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Abstract—Genetic programming has achieved great success for
learning scheduling heuristics in dynamic job shop scheduling.
In theory, generating a large number of offspring for genetic
programming, known as brood recombination, can improve its
heuristic generation ability. However, it is time-consuming to
evaluate extra individuals. Phenotypic characterisation based sur-
rogates with K-nearest neighbours have been successfully used for
genetic programming to preselect only promising individuals for
real fitness evaluations in dynamic job shop scheduling. However,
sample individuals used by surrogate are from only the current
generation, since the fitness of individuals across generations are
not comparable due to the rotation of training instances. The
surrogate cannot accurately estimate the fitness of an offspring
that is far away from all the limited sample individuals at the
current generation. This paper proposes an effective instance
rotation based surrogate to address the above issue. Specifically,
the surrogate uses the samples extracted from individuals across
multiple generations with different instances. More importantly,
we propose a fitness mapping strategy to make the fitness eval-
uated by different instances comparable. The results show that
the GP with brood recombination and the proposed surrogate
can significantly improve the quality of scheduling heuristics. The
results also reveal that the proposed algorithm has successfully
reduced the number of omitted promising offspring due to
the higher accuracy of the surrogate. The samples in the new
surrogate spread better in the phenotypic space, and the nearest
neighbour tends to be closer to the predicted offspring. This
makes the estimated fitness more accurate.

Index Terms—Surrogate, Instance Rotation, Genetic Program-
ming, Brood Recombination, Dynamic Job Shop Scheduling.
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ob shop scheduling (JSS) is an important combinatorial
J optimisation that captures practical and challenging is-
sues in real-world scheduling tasks such as order picking in
warehouses [1], designing manufacturing processes (e.g., shop
floor control) [2] and managing grid/cloud computing [3].
With a number of jobs (i.e., a job consists of a sequence
of operations, and each operation can be processed on a
redefined machine), JSS aims to arrange the production of
jobs with a set of machines efficiently. Dynamic JSS [4] is
an extension of JSS but considers dynamic events such as
job arrival over time [5] when executing schedules. Dynamic
flexible job shop scheduling (DFJSS) [6], [7] is a typical case
of JSS, where each operation can be processed on a set of
machines. There are two decisions that need to be made in
DFIJSS. One is machine assignment for allocating a ready
operation to a machine. The other is operation sequencing for
choosing an operation to be processed next when a machine
becomes idle. DFJSS is normally studied with a simulation
that mimics the dynamic production environment in real-
world applications [4]. However, as the scale or complexity
of the scheduling problem increases, the approaches based
on the simulation optimisation become more and more time-
consuming due to the long run of simulation for evaluation.
Instances (i.e., represented by simulations) are widely used in
dynamic JSS to learn scheduling heuristics [8].

Genetic programming (GP) [9], [10], as a hyper-heuristic
approach, has been successfully used to learn scheduling
heuristics for JSS [11], [12]. Scheduling heuristics can be
regarded as priority functions to prioritise operations or ma-
chines at the decision points (e.g., new jobs come or a ma-
chine becomes idle). Theoretically, generating and examining
more individuals at each generation for GP can speed up its
convergence. Typically, brood recombination has been applied
to generate a large number of individuals to improve the
performance of GP [13]-[15]. However, this requires much
more fitness evaluation, and can make GP very slow, especially
if the fitness evaluation is very time-consuming (e.g., with long
dynamic JSS simulations).

There are two main strategies to handle the above issue.
One is the rotation of training instances. Specifically, training
instances of GP vary with different generations, i.e., each
generation uses one instance, to improve the generalisation
of the learned scheduling heuristics [16]-[19]. It is essentially
a batch-based training strategy with a batch size of 1. [16]
tested different batch sizes, and found that using a new training
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instance at each generation (i.e., batch size equals 1) is the
best setting. The other is the surrogate techniques to improve
the efficiency of individual evaluations [20]. However, most of
the studies related to surrogates are conducted on continuous
numeric optimisation problems with known optimal solutions
[21]-[25]. The research of surrogates on discrete optimisation
problems is still limited. In addition, most existing surrogate
techniques are applied to the evolutionary algorithms with
vector-based fixed-length representations such as genetic al-
gorithms [26] and particle swarm optimisation [27]. However,
the studies of surrogate techniques with tree-based variable-
length representations such as GP, are still in an early stage.

Phenotypic characterisation based surrogates have been used
in GP for dynamic JSS [28], [29]. For each GP individual, a
fixed-length phenotypic characterisation is obtained based on a
predefined list of decision situations to represent its behaviour.
Based on the phenotypic characterisations, the fitness of newly
produced offspring by brood recombination are estimated by
the real fitness of its nearest neighbour (i.e., KNN with k£ = 1)
among the individuals in the current population. This KNN-
based surrogate maintains a pool of samples, where each
sample is a pair of the phenotypic characterisation of an
individual in the current generation and its real fitness. It
is noted that the idea of brood recombination proposed in
1993 is very similar to generating a large pool of individuals
for preselection in the area of surrogate developed in 2005
[20]. The surrogate is used to preselect only the promising
individuals from a large number of newly produced offspring.
Only the selected individuals are evaluated with the real
instances in the next generation.

Due to the rotation of training instances in GP for dynamic
job shop scheduling, the fitness of individuals across different
generations are not comparable, and we cannot place them
together directly to build KNN-based surrogates. Therefore,
the existing studies [19], [28] only take the individuals from
the same generation to build the KNN-based surrogate model
(i.e., normally the current generation). This limits the capacity
of the surrogate. If a newly produced offspring is still far
away from the nearest neighbour in the surrogate, its fitness
prediction can hardly be accurate. On the other hand, it is
impractical to use all the individuals evaluated with different
training instances in all the previous generations, since using
a large number of samples in KNN-based surrogate indicates
a high computational cost requirement.

To tackle this challenge, we aim to propose a fitness map-
ping strategy to convert the fitness of individuals across differ-
ent generations into a comparable fitness space. Specifically,
the fitness mapping strategy takes the populations from two
consecutive generations. Then, it learns a mapping function
from the fitness in the former generation to the fitness in the
latter generation based on the common individuals in both
generations (i.e., those produced by elitism and reproduction).
Finally, for each unique individual in the former generation,
it converts its fitness evaluated in the former generation to a
comparable fitness in the latter generation with the learned
mapping function.

The overall goal of this work is to develop an effec-
tive instance rotation based surrogate to preselect promising
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individuals in GP with brood recombination for learning
scheduling heuristics for dynamic JSS efficiently. By adding
more individual samples to the KNN-based surrogate, the
proposed algorithm is expected to estimate the fitness of newly
produced offspring more accurately and improve the quality
of the learned scheduling heuristics. Specifically, the major
contributions of this paper are shown as follows:

1) We developed an effective fitness mapping strategy to
make the fitness of individuals obtained with differ-
ent training instances comparable. The proposed fitness
mapping strategy is the first attempt to use the informa-
tion of GP individuals with fitness obtained from differ-
ent instances. It also provides a fundamental technique
that can broaden the study of synergising the information
with instance rotation during the whole evolutionary
process of GP for further performance improvement.

2) We proposed an effective instance rotation based surro-
gate GP with brood recombination that can include more
samples from individuals across multiple generations.
The results show that the proposed algorithm with the fit-
ness mapping strategy can learn competitive scheduling
heuristics for dynamic JSS by improving the accuracy
of the fitness estimations of newly produced offspring.
To the best of our knowledge, this is the first time to
involve the information generated by different training
instances to build surrogate for dynamic scheduling.

3) We showed that the proposed GP algorithm with the
novel fitness mapping strategy outperforms the state-of-
the-art KNN-based surrogate for dynamic scheduling,
and can learn highly competitive scheduling heuristics
for dynamic JSS. The way to standardise data from dif-
ferent instances can also provide guidance for extracting
useful information from heterogeneous data sources and
use them together in other problem domains.

