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ABSTRACT
Linear genetic programming (LGP) has been successfully applied
to various problems such as classification, symbolic regression and
hyper-heuristics for automatic heuristic design. In contrast with
the traditional tree-based genetic programming (TGP), LGP uses
a sequence of instructions to represent an individual (program),
and the data is carried by registers. A common issue of LGP is that
LGP is susceptible to introns (i.e., instructions with no effect to
the program output), which limits the effectiveness of traditional
genetic operators. To address these issues, we propose a new graph-
based LGP system. Specifically, graph-based LGP uses graph-based
crossover and graph-based mutation to produce offspring. The
graph-based crossover operator firstly converts each LGP parent
to a directed acyclic graph (DAG), and then swaps the sub-graphs
between the DAGs. The graph-based mutation selectively modify
the connections in DAGs based on the height of sub graphs. To
verify the effectiveness of the new graph-based genetic operators,
we take the dynamic job shop scheduling as a case study, which has
shown to be a challenging problem for LGP. The experimental
results show that the LGP with the new graph-based genetic
operators can obtain better scheduling heuristics than the LGP
with the traditional operators and TGP.
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1 INTRODUCTION
Linear genetic programming (LGP) is an important member of the
genetic programming (GP) family [4, 28]. Unlike the traditional
tree-based genetic programming (TGP), the individuals in LGP
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are represented linearly as a sequence of instructions, where each
instruction is an elementary single-step operation (e.g., 𝑅1 = 𝑥 + 1).
Compared with TGP, LGP has a number of advantages, such as the
ability to reusing building blocks (while TGP requires to copy sub-
trees to this end) and better flexibility to evolve different topological
structures. As a result, LGP has been successfully applied to various
machine learning and optimisation problems such as classification
[17], regression [34], and automatic heuristic design [7, 18, 36].
However, contrary to TGP which has been widely applied to
scheduling problems [40–42], there are only a few preliminary
investigations on LGP for evolving dispatching rules for dynamic
scheduling [18]. They show that dynamic scheduling problems are
currently challenging problems for LGP.

A major issue of LGP is the effectiveness of genetic operators
on the linear representation. In TGP, each sub-tree is connected to
the root node, and thus makes effect to the final program output
(although TGP may still have redundant sub-trees such as adding
zero or multiplying by one). For LGP, however, due to the linear
representation, it is more susceptible to no effect instructions than
TGP. First, an instruction can be redundant. For example, in the
program (𝑅1 = 𝑥 + 2; 𝑅1 = 𝑥 ∗ 3;), the latter instruction makes the
former one redundant. Second, a block of code can be irrelevant to
the program output. For example, given the program (𝑅3 = 𝑅1 + 1;
𝑅3 = 𝑅3 + 𝑅2; 𝑅0 = 𝑅1 ∗ 2;), where 𝑅0 is the program output
register. In this program, the first two instructions are irrelevant
to the program output. The instructions that do not affect the final
program output are called introns. If we see an LGP program as
a directed acyclic graph (DAG), then the DAG can have multiple
connected sub-graphs, and the introns are in the sub-graphs that
are isolated from the main DAG that contains the final program
output. The traditional linear genetic operators directly modify the
sequence of instructions without considering whether the modified
parts have an effect on the program output or not. Though some
variants of genetic operators ensure that at least one effective
instruction is modified in breeding, they often destruct useful
building blocks (i.e., topological structures of effective instructions).
In this case, they may have a too large variation step size, and
cannot strike a good balance between exploration and exploitation.
In other words, the linear genetic operators are less effective than
the tree-based genetic operators for TGP.

To address this issue, we propose two new LGP graph-based
genetic operators. Unlike the traditional linear genetic operators
that directly consider the sequence of instructions, the proposed
graph-based genetic operators consider the DAGs corresponding
to the sequence. This way, they can take the relationship (links
in the DAG) between instructions into account, and select only
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the instructions contributing to the final program output for
modification. Specifically, the graph-based crossover operator
selects a sub-graph from the DAGs corresponding to both parents
and swaps them. The graph-based mutation mutates registers (i.e.,
connection in DAGs) based on the height of sub-graphs.

To verify the effectiveness of the LGP with the newly developed
graph-based genetic operators, we take the dynamic job shop
scheduling (DJSS) as a case study, since previous investigations
[18] have shown that this is a challenging problem for LGP (i.e.,
LGP cannot obtain better dispatching rules than TGP). We expect
that the new graph-based genetic operators can improve the search
ability of LGP to evolve better dispatching rules for DJSS.

The overall goal of this paper is to develop a new LGPwith graph-
based genetic operators to achieve better search ability. Specifically,
we have the following research objectives:

• To develop a novel graph-based crossover operator and a
new graph-basedmutation operator for linear representation.
The new genetic operators considers the DAGs rather than
the raw sequence to select the parts to modify.

• To develop a new LGP system with the graph-based genetic
operators.

• To verify the effectiveness of the new LGP system on a
number of DJSS scenarios in terms of the performance of
the evolved dispatching rules.

• To verify the effectiveness of the new graph-based crossover
and mutation operators independently, and analyse their
behaviours on modifying the topological structures of the
parents.

