)

Check for
updates

Importance-Aware Genetic Programming
for Automated Scheduling Heuristics
Learning in Dynamic Flexible Job Shop
Scheduling

Fangfang Zhang! ®®, Yi Mei'®, Su Nguyen?®, and Mengjie Zhang’

1 School of Engineering and Computer Science, Victoria University of Wellington,
PO BOX 600, Wellington 6140, New Zealand
{fangfang.zhang,yi.mei,mengjie.zhang}@ecs.vuw.ac.nz
2 Centre for Data Analytics and Cognition, La Trobe University, Bundoora, Australia
P.Nguyend4@latrobe.edu.au

Abstract. Dynamic flexible job shop scheduling (DFJSS) is a critical
and challenging problem in production scheduling such as order picking
in the warehouse. Given a set of machines and a number of jobs with a
sequence of operations, DFJSS aims to generate schedules for completing
jobs to minimise total costs while reacting effectively to dynamic changes.
Genetic programming, as a hyper-heuristic approach, has been widely
used to learn scheduling heuristics for DFJSS automatically. A schedul-
ing heuristic in DFJSS includes a routing rule for machine assignment
and a sequencing rule for operation sequencing. However, existing stud-
ies assume that the routing and sequencing are equally important, which
may not be true in real-world applications. This paper aims to propose
an importance-aware GP algorithm for automated scheduling heuristics
learning in DFJSS. Specifically, we first design a rule importance mea-
sure based on the fitness improvement achieved by the routing rule and
the sequencing rule across generations. Then, we develop an adaptive
resource allocation strategy to give more resources for learning the more
important rules. The results show that the proposed importance-aware
GP algorithm can learn significantly better scheduling heuristics than
the compared algorithms. The effectiveness of the proposed algorithm
is realised by the proposed strategies for detecting rule importance and
allocating resources. Particularly, the routing rules play a more impor-
tant role than the sequencing rules in the examined DFJSS scenarios.

Keywords: Importance-aware scheduling heuristics learning - Genetic
programming - Hyper-heuristic + Dynamic flexible job shop scheduling

1 Introduction

Dynamic flexible job shop scheduling (DFJSS) [1,2] is an important com-
binatorial optimisation problem which is valuable in real-world applications
such as production scheduling in manufacturing and processing industries [3,4].

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Rudolph et al. (Eds.): PPSN 2022, LNCS 13399, pp. 48-62, 2022.
https://doi.org/10.1007/978-3-031-14721-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14721-0_4&domain=pdf
http://orcid.org/0000-0001-5516-3972
http://orcid.org/0000-0003-0682-1363
http://orcid.org/0000-0002-1153-5022
http://orcid.org/0000-0003-4463-9538
https://doi.org/10.1007/978-3-031-14721-0_4

Importance-Aware GP for Automated SHs Learning in DFJSS 49

The goal of DFJSS is to find effective schedules to process a number of jobs by a
set of machines [5]. In DFJSS, each job consists of a number of operations, and
each operation can be processed by more than one machine. Two decisions, i.e.,
machine assignment to allocate operations to machines and operation sequenc-
ing to select an operation to be processed next by an idle machine, need to be
made simultaneously. In addition, the decision marking has to be made under
dynamic environments such as continuously job arrival [6,7].

Genetic programming (GP) [8], as a hyper-heuristic approach [9-12], has been
successfully used to learn scheduling heuristics for DFJSS [13,14]. For GP in
DFJSS, a scheduling heuristic consists of a routing rule and a sequencing rule
which are used to make decisions on machine assignment and operation sequenc-
ing, respectively. The quality of schedules depends on the interaction of the rout-
ing rule and the sequencing rule. These two rules in previous studies are normally
regarded as being equally important, and are given the same amount of computa-
tional resources to evolve. However, this is not necessarily the case in real world
applications, and giving too many computational resources to less important rules
may lead to a waste of resources and negatively affect the quality of schedules.

To this end, this paper aims to propose an effective importance-aware
scheduling heuristics learning GP approach for DFJSS. The developed rule
importance measure reflects the significance of the routing rule and the sequenc-
ing rule in DFJSS. Inspired by the computation resource allocation strategy
that is widely used to allocate resources to sub-problems [15-19], an adaptive
computational resource allocation strategy is designed to give more resources for
learning the more important rules. In this paper, we use the number of individu-
als to represent the magnitude of the resources. The proposed algorithm aims to
help GP find better scheduling heuristics by allocating proper number of individ-
uals between learning the routing and sequencing rules in DFJSS. Specifically,
this paper has the following research objectives.

— Develop an effective strategy to measure the importance of the routing rule
and the sequencing rule in the decision making of DFJSS.

— Propose an adaptive computational resource allocation strategy based on the
rule importance.

— Analyse the effectiveness of the proposed algorithm in terms of the perfor-
mance of learned rules.