4) Further analysis and discussions on the effect of the
proposed algorithm reveal that the superiority of the
proposed algorithm is realised by the improvement of
the accuracy of the fitness estimations of newly produced
offspring. Adding more samples with the proposed fit-
ness mapping strategy successfully enlarges the area in
the phenotypic space covered by the surrogate model,
which improves the fitness estimation due to the ability
to find closer samples.

II. LITERATURE REVIEW
A. Dynamic Flexible Job Shop Scheduling

In DFIJSS, a number of jobs J = {J1, Ja,...,J,} need to
be processed by a set of machines M = {My, Ms, ..., M, }.
Each job has a sequence of operations that need to be
processed one by one. Each operation can be processed on
a number of machines [30] (i.e., flexible machine resources).
However, each operation will be processed on one of its
candidate machines, and its processing time depends on the
machine that processes it. This paper focuses on one dynamic
event, i.e., dynamically and stochastically arriving new jobs
[5], [31], since it is the most common dynamic event in real
life. The information about a new job is not known until
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Fig. 1. The flowchart of genetic programming to learn scheduling heuristics
for dynamic flexible job shop scheduling.

it arrives at the shop floor. The constraints of the DFJSS
problems are shown as follows.

¢ A machine can process at most one operation at a time.

o Each operation can only be processed by one of its

candidate machines at a time.

e One cannot start to process an operation until all its

precedent operations have been processed.

o Once started, the processing of an operation can not be

stopped or paused until it is completed.

In real-world applications, it is common that production
providers have different preferences on the optimised schedul-
ing objectives [32]. The providers may prefer to minimise
flowtime to reduce the total cost from the perspective of the
overall production, or to deliver the products with a minimal
delay. Two commonly used objectives are considered in this
paper, which are shown below:

o Mean-flowtime: 1 S (C =)

o Mean-weighted-tardiness:
1 2?21 wj * maz{0,C; — d;}

where C; is the completion time of a job J;, r; is the
release time of J;, d; is the due date of J;, w; is the weight
(importance) of job J;, and n is the number of jobs.

B. Genetic Programming for DFJSS

GP has been widely used to learn scheduling heuristics for
dynamic scheduling [17], [19], [33], [34]. GP has three main
advantages which make it natural to be a good candidate
to learn scheduling heuristics for dynamic scheduling. First,
GP has flexible representation to represent various scheduling
heuristics for JSS. The scheduling heuristics with the same
behaviour can be represented in different genotypes, which
provides more diverse genetic materials to generate promising
scheduling heuristics during the evolutionary process. More
importantly, with GP, we do not need to define the structures
of the scheduling heuristics, which are normally unknown in
advance. Second, scheduling heuristics represented by GP can
be considered as priority functions, which makes it easy to
incorporate domain knowledge into the scheduling heuristics.
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Routing Rule Sequencing Rule

Fig. 2. An example of a genetic programming individual with a routing and
sequencing rule for dynamic flexible job shop scheduling.

Last, the scheduling heuristics with tree-based structures are
relatively easy to be interpreted, which is important for the
applications in real-world.

Fig. 1 shows the flowchart of GP to learn scheduling
heuristics for DFJSS. The main processes are the same as
the typical GP. The major difference is that the individuals
are evaluated with dynamic JSS instances to get their fitness.
The output is the learned best scheduling heuristics.

1) Representation: Two decisions, i.e., machine assignment
and operation sequencing, need to be made simultaneously
in DFJSS. The routing rule and sequencing rule have shown
their effectiveness in generating schedules in DFJSS. Using
the multi-tree representation of GP has proved to be a good
way to learn these two rules simultaneously [35], and we use
the representation of GP with two trees in this paper. Fig. 2
shows an example of a GP individual to represent the routing
rule and the sequencing rule for DFJSS. The GP individual
consists of a routing rule and a sequencing rule, and these
two rules work together to generate schedules. The routing
rule prioritises machines based on NIQ + WIQ * MWT, where
NIQ is the number of operations, WIQ is the total time for a
machine to finish the operations in its queue, and MWT is the
time for a machine to finish the operation which is currently
processing. The sequencing rule is the well-known WSPT rule,
which gives priority values to a ready operation according to
PT / W, where PT is the processing time of an operation and
W is the importance of an operation.

2) Decision Making with Scheduling Heuristics: In DFJSS,
decision making is conducted at decision points, i.e., routing
and sequencing decision points. Routing decision points are
the situations that an operation is ready to be processed (i.e.,
the first operation of a newly arrived job or the operation
whose precedent operations have been processed). Sequencing
decision points are the cases that when a machine becomes
idle and there are operations waiting in its queue. Taking
the routing decision process as an example, Table I shows
an example of how the machines are selected to allocate a
ready operation. Table I assumes the ready operation can be
processed on machines M7, M5, and Mjs. The priority values
of the three machines are calculated based on the routing rule
shown in Fig. 2. The priority values of M;, M, and M3 are
calculated as 6100, 5030, and 5040, respectively. As a result,
the machine (i.e., My) with the smallest priority value (i.e.,
marked with an underline) is selected to process the operation.

C. Related Work

1) Methods for Job Shop Scheduling: Exact methods such
as integer linear programming [36] and dynamic program-
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TABLE I
AN EXAMPLE OF THE DECISION MAKING OF THE ROUTING RULE NIQ +
WIQ * MWT AT A ROUTING DECISION POINT WITH THREE MACHINES.

Decision Machine Feature Priority Chosen

Situation Option (NIQ WIQ MWT) Value Machine
My 100 200 30 6100
1 Mo 30 100 50 5030 Mo
M3 40 50 100 5040

ming [37], have been used to handle the JSS problems with
the goal of finding the optimal solution(s). However, exact
methods are mainly applied for dealing with static and small
scale JSS problems, and they are not efficient to solve the
dynamic and large scale JSS problems with a large number of
decision making points. Heuristic methods based on iterative
improvement such as genetic algorithms [38] and particle
swarm optimisation [39], can find good enough solutions
efficiently for JSS. However, it is not easy to respond in
time to dynamic events well, since they involve rescheduling
processes. Dispatching rules [31] can make real-time decision
efficiently, however, manually designing effective rules heavily
relies on domain experts which are not always available.
Hyper-heuristic methods aim to automatically select or gen-
erate heuristics for handling problems which explore a search
space of low-level heuristics [40]-[42]. There are two types of
commonly used hyper-heuristic approaches [43], i.e., heuristic
selection [44] (i.e., select proper heuristics to use in different
scheduling environment) and heuristic generation [45]. Heuris-
tic generation methods such as GP, have been successfully
used to generate comprehensive scheduling heuristics for JSS,
especially in dynamic JSS. For DFJSS, we normally learn a
routing rule for machine assignment, and a sequencing rule for
operation sequencing. Only the sequencing rule was learned
by fixing the routing rule in [46]. Cooperative coevolution
was applied to learn the routing rule and the sequencing rule
simultaneously in [47]. GP with multi-tree representation has
also been successfully used to learn these two rules [35]. The
results show that learning two rules simultaneously with GP
is an effective approach for DFJSS.

2) Genetic Programming Hyper-heuristics: As a hyper-
heuristic approach, GP has been used to learn rules in different
domains. In dynamic JSS, GP has been successfully used to
learn sequencing rules to prioritise operations in the queues
of machines [48]. In DFJSS, GP has been used to learn
routing rules for machine assignment and sequencing rules for
operation sequencing simultaneously [49]. GP has been also
used in other domains, e.g., arc routing [50], to learn routing
policy for arranging the vehicles to serve the demand of edges.

Existing studies of GP to learn rules in different domains
show that rotating training instances is an efficient way to learn
effective rules [16]. With instance rotation, only one instance
is used at each generation to evaluate individuals, this reduces
the number of individual evaluations and maintains a good
generalisation ability for GP in handling problems.