2 BACKGROUND
2.1 Linear genetic programming
LGP is a GP variant which encodes computer programs or
mathematical formula by a sequence of instructions [28]. Each
instruction has three main components: destination register,
operation/function, and source registers. The operation takes the
values from the source registers as inputs, calculates the result,
and writes the result to the destination register. For example, in an
instruction 𝑅0 = 𝑥 + 1, the destination register is 𝑅0, the operation
is +, and the two source registers are 𝑥 and 1. An LGP individual
is denoted as 𝐹 = [𝑓0, 𝑓1, ..., 𝑓𝑙−1], where 𝑙 is length of (i.e., the
number of instructions in) the individual. For each instruction 𝑓𝑖 , its
destination register, operation, and source registers are denoted as
𝑑𝑒𝑠 (𝑓𝑖 ), 𝑜𝑝 (𝑓𝑖 ), and src(𝑓𝑖 ), where src(𝑓𝑖 ) = [𝑠𝑟𝑐1 (𝑓𝑖 ), . . . , 𝑠𝑟𝑐𝑘 (𝑓𝑖 )]
is a vector of source registers (e.g., 𝑘 = 2 for typical arithmetic
operations).

Fig. 1 is an example of an LGP program with 𝑅0 as the program
output register. It represents a formula that calculates 𝑥0 × (𝑥1 +
𝑥0) −𝑥2/𝑥1. Note that the input features 𝑥𝑖 (𝑖 = 0, 1, 2) are regarded
as a kind of constant registers. All the registers 𝑅0, 𝑅1 and 𝑅2 are
initialised to 0. The figure shows both the sequence of instructions
and its corresponding DAG. An LGP individual can be decoded into
a DAG in 𝑂 (𝑛) time [1]. In the DAG, the operation vertices have
at least one outgoing edge pointing to another function or input
feature, while input features have no outgoing edges. Each function
and input feature vertex also has incoming edges denoting other
vertices that take its results as inputs. These connections from one
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Figure 1: An example of LGP programs and its corresponding
DAG
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Figure 2: The overall framework of LGP.

vertex to another are designated by registers. From the DAG, it can
be seen that 𝑥0 and 0 + 𝑥1 are reused.

Based on the linear representation, LGP has its own genetic
operators. There are three basic operators for LGP, linear crossover,
macro mutation, and micro mutation. Linear crossover is similar to
the crossover in genetic algorithm. It respectively selects a segment
of instructions from two parent chromosomes. The two selected
segments are then exchanged to produce offspring. For the two
types of mutations, they mainly produce offspring by generating
new instructions in individuals. The key difference between them
is that macro mutation produces offspring by inserting new
instructions to a parent individual or removing instructions from it,
which will affect the total number of instructions in the individual.
Contrarily, micro mutation only mutates the primitives of existing
instructions in parent individuals. It will not change the total
number of instructions and has a smaller variation step size than
macro mutation.

Fig. 2 shows the flowchart of the overall framework of LGP.
It follows the standard evolutionary algorithm framework of
initialisation, fitness evaluation, parent selection and breeding. The
key characteristic of the LGP framework is that it uses the linear
crossover, macro mutation and micro mutation, which are designed
based on linear representation, to generate offspring.

2.2 Related work
GP methods are conventionally designed based on tree-like
structures when it was popularised by Koza [20]. In addition to
tree-like structure, several chromosome representations are also
proposed to enhance GP methods. For example, Miller et al. [24]
proposed a Cartesian GP which encodes a computer program into a
grid of nodes. Each node represents a function like a logic gate. The
connection among these nodes are designated by a Cartesian co-
ordinate system. Cartesian GP has shown a superior performance
in circuit design [22, 23], image processing [33], and evolving
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neural network architecture [25]. Gene expression programming
is another notable variant of GP methods [14]. Different from
conventional GP which simply represents a formula by a tree-like
structure, gene expression programming encodes a mathematical
formula by a sequence of primitives and decodes it back to tree-
like structure in execution. Such design leads to a better search
efficiency of gene expression programming than tree-based GP.
It also relieves the bloat effect in tree-based GP. Gene expression
programming has been successfully applied to symbolic regression
and classification [43, 44]. Constraints can also be applied to
chromosome representation to tailor the search space. For example,
grammar-guided GP, which applies a set of grammars to constrain
the data types and data structures of tree-based individuals, is
proven to be effective in solving program synthesis problems
[16]. Besides, the chromosome can be bit strings. For example,
O’Neill et al. [31, 32] proposed grammatical evolution which
decodes bit strings into complete computer programs based on a
set of Backus–Naur form grammars. Besides these GP variants,
there are some other GP representations which have shown a
prominent performance in certain areas. For example, PushGP
which encodes computer programs by Push programming language,
is good at solving program synthesis problems [35]. Linear-tree GP
which extends GP tree nodes into a linear structure has superior
performance to tree-based GP in symbolic regression [19].

LGP is one of prominent variants of GPmethods and it has shown
superior performance in symbolic regression and classification
problems [4, 29]. For example, Downey and Fogelberg respectively
applied LGP to solve multi-class image classification problems
[12, 13, 15]. Different from tree-like structures which only have one
output (i.e., the root), LGP naturally has multiple outputs if defining
multiple output registers, each for one sub-class classification.
Since these output registers can fully utilise common building
blocks for different sub-classes, LGP has advantages over tree-
based GP in multi-class classification. LGP also shows superior
performance to tree-based GP and artificial neural network in
binary classification [2, 34]. Besides, LGP has undergone a good
development in solving symbolic regression. For example, Dal
Piccol Sotto et al. [7] developed a probability model to learn the
distribution of elite LGP individuals and sample offspring based on
the probability model in symbolic regression problems. Sotto et al.
[6] also verified that LGP has better bloat control than tree-based
GP in symbolic regression problems. Additional to these work,
LGP is successfully applied to other domains such as automatic
algorithm design [8] and parallel computation [10, 11]. LGP has also
been applied to dynamic scheduling [18]. However, the preliminary
investigation in [18] only validates that LGP is competitive with
TGP in solving DJSS problems.