— Analyse how the proposed algorithm affects GP’s behaviour in terms of the
number and the ratio of individuals assigned, and the reward for each rule.

— Analyse the effect of the proposed algorithm on the sizes of the learned
scheduling heuristics.

2 Background

2.1 Dynamic Flexible Job Shop Scheduling

In DFJSS, m machines M = {My, Mo, ..., M, } are required to process n jobs J =
{J1,J2, ..., Ju}. Each job J; has a sequence of operations O; = {O;1, Oja, ..., Oji; }
that need to be processed one by one, where /; is the number of operations of job J;.

50 F. Zhang et al.

Routing Rule

Fig. 1. An example of the routing rule learned by GP.

Each operation Oj; can be processed on more than one machine M (0;;) € 7(Oj;)
[20]. Thus, the machine that processes an operation determines its processing time
3(0ji, M(0Oj;)). This paper focuses on one of the most common dynamic events in
real life, i.e., new jobs arrive dynamically [21,22]. The information about a new job
is unknown until it arrives on the shop floor. Below are the main constraints of the
DFJSS problems.

— A machine can only process one operation at a time.

— Each operation can be handled by only one of its candidate machines.

— An operation cannot be handled until its precedents have been processed.
— Once started, the processing of an operation cannot be stopped.

We consider three commonly used objectives in this paper. The calculations
of them are shown as follows.
Z;L:1 (Cj—ry)
n
i1 max{0,C;—d;}
n

— Mean-flowtime (Fmean):

— Mean-tardiness (Tmean):
i1 wixmaz{0,C;—d;}
n

— Mean-weighted-tardiness (WTmean):

where C; represents the completion time of a job J;, r; represents the release
time of Jj, d; represents the due date of J;, and n represents the number of jobs.

2.2 GP for DFJSS

GP starts with a randomly initialised population that contains a number of
individuals (i.e., initialisation). GP programs consist of terminals and functions,
which are naturally priority functions for prioritising machines and operations in
DFJSS. Figure 1 shows an example of the routing rule which is a priority function
of WIQ + NIQ * MWT where WIQ and NIQ are the workload and the number of
operations in the queue of a machine, MWT is the needed time of a machine to
finish its current processing operation. The quality of individuals is evaluated by
measuring the decision marking performance of applying individuals on DFJSS
simulations (i.e., evaluation). New offspring are generated by genetic operators,
i.e., crossover, mutation, and reproduction, with selected parents (i.e., evolution).
New offspring will be put into and evaluated in the next generation. GP improves
the quality of individuals generation by generation until the stopping criterion
is met. The best learned scheduling heuristic at the last generation is reported
as the output of the GP algorithm [23,24].

Importance-Aware GP for Automated SHs Learning in DFJSS 51

Population Initiali:

Offo Individual Evaluation
o‘%gs)o »| with training instance at generation g

Subpop for Routing | Subpop,, for Sequencing N

[g | |
! Routing Sequencing i

Evolution Yes Attt S bt i

crossover, mutation and reproduction .
. P Rule Importance Calculation

Ko Hh TR TR *

Subpop ¢ for Rouitng Subpop,, for Sequencing CompufltI::):aatlirnesource

Fig. 2. The flowchart of the proposed algorithm.

3 Importance-Aware Scheduling Heuristic Learning

3.1 An Overview of the Proposed Algorithm

Figure 2 shows the flowchart of the proposed algorithm, and the newly devel-
oped components are highlighted in red. We use cooperative coevolution strat-
egy to learn the routing rule and the sequencing rule simultaneously [25,26].
The population consists of two subpopulations, and the first (second) subpop-
ulation Subpop; (Subpops) is used to learn the routing (sequencing) rule. The
evolutionary processes of the two subpopulations are independent except for the
individual evaluation. Since a routing rule and a sequencing rule have to work
together to make decisions in DFJSS, for individual evaluation, the individu-
als in Subpop; (Subpops) at the current generation are evaluated with the best
individual in Subpops (Subpop;) at the previous generation. The best scheduling
heuristic obtained from the whole population is reported as the best at the cur-
rent generation, i.e., can either be from Subpop, or from Subpops. Since there
is no previous generation for the first generation, for individual evaluation in
Subpopy (Subpops), we randomly select one individual in Subpops (Subpop:).
Before evolution, we first measure the importance of the routing rule and
the sequencing rule. Then, we use the rule importance information to allocate
computational resources, i.e., individuals, for learning different rules. More com-
putational resources will be allocated to the important rule, which is expected
to improve the overall scheduling effectiveness in DFJSS. The number of indi-
viduals in Subpop; and Subpops is adaptive. As the example shown in Fig. 2, at
the beginning, there are two individuals in each subpopulation for learning each
rule. After the computational resources allocation, three individuals are used to
learn the routing rule and one individual is utilised for the sequencing rule. The
details of the developed new components are shown in the following subsections.