3) Surrogate-Assisted Genetic Programming: Surrogate-
assisted evolutionary algorithms aim at dealing with the ex-
pensive individual evaluation in evolutionary algorithms [20],

. . ©2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.or?é)ublications/rights/index.html for more information.
Authorized licensed use limited to: Victoria University of Wellington. Downloaded on June 14,2022 at 12:07:05 UTC from

[51]. We focus on surrogate GP methods and group the
existing studies into two categories based on the problems they
work on, i.e., continuous numeric optimisation and discrete
combinatorial optimisation. Note that surrogate-assisted evo-
lutionary algorithms are used almost exclusively in the field of
continuous numeric optimisation. This section will discuss the
related studies with a focus on the way of building surrogates.

Continuous numeric optimisation: There are a number of
commonly used surrogate techniques such as artificial neu-
ral networks [52], radial basis functions [53], and Gaussian
process [54], which have been used to build surrogates for
estimating the fitness of individuals. A surrogate model was
built based on the information obtained from real evaluated
individuals with radial basis functions to evaluate A\ percentage
individuals [55]. The extracted features in terms of the geno-
types of GP individuals such as tree size and tree depth were
used to build a surrogate with random forest for regression
[56]. However, these kinds of surrogate models are implicitly
or explicitly spatial with the assumption of spatial smoothness
or continuity of the target model. This makes them naturally
suited for continuous numeric optimisation. However, they are
not suitable for the problem investigated in this paper, which
is a discrete combinatorial optimisation problem.

Discrete combinatorial optimisation: Phenotypic charac-
terisation was first developed to represent the behaviour of
GP individuals in dynamic JSS in [28]. Then, a KNN-based
surrogate was proposed by using the current real evaluated
individuals (i.e., their phenotypic characterisations and real
fitness) as samples to preselect a small number of promising
individuals from a large number of individuals to do the real
evaluation in the next generation. The results verified the
effectiveness of the GP algorithm with a surrogate-assisted
preselection strategy in dynamic JSS. Surrogate techniques for
dynamic JSS by simplifying the simulation model were used
in [57], [58]. Multi-fidelity based surrogates were also investi-
gated based on simplifying the original simulation to different
degrees [59]. The above studies all verified the effectiveness
of the proposed surrogate techniques, either based on KNN
or simplifying the original instance. KNN-based surrogates
have the advantages of being easy to learn and computationally
cheap to build. Therefore, this paper will focus on KNN-based
surrogates. The KNN based surrogate models are limited to
the use of individual information from the current (the same)
generation, which is one of the major motivations of this paper.

The studies on surrogate GP for dynamic JSS are still in
their infancy. This paper will focus on KNN-based surrogates
to investigate how to use the data generated across different
instances in dynamic JSS to further enhance the accuracy
of fitness estimations by the surrogate. This paper will con-
tribute to the development of surrogate-assisted evolutionary
algorithms with variable-length tree-based representation on
discrete combinatorial optimisation.

III. INSTANCE ROTATION BASED SURROGATE IN GENETIC
PROGRAMMING WITH BROOD RECOMBINATION
A. Framework of the Proposed Algorithm

Fig. 3 shows the framework of the proposed algorithm,
and its new components are highlighted. The main difference
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Fig. 3. The flowchart of the proposed algorithm.

between the proposed algorithm and the generic GP shown
in Fig. 1 are highlighted with the grey background. The key
idea of the proposed algorithm is to build an effective KNN
surrogate for estimating the fitness of individuals produced
by brood recombination efficiently. We use pool; and pools
to denote the individuals at the previous and current gener-
ations, respectively. The set copied denotes the individuals
produced by elitism and reproduction, which are essentially
copied from the previous generation to the current generation.
These individuals are the common individuals between two
consecutive generations. At the initialisation stage, the GP
population is randomly initialised. pool; and copied are empty
at the beginning. During the fitness evaluation stage, each
individual is evaluated by applying it to a training instance to
get the schedule and calculating the objective value based on
the optimised objective function. All the evaluated individuals
at the current generation are kept in pools. If copied is empty
(i.e., when it is the first generation), only pool; is used to build
the KNN surrogate. Otherwise, the proposed fitness mapping
strategy is used to map the fitness of individuals in pool; to
pooly based on the individuals in copied. Then, the surrogate
is built based on pool; and pools. During the evolution stage,
brood recombination is applied to produce a large number
of offspring based on selected parents with genetic operators,
i.e., elitism, reproduction, crossover and mutation. After that,
we remove the duplicated individuals which have the same
behaviour (i.e., the behaviour is represented by phenotypic
characterisation introduced in Section III-C). Then, we use the
KNN surrogate to estimate the fitness of all newly produced
offspring by brood recombination. The top popsize (i.e., pop-
ulation size) individuals based on estimated fitness are selected
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Fig. 4. An example for showing the issue of using the samples directly across
different generation/instances.

to the next generation. pool; is set to pools for building
surrogate at the next generation. copied is updated based on
the selected individuals produced by elitism and reproduction
(i.e., highlighted in orange). If the stopping criterion is met,
the best learned scheduling heuristic at the current generation
is reported as the output of the proposed algorithm.

There are two main steps in the proposed algorithm (i.e.,
highlighted in blue). One is the fitness mapping of individuals
and the other is the building of the surrogate. The details of
them are described in the following subsections.

B. Proposed Fitness Mapping Strategy

The individuals at different generations are evaluated with
different instances, which results in incomparable fitness that
are unreasonably put together for the use of building KNN-
based surrogates directly. Fig. 4 shows an example to illustrate
this issue. Note that t—1 and ¢ indicate the previous generation
and the current generation, respectively. In Fig. 4, the surrogate
includes 4 individuals, where individuals 1 and 2 are evaluated
with both instances at generations ¢ — 1 and ¢ (i.e., they
are common individuals inherited by elitism or reproduction).
Individual 3 is evaluated with the only instance at generation
t, and individual 4 is evaluated with the only instance at
generation ¢ — 1. For convenience, their true fitness unknown
to the surrogate at the corresponding generations are also
given and highlighted with blue colour. For the two offspring
O; and O, suppose we find that the nearest neighbours
(KNN) of O; and Os are individual 3 and individual 4,
respectively. If we use the real fitness of these two KNNs,
then the predicted fitness of O; and O5 are 472.3 and 435.3,
respectively. Therefore, Oy is considered to be better than O;.
However, this is contradictory with the fact that individual 3
is better than individual 4 (411.6 < 435.3, 472.3 < 501.6).
This mistake was made by comparing the real fitness of the
individuals evaluated with different instances.

To address this issue, this paper proposes to utilise the
common individuals between two consecutive generations
to learn a fitness mapping function to map the fitness of
individuals across different generations. Note that mapping
across generations is essentially mapping fitness obtained on
different instances. There are four main steps for the proposed
fitness mapping strategy. The details are shown below with an
example as shown in Fig. 5.

e Step 1: Find out the common individuals between two
consecutive generations. The common individuals are
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Fig. 5. An example of the proposed fitness mapping strategy.

from two sources. The first source is from the elites which
are several top individuals copied from the previous
generation to the current generation directly (i.e., marked
as squares). The second is from the individuals produced
by the reproduction operator which are selected based on
the tournament selection method (i.e., marked as stars).
The fitness of these common individuals will be used
to learn the mapping from the fitness on the instance at
generation ¢ — 1 to that at generation ¢. Note that we can
use the instance at any generation between 1 and t—1 and
learn its mapping to the current instance at generation £.
However, to learn the mapping accurately, we require as
many common individuals as possible, with fitness values
that have been evaluated on both instances. Therefore, we
select the generation t-1 to learn the mapping, since this
is where common individuals, evaluated on the instances
in subsequent generations, are the most frequent.

e Step 2: Build fitness sets of common individuals
at the previous generation ¢t — 1 (i.e., fit;_1(indl),
fiti—1(ind2), ...... , fit;—1(indn)) and the current gen-
eration ¢ (i.e., fiti(indl), fiti(ind2), ... , fiti(indn))
where n is the number of common individuals.

