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Abstract—Dynamic flexible job shop scheduling has attracted
widespread interest from scholars and industries due to its prac-
tical value. Genetic programming hyper-heuristic has achieved
great success in automatically evolving effective scheduling
heuristics to make real-time decisions (i.e., operation ordering
and machine assignment) for dynamic flexible job shop schedul-
ing. The design of the training set and fitness evaluation play key
roles in improving the generalisation of the evolved scheduling
heuristics. The commonly used strategies for improving the gener-
alisation of learned scheduling heuristics include using multiple
instances for evaluation at each generation or using a single
instance but changing the instance at each new generation of the
training process of genetic programming. However, using multiple
instances is time-consuming, while changing a single instance
at each new generation, potentially promising individuals that
happen to underperform in one particular generation might be
lost. To address this issue, this paper develops a genetic program-
ming method with a multi-case fitness evaluation strategy, which
is named GPMF to evolve the scheduling heuristics with better
generalisation ability for the dynamic flexible job shop scheduling
problem. The proposed multi-case fitness evaluation strategy
divides one instance into multiple cases and uses the average
value of the multi-case objectives as the fitness. Experimental
results show that the proposed GPMF algorithm is significantly
better than the baseline method in all the tested scenarios.

Index Terms—genetic programming, dynamic flexible job shop
scheduling

I. INTRODUCTION

Dynamic flexible job shop scheduling (DFJSS) [1] is an
important task in the manufacturing system, where jobs are
assigned to machines at specific times to optimise some
objectives. In DFJSS, dynamic events and the flexibility of
machines are two of the important challenges which make
the problem complex and difficult. The dynamic arrival of
new jobs means the information of a job is known once it
arrives at the shop floor, which is a common dynamic event in
reality. The flexibility of machines means that each operation
can be processed by a set of candidate machines. In addition,
since different machines have different processing rates, it
is necessary to consider the heterogeneous machines in the
job shop. Also, after an operation has been completed, if
it needs to be processed by another machine, this operation
should be transported from the current machine to the selected
machine. Therefore, transportation time is also an important
factor to be considered in practice [2]. In this paper, we will

focus on the DFJSS problem with heterogeneous machines
and transportation time.

Since the DFJSS problem has the above characteristics, the
earlier methods proposed for the scheduling problem, such
as branch-and-bound [3], tabu search [4]–[6] and ant colony
algorithms [7], are not suitable for solving this problem, as
they cannot make decisions quickly in dynamic environments.
In this case, the scheduling heuristic is proposed to make real-
time decisions under dynamic environments. In the DFJSS
problem, the scheduling heuristic consists of two rules, a
sequencing rule, and a routing rule. The sequencing rule is
used to prioritise the operations when a machine becomes idle
(the sequencing decision point). Then the operation with the
highest priority will be selected. The routing rule is used to
prioritise the machines when an operation is ready (the routing
decision point). Then the machine with the highest priority will
be selected. The scheduling heuristic enables fast decisions to
be made based on the current system state when a decision
point arrives, resulting in greater efficiency and better handling
of dynamic events. However, the design of the scheduling
heuristic requires extensive experimental studies and is time-
consuming.

Genetic programming hyper-heuristic (GPHH) [8] has
achieved great success in evolving effective scheduling heuris-
tics to solve different kinds of JSS problems. During the
GPHH process, a training set is used to evaluate the scheduling
heuristics. The training set plays a key role in improving the
quality of the learned scheduling heuristics. If the training
set is too large, the training will be very time-consuming.
On the other hand, if the training set is too small, then
the learned scheduling heuristics might be overfitting to the
small training set and cannot generalise well to the unseen
test instances. To improve the generalisation of the evolved
scheduling heuristics, a straightforward strategy is to increase
the number of training instances. However, this strategy in-
creases the training time, especially when the problem is large-
scale. A smarter strategy uses only one instance for each
generation but changes the instance (rotates the random seed
of the DFJSS simulation) at each generation. This strategy is
much more computationally efficient than the former strategy
but has the limitation of losing some promising solutions at
certain generations [9].