3.2 Measure the Importance of the Routing and Sequencing Rules

This paper measures the importance of rules based on their contributions to the
fitness improvement which is calculated according to consecutive generations.

52 F. Zhang et al.

Algorithm 1: Reward Calculation of the Routing and Sequencing Rule

1: rewardRouting = 0, rewardSequencing = 0, counter = 3
while counter < g do

V)

3: if fitness1 < fitness| and fitnessy < fitnessy, or fitness1 > fitness]
and fitnesss > fitnessy then

4: if A1 < A2 then

5: ‘ rewardRouting = rewardRouting + 1

6: end

7 if A1 > A2 then

8: ‘ rewardSequencing = rewardSequencing + 1

9: end

10: if A1 = A2 then

11: rewardRouting = rewardRouting + 0

12: rewardSequencing = rewardSequencing + 0

13: end

14: else

15: rewardRouting = rewardRouting + 0

16: rewardSequencing = rewardSequencing + 0

17: end

18: counter = counter + 1

19: end

20: return rewardRouting, rewardSequencing

We assume the best fitness of Subpop; and Subpop, are fitness; and fitnesss
at the current generation, and fitness| and fitness) at the previous generation.
We calculate the fitness improvement of Subpop; for learning routing rules and
Subpops for learning sequencing rules as Al = (fitness; — fitness!)/ fitness)
and A2 = (fitnesss — fitness,)/fitnessh, respectively. In the general min-
imisation problems, we can compare Al and A2 directly (i.e., Al < 0 and
A2 < 0), and treat the one with smaller A (i.e., larger |A|) as the important
one. However, it is not always the case in this paper due to the used instance
rotation strategy, i.e., different generations use different training instances, which
has been successfully used to train scheduling heuristics with GP [27,28]. This
indicates that the fitness scales are different across generations due to the differ-
ence of training instances, and we are not sure whether the fitness will increase
or decrease across consecutive generations. Thus, this paper defines that the
routing rule will be more important than the sequencing rule when Al < A2
under the conditions of either fitness; > fitness] and fitnessy > fitness)
or fitness; < fitness] and fitnesss < fitnessy (lines 3-13). The rewards for
the routing rule rewardRouting and the sequencing rule rewardSequencing are
calculated as shown in Algorithm 1, where ¢ is the current generation number. It
is noted that we do not measure the rule importance at the generations in either
of the following two cases, i.e., If fitness; > fitness] and fitnessy < fitness,
or If fitness; < fitness| and fitnessa > fitnessh (lines 14-17), due to the
unknown fitness change information. How to measure rule importance in these
two cases will be studied in our future work.

Importance-Aware GP for Automated SHs Learning in DFJSS 53

3.3 Adaptive Computational Resource Allocation Strategy

We start to measure the rule importance from generation three (i.e., g > 3,
population at generation 1 is randomly initialised, and we do not consider it
for avoiding randomness). At a generation, we use the reward obtained by rules
so far to decide the number of individuals for learning each rule. The ratios for
deciding the number of individuals for the routing rule is shown as below:

rewardRouting (1)

ratioRouting =
g rewardRouting 4+ rewardSequencing

Thus, the number of offspring generated per generation for learning the rout-
ing rule and sequencing rule is popsize x ratioRouting and popsize * (1 —
ratioRouting), respectively. The number of individuals for learning the rout-
ing and sequencing rule is adaptive over generations, which are highly related to
the rule importance.

4 Experiment Design

Simulation Model: This paper considers to process 6000 jobs including 1000
warm-up jobs with ten machines. The importance of jobs varies which are repre-
sented by weight, i.e., 20%, 60%, 20% jobs are with weights 1, 2, and 4, respec-
tively [29]. Each job has a certain number of operations which follows a uniform
discrete distribution between one and ten. Each operation can be processed by
more than one machine, where the number of options follows a uniform discrete
distribution between one and ten. The processing time of each operation follows
a uniform discrete distribution with the range [1, 99]. Utilisation level (P) is a
factor to simulate different DFJSS scenarios, and a higher utilisation level indi-
cates a busier DFJSS. The utilisation is calculated as P = pu* Py /A, where p is
the average processing time of machines, Py, is the probability of a job visiting
a machine, X is the rate of the Poisson process for simulating job arrival.

Design of Comparisons: GP, which has an equal number of individuals for learn-
ing the routing and sequencing rules, is selected as a baseline for comparison.
The algorithm that gives the important rule more individuals is named IGP.
To measure the performance of IGP, IGP will be compared with GP. To fur-
ther verify the effectiveness of IGP, we compare with a reverse algorithm named
UNIGP that gives unimportant rule more individuals by swapping the number of
individuals for routing and sequencing rules obtained by the proposed individual
allocation strategy. The scenarios with utilisation levels of 0.75, 0.85 and 0.95 are
used to measure the performance of algorithms. The scenarios are represented
as <objective, utilisation level> such as <Fmean, 0.75>.