Genetic operator is an important design issue for GP methods
[39]. Besides the conventional genetic operators introduced above,
some genetic operators of LGP were developed in the last two
decades. For example, Banzhaf and Brameier et al. [1, 3] made a lot
of comparisons on different types of crossover and mutation. They
found that ensuring the effectiveness (i.e., the variationmust change
at least one LGP effective instructions) and neutrality (i.e., locally
search different offspring and ensure that the fitness of offspring
must be better or at least equal to the one of its corresponding
parent) of LGP mutation can significantly improve the performance

of LGP in solving classification and symbolic regression. Besides,
based on the domain knowledge, some problem specific operators
were proposed for LGP. For example, based on multiple output
registers in multi-class classification, Downey et al. [12] designed a
class path crossover which swaps the DAGs contributing to a same
sub-class. In genetic improvement, some mutation and crossover
were also proposed based on a new linear representation of software
repair operations [30]. Though these genetic operators successfully
improved LGP performance, they are not efficient enough (e.g.,
multiple fitness evaluation is required), or cannot be extended to
dynamic scheduling. To fully utilise the the topological structures of
effective instructions to enhance the training and test performance
of LGP, a graph-based crossover is developed for LGP in this paper.

3 GRAPH-BASED LGP
This section describes the newly developed LGP with the graph-
based genetic operators. The new algorithm follows the generic
LGP overall framework as in Fig. 2. The main differences are the
newly developed graph-based crossover and mutation operators,
which will be described in more detail below.

3.1 Graph-based Crossover
The proposed graph-based crossover for LGP aims to swap LGP
instructions based on their topological structures, rather than their
raw genome. This way, the topological structures of building blocks
are not easily destructed by recombination. Briefly speaking, it first
decodes the raw LGP parents into corresponding DAGs. Then, it
selects a sub-graph in the main DAGs (producing the final output)
in each of the two parents and swaps them. The swapping is done
on the sequences of the instructions directly to remove the need of
adjusting the links in the resultant DAG.

Algorithm 1 shows the pseudo code of the graph-based crossover
operator, where | | · | | indicates the cardinality (number of elements)
of a set/list. Given two LGP parents 𝑝1 and 𝑝2, a set of registers
R, as well as three crossover parameters, i.e., the maximal size of
sub-graphs 𝑆 , size gap limit Δ𝑆 and maximal distance of crossover
points 𝐷𝑐𝑟𝑜𝑠𝑠 , the graph-based crossover first extracts the lists of
effective instructions (i.e., the main DAG with the final output) 𝑝 ′1
and 𝑝 ′2. Then, it selects a sub-graph from each parent subject to the
following constraints: (1) the number of effective instructions in
both offspring after the swapping is within the graph size range
[𝑙, 𝑙], and (2) the gap between the two sub-graph sizes do not
exceed Δ𝑆 . Then, it swaps the two sub-graphs to generate two
offspring. Note that each parent plays the role of recipient and
donor alternatively in the swapping.

The sub-graph of an individual is obtained by backtracking
the effective instructions from the selected crossover point. If the
current instruction contributes to the target instruction at the
crossover point (there is a path from its destination register to
the target instruction), the current instruction is added into the
sub-graph. The pseudo code is shown in Algorithm 2, where the
edge of the paths pointing to the target instruction is stored in T.

The pseudo code of the sub-graph swapping is shown in
Algorithm 3. It generates an offspring by replacing the instructions
in sub-graph𝐺1 of the recipient parent 𝑝1 with the sub-graph𝐺2 of
the donor parent 𝑝2. Specifically, it replaces the last instruction
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Algorithm 1: GraphCrossover(𝑝1, 𝑝2, R, 𝑆 , Δ𝑆 , 𝐷𝑐𝑟𝑜𝑠𝑠 )
Input: Two LGP parents 𝑝1 and 𝑝2, register set R, maximal

size of sub-graphs 𝑆 , size gap limit Δ𝑆 , maximal
distance of crossover points 𝐷𝑐𝑟𝑜𝑠𝑠 .

Output: Two LGP offspring 𝑐1 and 𝑐2.
1 Extract the list of effective instructions 𝑝 ′1 ⊆ 𝑝1, 𝑝 ′2 ⊆ 𝑝2;
/* Select sub-graphs */

2 repeat
3 Randomly select two registers 𝑟1, 𝑟2 ∈ R;
4 repeat
5 Randomly sample an instruction index

𝑖1 ∼ 𝑈 [1, | |𝑝 ′1 | |] and 𝑖2 ∼ 𝑈 [1, | |𝑝 ′2 | |];
6 until |𝑖1 − 𝑖2 | ≤ 𝐷𝑐𝑟𝑜𝑠𝑠 ;
7 Randomly sample 𝑆1 ∼ 𝑈 [1, 𝑆], 𝑆2 ∼ 𝑈 [1, 𝑆];
8 𝐺1 = GetSubGraph(𝑝 ′1, {𝑟1}, 𝑖1, 𝑆1);
9 𝐺2 = GetSubGraph(𝑝 ′2, {𝑟2}, 𝑖2, 𝑆2);