To address the above limitation, the overall goal of this
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paper is to propose a novel multi-case fitness (MF) evaluation
strategy for GPHH to automatically evolve the scheduling
heuristic to solve the DFJSS problem. The proposed MF
strategy divides one DFJSS instance into multiple cases and
uses the average of the objectives of all cases as the fitness. To
be specific, this paper has the following research objectives:

• Develop a new GPHH that uses the new MF strategy
(named GPMF) to calculate the fitness of each individual.

• Conduct sensitivity analysis to investigate the effect of
the number of cases (and the fidelity of each case) to the
proposed MF strategy.

• Verify the effectiveness of the proposed GPMF in terms
of the quality and size of the evolved rules.

II. BACKGROUND

A. Dynamic Flexible Job Shop Scheduling

On the shop floor, there are a set of heterogeneous machines
M = {M1, ...,Mp, ...,Mm} which are located at different
location L = {L1, ..., Lp, ..., Lm} and own different pro-
cessing rates. The processing rate of the machine Mp can
be represented as γ(Mp). In the DFJSS problem, the jobs
J = {J1, J2, ..., Jn} arrive at the shop floor over time. Each
job Ji has a sequence of operations Oi = {Oi1, Oi2, ..., Oik}.
Each operation Oij has a workload lij , and can only be
processed by one of its optional machine π(Oij) ⊆ M.
The processing time σ(Oij) of the operation relies on the
machine Mp ∈ π(Oij) that processes it and its workload
lij . Specifically, the processing time can be calculated by
σ(Oij) = lij/γ(Mp). Once an operation becomes ready, a
machine is determined to process this operation, then the
operation should be transported to the location of the selected
machine Mq from the location of the current machine Mp.
The transportation time Tp,q depends on the distance disp,q
between the location Lp of the current machine and the
location of the selected machine Lq and the speed of the
transport robot v. To be specific, the transportation time can
be calculated based on Tp,q = disp,q/v.

In this paper, we consider three objectives which are max-
flowtime, max-tardiness, and max-weighted-tardiness. The
definition of the three considered objectives is as follows.

• Minimise Fmax = max {C1 − r1, ..., Cn − rn}

• Minimise Tmax = max


max {C1 − d1, 0}

...
max {Cn − dn, 0}


• Minimise WTmax = max


max {w1(C1 − d1), 0}

...
max {wn(Cn − dn), 0}


where n represents the number of jobs, ri, Ci, di and wi

represent the release time, completion time, due date and
weight of the job Ji, respectively.

In addition, the following constraints are considered in this
paper.

• An operation can be processed only after all the previous
operations have been completed.

• Scheduling is non-preemptive, that is, the processing of
an operation cannot be stopped or suspended once it is
started until it is completed.

• Each operation can only be processed by one of its
candidate machines.

• Each machine can process up to one operation at a time.
• The attribute (i.e. processing rate and location) of each

machine will not change throughout the whole work and
the machine will not break down.

B. Genetic Programming Hyper-heuristic

GPHH involves two main processes, which are a training
process and a test process. During the training process, a
training set is used to evolve the scheduling heuristics. Then
the scheduling heuristic output from the training process is
applied to an unseen test set during the test process to
assess the out-of-sample performance of the trained scheduling
heuristic and the effectiveness of the GPHH.

The training process of GPHH consists of four main parts,
namely population initialisation, fitness evaluation, selection,
and breeding (crossover, mutation, and reproduction). In the
beginning, a group of individuals is initialised as a population,
each individual denotes a solution with a designed represen-
tation. Then the fitness of each individual is evaluated on
the training set. After fitness evaluation, the selection process
determines individuals as parents for crossover, mutation,
and reproduction to generate offspring to inherit to the next
generation. The above process is cyclical until a stopping
condition is reached. The best individual obtained will be
output as the final solution.