Parameter Settings: All the algorithms have 1000 individuals with two sub-
populations. Each subpopulation is 500 individuals. IGP and UNIGP have an
adaptive number of individuals across generations. Each individual of the algo-
rithm consists of terminals, i.e., shown in Tablel [21], and functions, i.e., +,

54 F. Zhang et al.

Table 1. The terminal and function sets.

Terminals | Description
Machine-related | NIQ The number of operations in the queue
WIQ Current work in the queue
MWT Wiaiting time of a machine
Operation-related | PT Processing time of an operation
NPT Median processing time for next operation
OWT Waiting time of an operation
Job-related WKR Median amount of work remaining of a job
NOR The number of operations remaining of a job
4% Weight of a job
TIS Time in system

Table 2. The mean (standard deviation) of objective values on test instances of GP,
IGP, and UNIGP according to 30 independent runs in nine scenarios.

Scenarios GP IGP UNIGP

<Fmean, 0.75> 336.23(1.26) | 335.63(1.07)(7) | 335.94(1.19) (=) (=)
<Fmean, 0.85> 384.69(1.63) | 383.79(1.50) (1) |386.97(4.06)(1)(l)
<Fmean, 0.95> 550.94(5.79) | 549.69(2.95)(~) | 558.08(9.64)(1)(l)
<Tmean, 0.75> 13.28(0.40) |13.09(0.29)(T) |13.76(0.77)(1)(l)
<Tmean, 0.85> 40.27(1.85) |39.56(0.82)(=~) |42.15(2.92)(1)(1)
<Tmean, 0.95> 175.49(2.85) | 174.25(2.43)(7) | 182.88(6.94)(1)(l)
<WTmean, 0.75> | 27.04(1.05) | 26.66(1.02)(T) |27.71(2.22)(=)(])
<WTmean, 0.85> | 75.82(3.83) | 74.46(1.90)(1) | 76.57(4.37)(=)(])
<WTmean, 0.95> | 294.58(9.65) | 290.45(6.10) (1) | 303.93(15.40)(1)(l)
Average rank 2 1.51 2.49

* An algorithm is compared with its left algorithm(s) one by one if has.

—, #, protected /, max, min. The initialised GP programs are generated by the
ramp-half-and-half method with a minimal (maximal) depth of 2 (6). The depths
of all programs are no more than 8. Tournament selection with size 7 is used to
select parents for producing offspring. The new offspring are generated by elites
of a value of 10, and crossover, mutation and reproduction with rates 80%, 15%,
and 5%, respectively. The maximal number of generations of algorithms is 51.

5 Results and Discussions

We use the results from 30 independent runs to verify the performance of the
proposed algorithm. We apply the Friedman test to see whether there is a signif-
icant difference among algorithms. If yes, then Wilcoxon test with a significance
level of 0.05. is used to compare two algorithms, and “7”, “|”, “~” indicate an
algorithm is better, worse or similar with the compared algorithm.

Importance-Aware GP for Automated SHs Learning in DFJSS 55

<Fmean, 0.75> <Fmean, 0.85> <Fmean, 0.95>
3401 392- 570-
338- 388- 560-
3361 384~ 4> 550- <é>
334- ! j 380-
3 <Tmean, 0.75> <Tmean, 0.85> <Tmean, 0.95>
= 47.5- 200-
g 15- 45.0- 190-
£ 14- 42.5-
S é 180-
o | 40.0- <;>
g P : ! . ; D 170- & !
a <WTmean, 0.75> <WTmean, 0.85> = <WTmean, 095>
32.5- 90- ggg:
30.0- 85- 310-
27.5- 8] 3001
: 75- 290-
' ' ' " Algorithm ' ' '

P 6P UNIGP

Fig. 3. Violin plots of the obtained objective values on test instances of GP, IGP and
UNIGP according to 30 independent runs in nine scenarios.

Quality of Learned Scheduling Heuristics: Table2 shows the mean and
standard deviations of objective values on unseen instances of GP, IGP and
UNIGP over 30 independent runs in nine scenarios. The results show that IGP is
significantly better than GP in most of the examined scenarios. This verifies the
effectiveness of the proposed algorithm with adaptive computational resources
allocation strategy. In addition, UNIGP is much worse than baseline GP and
IGP which is as expected, since UNIGP applies the opposite idea from IGP.
This verifies the proposed algorithm from a reverse point of view. Overall, we
can see that IGP is the best algorithm among them with the smallest rank value
of 1.51. Figure 3 shows the violin plots of obtained test objective values of GP,
IGP, and UNIGP based on 30 independent runs in nine scenarios. We can see
that the proposed algorithm IGP shows its superiority and achieves the best
performance with a lower objective distribution.

