number of operations in the queue
WIQ the remaining processing time in the queue
MWT the machine’s waiting time since it gets ready

PT the processing time of the operation
NPT the median processing time for next operation
OWT the operation’s waiting time since it gets ready
WKR the work remaining
NOR the number of operations remaining of job

W the job’s weight
TIS the time in system since it is released

TRANT the transportation time

TABLE II
THE PARAMETER SETTINGS OF GP.

Parameter Value
Population size 1024

Maximal generations 51
Method to initialise population Ramped-half-and-half

Initial minimum/maximum depth 2 / 6
Elitism 10

Maximal depth 8

Parent selection Tournament selection
Cluster selection

Mutation rate 0.15
Crossover rate 0.80

Reproduction rate 0.05
Terminal/non-terminal selection rate 10% / 90%

Group number 5
Minimum number of individuals in a group 20

A. Parameter Setting for Genetic Programming

In our experiments, the terminal set of GP is shown in
Table I. Terminals are set to represent features related to
jobs (e.g., WKR, NOR, W, and TIS), operations (e.g., PT,
NPT, and OWT), machines (e.g., NIQ, WIQ, and MWT), and
transportation (e.g., TRANT).

The function set has six elements {+,−,×,÷,max,min}.
The arithmetic operators take two arguments. The “÷” op-
erator is protected and returns 1 if divided by zero. The
max and min functions take two arguments and return the
maximum and minimum of their arguments, respectively. The
other parameters about GP are shown in Table II. Note that
the Group number and Minimum number of individuals in a
group are two new parameters. The former parameter is set
as 5 because a small value might not distinguish individuals
with different behaviours well, while a large value would
result in having too few individuals in each group, leading
to an increased frequency of some individuals being selected.
The latter parameter is set as 20 to avoid there being few
individuals in a group.

B. Simulation model

In this paper, the simulation environment is used as the
experimental model to study the influencing factors of DFJSS.
During the scheduling process, jobs arrive at the shop floor
dynamically based on a Poisson process with the rate λ. Each
job has a different number of operations that are randomly

TABLE III
THE MEAN (STANDARD DEVIATION) OF TEST PERFORMANCE OF 30

INDEPENDENT RUNS OF THE COMPARED METHODS FOR SIX SCENARIOS.

S* GPHH GPCS GPSCS
1* 1291.40(12.62) 1297.73(19.28)(=) 1292.97(7.29)(=)
2* 1375.33(16.77) 1380.39(19.94)(=) 1377.30(14.44)(=)
3* 524.54(2.93) 524.39(3.14)(=) 524.40(2.75)(=)
4* 566.69(3.23) 568.50(4.52)(+) 568.08(3.95)(=)
5* 1141.09(4.63) 1145.77(8.80)(+) 1144.63(6.95)(+)
6* 1230.70(8.91) 1234.57(9.42)(=) 1232.55(9.49)(=)
* S: Scenarios, 1: <Fmax, 0.85>, 2: <Fmax, 0.95>, 3: <Fmean, 0.85>,

4: <Fmean, 0.95>, 5: <WFmean, 0.85>, 6: <WFmean, 0.95>.

generated from the range [2, 10]. These jobs are needed to
be processed by 10 heterogeneous machines. These machines
have different processing rates which are randomly generated
by a uniform discrete distribution between 10 and 15. The
distance between machines and the distance between entry/exit
point and each machine is assigned with the range [35, 500].
The transport speed is set as 5. In addition, the importance of
jobs is different, which is represented by weights. The weights
of 20%, 60%, and 20% of jobs are set as one, two, and four,
respectively. The due date factor is set to 1.5.

The utilisation level denotes how busy the shop floor is.
A higher utilisation level represents a busier shop floor. In
this paper, we consider six scenarios based on two utilisation
levels (0.85 and 0.95) and three objectives. To obtain stable
data, warm-up jobs (the first 1000 jobs) are used to get typical
scenarios that occur in long-term simulation. Data are collected
for the next 5000 jobs and the simulation stops after the 6000th
job is completed. Additionally, we generate a single replication
but rotate the random seed during each generation of GP to
improve the generalisability of the scheduling heuristics.