C. Related Work

An important type of common method for scheduling is the
exact methods, such as mathematical programming [10] and
branch-and-bound [3], which can obtain the optimal solution.
However, exact methods are only suitable for solving static
and small-scale JSS problems, but not suitable for solving
dynamic or large-scale JSS problems because of their high
computational cost and inability to handle dynamic events
efficiently. Some heuristic methods, such as genetic algorithm
[11]–[13] and tabu search [4], [5], can solve large-scale JSS
problems, but still are not suitable for solving DJSS problems
because of their limitation of being unable to handle dynamic
events efficiently. In contrast, scheduling heuristics are much
more suitable for solving DFJSS. Scheduling heuristics have
many advantages over the other existing approaches. Firstly,
they can react to dynamic events such as new job arrivals in
real-time. Secondly, the implementation of scheduling heuris-
tics is simple. Finally, they can be reused based on the latest
information of the environment. However, there are still some
limitations of scheduling heuristics, that is, the design of
scheduling heuristics needs much domain knowledge and it
is time-consuming to design an effective scheduling heuristic.
GPHH has been widely used to solve different kinds of JSS
problems and has received great success in evolving effective
scheduling heuristics. GPHH has several advantages that make
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it stand out from many optimisation algorithms. Firstly, GPHH
has a flexible representation that allows it to explore different
structures. Secondly, it has good interpretability as the user
can see and analyse the learned rules that have been evolved.
Finally, the evolved rule by GPHH has good generalisation
capability, which makes it possible to reuse the rules in
different situations. However, its generalisation capability is
strongly related to the design of the training set and has a
great impact on its performance on the test set.

DFJSS has attracted widespread interest from scholars and
industries due to its practical applied value. To obtain effective
scheduling heuristics, some existing methods improve the
generalisation capability of evolved scheduling heuristics by
using a set of instances to do evaluation for each gener-
ation [14]–[20] or using a single instance but generating
new training instance by rotating the random seed of the
simulation to evaluate individuals in each new generation [21]–
[27]. However, these two types of methods both have their
drawbacks. Using a set of instances to do evaluation for each
generation is time-consuming because of the increasing time
for evaluation. Using a single instance but generating a new
training instance to evaluate individuals in each new generation
might eliminate individuals that perform well in subsequent
generations [9]. Additionally, surrogate models are also used
to approximate the fitness. For example, a HalfShop surrogate
model is used to evaluate the fitness of each individual by
using a simplified simulation model of the original shop [28].
The surrogate model is mainly used to reduce the training
time while not sacrificing the performance of evolved rules. To
improve the generalisation capability of the evolved scheduling
heuristics, taking advantage of individuals already generated
in the process of breeding while not increasing the training
time, an MF evaluation strategy is proposed in this paper to
help GP evolve effective scheduling heuristics.

III. THE NEW APPROACH

A. The Overall Framework

The overall framework of the proposed GPMF is shown
in Fig. 1. The main difference from the existing approaches
(e.g., the multi-tree baseline GP [29]) is that GPMF uses the
proposed novel MF evaluation to calculate the fitness of each
individual which will affect the elitism selection and parent
selection, thus influencing the evolution process.

As with traditional GPHH, population initialisation, fitness
evaluation, elitism selection, parent selection, reproduction,
crossover, and mutation are all necessary components. The
proposed novel MF evaluation strategy is used to divide one
instance into multiple cases and get a new fitness to replace
the original one by calculating the mean value of objectives
of multiple cases. Details about the proposed MF evaluation
strategy and how to use it will be described in the following
subsection.

B. The Multi-case Fitness Evaluation

The newly proposed MF evaluation strategy calculates the
fitness of the individual in a new way and the fitness will be

Start

Population initialisation

Multi-case fitness (MF) 
evaluation

Elitism Selection

Iteration stop? End
Yes

No

The MF evaluation strategy
is used to obtain a fitness by
calculating the mean value of
the list of case-fitness.

Reproduction

Evolution

Crossover
Mutation

Parent Selection

Seed rotation

Fig. 1. The flowchart of the proposed GPMF method.

used for elitism selection and parent selection.
Traditional GPHHs evaluate an individual (scheduling

heuristic) by applying the individual to a DFJSS simulation
to generate a schedule. Then the fitness of the individual is
set to the objective value of the generated schedule (e.g. max
flowtime or mean flowtime), which denotes an aggregation
(max or mean) of the jobs done during the simulation. Dif-
ferent from the traditional evaluation in GPHHs, in the design
of the multi-case fitness, a critical issue is the definition of
cases. Consider that in regression and classification, fitness
(e.g. mean squared error) is an aggregation of the objectives
of all the cases in the training set. Similarly, in DFJSS, we can
consider each part of the jobs as a case. That is, we can divide
the jobs completed during the DFJSS simulation into groups
and treat each group as a case to calculate the objective.