Accumulated Rewards for Routing and Sequencing Rules: Figure4
shows the curves of average accumulated reward values of IGP-Routing and
IGP-Sequencing based on 30 independent runs in nine scenarios. It is clear that
the reward values for the routing rule are increasing steadily along with the
generations. However, there is only a small increase on the reward values of the
sequencing rules in most of the scenarios. The results show that the routing rule
plays a more important role than the sequencing rule in DFJSS. The proposed
algorithm is expected to give more individuals for learning the routing rules.

56 F. Zhang et al.

<Fmean, 0.75> <Fmean, 0.85> <Fmean, 0.95>
251
0 20 40
<Tmean, 0.75> <Tmean, 0.85> <Tmean, 0.95>
7]
]
%25 E 25 4
z 0 0 1p=I.....,-o»-o--}o--o'
‘ti 0 20 40
E <WTmean, 0.75> <WTmean, 0.85> <WTmean, 0.95>
254
0 * .,,,.........o--‘ 0 3 ._.”.._,,,,.,,..,...04-0-
0 20 40 0 20 40

Generation

—&— IGP-Routing e |GP-Sequencing

Fig.4. Curves of average accumulated reward values of IGP-Routing and IGP-
Sequencing according to 30 independent runs in nine scenarios.

Ty, GP IGP UNIGP
L

600

®

Routing Rule
w
o
o
[J

IN
o
o

350 400 450 500 550 600 650
Sequencing Rule

Fig. 5. Scatter plots of the number of individuals for learning the routing rule and the
sequencing rule across all generations of GP, IGP, and UNIGP.

The Number of Individuals for Learning Rules: Figure5 shows the scat-
ter plots of individuals for learning the routing and sequencing rule across all
generations of GP, IGP and UNIGP in scenario <Fmean, 0.75>. For GP, a
fixed number of individuals are equally set for learning the routing rule (i.e., 500
individuals) and the sequencing rule (i.e., 500 individuals). IGP gives more indi-
viduals for learning the routing rule, which UNIGP biases more on the learning
on the sequencing rule. The results show that the routing rule is more important
than the sequencing rule in DFJSS. Furthermore, the proposed algorithm IGP
can adaptively allocate more individuals for learning the routing rule. Similar
pattern is also found in other scenarios.

Ratios of Number of Individuals for Learning the Routing Rule:
Figure6 shows the curves of average ratios of the number of individuals for
learning the routing rule along with generations of IGP and UNIGP. At the
first two generations, the ratios of the number of individuals for learning routing

Importance-Aware GP for Automated SHs Learning in DFJSS 57

<Fmean, 0.75> <Fmean, 0.85> <Fmean, 0.95>
0.6 0.75 A 0.75 4
0.50 A 0.50 A
0.4 4 g
: . —1 0254, . —1 0257 . .
0 20 40 0 20 40 0 20 40
<Tmean, 0.75> <Tmean, 0.85> <Tmean, 0.95>
0.75 4 0.75 A 0.75 A
0.50 4 0.50 A 0.50 A
-] i | 25
5021, . —1 %1 . —| 927, . .
(-4 0 20 40 0 20 40 0 20 40
<WTmean, 0.75> <WTmean, 0.85> <WTmean, 0.95>
0.75 4 0.75 A 0.75 A
0.50 1 0.50 A 0.50 A
0.25 4 0.25 A 0.25 A
0 20 40 0 20 40 0 20 40

Generation

— IGP —— UNIGP

Fig. 6. Curves of the average ratios of the number of individuals for learning the routing
rule along with generations of IGP and UNIGP according to 30 independent runs.

and sequencing rules are the same, which are 0.5 in all scenarios (computational
resource allocation starts at generation three). From generation three, IGP starts
to increase the ratios of the number of individuals for learning routing rules. After
generation 20, the ratios arrive at a relatively steady state, which are around
0.85 in most scenarios. UNIGP has shown the opposite trend, where the ratios of
the number of individuals for learning the routing rule keep decreasing to about
0.15 at generation 20 and stay at a relatively constant number after that.

Comparison with Algorithms with Fixed Number of Individuals: Based
on the discussion in the previous section, we can see that the found ratios of
individuals for the routing rule are around 0.85. In other words, about 850 (i.e.,
1000 *0.85) individuals are used by IGP for learning the routing rule. It is inter-
esting to know whether fixing the number of individuals for learning rules can
get the same performance as IGP or not. To investigate this, we compare IGP
with GP500, GP650 and GP850, where 500 (500), 650 (350), and 850 (150)
are the number of individuals for learning the routing (sequencing) rule. We
choose the most complex scenarios (i.e., <WTmean, 0.75>, <WTmean, 0.85>,
and <WTmean, 0.95>) that consider the job importance for this investigation.
Figure 7 shows the curves of the average objective values of GP500, GP650,
GP850 and IGP on test instances in mean-weighted-tardiness related scenarios
over 30 independent runs. The results show that GP850 performs better than
GP500 and GP650 in most cases. This indicates that finding a good threshold
for the number of individuals for learning rules can improve the performance.
In addition, the results also show that IGP shows its superiority compared with
all other algorithms in terms of the convergence speeds and final performance.