V. RESULTS AND DISCUSSIONS

A. Test Performance

Table III shows the mean (standard deviation) results of
the test performance of 30 independent runs of GPCS, GP-
SCS, and GPHH on six scenarios. GPCS and CPSCS are
compared with the GPHH by the Wilcoxon rank-sum test
with a significance level of 0.05. The “−/+/=” indicates that
the corresponding results are significantly better than, worse
than, or similar to the results of GPHH, respectively. We can
see that GPCS gives significantly worse results than GPHH
on two scenarios (<Fmean, 0.95>, <WFmean, 0.85>) and
GPSCS shows significantly worse results than GPHH on one
scenario (<WFmean, 0.85>). Fig. 3 gives the convergence
curves on the test performance of the compared methods on
the six scenarios. We can see that GPCS and GPSCS tend to
converge slower than GPHH on almost all the scenarios. We
further analyse the reasons in the following Section why the
proposed methods that select behaviour different parents for
crossover to generate offspring are not effective.

B. Parents Pearson Distance

Fig. 4 shows the histograms of the mean parents Pearson
distance on generation 1, 25 and 45 of GPCS and GPSCS
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Fig. 4. The histograms of the mean parents Pearson distance on generation
1, 25 and 45 of GPCS and GPSCS on six scenarios.

on six scenarios. It can be seen that GPSCS gives a smaller
mean Pearson distance of the selected parents for crossover
than GPCS which is expected because GPSCS selects parents
from the same group. From Fig. 4, we can see that, in the
early stage of evolution, GPCS and GPSCS both obtain large
Pearson distance of the selected parents. In the middle and
late stages of evolution, the Pearson distance of the selected
parents by the two methods decreases. It is noted that GPSCS
selects parents with about half of the Pearson distance than
GPCS in the middle and late stages of evolution. This verifies
the effectiveness of the proposed cluster selection method that
can place individuals with similar behaviours into the same
group and select parents with different behaviours.

C. Groups

Fig. 5 gives the points of the group versus fitness of
individuals on generations 1, 25, and 45 of GPCS on two
scenarios. It is noted that the bad individuals, that is the
individuals that cannot complete the scheduling (fitness → ∞)
are not shown in the figure. It can be seen that, at generations
1, 25 and 45 of the two scenarios (<Fmax, 0.85>, <Fmean,
0.85>), the individuals are divided into 5 groups. In each
group, there are individuals with good fitness and poor fitness.
That is, not all individuals with similar behaviours have similar
fitness. Table IV shows the number of individuals in each
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Fig. 5. The points of the group versus fitness of individuals on generations
1, 25 and 45 of GPCS on two scenarios.

TABLE IV
THE NUMBER OF INDIVIDUALS IN EACH GROUP EXCEPT THE bad

individuals AT GENERATIONS 1, 25 AND 45 OF THE TWO SCENARIOS.

Scenarios-Gen 0 1 2 3 4
<Fmax, 0.85>-gen=1 100 255 255 197 132
<Fmax, 0.85>-gen=25 277 139 52 91 410
<Fmax, 0.85>-gen=45 34 536 308 52 34
<Fmean, 0.85>-gen=1 84 160 256 168 271
<Fmean, 0.85>-gen=25 148 45 174 325 275
<Fmean, 0.85>-gen=45 381 30 33 430 126

group except the bad individuals at generations 1, 25 and
45 of the two scenarios (<Fmax, 0.85>, <Fmean, 0.85>).
The distribution of the number of individuals in groups is not
uniform. Sometimes, one group may contain 10 times more
individuals than the other (e.g., 536 > 34 × 10). This non-
uniform distribution may cause one individual to be selected
many times as a parent when the group it belongs to has a
small number of individuals. In this case, the proposed method
might lose the population diversity. This might be one of
the reasons why the proposed method cannot evolve better
scheduling heuristics than the baseline method.

VI. FURTHER ANALYSES

A. Parents Selection

Parents selection denotes the number of unique individuals
selected as parents for crossover, mutation, and reproduction
among the population. Fig. 6 shows the convergence curves
on the number of unique parents selected by GPCS, GPSCS
and GPHH on six scenarios. We can see that the proposed
two methods have fewer unique parents than GPHH on all
the scenarios. At the beginning of the breeding process, the
number of unique parents of the proposed methods is big
(about 330), as the breeding process continues, the number of
unique parents decreases (to about 310) first, then increases
and convergences (at about 320) gradually. GPCS and GPSCS
give a similar number of unique parents at all generations.
The difference on the number of unique parents between the
proposed methods and GPHH is about 15 in all the scenarios.
This may be one of the reasons why the proposed methods
get significantly worse performance than GPHH.
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Fig. 6. The convergence curves on the number of unique parents selected by
the compared methods on six scenarios.
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Fig. 7. The curves on the number of parent combinations of GPCS and
baseline methods on six scenarios.