Due to the above considerations, the MF evaluation for
DFJSS is proposed, as shown in Algorithm 1. The inputs of
this algorithm include an individual (scheduling heuristic) x,
a DFJSS simulation sim, the number of jobs n, and the group
size g. Firstly, depending on the number of jobs n and the size
of the group g, we can calculate the number of cases c = n/g
(line 1, assuming that n is always divisible by g). Secondly, the
MF evaluation strategy runs the simulation with the individual
x to get the schedule sch(sim, x). Then, the completion time
of each job can be obtained from the generated schedule.
Thirdly, the MF evaluation strategy calculates the case-fitness,
which is the objective (line 7) of each case. Finally, we can
calculate the fitness of the individual x on simulation sim
(line 10) by calculating the mean of all the objectives for each
case.

In summary, the difference between the proposed MF eval-
uation and the existing fitness evaluation functions are as
follows:

• Compared with the existing multi-instance fitness, the MF
evaluation is much faster, as it only runs one instance.
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Algorithm 1: Multi-case fitness evaluation for DFJSS.
Input: The individual to be evaluated: x; DFJSS simulation: sim;

number of jobs in the simulation: n; group size: g.
Output: Fitness fit(x).

1 Calculate the number of cases c = n/g;
2 Run the simulation sim with the scheduling heuristic x to obtain

the corresponding schedule sch(sim, x);
3 Calculate a list of case-fitness cf(x) and get the mean value of them

as fitness fit(x);
4 sum← 0;
5 for i = 1→ c do
6 Set the ith group of jobs Ji = {g × (i− 1) + 1, . . . , g × i};
7 Calculate cf i(x) = objj∈Ji

(Cj);
8 sum = sum+ cf i(x);
9 end

10 fit(x) = sum/c;
11 return fit(x);

• Compared with the existing single-instance fitness, it
is the same if the objective is to calculate the mean
objective of the jobs, such as the mean flowtime and mean
tardiness since the average of the objectives of the cases is
equivalent to the average of all the jobs. However, it will
be different if the objective is based on the maximum
objective of the jobs, such as max tardiness and max
flowtime.

• If there is only one case, it becomes the single instance
fitness, and the proposed GPMF is equivalent to the
traditional GP. If the number of cases equals the number
of jobs in the simulation, it is the other extreme that
considers each job independently, and always calculates
the mean objective even for the max objectives. So the
best balance should be somewhere in between.

IV. EXPERIMENTAL DESIGN

A. Parameter Setting

In this paper, the terminals and functions used to compose
the individuals (scheduling heuristics) are shown in Table I.
The terminals represent features that are relevant to operations
(e.g., NPT, OWT, and PT), jobs (e.g., NOR, W, WKR, and
TIS), machines (e.g., WIQ, MWT, and NIQ), and transport
(e.g., TRANT). The function “max/min” takes two arguments
and returns the maximum/minimum of the arguments. The
functions “+”, “−”, “×”, and “÷” also take two arguments,
where “÷” is protected and gives 1 if it is divided by zero.

Table II gives the parameters related to GP and GPMP. All
the parameters are fixed except the number of cases, when the
number of cases is 1, the proposed GPMF reduces to GP.

B. Simulation model

In this paper, the simulation model is used to study the
influencing factors of GPMF. We assume that there are 10
heterogeneous machines with different processing rates which
are randomly generated with the range [10, 15] on the shop
floor. The distance between machines and the distance between
the entry/exit point and each machine is assigned by a uniform
discrete distribution between 35 and 500. The transport robot
has a speed of 5. When the scheduling process starts, jobs

TABLE I
THE TERMINALS AND FUNCTIONS.

Notation Description
NPT the next operation’s median processing time
PT the operation’s processing time.

OWT the waiting time of the operation since it gets ready
NOR the remaining number of operations of the job
WKR the remaining processing time of the job

W the weight of the job
TIS the time in the system since release
WIQ the remaining processing time in the queue of machine
NIQ the number of operations in the queue of machine.

MWT the waiting time of the machine since it gets ready
TRANT the transportation time between machines/entry/exit

Functions max, min, +, −, ×, ÷

TABLE II
THE PARAMETER SETTINGS OF GP.

