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Abstract—Dynamic flexible job shop scheduling is an impor-
tant combinatorial optimisation problem that covers valuable
practical applications such as order picking in warehouses and
service allocation in cloud computing. Machine assignment and
operation sequencing are two key decisions to be considered
simultaneously in dynamic flexible job shop scheduling. Genetic
programming has been successfully and widely used to learn
scheduling heuristics, including a routing rule for machine
assignment and a sequencing rule for operation sequencing
simultaneously. There are mainly two types of learning strategies
to evolve scheduling heuristics, i.e., learning one rule by fixing
the other rule, and learning the routing rule and the sequencing
rule simultaneously. However, there is no guidance on which
learning strategy to use in specific cases. To fill this gap, this
paper provides a comprehensive study of learning strategies
on scheduling heuristics of genetic programming in dynamic
flexible job shop scheduling by comparing five learning strategies,
including two strategies that are extended from the existing
studies. The results show that learning two rules simultaneously,
either using cooperative coevolution or multi-tree representation,
is more effective than only learning one type of rule. Cooperative
coevolution is recommended if an algorithm aims to handle a
problem by dividing it into small sub-problems, and focuses
on the characteristics of routing rule and sequencing rule.
Genetic programming with multi-tree representation that treats
the routing rule and the sequencing rule as an individual, is
preferred to reduce the complexities of algorithms.

Index Terms—Surrogate, Instance Rotation, Genetic Program-
ming, Brood Recombination, Dynamic Job Shop Scheduling.

I. INTRODUCTION

Job shop scheduling (JSS) is an important combinatorial
optimisation problem that aims to allocate machine resources
effectively [1]. It has attracted attention for both academics
and industries due to its practical values, such as scheduling
the gate resources in airports [2] and the order picking in
warehouses [3]. In traditional JSS, a job consists of a sequence
of operations, and the jobs need to be processed by a set of ma-
chines. Each operation can be processed by a predefined ma-
chine. Flexible JSS relaxes the machine resources accessibility
constraint, and a set of machines can process an operation [4].
Two decisions need to be made simultaneously in flexible JSS,
i.e., machine assignment and operation sequencing. Dynamic
flexible JSS (DFIJSS) considers flexible JSS under dynamic
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events in the job shop such as continuously new jobs arrival
[5]. DFIJSS is closer to real-world applications than other types
of JSS such as traditional JSS, flexible JSS and dynamic JSS.

DFIJSS is an NP-hard problem [6]. Exact approaches such
as dynamic programming [7] aim to find the optimal solution
for a problem. However, exact approaches are not efficient
for DFJSS, and are typically used for static and small scale
problems. Heuristic approaches such as genetic algorithms [8]
can find promising solutions in a reasonable time. However,
they are not suitable for DFJSS because they face rescheduling
problems that cannot react to real-time scheduling efficiently.
Dispatching rules (i.e., sequencing rules) [9], which can be
regarded as priority functions, have been widely used to
prioritise operations for JSS. However, they are usually man-
ually designed by experts who are not always available. In
addition, the designed rules are specific to a limit of scenarios,
which are not effective to handle different scenarios. Genetic
programming (GP) has been successfully used to automatically
learn scheduling heuristics for JSS [10]-[13]. In DFIJSS,
the scheduling heuristics contain a routing rule for machine
assignment and a sequencing rule for operation sequencing.
The learning strategy of GP for evolving the routing rule and
the sequencing rule is a key for its success in DFJSS.

We group the existing studies related to DFJSS with GP
into two categories according to the strategies of learning
routing rules and sequencing rules, i.e., learning one rule by
fixing the other rule, and learning two rules simultaneously.
For the first category, we can fix the routing/sequencing rule
only to learn the sequencing/routing rule [14]. For the second
category, there are mainly two kinds of methods, i.e., based
on cooperative coevolution [15] or multi-tree representation
[16]. However, there is no study on providing guidance on
which learning strategy to use for a specific problem. To fill
this gap, this paper compares the effectiveness of five learning
strategies, including three existing ones [14]-[16], and two
new strategies, to learn scheduling heuristics. In addition, this
paper gives guidance for selecting the learning strategy to
evolve the routing rule and the sequencing rule for DFJSS.

The overall goal of this paper is to provide a comprehensive
study of learning strategies on scheduling heuristics of GP in
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DFISS. This paper has the following research objectives:

o Develop GP algorithms with different learning strategies
for evolving scheduling heuristics in DFJSS.

o Verify the effectiveness of the GP algorithms with dif-
ferent learning strategies of evolving the routing rule and
the sequencing rule.

o Analyse the rule size and training time of the algorithms.

« Provide guidance for using a proper learning strategy to
evolve scheduling heuristics for GP in DFJSS according
to the characteristics of investigated problems.