10 until | |𝑝 ′1 | | − | |𝐺1 | | + | |𝐺2 | | ∈ [𝑙, 𝑙] and
| |𝑝 ′2 | | − | |𝐺2 | | + | |𝐺1 | | ∈ [𝑙, 𝑙] and | | |𝐺1 | | − | |𝐺2 | | | ≤ Δ𝑆 ;

/* Swap the sub-graphs */

11 𝑐1 = GraphSwap(𝑝1, 𝑝2,𝐺1,𝐺2);
12 𝑐2 = GraphSwap(𝑝2, 𝑝1,𝐺2,𝐺1);
13 return 𝑐1, 𝑐2;

Algorithm 2: GetSubGraph(𝑝 , T, 𝑖 , 𝑆)
Input: An LGP individual 𝑝 , a set of target register T,

crossover point 𝑖 , graph size 𝑆 .
Output: A sub-graph𝐺 , represented as a list of instructions.

1 𝐺 = [];
2 for 𝑗 = 𝑖 → 0 do
3 if 𝑑𝑒𝑠 (𝑝 𝑗 ) ∈ T then
4 𝐺 = [𝑝 𝑗 ,𝐺];
5 if | |𝐺 | | = 𝑆 then break;
6 T = T \ 𝑑𝑒𝑠 (𝑝 𝑗 );
7 for 𝑠𝑟𝑐 ∈ src(𝑝 𝑗 ) do
8 if 𝑠𝑟𝑐 is a register then T = T ∪ 𝑠𝑟𝑐;

9 return 𝐺 ;

𝐺1 [| |𝐺1 | | − 1] in 𝐺1 with 𝐺2. Then, it removes all the other
instructions in 𝐺1 from the offspring. Note that the swapping does
not replace the instructions at their original positions, but only
retains the position of the last instruction of the sub-graphs. This
way, we can retain the topological structure of the sub-graph 𝐺2
of the donor parent, which would increase the effectiveness of the
swapping/replacement.

An example of the graph-based crossover is shown in Fig. 3. The
parent on the left is the recipient and the right one is the donor. We
can see that the third instruction 𝑅3 = 𝑅4 ∗ 𝑅5 on the left and the
second instruction 𝑅0 = 𝑅2+𝑅2 are introns and do not appear in the
DAGs. The instructions in the selected sub-graphs are highlighted
in gray. Finally, we replace the instruction 𝑅0 = 𝑅1 + 𝑅2 on the left
with the sub-graph (𝑅3 = 𝑅1/𝑅2; 𝑅0 = 𝑅3 ∗ 𝑅5;) on the right, and

Algorithm 3: GraphSwap(𝑝1, 𝑝2, 𝐺1, 𝐺2)
Input: A recipient LGP parent 𝑝1, a donor LGP parent 𝑝2,

sub-graphs (lists of instructions) 𝐺1, 𝐺2
Output: An LGP offspring 𝑐

1 𝑐 = 𝑝1;
2 Replace 𝐺1 [| |𝐺1 | | − 1] in 𝑐 with 𝐺2;
3 Remove 𝐺1 [0 : | |𝐺1 | | − 2] from 𝑐;
4 while | |𝑐 | | > 𝑙 do Randomly remove an intron from 𝑐;
5 return 𝑐;
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Figure 3: Example of graph-based crossover.

remove the remaining instruction 𝑅1 = 𝑅4 − 𝑅3 from the left. From
this example, we can see that the offspring inherits some building
blocks from both the left parent (e.g., 𝑅1 + 𝑅5) and the right parent
(e.g., 𝑅0 = #1/#2 × #3, where #1 to #3 can be any value).

3.2 Graph-based Mutation
The graph-based mutation is mainly used to change the connections
in the DAG. For example, mutating the destination register of
an instruction is equivalent to transmitting the results of a sub-
graph from one receiver to another, and mutating a source register
of an instruction is equivalent to activating another sub-graph
while deactivating the existing connection. In the existing mutation
operator, these variations are performed in a random manner. All
the registers in the instructions have the same probability to be
mutated. This might be not efficient enough.

To improve the efficiency of LGP mutation, two main ideas are
introduced into the design of the graph-based mutation. Firstly,
when mutating destination registers, graph-based mutation is
more likely to select registers that are less utilised. This way, we
can increase the utilisation of all registers and encourage more
parallel computation (more intermediate results stored in different
registers). As a result, we tend to obtain a “wider” DAG with more
parallel branches. Secondly, when mutating source registers, graph-
based mutation tends to select new source registers that are the
result of more computations (its corresponding sub-graph is deeper).
This way, we can increase the utilisation of large sub-graphs and
reuse larger building blocks to refine the final output.
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Algorithm 4: GraphMutation(𝑝 , 𝜃 𝑓 , 𝜃𝑐 , 𝜃𝑠 )

Input: An LGP parent 𝑝 , function mutation rate 𝜃 𝑓 ,
constant mutation rate 𝜃𝑐 , source register mutation
rate 𝜃𝑠 .