indl / fity_1(indl) fiti(indl)
ind2 | fits—1(ind2) | — | fit:(ind2)
indn tht—l (mdn) tht (mdn)
e Step 3: Learn a linear regression model (i.e.,

Jite(fiti—1(ind;); o, Be) = oy * fity_y(ind;) + By) to
map the fitness of individuals at the previous generation
to the current generation. o and [ are the slope and
intercept, respectively. The linear regression model is
learned by minimising the total squared error which is
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Fig. 6. An example of the working process of KNN-based surrogate in GP.

shown in Eq. (1).

fity(fiti—1; o, B) = argmin Z(a * fiti_1(ind;) + B
=1

af &
— fit(ind;))? (1)
The model can be learned from the

(fiti—1(ind;), fiti(ind;)) data points generated from
Step 2. We select a linear model here, since we have
observed linear relationship between fit;_1(ind;) and
fiti(ind;) for various generations in our preliminary
study. In addition, if we use linear model, then the linear
model structure is independent of the training instances
used at different generations, since the linear relationship
is symmetric and can be propagated (only with different
coefficients). In other words, if we randomly shuffle the
training instances across different generations, the linear
model structure still holds. Linear regression also has
a low computational cost requirement that can get the
fitness mapping quickly.

e The sample individuals at generation ¢ — 1 which are
unseen to generation t, are mapped to generation ¢
based on the learned fitness mapping strategy. We use
the phenotypic characterisations of those individuals at
generation t — 1 with their new fitness to build the
surrogate at generation t. The details are given in the
next subsection.

C. Surrogate Building and Updating

Surrogate is built and updated at each generation, and the
samples of KNN-based surrogate consist of the phenotypic
characterisations and the corresponding fitness of real eval-
uated individuals as shown in Fig. 6. When estimating the
fitness of an offspring Oy, we find its nearest neighbour to
the samples in the surrogate (i.e., PC3). The fitness of O, is
estimated as the corresponding fitness of PC3 (i.e., 411.6).

1) Building: At each generation, the individuals in the
population are evaluated and their fitness on the training
instance at that generation is called the “real fitness”, as
opposed to the “estimated fitness” by the surrogate model. This
is the information from the traditional evolutionary process
of GP, and we utilise this information to build the surrogate
without requiring much extra computational cost. One key
to extract samples for KNN-based surrogate is to measure
the behaviour of real evaluated individuals. We introduce to
use phenotypic characterisation for this purpose due to the
variable-length and tree-based representation of GP [28]. It
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TABLE II
AN EXAMPLE OF CALCULATING THE PHENOTYPIC CHARACTERISATION OF
A ROUTING RULE WITH TWO DECISION SITUATIONS AND EACH WITH
THREE CANDIDATE MACHINES.

Decision Situation ~ WIQ  Routing Rule PC;
1 (My) 1 3
1 (M2) 3 2 2
1 (Ms) 2 1
2 (My) 2 2
2 (M2) 1 3 3
2 (M3) 3 1

PC; indicates the 5™ dimension of phenotypic characterisation.

Routing PC Sequencing PC

2 3 3 1 3 3 2 1

Fig. 7. An example of the phenotypic characterisation of a genetic program-
ming individual which is a eight dimensional vector.

is noted that calculating the phenotypic characterisations for
individuals is computationally cheap, which is negligible.

The phenotypic characterisation of a GP individual is a
vector of the rank number of machines or operations which
represents its decision making behaviour based on a set of
decision situations. Each dimension of phenotypic characteri-
sation is the corresponding rank of the first prioritised machine
or operation which is decided by the examined routing or
sequencing rule assigned by the reference rule.

Table II shows an example of how to calculate phenotypic
characterisation for a routing rule with two decision situations,
each with three candidate machines. PC; indicates the value
of the i*" dimension of phenotypic characterisation, which
reflects the behaviour of a rule in decision situation i. We use
the reference routing rule WIQ (i.e., least work in the queue)
to rank all machines first. For the first decision situation, the
routing rule chooses M3, and therefore PC; is the rank of
M3 by WIQ (i.e., 2). Similarity, PCs is 3. It is noted that we
can also get the phenotypic characterisation of the sequencing
rule in the same way. The reference sequencing rule used in
this paper is SPT (i.e., shortest processing time). Since we use
GP with multi-tree representation (as shown in Fig. 2) to learn
the routing and sequencing rule simultaneously for DFISS, we
combine the phenotypic characterisation of routing rule and
sequencing rule together as the phenotypic characterisation of
a GP individual. An example of the phenotypic characterisa-
tion which is a 8-dimensional vector (i.e., with four routing
and four sequencing decision situations) of a GP individual
for DFJSS can be found in Fig. 7.

2) Updating: The samples of the surrogate used at the
current generation are extracted from the individuals at the
current generation and the ones at the previous generation. To
keep the samples in the KNN-based surrogate model identical,
we put the samples extracted from the individuals at the
current generation to the surrogate first. Then, we loop all the
individuals at the previous generation pool; and only convert
the ones which are different from any of the ones in the current
generation pools with the proposed fitness mapping strategy to
the surrogate. In this case, more samples can be used for the
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Algorithm 1: Build and update surrogate

Input : pooli, pools and copied

Output: surrogate

surrogate = )

for ind in pools do

Calculate the phenotypic characterisation PC(ind)
surrogate = surrogate U <PC'(ind), fit(ind)>

end

Build the fitness mapping function g(z; o, 3) based on the data
{(fiti—1(ind), fiti(ind)) | ind € copied} and Eq. (2?)

7. for ind in pooly do

8: if ind ¢ poola then
Calculate the phenotypic characterisation PC(ind)
fit'(ind) = g(fit(ind); o, 8)
surrogate = surrogate U <PC(ind), fit’ (ind)>

d

A A

12: e
13: end
14: return surrogate

=

PN

Fewer samples
PO

@ U @ More samples

Fig. 8. An example of surrogate with less and more samples.

&BRE | BRe

surrogate, and newly produced offspring have more chances to
be estimated by real-evaluated closer individuals to improve
the accuracy of their fitness estimation.

Algorithm 1 shows the details of the process of building
a surrogate. The input is the common individuals copied,
pooly and pooly. The output is the built surrogate. First,
the phenotypic characterisations of individuals in pool; are
calculated, and the tuple <PC (ind), fit(ind)> are added to
the surrogate. Second, a fitness mapping function, which is
a linear regression model is built based on the relationship
between fit;_1(ind) and fit;(ind) where individuals belong
to copied, by minimising the total squared error between
them. Last, for the individuals in pool; which are unseen in
poolsy, their phenotypic characterisations are calculated and
their fitness are mapped with the learned fitness mapping
function. The tuples of <PC(ind), fit'(ind)> are added into
the surrogate.

Fig. 8 shows an example of the difference between the
surrogate with different numbers of samples. Assume we
have a KNN-based fruit surrogate with a number of fruit
samples, and we need to estimate the names of unknown
fruits which are highlighted in blue. For the surrogate with
a smaller number of fruits (i.e., pineapple, apple, strawberry),
the unknown fruit will be compared with all samples in the
fruit surrogate, and the apple will be selected (i.e., highlighted
in orange) since they are most similar one. The unknown
fruit is named as apple by the surrogate with fewer samples.
However, if we use the surrogate with more samples (i.e.,
pineapple, apple, peach, and strawberry), the unknown fruit
will be predicted as peach which is actually true. We can see
that there is a higher chance of finding similar or the same
samples with more samples to have a better estimation.
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TABLE III
THE TERMINAL SET.