58 F. Zhang et al.

<WTmean, 0.75> <WTmean, 0.85> <WTmean, 0.95>
8 20.0- 801 310-§
©
28.5- 1
g 5 ,,'\ . 78- 305
E 28.0- ¥ 300-
e‘_ 27.5- 76- M 295- AX‘A‘AM
® 27.0-
F 26.5-. |] ; ! ! J [290-, ; ; ;
20 30 40 50 20 30 40 50 20 30 40 50
Generation
GP500 -+ GP650 -= GP850 IGP

Fig. 7. Curves of average objective values of GP500, GP650, GP850 and IGP on test
instances in mean-weighted-tardiness related scenarios based on 30 independent runs.

We can see that simply fixing the number of individuals for learning rules is not
effective as an adaptive computational resource allocation strategy. One possible
reason is that the importance of the routing rule and sequencing rules’ impor-
tance may differ on different instances at different generations. Another possible
reason is that although the routing rule and the sequencing rule differ in impor-
tance to the schedule, it is still necessary to allocate enough resources to learn
the less important rule to get a good enough rule before generation 20 as shown
in Fig. 6 (i.e., the schedule quality in DFJSS depends on two rules). The supe-
rior performance of IGP verifies the effectiveness of the proposed algorithm to
detect rule importance and allocate computational resources automatically and
adaptively.

Sizes of the Learned Scheduling Heuristics: To verify the effect of the
proposed IGP on learned scheduling heuristics, this section investigates rule
size. We use the number of nodes for measuring the rule sizes [30]. Since the
routing rule and the sequencing rule work together in DFJSS, it is reasonable to
look at the sum of their rule sizes. We find that there is no significant difference
between the rule sizes (routing rule plus sequencing rule) of GP and IGP, such
as with the mean and standard deviation of 98.53(23.93) and 101.87(21.83)(~)
in <Fmean, 0.75>. Figure 8 shows the violin plots of the average sizes of routing
rules and sequencing rules over population in nine scenarios. Overall, the results
show that the routing rules are larger than the sequencing rules for both GP and
IGP. This also demonstrates that the routing rule is more important than the
sequencing rule. We can also see that there is an increase on the routing rule sizes
of IGP compared with GP, especially in the three scenarios with Tmean (i.e.,
<Tmean, 0.75>, <Tmean, 0.85> and <Tmean, 0.95>). This trend is clearer
in the scenarios with higher utilisation levels. In contrast with the increase of
the routing rule size, the sequencing rule size becomes smaller in most of the
scenarios. This indicates that using more (less) resources on learning the rule
can increase (decrease) the corresponding rule size.

Importance-Aware GP for Automated SHs Learning in DFJSS 59

<Fmean, 0.75> <Fmean, 0.85> <Fmean, 0.95>

100-

80- 70- 75-
S 60- 50- 50- @
5 40 B) &S - 2-
3 - ' ' ' ' ' ' ' ' ' ' '
o
& <Tmean, 0.75> <Tmean, 0.85> <Tmean, 0.95>
g 10- 80- 801 @B
g 50- 60- 501
N 40-
@ 30- 40- ¢ 20 <$>
K} 20- N
% <WTmean, 0.75> <WTmean, 0.85> <WTmean, 0.95>
g 75 80- 100-
g ® 60- 80-
< 50- 40- 60-

25- 40-

! ! ! 7 20- ! : ; 20- : ; :
Algorithm

GP-Rou IGP —Rou GP-Seq IGP - Seq

Fig. 8. Violin plots of the sizes of average routing rules and sequencing rules over
population of GP and IGP in nine scenarios.

6 Conclusions and Future Work

The goal of this paper is to develop an effective importance-aware scheduling
heuristics learning GP approach to automatically learn the routing and sequenc-
ing rules for DFJSS. The goal has been achieved by proposing a novel rule impor-
tance measure, and an adaptive strategy to allocate computational resources, i.e.,
GP individuals, for learning the routing rule and the sequencing rule.

The results show that the importance of the routing rule and the sequencing
rule differs, and the routing rule is more important than the sequencing rule in
the examined DFJSS scenarios. The proposed rule importance strategy based on
the improvement of fitness across generations can detect the rule importance in
DFJSS properly. Furthermore, the developed adaptive computational resources
allocation strategy based on the rule importance measure has successfully opti-
mised the learning process for the routing rule and the sequencing rule. The
effectiveness of the proposed IGP has also been verified by the analyses in terms
of the exact number and the ratios of allocated individuals for rules, the accu-
mulated reward for rules, and the comparison with the algorithms with a fixed
number of individuals for learning rules. Further analyses show that there is
no significant difference between the rule size of the pairs of routing rule and
sequencing rule, however, the routing (sequencing) rule obtained by the proposed
algorithm is larger (smaller) than compared algorithms. In addition, we observe
that the routing rule is normally larger than the sequencing rule learned by GP
algorithms, which can also be an indicator of the importance of the routing rule.