Parameter Value
The size of population 1024

The maximal generations 51
Initialisation method Ramped-half-and-half

Initial minimum/maximum depth 2 / 6
Number of elitism 10

The maximal depth of tree 8
Parent selection Tournament selection

The reproduction rate 0.05
The crossover rate 0.80
The mutation rate 0.15

Selection rate of terminal/non-terminal 10% / 90%

Cases 1,2,5,10,20,25,40,50,100,200,
250,500,1000,2500,5000

arrive on the shop floor over time following a Poisson process
with a rate of λ. Each job has varying amounts of operations
that are randomly generated by a uniform discrete distribution
within the range of [2, 10]. Different jobs are set to have
different importance and these are represented by weights
(i.e., 20%, 60%, and 20% of the jobs are set to 1, 2, and
4, respectively). The workload for each operation is assigned
according to a uniform discrete distribution over the range
[100, 1000]. The due date factor for the simulation is 1.5.

The utilisation level is a key parameter representing the
different simulation scenarios. The higher the utilisation level,
the busier the job shop system will be. This paper considers
six scenarios based on two utilisation levels (0.85 and 0.95)
and three objectives. In the long-term simulation, warm-up
jobs (the first 1000 jobs) are used to obtain a stable job shop
scenario and guarantee the accuracy of the collected data. Data
is then collected for the next 5,000 jobs. The simulation is
stopped at the completion of the 6000th job.

V. RESULTS

A. Parameter Sensitivity Analysis of Multi-Case Strategy

This section analyses the sensitivity of the number of
cases to the multi-case strategy. 30 independent runs are
performed for each scenario, and 50 instances are used as
the test set for measuring the performance of the evolved
scheduling heuristics. The Wilcoxon rank sum test at the 0.05
significance level was then used to validate the performance
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Fig. 2. Box plots of test fitness on one scenario with different numbers of cases.

of the proposed GPMF method. The “−/+” denotes that the
corresponding results are significantly better/worse than that
of the baseline GP method. The “=” represents that there is no
statistical difference between the results of the two methods.

The number of cases of GPMF is set as 1, 2, 5, 10,
20, 25, 40, 50, 100, 200, 250, 500, 1000, 2500 and 5000
(the largest number of jobs). When the number of cases
is 1, the GPMF is reduced to baseline GP. Fig. 2 shows
the box plot of test fitness on six scenarios of GPMF with
different numbers of cases, and the baseline GP, where the
black curves represent the mean test fitness of 30 runs as
the number of cases increases. Additionally, Table III gives
the mean (standard deviation) test fitness of 30 independent
runs of baseline GP, and GPMF with different numbers of
cases for all the six scenarios. It is apparent from the tables
and Fig. 2 that the proposed GPMF with 10, 20, 25, 40, 50,
100 and 250 cases perform significantly better than baseline
GP on all the scenarios, GPMF with 200 cases performs
significantly better than baseline GP on five scenarios (<Fmax,
0.85>, <Tmax, 0.85>, <Fmax, 0.95>, <Tmax, 0.95> and
<WTmax, 0.95>), GPMF with 5 cases performs significantly
better than baseline GP on four scenarios (<Tmax, 0.85>,
<WTmax, 0.85>, <Tmax, 0.95> and <WTmax, 0.95>),

GPMF with 500 cases performs significantly better than base-
line GP on four scenarios (<Fmax, 0.85>, <Tmax, 0.85>,
<Tmax, 0.95> and <WTmax, 0.95>) too, but unlike GPMF
with 5 cases, GPMF with 2 cases performs significantly
better than baseline GP on three scenarios (<Tmax, 0.85>,
<Tmax, 0.95> and <WTmax, 0.95>), GPMF with 1000 cases
performs significantly better than baseline GP on two scenarios
(<Tmax, 0.95> and <WTmax, 0.95>), while GPMF with
2500 and 5000 cases perform significantly worse than baseline
GP on all scenarios.

Based on the above results, we can see that the number of
cases plays a really important role in the proposed method.
When the number of cases is less than 1000, the proposed
method can obtain good results on most of the scenarios. When
the number of cases is too large, the results become very poor,
especially when the number of cases is equal to the number
of jobs. Additionally, for different scenarios, the number of
cases still plays a key role. For example, for scenario <Tmax,
0.85>, the proposed method with 200 cases obtains the best
results among all the settings, while for scenario <WTmax,
0.95>, the best number of cases is 50.