Notation ~ Description
NIQ The number of operations in the queue
WIQ Current work in the queue
MWT Waiting time of a machine

PT Processing time of an operation on a specified machine

NPT Median processing time for the next operation

OWT The waiting time of an operation

WKR Median amount of work remaining for a job

NOR The number of operations remaining for a job
w Weight of a job

TIS Time in system

IV. EXPERIMENT DESIGN
A. Simulation Model

Refer to widely used DFISS instances [46], [60], and
following the settings in [61], the instances used in this paper
assume that 5000 jobs need to be processed by 10 machines.
New jobs will arrive over time according to a Poisson process
with a rate A\. The number of operations of a job is randomly
generated from a uniform discrete distribution between 1
and 10. The number of candidate machines for an operation
follows a uniform discrete distribution between 1 and 10. The
processing time of each operation is assigned by a uniform
discrete distribution with the range [1, 99]. The due date of
a job is set at 1.5 times of its processing time. The weights
(importance) of 20%, 60%, and 20% of jobs are set as 1,
2, and 4, respectively [28]. To improve the generalisation of
the evolved scheduling heuristics, the training instance used at
each generation (i.e., one instance per generation) is changed
by assigning a new random seed of the simulation [62].

Utilisation level (p) is a factor to simulate different job shop
scenarios [63]. It is the proportion of time that a machine is
expected to be busy, which is controlled by the A in Poisson
process. The utilisation level is calculated as A = p * Py /p,
where p is the average processing time of the machines, and
Py is the probability of a job visiting a machine. For example,
Py is 2/10 if each job has two operations. A larger utilisation
level tends to lead to a busier job shop.

To estimate the steady-state performance, the first 1000 jobs
are considered as warm-up jobs and discarded in the objective
calculations. This work collects data from the next 5000 jobs.
The simulation stops when the 6000th job is finished.

B. Design of Comparisons

We consider two different objectives, i.e., mean-flowtime
(denoted as Fmean) and mean-weighted-tardiness (denoted as
WTmean) and three utilisation levels (i.e., 0.75, 0.85, and 0.95)
which are typical distinct configurations in DFJSS [64], [65] to
generate examined scenarios. A scenario represents a specific
problem to be solved, containing the instances generated by
the same problem configuration, e.g., the same objective and
utilisation level. For brood recombination, we use Rep to
define the number of produced offspring, i.e., popsize x Rep
(i.e., brood size), to investigate the effect of the number of
individuals on the proposed algorithm. The evolved rule is
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tested on 50 unseen instances, and the average objective value
across the 50 test instances is reported as the test performance
of the rule, which can be a good approximation of the true
performance of the rule.

The GP system without surrogate, named GP, is the baseline
algorithm. The state-of-the-art GP with KNN-based surrogate
[28], named SGP, is compared to verify the effectiveness of
the proposed algorithm. When including the samples across
different instances, a straightforward approach is to estimate
the fitness of an individual by finding the nearest neighbour
from each generation, and average the fitness of the nearest
neighbours from each generation as the final estimated fitness.
This algorithm is named SGP_average for comparison. We
also compare with the algorithm that directly adds the samples
from the previous generation without adjusting the fitness
(i.e., named SGP_naive). The proposed algorithm is named
SGP_mapping, since it involves a fitness mapping strategy
for the individual information from different instances.

A main difference between SGP and SGP_mapping is that
more samples are used in SGP_mapping. The comparison
between SGP and SGP_mapping can help verify the idea of
SGP_mapping well. Neither SGP_average nor SGP_naive
has fitness mapping strategy, SGP_average treats the samples
from generations separately, while SGP_naive just simply
ignores the fitness incomparable issue and treat the sam-
ples from different generations in the same way. Comparing
SGP_mapping with SGP_average and SGP_naive can ver-
ify the importance of fitness mapping strategy.

C. Parameter Settings

The features of the job shop are considered as the terminals
of GP [29]. The features are commonly extracted based on
the characteristics of machines (i.e., NIQ, WIQ, and MWT),
operations (i.e., PT, NPT, and OWT), and jobs (i.e., WKR,
NOR, W, and TIS) in the job shop floor. The details are
shown in Table III. The function set is set to {4, —, *, /,
max, min}, following the setting in [29]. Each function takes
two arguments. The “/” function is the protected division,
returning one if divided by zero. The max and min functions
take two arguments and return the maximum and minimum
of their arguments, respectively. The other parameter settings
of GP as suggested in [28], [29], [66], are shown in Table IV.
Following the suggestions in [28], we set the population size
to 500, and the number of produced offspring as 500 * Rep (2,
3, 5, 10). Some parameter settings, i.e., the number of elites
and parent selection, follow the suggestions in [29] which
have been showing their effectiveness in GP for DFJSS. Note
that a number of parameters such as method for initialising
population and the number of generations, are commonly used
parameter settings in GP [66].

In this paper, we pick 20 routing decision situations and
20 sequencing decision situations in a long simulation for
getting the phenotypic characterisations of GP individuals.
Thus, the dimension of the phenotypic characterisation of an
individual is 40. The decision situations are fixed to calculate
the phenotypic characterisations of all individuals. It is noted
that the number of operations and machines is set to the
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TABLE IV
THE PARAMETER SETTINGS IN GP.

Ref. Parameter Value
(28] Population size 500

The number of produced offspring 500 * Rep (2, 3, 5, 10)
[29] The number of elites 10

Parent selection

Tournament selection with size 5

80% / 15% I 5%
ramped-half-and-half

Crossover / Mutation / Reproduction rate
Method for initialising population

[66] Initial minimum / maximum depth 2/6
Maximal depth of programs 8
Terminal / non-terminal selection rate 10% / 90%
The number of generations 51

same number (i.e., 7) to make the phenotypic characterisations
between individuals comparable.

V. RESULTS AND DISCUSSIONS

Friedman’s test and Wilcoxon rank-sum test with a signifi-
cance level of 0.05 is used to examine the performance of the
proposed algorithm with 30 independent runs. “Win, Draw,
Lose” means the number of scenarios that the proposed algo-
rithm SGP_mapping is statistically better, similar, or worse
than a compared algorithm. “Average Rank” shows the average
ranking of the algorithm on all the examined scenarios. An
algorithm is also compared with the algorithm(s) before it one
by one. In the following results, “-”, “+”, and “~” indicate
the corresponding result is statistically significantly better than,
worse than, or similar to its counterpart. It is noted that we
work on minimisation problems in this paper, and a smaller
value indicates a better performance.

A. Quality of Evolved Scheduling Heuristics

1) Quality of the Evolved Best Scheduling Heuristics: Table
V shows the mean and standard deviation of the objective
values on test instances according to 30 independent runs
of GP, SGP, SGP_average, SGP_naive, and SGP_mapping
with replications of 2, 3, 5, and 10 in six scenarios. Based
on the Friedman’s test, we can see that the proposed algo-
rithm SGP_mapping performs the best, since it achieves the
smallest rank with a value of 2.06 among all the involved algo-
rithms. SGP_mapping wins GP and SGP_naive in all of the
scenarios, and outperforms SGP/SGP_average in 19/16 out of
24 scenarios. The results also show that the proposed algorithm
SGP_mapping outperforms all the other algorithms in the
experiments with different replications, since SGP_mapping
wins the other algorithms in most of the scenarios. In general,
SGP_average gets similar performance with SGP. In addition,
SGP_naive is significantly worse than SGP_mapping in
all scenarios and significantly worse than SGP half of the
scenarios, which indicates that putting samples across different
instances to KNN-based surrogate model directly brings noise
for the surrogate and deteriorates the fitness estimations of
individuals. This verifies the effectiveness of SGP_mapping
from an opposite angle.

Based on “Win / Draw / Lose”, the results show that
the advantage of SGP_mapping is more obvious in the
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Fig. 9. The violin plots of the average objective values on test instances
of GP, SGP, SGP_average, SGP_naive, and SGP_mapping based on 30
independent runs in six scenarios with replication values of 10.

experiments with larger replications (i.e., big brood size). This
is consistent with our intuition that higher requirements for
the accuracy of fitness estimation may be required when there
is a larger number of individuals to be evaluated. In other
words, it becomes increasingly harder for a surrogate model
with lower accuracy than a surrogate with higher accuracy
to select promising individuals from a larger number of
individuals. Taking an extreme example, assume that surrogate
S1 has 100% prediction accuracy and surrogate So has 0%
prediction accuracy (i.e., random guess). If there are only
two individuals for S; and S5 to select the best one between
them, the random surrogate Ss still has 50% chance to select
the right individual. However, if there are five individuals
to select from, S2 will have only 20% chance to select the
best one. On the other hand, SGP_mapping is significantly
better than SGP_naive in all the scenarios, which verifies the
effectiveness of the proposed algorithm with the developed
fitness mapping strategy, and the importance of standardising
the fitness of the individuals obtained with different instances.