Output: An LGP offspring 𝑐 .
1 𝑐 = 𝑝 , 𝑟𝑛𝑑 ∼ 𝑈 (0, 1);
2 Randomly select an effective instruction with index 𝑖𝑚 from

𝑐;
3 if 𝑟𝑛𝑑 < 𝜃 𝑓 then
4 Mutate the function of 𝑐 [𝑖𝑚] randomly;
5 else if 𝑟𝑛𝑑 < 𝜃 𝑓 + 𝜃𝑐 and 𝑡 has a constant then
6 Mutate the constant of 𝑐 [𝑖𝑚] randomly;
7 else if 𝑟𝑛𝑑 < 𝜃 𝑓 + 𝜃𝑐 + 𝜃𝑠 then
8 GraphMutateSourceReg(𝑐, 𝑖𝑚);
9 else
10 GraphMutateDestinReg(𝑐, 𝑖𝑚);
11 return 𝑐;

To implement these two ideas, we calculate the height of a sub-
graph rooted at a register in the DAG. If the sub-graph of a certain
destination register has a small height, it is likely that the register
has not been effectively updated for a while, and it tends to be less
utilised. In this case, the destination register has a higher probability
to be selected by graph-based mutation to be a new destination
register. On the other hand, if the sub-graph of a certain destination
register has a large height, it means that the register stores the
result that has gone through more computations, and thus is more
likely to contain more information. In this case, the destination
register is more likely to be selected by the graph-based mutation
as a new source register.

The pseudo code of the graph-based mutation is shown in
Algorithm 4. In addition to the parent 𝑝 to be mutated, it
has three parameters, i.e., the mutation rates for function 𝜃 𝑓 ,
constant 𝜃𝑐 and source register 𝜃𝑠 . The mutation rate for the
destination register can be derived by 𝜃𝑑 = 1 − 𝜃 𝑓 − 𝜃𝑐 − 𝜃𝑠 .
Specifically, the graph-based mutation operator randomly selects
an effective instruction 𝑡 from 𝑝 to be mutated, following the
mutation rates of the four different components. The mutation
of a function and constant (if the instruction contains a con-
stant) is the same as in traditional LGP micro mutation, that
is, randomly sampling from the function set or the predefined
constant domain. The mutation of the source and destination
registers are conducted by the GraphMutateSourceReg(𝑐, 𝑡) and
GraphMutateDestinReg(𝑐, 𝑡) methods, respectively.

Algorithms 5 and 6 show the mutation of the source and
destination registers. They follow similar process. First, for each
possible register, the height of the sub-graph before the mutated
instruction (i.e., below the mutated instruction in the DAG)
is calculated by the SubGraphHeight(𝑝 , 𝑖) method (which is a
recursive process shown in Algorithm 7). Then, to encourage
manipulating registers with a larger sub-graph height as source
registers and using registers with smaller sub-graph height as
destination registers, a new register is selected by the roulette wheel
selection, where the probability of a register is set proportional

Algorithm 5: GraphMutationSourceReg(𝑝 , 𝑖𝑚)
Input: An LGP individual 𝑝 , mutated instruction index 𝑖𝑚 .

1 foreach register 𝑟 ∈ R do
2 Set the height of the sub-graph ℎ𝑟 = 1;
3 Find the index of preceding instruction index

𝑖 ′ = max{ 𝑗 | 𝑗 < 𝑖𝑚, 𝑑𝑒𝑠 (𝑝 𝑗 ) = 𝑟 };
4 if 𝑖 ′ ≥ 0 then
5 Calculate the sub-graph height

ℎ𝑟 = SubGraphHeight(𝑝, 𝑖 ′);

6 foreach register 𝑟 ∈ R do
7 Set the probability Pr(𝑟 ) = ℎ𝑟∑

𝑟∈R ℎ𝑟
;

8 Select 𝑟∗ ∈ R by roulette-wheel selection based on Pr(𝑟 );
9 Replace a source register of 𝑝 [𝑖𝑚] with 𝑟∗;

Algorithm 6: GraphMutationDestinReg(𝑝 , 𝑖𝑚)
Input: An LGP individual 𝑝 , mutated instruction index 𝑖𝑚 .

1 foreach register 𝑟 ∈ R do
2 Set the height of the sub-graph ℎ𝑟 = 1;
3 Find the index of preceding instruction index

𝑖 ′ = max{ 𝑗 | 𝑗 < 𝑖𝑚, 𝑑𝑒𝑠 (𝑝 𝑗 ) = 𝑟 };
4 if 𝑖 ′ ≥ 0 then
5 Calculate the sub-graph height

ℎ𝑟 = SubGraphHeight(𝑝, 𝑖 ′);
6 Set 𝑠𝑐𝑜𝑟𝑒𝑟 = 1

1+ℎ𝑟 ;

7 foreach register 𝑟 ∈ R do
8 Set the probability Pr(𝑟 ) = 𝑠𝑐𝑜𝑟𝑒𝑟∑

𝑟∈R 𝑠𝑐𝑜𝑟𝑒𝑟
;

9 Select 𝑟∗ ∈ R by roulette-wheel selection based on Pr(𝑟 );
10 Replace the destination register of 𝑝 [𝑖𝑚] with 𝑟∗;

Algorithm 7: SubGraphHeight(𝑝 , 𝑖)
Input: An LGP individual 𝑝 , instruction index 𝑖 .
Output: The height of the sub-graph rooted at 𝑝 [𝑖].