B. Parent Combination

A parent combination means a unique pair of parents for
crossover on each generation. Fig. 7 gives the curves on the
number of unique parent pairs selected by the compared meth-
ods. We can see that GPHH has about 450 unique parent pairs.
GPCS selects slightly fewer unique parent pairs (around 440)
than GPHH on all the scenarios and GPSCS gives even fewer
unique parent pairs (about 400). Because GPSCS limits the
candidate individuals to a group to select two parents, which is
fewer than the number of individuals in the population. In the
beginning, the number of unique parent pairs selected by the
proposed methods is large. As the breeding process goes on,
the number of unique parent pairs of the proposed methods
decreases and reaches a stability value. Combined with the
analysis of parents selection, we can see that the proposed
method not only reduces the number of unique parents but
also reduce the number of unique parent pairs. This may be
one of the reasons why the proposed methods get significantly
worse performance than GPHH on some tested scenarios.

C. Unique PC

Fig. 8 shows the convergence curves on the number of
unique PC of each generation by the compared methods on
six scenarios. In this paper, the unique PC means the unique
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Fig. 8. The convergence curves on the number of unique PC of each
generation by the compared methods on six scenarios.
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Fig. 9. The parent fitness versus offspring fitness of GPCS, GPSCS and
GPHH on two scenarios of a single run on generation 1, 25 and 45.

number of the list of decisions made by individuals in the
population on 20 sequencing decision points and 20 routing
decision points. From Fig. 8, we can see that GPCS and
GPSCS both increase the number of unique PC on almost
all the generations. Compared with GPSCS, GPCS gives a
higher unique PC. There is a strange phenomenon that GPSCS
increases the number of unique PC, because the parents
selected by GPSCS for crossover come from the same group
in which individuals have similar behaviours. Thus GPSCS
is expected to decrease the number of unique PC. Combined
with the analysis of parents Pearson distance, we can see that
two parents with similar behaviours still can generate offspring
with more diverse behaviours. This may be because crossover
will affect the behaviours a lot no matter the two parents have
similar or different behaviours. This may be one of the reasons
why the proposed methods could not get good results.

D. The Selected Parents

To further analyse the performance of the selected parents
and their offspring, we select two scenarios as examples. Fig.
9 plots the parent fitness versus offspring fitness of GPCS
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and GPHH on two scenarios of a single run on generations 1,
25, and 45. For the selected two scenarios (<Fmax, 0.85>,
<Fmean, 0.85>), at the beginning of the breeding process,
the fitness of the selected parents and their offspring by the
proposed methods are similar to that by the GPHH method.
As the breeding proceeds, the fitness of the parents selected
by the proposed methods has a more wide range than GPHH
at the intermediate and late stages. For the fitness of the
generated offspring, sometimes GPCS gives a larger value,
while sometimes GPCS gives a smaller value. Taking the
analysis of the unique PC into consideration, we can see that
although the proposed GPCS can select parents with more
diverse PC than GPHH, at the same time the selected parents
will have poor fitness. This may be one of the reasons why
the proposed methods cannot get good performance.

VII. CONCLUSIONS

In this paper, a cluster selection scheme is proposed to
select two parents with different behaviours for crossover.
This method is used to study whether considering different
behaviours in parent selection will improve the effectiveness
of the evolved scheduling heuristics for DFJSS. The results
show that the proposed method increases the number of unique
behaviours in the population but does not help to generate
effective scheduling heuristics. The analyses of the selected
parents, the parent combination, the mean Pearson distance
of the selected parents, and the unique PC in the population
show that beyond considering fitness, considering behaviour
as a further basis for selection will give individuals with poor
fitness more probability to be selected which might be the
possible reason why the proposed method cannot get effective
results. Although the proposed method does not obtain better
results than baseline methods, this paper gives an interesting
phenomenon that crossover between parents with dissimilar
behaviours does increase the number of unique behaviours in
the population. In the future, we will propose a new strategy
to select parents with different behaviours and good fitness to
do crossover to generate offspring which is expected to help
GPHH evolve effective scheduling heuristics.
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