60

F. Zhang et al.

Some interesting directions can be further investigated in the near future.

The rule importance in different DFJSS scenarios may differ. For example, the
sequencing rule might be more important than the routing rule if there are a
small number of machines. More comprehensive analyses are needed. Moreover,
this paper confirms that the importance of the routing rule and the sequencing
rule can differ. A more advanced strategy to improve the overall decision marking
in DFJSS by recognising such differences is worth investigating.

References

10.

11.

12.

. Nie, L., Gao, L., Li, P., Li, X.: A GEP-based reactive scheduling policies construct-

ing approach for dynamic flexible job shop scheduling problem with job release
dates. J. Intell. Manuf. 24(4), 763-774 (2013)

. Zhang, F., Mei, Y., Nguyen, S., Zhang, M.: Guided subtree selection for genetic

operators in genetic programming for dynamic flexible job shop scheduling. In:
Hu, T., Lourenco, N., Medvet, E., Divina, F. (eds.) EuroGP 2020. LNCS, vol.
12101, pp. 262-278. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
44094-7_17

Zhang, F., Nguyen, S., Mei, Y., Zhang, M.: Genetic Programming for Produc-
tion Scheduling. MLFMA, Springer, Singapore (2021). https://doi.org/10.1007/
978-981-16-4859-5

. Nguyen, S., Zhang, M., Johnston, M., Chen Tan, K.: Hybrid evolutionary compu-

tation methods for quay crane scheduling problems. Comput. Oper. Res. 40(8),
2083-2093 (2013)

Hart, E., Ross, P., Corne, D.: Evolutionary scheduling: a review. Genet. Program
Evolvable Mach. 6(2), 191-220 (2005)

Jaklinovi¢, K., Durasevi¢, M., Jakobovié¢, D.: Designing dispatching rules with
genetic programming for the unrelated machines environment with constraints.
Exp. Syst. Appl. 172, 114548 (2021)

Zhang, F., Mei, Y., Nguyen, S., Zhang, M.: Correlation coefficient-based recombi-
native guidance for genetic programming hyperheuristics in dynamic flexible job
shop scheduling. IEEE Trans. Evol. Comput. 25(3), 552-566 (2021). https://doi.
org/10.1109/TEVC.2021.3056143

Koza, J.R.: Genetic programming as a means for programming computers by nat-
ural selection. Stat. Comput. 4(2), 87-112 (1994)

Burke, E.K., et al.: Hyper-heuristics: a survey of the state of the art. J. Oper. Res.
Soc. 64(12), 1695-1724 (2013)

Braune, R., Benda, F., Doerner, K.F., Hartl, R.F.: A genetic programming learning
approach to generate dispatching rules for flexible shop scheduling problems. Int.
J. Prod. Econ. 243, 108342 (2022)

Pillay, N., Qu, R.: Hyper-Heuristics: Theory and Applications. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-96514-7

Zhang, F., Mei, Y., Nguyen, S., Zhang, M.: Collaborative multifidelity-based sur-
rogate models for genetic programming in dynamic flexible job shop scheduling.
IEEE Trans. Cybern. 52(8), 8142-8156 (2022). https://doi.org/10.1109/TCYB.
2021.3050141

https://doi.org/10.1007/978-3-030-44094-7_17
https://doi.org/10.1007/978-3-030-44094-7_17
https://doi.org/10.1007/978-981-16-4859-5
https://doi.org/10.1007/978-981-16-4859-5
https://doi.org/10.1109/TEVC.2021.3056143
https://doi.org/10.1109/TEVC.2021.3056143
https://doi.org/10.1007/978-3-319-96514-7
https://doi.org/10.1109/TCYB.2021.3050141
https://doi.org/10.1109/TCYB.2021.3050141

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Importance-Aware GP for Automated SHs Learning in DFJSS 61

Zhang, F., Mei, Y., Nguyen, S., Zhang, M., Tan, K.C.: Surrogate-assisted evolu-
tionary multitask genetic programming for dynamic flexible job shop scheduling.
IEEE Trans. Evol. Comput. 25(4), 651-665 (2021)

Zhang, F., Mei, Y., Nguyen, S., Tan, K.C., Zhang, M.: Multitask genetic
programming-based generative hyper-heuristics: a case study in dynamic schedul-
ing. IEEE Trans. Cybern. (2021). https://doi.org/10.1109/TCYB.2021.3065340
Shen, X., Guo, Y., Li, A.: Cooperative coevolution with an improved resource
allocation for large-scale multi-objective software project scheduling. Appl. Soft
Comput. 88, 106059 (2020)