II. BACKGROUND
A. Dynamic Flexible Job Shop Scheduling

In the FISS problem, n jobs J = {J1, Ja, ..., J, } need to
be processed by m machines M = {M;, M>, ..., M, }. Each
job J; has a sequence of operations O; = (O;1, Oja, ..., Oj;).
Each operation Oj;; can only be processed by one of its
eligible machines M (Oj;) C m(Oj;) and its processing time
8(0ji, M(Oj;)) depends on the machine that processes it. This
paper focuses on one dynamic event (i.e., continuously arriving
new jobs). This means that the information of a job is unknown
until it arrives. The goal of DFJSS is to optimise the machine
resources to achieve descried objectives such as:

o Max-flowtime: maz}_;{C; —r;}

n
o Mean-flowtime: = 3 {C; —r;}
i=1

o Mean-weighted-flowtime: £ 3~ w; * {C; — r;}
j=1
o Max-tardiness: maz}_;maz{0,C; — d;}

n
o Mean-tardiness: = >~ maz{0,C; — d;}
i=1

n
o Mean-weighted-tardiness: + 3= w; * maxz{0,C; — d;}
j=1

where C; is the completion time of a job J;, r; is the
release time of J;, d; is the due date of J;, w; is the weight
(importance) of job J;, and n is the number of jobs.

B. Genetic Programming for DFJSS

GP, as a hyper-heuristic learning approach [17], has been
widely and successfully used to learn scheduling heuristics for
DFIJSS. Fig. 1 shows the flowchart of GP to learn scheduling
heuristics for DFJSS. It starts with a randomly initialised
population with a number of GP individuals. The individuals
are then evaluated with a DFJSS simulation to measure the
quality of individuals. If the stopping criterion is met, the
GP algorithm will report the best individual found so far as
the final output. Otherwise, parents are selected based on the
parent selection method, and the selected parents are used to
generate offspring with genetic operators, i.e., reproduction,
crossover and mutation. All the generated offspring will build
a new population and be evaluated in the next generation. It
is noted that the output of GP for DFIJSS is a routing rule
and a sequencing rule. The routing rule prioritises machines
at the routing decision points (i.e., when there is a ready

Initialisation

%I Population Evaluation I

- Scheduling Heuristic
‘ Parent Selection |

l

Evolution

Reproduction

Crossover

Mutation

Fig. 1: The flowchart of GP to learn scheduling heuristics for
DFIJSS.
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Routing Rule Sequencing Rule

Fig. 2: Fixed routing rule and learn only sequencing rule.

operation). The sequencing rule prioritises operations at the
sequencing decision points (i.e., when a machine becomes idle
and operations are waiting in its queue).

III. LEARNING STRATEGIES ON SCHEDULING HEURISTICS
IN DYNAMIC FLEXIBLE JOB SHOP SCHEDULING

We describe five learning strategies for evolving scheduling
heuristics in DFJSS. Note that the learning strategies in
sections 3.1, 3.4 and 3.5 have been studied in [14]-[16], while
the learning strategies described in 3.2 and 3.3 have not been
investigated yet. We use dotted rectangles to highlight the
learned rules. The pink and blue individuals represent routing
rules and sequencing rules, respectively.

A. Fixed Routing Rule and Learn Only Sequencing Rule

A flexible JSS problem was studied in [14] by fixing the
routing rule and learning only the sequencing rule. Specifi-
cally, the fixed routing rule is normally a manually designed
rule (i.e., in this paper, we use WIQ [18], the total needed
processing time of operations in the queue of machines). Dur-
ing the whole evolutionary process of GP, only the sequencing
rule is learned, as shown in Fig. 2.

B. Fixed Sequencing Rule and Learn Routing Rule Only

Motivated by the study in [14], we can also fix the sequenc-
ing rule (i.e., PT, the processing time of operations) and learn
only the routing rule, as shown in Fig. 3. It is noted that there
is no study to investigate this learning strategy.
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Routing Rule Sequencing Rule

Fig. 3: Fixed sequencing rule and learn routing rule only.

Routing Rule Sequencing Rule

Fig. 4: Same rule as the routing rule and sequencing rule.

C. Same Rule as the Routing Rule and the Sequencing Rule

Another possible learning strategy is to use one rule to make
decisions for both routing and sequencing, as shown in Fig. 4.
The advantage is that the number of rules is reduced (i.e.,
only one), which might make it easy for decision makers to
understand. The disadvantage is that the rules may not be
effective. This is because the feature importance of routing
and sequencing rules are not the same [18]. It is noted that
this has not been investigated in the existing studies.

D. Learning Rules with Cooperative Coevolution

The routing rule and sequencing rule was learned simulta-
neously with a cooperative coevolution framework [15]. Two
subpopulations are used to learn the routing rule and the
sequencing rule, respectively, as shown in Fig. 5. For the
evaluations of the routing/sequencing rules, the best learned
sequencing/routing rule (denoted with stars) at the previous
generation is combined to evaluate the corresponding individ-
uals. At the first generation, we randomly select a routing rule
and a sequencing rule as the best learned rules for evaluation.