1 ℎ = 0;
2 foreach 𝑠𝑟𝑐 ∈ src(𝑝 [𝑖]) do
3 for 𝑘 = 𝑖 − 1 → 0 do
4 if 𝑑𝑒𝑠 (𝑝 [𝑘]) = 𝑟 then
5 ℎ = max{SubGraphHeight(𝑝, 𝑘), ℎ};
6 break;

7 return 1 + ℎ;

to the sub-graph height ℎ𝑟 for source register mutation, while
proportional to 1/(1 + ℎ𝑟 ) for destination register mutation.

Fig. 4 shows an example of graph-based mutation, which
calculates the sub-graph and its height for every register of an
LGP individual, where the last instruction (in the dashed box) is
selected to be mutated. From the figure, we can see that 𝑅0 and 𝑅4
have a height of 1, since there is no previous instruction containing
them as destination registers. Similarly, we can calculate the sub-
graph height of all the registers. In this case, 𝑅1 and 𝑅2 will be more
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Figure 4: Examples of corresponding DAGs of all registers.

likely to be the new source register, while 𝑅0 and 𝑅4 are more likely
to be the new destination register.

4 EXPERIMENTS: A CASE STUDY FOR
DYNAMIC JOB SHOP SCHEDULING

4.1 Dynamic Job Shop Scheduling
This paper uses the DJSS problem to verify the performance of
the proposed graph-based genetic operators. LGP is used as a kind
of hyper-heuristic method to evolve dispatching rules for DJSS
problems [5, 26]. DJSS is to process a set of jobs J by a set of
machines M. New jobs will come into the job shop over time. Each
job 𝑗 ∈ J consists of a sequence of operations O = (𝑜 𝑗1, ..., 𝑜 𝑗𝑙 𝑗 ),
an arrival time 𝛼 𝑗 , a due date 𝑑 𝑗 and a weight 𝜔 𝑗 . Each operation
𝑜 𝑗𝑖 can be processed by a certain machine 𝜋 (𝑜 𝑗𝑖 ) ∈ M with a
positive processing time 𝜎 (𝑜 𝑗𝑖 ). 𝑜 𝑗𝑖 cannot be processed until 𝑜 𝑗,𝑖−1
is completed. Each machine can process at most one operation at a
time, and the processing cannot be interrupted once started.

In the experiments, we consider three objectives to be minimised,
i.e., maximum tardiness for the whole simulation (𝑇𝑚𝑎𝑥 ), mean
tardiness (𝑇𝑚𝑒𝑎𝑛), and weighted mean tardiness (𝑊𝑇𝑚𝑒𝑎𝑛). They
are calculated as follows.

• 𝑇𝑚𝑎𝑥 = max𝑗 ∈𝐽 (max(𝑐 𝑗 − 𝑑 𝑗 , 0))
• 𝑇𝑚𝑒𝑎𝑛 = 1

| 𝐽 |
∑

𝑗 ∈𝐽 (max(𝑐 𝑗 − 𝑑 𝑗 , 0))
• 𝑊𝑇𝑚𝑒𝑎𝑛 = 1

| 𝐽 |
∑

𝑗 ∈𝐽 (max(𝑐 𝑗 − 𝑑 𝑗 , 0) · 𝜔 𝑗 )
where 𝑐 𝑗 is the completion time of job 𝑗 .

The new jobs arrive dynamically, and the arrival time follows
a Poisson process. We use a utilisation level parameter to control
the frequency of the job arrivals, so that a higher utilisation level
indicates that the shop floor is busier. In the experiments, we
consider two different utilisation levels of 0.85 (i.e., about 85% of
the time the machines are busy) and 0.95 (about 95% of the time
the machines are busy). In combination of three objectives and two
utilisation levels, we have 3 × 2 = 6 different DJSS scenarios. For
each DJSS scenario, we create a set of training simulations and an
unseen test simulation set. The compared GP algorithms will train
a dispatching rule on the training set, and apply it to the test set to
assess its test performance.

In the simulation, there are totally 10 machines in the job shop.
Each job consists of 2 to 10 operations. The processing time of each

operation is sampled from uniform distribution between 1 and 99.
The jobs arrival to the job shop based on a Poisson process, with
utilisation levels of 0.85 or 0.95. The due-date of job 𝑗 is defined as
1.5 times the total processing time of 𝑗 since it is arrived. Among
all the jobs, 20% of them have a weight of 1, 60% of the jobs have
a weight of 2, while the remaining 20% have a weight of 4. The
evaluation of a dispatching rule focuses on the steady-state of
the simulation, which means the first 1000 jobs in the simulation
will not be counted. The performance metrics only care about the
subsequent 5000 jobs after the 1000 warm-up jobs.

We compare the newGraph-based LGP (GLGP) with the standard
TGP and LGP. Standard TGP, which has undergone a rapid
development as a hyper-heuristic, is a popular baseline for many
existing work for dynamic scheduling [27, 37, 38]. It uses its
standard genetic operators to evolve dispatching rules in our
experiments. For standard LGP, it uses the linear crossover and
effective micro and macro mutation [1]. Each compared algorithm
is run 30 times independently with different random seeds on each
DJSS scenario.