2) Violin Plots of the Evolved Best Scheduling Heuristics:
To have a further look at the objectives obtained by the
algorithms, we take the experiments with a replication value of
10 as a case study. Fig. 9 shows the violin plot of the average
objective values on test instance of GP, SGP, SGP_average,
SGP_naive and SGP_mapping in six scenarios. It is clear
that the proposed algorithm SGP_mapping shows its su-
periority with smaller objective values for all the examined
scenarios among the involved five algorithms. This indicates
that SGP_mapping can detect promising individuals among a
large number of individuals, which verifies the effectiveness of
the proposed fitness mapping strategy for bringing more sam-
ples to the KNN-based surrogate. It is noted that all surrogate-
based algorithms (i.e., SGP, SGP_average, SGP_naive and
SGP_mapping) perform better than GP (i.e., without surro-
gate). This indicates the effectiveness of the brood selection
to improve the quality of individuals by preselecting a number
of promising individuals with cheap cost (i.e., which normally
can be ignored).
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TABLE V
THE MEAN (STANDARD DEVIATION) OF THE OBJECTIVE VALUES ON TEST INSTANCES OF GP, SGP, SGP_naive AND SGP_mapping INCLUDING THE
COMPARISONS AMONG THEM OVER 30 INDEPENDENT RUNS WITH FOUR DIFFERENT REPLICATION SETTINGS IN SIX SCENARIOS.

Rep Algorithm <Fmean, 0.75> <Fmean, 0.85>

<Fmean, 0.95>

<WTmean, 0.75> <WTmean, 0.85> <WTmean, 0.95>

GP 337.97(1.63) 387.65(3.80) 557.75(8.15) 28.78(2.32) 79.89(6.17) 313.14(18.17)
SGP 336.37(1.48)(-) 386.58(4.13)(-) 553.40(7.24)(-) 27.08(1.49)(-) 75.78(4.19)(-) 298.12(12.74)(-)

2 SGP_average  336.35(1.51)(-)(=) 386.00(3.47)(-)(~) 553.17(4.51)(-)(~) 27.61(2.01)(-)(~) 76.36(3.11)(-)(=) 298.20(9.05)(-)(~)
SGP_naive 336.57(1.29) (=) () () 386.96(2.91)(~)(+)(+)  553.78(52T)(~)(=)(~) 28.04(2.08)(-)(+)(~) 76.43(4.55)(-)(~)(~) 298.73(8.02)(-)(~)(~)
SGP_mapping 335.70(1.38)(9)(=)(-)(=) 385.91(3.04)(=)(=)(=2)(-) 552.06(6.43)(=)(~)(-)(=) 26.52(1.08)(=-)(-)(=)(=) 75.61(4.52)(=)(=)(=)(=) 295.06(7.96)(-)(=)(~)(-)

GP SGP SGP_average SGP_naive SGP_mapping
Win / Draw / Lose 6 / 0 / 0 3/3/0 4/2170 6/0/0 N/A
SGP 336.28(1.59)(-) 385.38(2.12)(-) 552.90(8.15)(-) 27.32(1.81)(-) 75.78(3.36)(-) 292.62(7.35)(-)

3 SGP_average  336.49(1.63)(-)(~) 385.91(3.00)(-)(~) 552.47(5.82)(-)(~) 27.11(1.65)(-)(~) 75.89(3.72)(-)(~) 294.04(8.17)(-)(~)
SGP_naive 337.07(1.5D)(@)(+)(+)  385.93(2.72)(-)(=)(=x)  553.36(5.10)(=)(+)(=x)  27.3400.77)(=)(H)(+)  76.11(5.19)(=)(=) (=) 295.16(6.17)(=)(+)(=)
SGP_mapping 335.53(1.57)(=)(=)(=)(=) 384.74(2.62)(=)(=)(=)(=) 552.03(7.41)(=)(=)(=)(=) 26.66(1.37)(=)(=)(=)(=) 74.56(3.04)(=)(=)(=)(=) 292.18(7.51)(=)(=)(~)(=)

GP SGP SGP_average SGP_naive SGP_mapping
Win / Draw / Lose 6 / 0 / 0 4/2/70 3/3/0 6/0/0 N/A
SGP 335.77(1.33)(-) 385.02(2.17)(-) 549.44(3.09)(-) 26.98(1.71)(-) 74.89(2.11)(-) 292.63(8.50)(-)

5 SGP_average  336.25(1.51)(-)(~) 385.05(2.15)(-)(~) 549.90(3.94)(-)(~) 26.83(1.37)(-)(~) 74.77(1.83)(-)(=) 292.76(9.64)(-)(=)
SGP_naive 336.54(1.43)(9)(+)(~)  385.93(2.93)(-)(=~)(=x) 553.01(5.39)(-)(+)(+) 26.72(0.77) (=) (=) (=) 75.78(4.42)(-)(=)(~) 292.79(7.81)(-)(=)(~)
SGP_mapping 335.07(0.91)(=)(=)(=)(=) 384.01(1.79)(=)(-)(=)(-) 548.43(6.44)(-)(=)(=)(=) 26.29(0.62)(=)(=)(=)(=) 74.49(3.02)(=)(=)(=)(=) 291.34(11.68)(=)(-)(=)(-)

GP SGP SGP_average SGP_naive SGP_mapping
Win / Draw / Lose 6 / 0 / 0 6/0/0 5/1/0 6/0/0 N/A
SGP 335.97(1.18)(-) 384.62(2.46)(-) 548.26(2.73)(-) 26.55(1.06)(-) 74.40(1.75)(-) 292.12(8.09)(-)

10 SGP_average  335.63(0.90)(-)(~) 384.61(2.19)(-)(~) 549.59(4.01)(-)(=) 26.38(0.51)(-)(~) 74.88(2.75)(-)(=) 292.26(8.88)(-)(~2)

SGP_naive 336.14(1.60)(-)(~) (=) 385.54(2.51)(-)(+)(+) 549.573.49)(-)(+)(x)  27.52(0.46)(=)(+)(+) T4.72(1.53)()(+)(x)  292.66(7.44)(-)(=)(~)

SGP_mapping  335.66(1.51)(=)(=)(=)(-) 383.69(0.92)(=)(=)(=)(-)

547.41(4.16)(-)(-)(=)(-)

26.22(0.83)(-)(-)(-)(=) 74.04(2.04)(-)(-)(=)(-) 288.20(4.92)(-)(-)(-)(-)

GP SGP SGP_average SGP_naive SGP_mapping
Win / Draw / Lose 6 / 0/ 0 6/0/0 47210 6/0/0 N/A

GP SGP SGP_average SGP_naive SGP_mapping
Total Win / Draw / Lose 24 / 0/ 0 19/5/0 16/8/0 24/0/0 N/A
Average Rank 4.23 2.67 2.78 3.27 2.06
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Fig. 10. The curves of the average objective values on test instances
of GP, SGP, SGP_average, SGP_naive and SGP_mapping along with
generations based on 30 independent runs in six scenarios with replication
values of 10.

3) Curves of Average Objective Values on Test Instances:
Fig. 10 shows the curves of the average objective values
on test instances of GP, SGP, SGP_average, SGP_naive,
and SGP_mapping along with generations in six scenar-
ios with the replication value of 10. The results show that
SGP_mapping can achieve better scheduling heuristics than
GP, SGP, and SGP_naive from an early stage, and keep this
advantage during the whole evolutionary process. This further
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verifies the effectiveness of the algorithm SGP_mapping
with the proposed fitness mapping strategy by building a
mapping function based on the common individuals between
the generations next to each other.