Table. IV shows the number of significantly better results
between GPMFs with different numbers of cases that outper-
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TABLE III
THE MEAN (STANDARD DEVIATION) TEST FITNESS OF 30 INDEPENDENT RUNS OF

BASELINE GP, AND GPMF WITH DIFFERENT NUMBERS OF CASES FOR SIX SCENARIOS.

Cases <Fmax, 0.85> <Fmax, 0.95> <Tmax, 0.85> <Tmax, 0.95> <WTmax, 0.85> <WTmax, 0.95> -/=/+
1(GP) 1419.89(35.04) 1711.16(49.52) 921.17(16.61) 1320.53(26.35) 2570.14(169.36) 3070.49(218.33) -

2 1409.62(22.14)(=) 1710.99(48.29)(=) 908.47(19.33)(-) 1303.24(35.85)(-) 2520.58(152.56)(=) 2925.12(151.49)(-) 3/3/0
5 1406.37(17.26)(=) 1711.30(68.02)(=) 899.40(15.28)(-) 1275.69(26.87)(-) 2465.13(134.00)(-) 2860.57(151.00)(-) 4/2/0
10 1402.08(16.65)(-) 1691.66(41.03)(-) 892.71(11.95)(-) 1339.86(369.90)(-) 2463.75(123.36)(-) 2906.41(325.46)(-) 6/0/0
20 1402.13(14.70)(-) 1728.16(278.46)(-) 893.40(14.13)(-) 1267.40(26.82)(-) 2456.40(122.44)(-) 2845.91(160.42)(-) 6/0/0
25 1398.08(12.39)(-) 1673.64(26.55)(-) 886.98(12.76)(-) 1269.91(23.37)(-) 2482.25(118.16)(-) 2783.25(138.10)(-) 6/0/0
40 1400.46(13.71)(-) 1680.92(38.82)(-) 882.84(10.53)(-) 1255.97(19.61)(-) 2462.13(114.41)(-) 2812.48(135.27)(-) 6/0/0
50 1402.09(21.03)(-) 1674.11(31.68)(-) 883.27(15.65)(-) 1261.84(20.54)(-) 2477.04(106.89)(-) 2805.70(128.13)(-) 6/0/0

100 1395.09(11.28)(-) 1726.30(266.69)(-) 882.90(13.55)(-) 1256.66(21.82)(-) 2454.22(99.67)(-) 2815.71(193.63)(-) 6/0/0
200 1396.61(12.80)(-) 1675.60(26.27)(-) 880.62(12.77)(-) 1280.45(112.44)(-) 2506.06(111.83)(=) 2982.34(826.88)(-) 5/1/0
250 1396.00(8.62)(-) 1686.43(35.09)(-) 881.31(12.47)(-) 1336.14(317.27)(-) 2473.37(115.29)(-) 2895.63(211.79)(-) 6/0/0
500 1399.86(17.04)(-) 1879.05(756.64)(=) 892.85(12.33)(-) 1418.29(504.18)(-) 2499.05(105.62)(=) 2843.24(195.49)(-) 4/2/0
1000 1416.52(36.37)(=) 2040.93(809.57)(=) 919.61(28.85)(=) 1277.64(27.22)(-) 2549.20(97.32)(=) 3015.48(448.54)(-) 2/4/0
2500 1627.10(37.21)(+) 4628.60(709.25)(+) 1036.85(37.38)(+) 4209.50(743.46)(+) 2658.14(112.27)(+) 6412.27(1062.19)(+) 0/0/6
5000 2206.17(49.93)(+) 4920.53(499.40)(+) 1588.27(59.02)(+) 4446.50(645.05)(+) 3115.47(112.69)(+) 6716.63(934.35)(+) 0/0/6

TABLE IV
THE NUMBER OF SIGNIFICANTLY BETTER RESULTS BETWEEN GPMFS

WITH DIFFERENT NUMBERS OF CASES FOR SIX SCENARIOS.