4.2 Parameter Settings
The population size of the three GP methods is set to 256, and the
maximal number of generations is set to 50. The other parameters of
TGP are set as the recommended ones of existing literature [38]. The
common parameters of the two LGPmethods are set as follows. The
maximal number of instructions in an individual is set to 50 (𝑙 = 50)
and the minimal number is set to 1 (𝑙 = 1). The number of registers
in LGP is set to 10 (e.g., R = {𝑅0, 𝑅1, . . . , 𝑅9}. These registers are
initialised by different job shop attributes. The rates of reproduction,
macro mutation, micro mutation and crossover are set to 10%, 30%,
30% and 30%, respectively. In GLGP, the graph-based crossover
takes place of crossover, and the micro-mutation is replaced by
the graph-based mutation. Specifically, the parameters of macro
mutation and the rates of different components in both the micro
mutation and graph-based mutation are set as their recommended
values by [4]. The parameters of graph-based crossover are set to
𝑆 = 20, Δ𝑆 = 5, 𝐷𝑐𝑟𝑜𝑠𝑠 = 30 respectively. To ensure linear crossover
have a similar variation step size with graph-based crossover, the
corresponding parameters of linear crossover are set the same as
those of graph-based crossover. Specifically, the maximal segment
length 𝐿 = 30, maximal difference of selected segments Δ𝐿 = 5, and
the maximal distance between crossover points 𝐷𝑐𝑟𝑜𝑠𝑠 = 30. 𝐿 is
set to 30 by assuming the average effective rate of an instruction
segment is 60% to 70%. The terminal and function sets of the three
GP methods follow the common settings of existing literature of
GP for DJSS [18, 21]. All of these three GP methods conduct parent
selection by a tournament selection with size 7, and the elitism rate
of GP population is set to 10%.

5 RESULTS AND DISCUSSION
5.1 Test Performance
In this sub-section, the test performance of the three GP methods
on the six DJSS scenarios are compared. For each DJSS scenario,
we conduct the Wilocxon rank sum test with significance level of
0.05 to compare the test performance of the final dispatching rules
obtained by the 30 runs.
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Table 1: Mean (std.) of the test performance of LGP andGLGP.

Scenarios TGP LGP GLGP
Tmax0.85 2000.25(61.31) 2041.16(84.61) 2011.13(59.66)(≈,≈)
Tmax0.95 4222.82(126.7) 4190.68(143.3) 4107.45(119.53)(+,+)
Tmean0.85 423.53(6.98) 422.53(4.64) 421.59(4.66)(≈,≈)
Tmean0.95 1132.32(15.81) 1129.79(13.24) 1129.74(12.53)(≈,≈)
WTmean0.85 749.65(40.22) 735.41(10.55) 734.51(8.45)(≈,≈)
WTmean0.95 1796.28(132.5) 1780.59(30.68) 1767.85(30.01)(≈,≈)
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Figure 5: The convergence curves of test performance

Table 1 shows the mean and standard deviation of the test
performance over 30 runs of TGP, LGP and GLGP. Under the
“GLGP” column, the notations “+”, “−”, and “≈” indicate that the
proposed GLGP performs statistically significantly better than,
worse than, similar with TGP and LGP, respectively. From the table,
we can see that GLGP significantly outperforms both TGP and LGP
on the Tmax0.95 scenario. For the remaining scenarios, there is
no statistical difference between the three compared algorithms.
However, GLGP obtains slightly better mean values in most cases.
Overall, we can see that GLGP shows better test performance than
LGP on the six DJSS scenarios.

Fig. 5 shows the convergence curves of the test performance
of the best dispatching rule evolved by the three GP methods
per generation on the six DJSS scenarios. Specifically, the black
and green curves are the convergence curves of LGP and TGP
respectively, and the red curves are the ones of GLGP. The shaded
area shows the standard deviation around the mean. From the
figure, we can see that the convergence curves of GLGP in the
Tmax0.85 and Tmax0.95 scenarios drop down faster and deeper
than the ones of LGP. Though TGP converges faster than GLGP in
Tmax0.85, it becomes inferior to GLGP when it comes to Tmax0.95,
which is a more complicated scenario than Tmax0.85. In the two
Tmean scenarios, though the three GP methods look quite similar
in terms of the average performance, the curves of GLGP have
a narrower bias range than the ones of both TGP and LGP. It
implies a more stable performance of GLGP than LGP. In the two

Table 2: Mean (std.) of training fitness and training time

Scenarios TGP LGP GLGP
Training fitness

Tmax0.85 1753.05(54.64) 1784.21(312.83) 1743.44(301.58)(≈,≈)
Tmax0.95 3868.92(162.94) 3848.18(920.95) 3787.19(939.47)(≈,≈)
Tmean0.85 405.14(8.96) 404.17(48.35) 402.69(49.48)(≈,≈)
Tmean0.95 1081.87(47.32) 1084.47(266) 1087.66(281.49)(≈,≈)
WTmean0.85 718.92(16.18) 704.61(77.79) 702.61(78.1)(≈,≈)
WTmean0.95 1737.77(66.6) 1734.63(388.81) 1724.41(383.99)(≈,≈)

Training time (seconds)
Tmax0.85 769.95(27.09) 680.22(17.63) 903.07(32.92)(−,−)
Tmax0.95 1671.41(63.23) 1511.75(39.43) 2027.68(68.54)(−,−)
Tmean0.85 677.93(17.48) 658.92(14.89) 783.27(18.16)(−,−)
Tmean0.95 1269.56(39.06) 1417.97(51.86) 1383.6(49.6)(−,+)
WTmean0.85 700.53(17.7) 628.29(14.87) 801.54(28.35)(−,−)
WTmean0.95 1423.05(49.91) 1432.01(68.91) 1651.19(67.72)(−,−)

WTmean scenarios, GLGP has a competitive performance with LGP
and also more stable than TGP. Overall, the convergence curves
validate the superior performance of GLGP on scenario Tmax0.95
and the competitive learning performance on Tmean and WTmean
scenarios.