Ren, Z., Liang, Y., Zhang, A., Yang, Y., Feng, Z., Wang, L.: Boosting cooperative
coevolution for large scale optimization with a fine-grained computation resource
allocation strategy. IEEE Trans. Cybern. 49(12), 4180-4193 (2018)

Yang, M., et al.: Efficient resource allocation in cooperative co-evolution for large-
scale global optimization. IEEE Trans. Evol. Comput. 21(4), 493-505 (2017).
https://doi.org/10.1109/TEVC.2016.2627581

Jia, Y.-H., Mei, Y., Zhang, M.: Contribution-based cooperative co-evolution for
nonseparable large-scale problems with overlapping subcomponents. IEEE Trans.
Cybern. 52(6), 4246-4259 (2020). https://doi.org/10.1109/TCYB.2020.3025577
Zhang, X.-Y., Gong, Y.-J., Lin, Y., Zhang, J., Kwong, S., Zhang, J.: Dynamic
cooperative coevolution for large scale optimization. IEEE Trans. Evol. Comput.
23(6), 935-948 (2019)

Brucker, P., Schlie, R.: Job-shop scheduling with multi-purpose machines. Com-
puting 45(4), 369-375 (1990)

Zhang, F., Mei, Y., Nguyen, S., Zhang, M.: A preliminary approach to evolutionary
multitasking for dynamic flexible job shop scheduling via genetic programming. In:
Proceedings of the Genetic and Evolutionary Computation Conference, pp. 107—
108. ACM (2020)

Durasevic, M., Jakobovic, D.: A survey of dispatching rules for the dynamic unre-
lated machines environment. Exp. Syst. Appl. 113, 555-569 (2018)

Hart, E., Sim, K.: A hyper-heuristic ensemble method for static job-shop schedul-
ing. Evol. Comput. 24(4), 609-635 (2016)

Zhang, F., Mei, Y., Nguyen, S., Zhang, M.: Genetic programming with adaptive
search based on the frequency of features for dynamic flexible job shop scheduling.
In: Paquete, L., Zarges, C. (eds.) EvoCOP 2020. LNCS, vol. 12102, pp. 214-230.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-43680-3_14

Yska, D., Mei, Y., Zhang, M.: Genetic programming hyper-heuristic with coopera-
tive coevolution for dynamic flexible job shop scheduling. In: Castelli, M., Sekanina,
L., Zhang, M., Cagnoni, S., Garcia-Sénchez, P. (eds.) EuroGP 2018. LNCS, vol.
10781, pp. 306-321. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
77553-1_19

Zhang, F., Mei, Y., Zhang, M.: A two-stage genetic programming hyper-heuristic
approach with feature selection for dynamic flexible job shop scheduling. In: Pro-
ceedings of the Genetic and Evolutionary Computation Conference, pp. 347-355.
ACM (2019)

Hildebrandt, T., Heger, J., Reiter, B.S.: Towards improved dispatching rules for
complex shop floor scenarios: a genetic programming approach. In: Proceedings
of the Conference on Genetic and Evolutionary Computation, pp. 257-264. ACM
(2010)

https://doi.org/10.1109/TCYB.2021.3065340
https://doi.org/10.1109/TEVC.2016.2627581
https://doi.org/10.1109/TCYB.2020.3025577
https://doi.org/10.1007/978-3-030-43680-3_14
https://doi.org/10.1007/978-3-319-77553-1_19
https://doi.org/10.1007/978-3-319-77553-1_19

62

28.

29.

30.

F. Zhang et al.

Zhang, F., Mei, Y., Nguyen, S., Tan, K.C., Zhang, M.: Instance rotation based
surrogate in genetic programming with brood recombination for dynamic job shop
scheduling. IEEE Trans. Evol. Comput. (2022). https://doi.org/10.1109/TEVC.
2022.3180693

Hildebrandt, T., Branke, J.: On using surrogates with genetic programming. Evol.
Comput. 23(3), 343-367 (2015)

Zhang, F., Mei, Y., Nguyen, S., Zhang, M.: Evolving scheduling heuristics via
genetic programming with feature selection in dynamic flexible job-shop schedul-
ing. IEEE Trans. Cybern. 51(4), 1797-1811 (2021)

https://doi.org/10.1109/TEVC.2022.3180693
https://doi.org/10.1109/TEVC.2022.3180693

	Importance-Aware Genetic Programming for Automated Scheduling Heuristics Learning in Dynamic Flexible Job Shop Scheduling
	1 Introduction
	2 Background
	2.1 Dynamic Flexible Job Shop Scheduling
	2.2 GP for DFJSS

	3 Importance-Aware Scheduling Heuristic Learning
	3.1 An Overview of the Proposed Algorithm
	3.2 Measure the Importance of the Routing and Sequencing Rules
	3.3 Adaptive Computational Resource Allocation Strategy

	4 Experiment Design
	5 Results and Discussions
	6 Conclusions and Future Work
	References