Cases 10(-) 20(-) 25(-) 40(-) 50(-) 100(-) 250(-)
10 - 0 3 2 2 3 1
20 0 - 1 2 1 2 2
25 0 0 - 1 1 1 0
40 0 0 0 - 0 1 1
50 0 0 0 0 - 0 0
100 0 0 0 0 0 - 0
250 0 0 1 1 1 1 -
Sum 28 32 39 39 38 45 36

form GP on all the tested scenarios based on the pairwise
Wilcoxon rank-sum test results. Based on the results, we can
see that GPMF with 100 cases wins in all algorithms with 45
significantly better results (i.e., 3 significantly better results
than GPMF with 10 cases + · · ·+ 1 significantly better result
than GPMF with 250 cases). Therefore, the effectiveness of
the proposed GPMF with 100 cases is selected to do further
analysis by comparing it with the baseline GP on six scenarios.

B. Overall Results

Based on the above sensitivity analysis, the effectiveness of
the proposed GPMF with 100 cases is selected to do further
analysis by comparing it with the baseline GP on six scenarios.
The convergence curves are shown in Fig. 3. Based on Table
III, we can see that the GPMF with 100 cases performs
significantly better than baseline GP on all six scenarios.
Based on Fig. 3, we can see that the method proposed in this
paper has a faster convergence speed and better convergence
results. Additionally, based on Fig. 3, for half of the scenarios
(<Tmax, 0.85>, <Fmax, 0.85>, and <WTmax, 0.85>),
the scheduling heuristics evolved by GPMF give smoother
convergence curves on the test set, while the curves obtained
by baseline GP are relatively more fluctuating which indicates
that the scheduling heuristics evolved by GPMF have better
generalisation ability. Overall, these results indicate that the
proposed GPMF could obtain significantly better results than
the baseline GP method.
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Fig. 3. Convergence curves of the test fitness on six scenarios.

VI. FURTHER ANALYSIS

A. Diversity Analysis

In this section, we investigate whether the proposed method
influences the diversity of the individuals under the phenotypic
characterisation (PC) [30]. The PC is a vector of numerical
values, which represents the behaviour of each individual. In
this paper, we use a fixed instance to obtain 20 sequencing
decision points and 20 routing decision points [9], and if
two scheduling heuristics have the same decisions for all the
40 decision points, we consider that they have the same PC.
For each generation, the percentage of unique PC among the
population is used to represent the PC diversity. It is noted that
the same PC of two scheduling heuristics does not definitely
mean they have the same decisions on all the decisions
during the whole simulation because for a simulation, there
are thousands of decision points. However, it indicates that
the two rules could make similar decisions on most decision
points. Fig. 4 shows the convergence curves of PC diversity
of three algorithms on six scenarios. We can see that as the
evolution process continues, the PC diversity decreases with
the proposed GPMF methods. Overall, we can see that the
proposed method can reduce the PC diversity, which might be
one of the reasons it gets good performance.

Authorized licensed use limited to: Victoria University of Wellington. Downloaded on September 11,2022 at 03:49:07 UTC from IEEE Xplore.  Restrictions apply. 



<Fmax, 0.95> <Tmax, 0.95> <WTmax, 0.95>

<Fmax, 0.85> <Tmax, 0.85> <WTmax, 0.85>

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

0.2

0.3

0.4

0.5

0.6

0.2

0.3

0.4

0.5

0.6

0.2

0.3

0.4

0.5

0.6

0.2
0.3
0.4
0.5
0.6

0.2

0.3

0.4

0.5

0.6

0.2
0.3
0.4
0.5
0.6

Generation

PC
 D

iv
er

si
ty

Cases = 1 (baseline GP) Cases = 100

Fig. 4. Convergence curves of PC diversity on six scenarios.

TABLE V
THE MEAN (STANDARD DEVIATION) OF ROUTING AND SEQUENCING RULE

SIZE OF GP AND GPMF WITH 100 CASES FOR SIX SCENARIOS.

S* sequencing rule routing rule
GP GPMF GP GPMF

1* 45.93(17.55) 49.27(19.81)(=) 36.73(13.39) 46.33(13.82)(+)
2* 40.20(15.52) 52.20(18.36)(+) 45.53(21.37) 51.47(21.22)(+)
3* 45.93(14.49) 51.73(22.99)(=) 37.20(18.97) 47.47(20.02)(+)
4* 46.67(16.30) 47.53(14.09)(=) 40.67(16.98) 51.47(17.47)(+)
5* 41.27(15.92) 44.40(21.11)(=) 33.60(16.22) 44.20(12.84)(+)
6* 48.47(22.69) 42.87(9.61)(=) 42.13(19.17) 51.07(17.25)(+)
* S: Scenarios, 1: <Fmax, 0.85>, 2: <Fmax, 0.95>, 3: <Tmax, 0.85>,

4: <Tmax, 0.95>, 5: <WTmax, 0.85>, 6: <WTmax, 0.95>.