5.2 Training performance
This sub-section investigates the training performance of GLGP,
including the average training fitness, training time, and the average
program size in evolution. Table 2 compares the training fitness
and time of GLGP with TGP and LGP. We can see that the training
fitness of all these three GP methods are very similar. But GLGP
still has a smaller mean value and standard deviation in terms of
training fitness in most cases. On the other hand, GLGP has a much
longer training time than TGP and LGP. It implies that, within
the same number of simulations, the dispatching rules evolved by
GLGP are likely to be more complex than those evolved by TGP
and LGP.

Fig. 6 shows the curve of the average program size in the
population at each generation of the compared algorithms. For TGP,
the program size equals the number of nodes in the tree. To make
a fair comparison on the program size, we set the program size of
LGP and GLGP to the number of effective instructions multiplying
by a factor of 2.0 [9]. As shown in the figure, though the average
program size of GLGP in all the six scenarios is relatively small at
the beginning, it climbs rapidly during evolution. Especially in later
generations (>40), the program size of GLGP even exceeds that of
TGP, and ends up with about 50 in most cases. The rapid increase
of program size of GLGP leads to much longer decision times than
TGP and LGP in simulation. Based on the superior test performance
of GLGP, it is reasonable to claim that GLGP can construct more
effective and sophisticated dispatching rules than TGP and LGP.

5.3 Component analysis
To further verify the effectiveness of the graph-based crossover and
graph-based mutation, we conduct component analysis to compare
LGP with the GLGP with the graph-based mutation only (GM-only)
and with the graph-based crossover only (GC-only). Table. 3 shows
the test performance and standard deviation of LGP, GM-only, and
GC-only. The table shows that GM-only performs quite similar
with LGP, though the mean value is usually better than that of LGP.
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Figure 6: The average program size over generations.

Table 3: Average test performance of graph-base mutation
and crossover

Scenarios LGP GM-only GC-only
Tmax0.85 2041.16(84.61) 2017.69(60.47)≈ 2000.24(54.21)+
Tmax0.95 4190.68(143.3) 4155.43(124.82)≈ 4117.99(155.51)+
Tmean0.85 422.53(4.64) 421.48(4.00)≈ 420.09(2.66)+
Tmean0.95 1129.79(13.24) 1132.45(12.43)≈ 1130.47(13.27)≈
WTmean0.85 735.41(10.55) 736.3(6.97)≈ 732.77(6.29)≈
WTmean0.95 1780.59(30.68) 1775.53(26.79)≈ 1767.33(28.87)≈

GC-only, on the other hand, performs much better than LGP. It not
only significantly outperforms LGP in three of the six scenarios,
but also achieves a very competitive performance in the remaining
three scenarios. Furthermore, when looking at the results of GLGP
in Table 1, we can see that GC-only can even perform better than
GLGP for most scenarios. In summary, we can see that the graph-
based crossover plays a major role in the superior performance
of GLGP. On the other hand, the graph-based mutation is not so
effective, as including it together with the graph-based crossover
might even worsen the performance of GLGP.

5.4 Effective Rate
The superior performance of the graph-based genetic operators
stems from maintaining more useful building blocks (i.e., the
topological structure of effective instructions). As a result, there
should be more useful building blocks accumulating in the GLGP
individuals. In other words, the proportion of effective instructions
(i.e., effective rate) of GLGP should be larger than LGP.

To validate this hypothesis, we examine the effective rate of LGP
and GLGP over generations during the evolutionary process in Fig.
7. From the figure, we can see that the red curves (i.e., the effective
rate of GLGP) are always above the black curves (i.e., the effective
rate of LGP) in all of the six scenarios. Besides, in some specific
scenarios such as the two WTmean scenarios, the red curves grow
up consistently while the black curves can onlymaintain at a certain
level. Overall, we can see that GLGP successfully reaches a higher
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Figure 7: The curves of effective rate

effective rate, suggesting that GLGP manages to construct more
effective building blocks in the individuals than LGP.

6 CONCLUSIONS
This paper aims to improve the search effectiveness of LGP.
This goal has been achieved by proposing a new graph-based
LGP, which contains newly developed graph-based crossover and
mutation operators. Specifically, the newly proposed crossover
firstly converts the LGP individuals from instruction sequences
to DAGs, and then swaps sub-graphs in the DAGs between two
parents. The graph-based mutation aims to replace the destination
registers with less utilised registers, and replace the source registers
with more utilised registers. This way, it can utilise intermediate
computation results (building blocks) better. We test the proposed
GLGP on evolving dispatching rules for DJSS as a case study. The
results show that GLGP has significantly better test performance
than LGP with conventional linear genetic operators. Further
analysis demonstrates that the graph-based crossover plays a major
role in the advantage of GLGP, and an important reason of the
advantage is the increased complexity and effective rate of the
evolved programs.

This paper validates that protecting the topological structure of
effective instructions is a simple and effective method to improve
LGP performance. There are several future research directions
worth to be studied. First, GLGP suffers from a more severe
bloat effect (i.e., much larger program size) than other compared
algorithms. Encouraging GLGP to evolve compact rules is necessary
in further improving its performance. Second, the proposed graph-
based mutation is not as effective as expected. A further analysis of
the behaviour of graph-based mutation is needed.
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