B. The Number of Omitted Individuals by Surrogate Model

In GP with brood recombination, popsize individuals are
selected from popsize * Rep newly produced offspring. The
key is to find the top popsize individuals. We introduce to use
the number of omitted individuals by the surrogate model (the
top individuals based on real fitness that are missed by the
surrogate model) to measure the effectiveness of the surrogate
models. A smaller number of the omitted individuals indicates
better effectiveness of surrogate. Specifically, we record the
number of omitted individuals of SGP and SGP_mapping by
looking at the top 30% and 100% (i.e., the entire population)
ordered individuals with estimated fitness. The reason to look
at the top 30% individuals is that our preliminary study shows
that the parent selection (i.e., tournament selection with size
5) typically selects the top 30% individuals as parents (i.e.,
the top 30% individual have a big impact on the performance
of the algorithm). We use SGP(30%), SGP_mapping(30%),
SGP(100%) and SGP_mapping(100%) as the abbreviations
to represent these observations of the algorithms for the
convenience of comparison.

Fig. 11 shows the curves of the number of omitted indi-
viduals by the surrogate at each generation in six scenarios.
There are three main observations based on the results. First,
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Fig. 11. The curves of the number of omitted individuals of SGP and
SGP_mapping based on 30 independent runs in six scenarios with repli-
cation values of 10.

the accuracy of fitness estimation of SGP_mapping is higher
(with a smaller number of omitted individuals) than that
of SGP_naive in terms of both 30% or 100% individuals,
which indicates the effectiveness of the proposed algorithm
SGP_mapping. Second, the number of omitted individuals
observed based on all individuals is much larger than that of
based on top 30% individuals. This is consistent with our intu-
ition that it is more challenging to select good individuals from
a larger number of individuals. This finding is also consistent
with the findings in Section V-Al. Last, the number of omitted
individuals increases for both SGP and SGP_mapping along
with generations. One possible reason is that the individuals
become better and better over generations, and they normally
have similar or the same behaviours which makes the samples
in the KNN shrink to a small region to some extent. This
might mislead the fitness estimations of individuals.

C. Effectiveness of Learned Fitness Mapping Function

We use the R-Squared measure to analyse the effectiveness
of the fitness mapping function. R-Squared is a statistical
measure of fit that indicates how much variation of a dependent
variable is explained by the independent variables(s) in a
regression model [67]. If the R? of a model is 0.5, then
approximately half of the observed variation can be explained
by the model. In addition, significance (P-Value) is the prob-
ability of rejecting the null hypothesis (i.e., saying that there
is no correlation between the independent and the dependent
variable) when it is true. A significance that is smaller than
the significance level (usually 0.05) indicates the model fits
the data well. Fig. 12 shows the curves of R-Squared and
significance values in the scenario <WTmean, 0.95> of one
run of SGP_mapping with a replication value of 10. The
results show that the built linear model can match the fitness of
individuals at the previous generation to the current generation
well with a R-Squared value that is larger than 0.6 at most
generations. In addition, the significance values are smaller
than 0.05 (dashed line) at most generations, which shows a

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.or

1.04
0.81
0.6 1
0.4
—— R-squared P-Value
0.21
0.01
0 10 20 30 40 50
Generation

Fig. 12. The curves of R-squared and significance of the learned linear model
of SGP_mapping in the scenario <WTmean, 0.95> of one run with a
replication value of 10.
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Fig. 13. The scatter plots of the distance and the gap between real and
estimated fitness of SGP_mapping in the scenario <WTmean, 0.95> of
one run with a replication value of 10.

linear relationship between the fitness of common individuals
at consecutive generations. This verifies the effectiveness of
the proposed algorithm from the perspective of the core of
building a surrogate model. In addition, it is not surprising that
there are fluctuations of R-Squared values, since the degrees
of similarities between consecutive training instances vary.

D. Phenotypic Distance Versus Surrogate Prediction Error

It is reasonable to believe that the surrogate prediction
error depends on the phenotypic distance (i.e., we use Eu-
clidean distance in this paper) between the predicted individual
and its nearest neighbour in the surrogate. We expect that
SGP_mapping can find the nearest neighbour with a smaller
phenotypic distance, and thus obtain a smaller prediction error.

To verify this, Fig. 13 shows the scatter plots of the pheno-
typic distance and the surrogate prediction error, i.e., the gap
between real and estimated fitness, at six different generations
of SGP_mapping in the scenario <WTmean, 0.95> of one
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Fig. 14. Visualisations of the samples in the surrogate models of SGP and
SGP_mapping based on phenotypic characterisations of one run in the
scenario <WTmean, 0.95> with a replication value of 10.

run with a replication value of 10. We select the investigated
generations in every 10 generations (i.e., generation 0, 10,
20, 30, 40 and 50). At the beginning (i.e., generation 0),
the scatter points of SGP and SGP_mapping are exactly
the same, since the samples of the surrogate of SGP and
SGP_mapping are identical (i.e., only has the samples ex-
tracted from generation 0). As the evolution processes, we can
see that SGP_mapping can find closer samples/individuals in
the KNN-based surrogate model than SGP. For example, at
generation 40, the largest distance of the estimated individual
with the samples in KNN-based surrogate of SGP_mapping
is around 7, which is about 12 of SGP. This verifies the
effectiveness of SGP_mapping in terms of the mechanism of
the KNN-based surrogate model with more samples. In other
words, in general, a fitness estimation with a smaller distance
is more reliable. This is also the reason why SGP_mapping
can outperform the other algorithms.

E. Distribution of Samples in Surrogate

The samples in the surrogate models of SGP_mapping are
expected to cover a bigger area in the phenotypic space, since
more samples are included in the surrogate models. This is
the key factor to the success of SGP_mapping. We choose
the samples of surrogate of SGP_mapping in the scenario
<WTmean, 0.95> of one run with a replication value of 10
to investigate the sample distribution in this section.

1) From the Perspective of Phenotypic Characterisation:
The phenotypic characterisation represents the behaviour of
the individual, which is a 40-dimensional vector in this paper.
To visualise the phenotypic characterisations of the samples
in the surrogate models, we use t-SNE to reduce the dimen-
sions of the phenotypic characterisations. Fig. 14 shows the
visualisations of phenotypic characterisations of the samples
in KNN-based surrogate models of SGP and SGP_mapping
at generation 0, 10, 20, 30, 40 and 50. At generation 0O, the
samples in the surrogate models of SGP and SGP_mapping
only contain the extracted samples from generation 0, and
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Fig. 15. Visualisations of the samples in the surrogate models of SGP and
SGP_mapping based on fitness of one run in the scenario <WTmean, 0.95>
with a replication value of 10.

they are identical. For later generations, we can see that the
samples in the surrogate models of SGP_mapping cover a
larger area than SGP. With a larger range of the samples,
SGP_mapping have a higher chance to find closer samples
to the estimated individuals and get a better estimation of the
fitness of the individual. This verifies the effectiveness of the
proposed algorithm SGP_mapping from the perspective of
sample distribution in terms of phenotypic characterisation.

2) From the Perspective of Fitness: The fitness distribution
of samples in the surrogate can also provide the information
of the covered areas of the surrogate. A good surrogate is
expected to have a wide range of fitness. Fig. 15 shows
the visualisations of fitness of samples in surrogate models
of SGP and SGP_mapping at generation 0, 10, 20, 30, 40
and 50 of one run in the scenario <WTmean, 0.95> with
a replication value of 10. The same as the visualisation of
surrogate samples in terms of phenotypic characterisation, the
fitness distributions at generation 0 are identical. However, the
fitness distributions of SGP_mapping show a larger range
than that of SGP at all other generations. This verifies the
effectiveness of the proposed algorithm SGP_mapping from
the perspective of sample distribution in terms of fitness.