B. Rule Size

Table V shows the mean (standard deviation) results of the
sequencing and routing rule size of 30 independent runs. As
the population evolves, the size of both the sequencing rule
and routing rule tends to increase. Additionally, we can see
that for all scenarios, the routing rule size of the best rule
evolved by GPMF is larger than baseline GP, and on these
scenarios, GPMF can get significantly better performance than
baseline GP. For the sequencing rule size, we can see similar
phenomena for one of the scenarios (<Fmax, 0.95>), that is,
the sequencing rule size of the best rule evolved by GPMF
is significantly larger than baseline GP. Based on the above
analysis, we can see that larger sequencing rule and routing
rule sizes, especially larger routing rule sizes tend to lead to
better performance, which might be one of the reasons GPMF
obtains good performance.

C. Structure Analysis of Evolved Scheduling Heuristics

To gain further understanding of the behaviour of the
scheduling heuristic evolved by the proposed method, an
evolved scheduling heuristic is selected to be analysed. Figs.
5 and 6 show the sequencing rule and routing rule from
the selected scheduling heuristic evolved by GPMF on sce-
nario <Fmax, 0.85>. The selected scheduling heuristic has a
promising test performance.

From Figs. 5 and 6, it is observed that the sequencing rule
is a combination of seven terminals (NIQ, PT, NOR, TIS,
WKR, OWT, and WIQ), where NIQ and PT are the most
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PT NIQ

- WKR

PT NIQ

- WKR

PT NIQ

TIS -

+ /

NIQ Min

WIQ NOR

- NIQ

NOR OWT

Fig. 5. An example of sequencing rule evolved by the proposed method.

frequently used terminals in this rule. The sequencing rule
can be simplified as S below.

S =3PT −NIQ− 2max{PT −NIQ,WKR} −max{

TIS,NIQ+min{WIQ,NOR} − NOR−OWT

NIQ
}

Additionally, the routing rule is a combination of nine
terminals (TRANT, OWT, WIQ, WKR, PT, NPT, TIS, MWT,
and NIQ), where TRANT and OWT are the most frequently
used terminals in this rule. The routing rule can be simplified
as R below.

R =2OWT + 2PT + 2TRANT +WIQ− NPT

TIS
−

(MWT +NIQ)NPT

OWT ×WKR+ TRANT
− WIQ

WKR

The terminal TRANT is not used by the sequencing rule, while
it is used three times by the routing rule. The terminal TRANT
is mainly designed for the transportation time and the routing
rule uses it to select a machine to process the operation. When
one machine is selected, the operation should be transported
to the selected machine, so TRANT should be considered
and this result is what we expect. Additionally, the subtree
max{PT − NIQ,WKR} is used twice in the sequencing
rule and the subtree OWT +PT is used twice in the routing
rule, which might mean that these two subtrees can play a key
role in the selection of operation and machine, respectively.

VII. CONCLUSIONS

This paper sets out to improve the effectiveness of the
evolved scheduling heuristics by improving the generalisation
ability of the evolved scheduling heuristics. This goal has been
successfully achieved by proposing a new GPMF method. The
main novelty is the MF strategy that uses the multi-case fitness
to replace the original fitness.

The experimental results and analysis have shown that
the proposed method performs significantly better than the
baseline GP on all the scenarios. The evidence from the
experimental results suggests that the proposed MF strategy
can improve the generalisation capability and effectiveness of
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Fig. 6. An example of routing rule evolved by the proposed method.

the evolved scheduling heuristics. The present findings have
important implications on the fitness evaluation process for
solving DFJSS or other combinatorial optimisation problems
with evolutionary algorithms. This new fitness is significantly
better than the baseline GP on the maximum objectives while
being equivalent to the baseline GP for the mean objectives.
Future work will explore this MF strategy for solving other
combinatorial optimisation problems.
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