VI. FURTHER ANALYSIS
A. Comparison with Real Fitness-Evaluation Preselection

In the ideal case, if each offspring from brood recombination
is evaluated with the real fitness evaluation for preselection,
the fitness estimation is 100% accurate. To understand how
close our fitness mapping surrogate is from the real fitness
evaluation, we compare the performance of SGP_mapping
and the algorithm using real fitness evaluation to do preselec-
tion, which is named SGP_real.

Table VI shows the mean and standard deviation of the test
performance of SGP_mapping and SGP_real according to 30
independent runs with four replication settings, each with six
scenarios. The results show that SGP_mapping can achieve
similar performance with SGP_real with small replication
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TABLE VI
THE MEAN (STANDARD DEVIATION) OF THE OBJECTIVE VALUES ON TEST
INSTANCES OF SGP_mapping AND SGP_real OVER 30 INDEPENDENT
RUNS WITH FOUR DIFFERENT REPLICATION SETTINGS IN SIX SCENARIOS.

TABLE VII
THE MEAN (STANDARD DEVIATION) OF TRAINING TIME (IN MINUTES) OF
GP, SGP, SGP_average, SGP_naive, SGP_mapping AND SGP_real
OVER 30 INDEPENDENT RUNS IN SIX SCENARIOS WITH REPLICATION OF 2.

Rep Scenario SGP_mapping SGP_real
<Fmean, 0.75> 335.70(1.38) 335.59(1.82)(~)
<Fmean, 0.85> 385.91(3.04) 385.71(2.82)(~)

5 <Fmean, 0.95> 552.06(6.43) 551.82(5.95)(~)
<WTmean, 0.75> 26.52(1.08) 26.98(1.29)(=2)
<WTmean, 0.85> 75.61(4.52) 75.52(5.41)(~)
<WTmean, 0.95> 295.06(7.96) 291.91(6.15)(=)

<Fmean, 0.75> 335.53(1.57) 334.83(1.28)(-)
<Fmean, 0.85> 384.74(2.62) 384.36(1.57)(~)

3 <Fmean, 0.95> 552.03(7.41) 549.77(5.53)(~)
<WTmean, 0.75> 26.66(1.37) 26.31(0.37)(=~)
<WTmean, 0.85> 74.56(3.04) 73.25(0.91)(-)
<WTmean, 0.95> 292.18(7.51) 291.01(6.91)(=)

<Fmean, 0.75> 335.07(0.91) 334.68(1.00)(-)
<Fmean, 0.85> 384.01(1.79) 383.90(1.52)(~)

5 <Fmean, 0.95> 548.43(6.44) 545.84(5.63)(-)
<WTmean, 0.75> 26.29(0.62) 25.94(0.28)(-)
<WTmean, 0.85> 74.49(3.02) 73.83(0.51)(~)
<WTmean, 0.95> 291.34(11.68) 287.34(5.67)(-)

<Fmean, 0.75> 335.11(1.51) 334.89(1.02)(-)
<Fmean, 0.85> 383.69(0.92) 383.22(0.67)(-)

10 <Fmean, 0.95> 547.41(4.16) 545.39(2.65)(-)
<WTmean, 0.75> 26.22(0.83) 25.93(0.35)(-)
<WTmean, 0.85> 74.04(2.04) 73.47(0.67)(-)

<WTmean, 0.95>

288.20(4.92)

286.83(5.49)(-)

settings, however, this is not the case when the replication
value becomes large. To be specific, SGP_mapping obtains
similar performance with SGP_real in all six scenarios with
replication values of 2, and performs similar with SGP_real
in four out of six scenarios with replication values of 3.
However, SGP_mapping only gets similar performance with
SGP_real in two out of six scenarios with replication values
of 5, and performs worse than SGP_real in all the scenarios
with replication values of 10. We can see that there is still
potential for improvement and we will consider it as future
work. On the other hand, we can see that the existing KNN-
based surrogate models are even further away from the ideal.
The proposed algorithm is better than the existing KNN-based
surrogate algorithms.

B. Training Time

Table VII shows the mean and standard deviation of
the training time of GP, SGP, SGP_average, SGP_naive,
SGP_mapping and SGP_real in minutes over 30 indepen-
dent runs in six scenarios with replication values of 2. The
results show that there is no significant difference between
the training time of GP and the GP algorithms with surrogate-
assisted preselection (i.e., SGP, SGP_average, SGP_naive,
SGP_mapping). In other words, the GP algorithms with
surrogate-assisted preselection can achieve better performance
than GP without requiring an extra computational cost. Com-
bining with the results with replication value of 2 in Table VI,
we can find that the proposed algorithm SGP_mapping can
reduce the training time to half to achieve similar performance
as the one using real fitness evaluation for preselection. In
terms of the training time, we also find the same pattern in
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SGP SGP_

average

<Fmean, 0.75> 50(11)52(12)(=)53(10)(=) 53(9)(~) 51(7)(~) 101(18)(+)
<Fmean, 0.85> 51(7) 51(10)(=) 52(8)(~) 52(7)(~) 51(8)(~) 103(14)(+)
<Fmean, 0.95> 53(7) 54(6)(=) 53(8)(%) 53(6)(=) 54(8)(~) 122(24)(+)
<WTmean, 0.75> 52(7) 53(8)(=) 54(10)(~)54(11)(~) 53(7)(~) 107(26)(+)
<WTmean, 0.85> 54(7) 55(9)(~) 55(11)(~)56(12)(~) 55(6)(~r) 114(24)(+)
<WTmean, 0.95>55(10) 55(8)(=) 56(10)(=) 56(9)(~7) 56(7)(~) 115(12)(+)

SGP_ SGP_
naive mapping

SGP_
real

Scenarios GP

the experiments with replication values of 3, 5, and 10. Due
to the page limit, we do not show the results here.

VII. CONCLUSIONS

The goal of this paper was to develop an effective genetic
programming algorithm with surrogate-assisted preselection
for dynamic job shop scheduling. The goal has been success-
fully achieved by proposing an effective fitness mapping strat-
egy to include the individual samples from multiple different
generations to enlarge the number of samples of the KNN-
based surrogate.

The results showed that the proposed SGP_mapping can
achieve significantly better scheduling heuristics for all the
examined dynamic job shop scenarios. The effectiveness of
the proposed fitness mapping strategy was also examined by
comparing the accuracy of fitness estimation, the effect of used
samples in KNN surrogate on the gap of real and estimated
fitness of individuals, and the characterisations of built fitness
mapping functions. It has been observed that the proposed
SGP_mapping manages to enhance its performance due to
the improvement of the surrogate technique with the proposed
fitness mapping strategy. The samples in the KNN-based
surrogate models are further analysed from the perspective
of their phenotypic characterisations and fitness, respectively.
The results show that the improved samples can cover a more
comprehensive area in the phenotypic space by adding more
samples from multiple generations.

The study in this paper can significantly contribute to
the development of the evolutionary computation community.
First, the proposed algorithm broadens the study of using
data obtained from different instances. Specifically, it proposes
a fitness mapping strategy based on common individuals
to make it effective to use different data in a comparable
standard. Second, the proposed algorithm promotes the studies
of surrogates on discrete optimisation problems. Last, the way
of extracting useful information from the data with different
training instances in dynamic job shop scheduling can provide
guidance for extracting more training data for the problems
which have limited training data to learn from.

Some interesting directions can be further studied in future.
We would like to investigate how to use all the information
from the previous generations to enhance the effectiveness
of KNN-based surrogates. We will investigate more effective
ways to map the information from different training instances
to a comparable standard. Advanced surrogate models will be
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designed with a goal to achieve the same performance as using
the real evaluation in a wide range of scenarios. In addition,

we

plan to investigate the proposed algorithms on other

combinatorial optimisation problems such as vehicle routing
and cloud computing. The effectiveness of the proposed idea
on other types of GP will be also investigated.
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