E. Learning Rules with Multi-tree Representation

GP with multi-tree representation was proposed to learn the
routing rule and the sequencing rule simultaneously by using
one GP individual [16]. A GP individual contains two trees,
one for the routing rule and the other for the sequencing rule,
as shown in Fig. 6. The advantage is that each individual is a
combination of the routing rule and the sequencing rule, and
it can be evaluated independently (i.e., do not need to get the
other rule by setting a manually designed rule or finding the
best rule from the previous generation).

IV. EXPERIMENT DESIGN

A. Simulation Model

We use simulation to mimic the environment of DFJSS to
investigate the effectiveness of strategies to represent schedul-
ing heuristics for GP. We assume 5000 jobs need to be
processed by ten machines [19]. The importance of jobs differ,

Best Routing Rule Best Sequencing Rule

T T T
4 \

ANz N \\

\\ - \\A_/’

Routing Rule Sequencing Rule

Fig. 5: Learn routing and sequencing rules with cooperative
coevolution.

Fig. 6: Learn routing and sequencing rules with multi-tree
representation.

and we use weight (i.e., one, two and four) to indicate the
importance of jobs. A large weight indicates that a job is
important. Each job has a number of operations that follows
a uniform discrete distribution between one and ten. Each
operation has a number of candidate machines, which follows
a uniform discrete distribution between one and ten. The
processing time of each operation is set by uniform discrete
distribution with the range [1, 99].

In order to verify the effectiveness of the involved algo-
rithms, scenarios with different settings (i.e., different objec-
tives and utilisation levels) are examined. Utilisation level (p)
is an essential factor to simulate different scenario environ-
ments. It is the proportion of time that a machine is busy. Jobs
arrive continuously in the simulation according to a Poisson
process with a rate A. The expression is shown in Eq. (1),
where 4 represents the machines’s average processing time,
and P, represents the likelihood of a job visiting a machine.
For example, if each job has two operations, Pys will be 2/10.
We can see that the utilisation level is managed by adjusting
the rate A\ in the Poisson process. A high utilisation level is
realised by enlarging the value of .

A= p* Py /p (D

To improve the generalisation ability of the learned schedul-
ing heuristics for DFJSS problems, the simulation used at each
generation is rotated by setting a new random seed. A warm-
up period of 1000 jobs is used to improve the accuracy of
collected data. We collect data from the following 5000 jobs.
The simulation keeps running until the 6000th job is finished.
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TABLE I: The involved rule types of GPs, GPr, GPrs, CCGPrs,
and MTGPrs.

Algorithms | Routing Rule | Sequencing Rule | Same
GPs X No
GPr v X No
GPrs v v Yes

CCGPrs v v No
MTGPrs v v No

TABLE II: The terminal and function sets.

Terminals Description

NIQ The number of operations in the queue
Machine-related ~ WIQ Current work in the queue

MWT Waiting time of a machine

PT Processing time of an operation

Operation-related NPT Median processing time for next operation

OWT Waiting time of an operation

WKR  Median amount of work remaining of a job

Job-related NOR The number of operations remaining of a job

w Weight of a job

TIS Time in system
. + * .
functions Co ’./ as usual meaning
max, min

B. Comparison Design

Five algorithms are involved in this paper. The algorithms
that only learn sequencing/routing rule by fixing the rout-
ing/sequencing rule are named GPs and GPr, respectively. The
algorithm that uses the same rule as both the routing rule
and the sequencing rule is named GPrs. GP with cooperative
coevolution to learn the routing rule and the sequencing rule
simultaneously, is named CCGPrs in this paper. The algorithm
with multi-tree representation to learn the routing rule and
the sequencing rule is named MTGPrs. Table I shows the
characteristics of the involved five algorithms.

The proposed algorithms are tested on 12 scenar-
ios. The scenarios consist of six objectives (i.e., max-
flowtime (Fmax), mean-flowtime (Fmean), and mean-
weighted-flowtime (WFmean), max-tardiness (Tmax), mean-
tardiness (Tmean) and mean-weighted-tardiness (WTmean))
and two utilisation levels (i.e., 0.85 and 0.95). Note that the
learned best rule is tested on 50 unseen instances, and the
mean objective value is reported as its objective value.

C. Parameter Settings

In our experiment, the terminal and function set are shown
in Table II, following the setting in [20]. The “/” operator is a
protected division, returning one if divided by zero. The other
parameter settings of GP are shown in Table III.

V. RESULTS AND DISCUSSIONS

We use Friedman’s test and Wilcoxon rank-sum test with
a significance level of 0.05 to verify the performance of
the algorithms (30 runs). “Average Rank” shows the average
rank of the algorithm on all the examined scenarios. In the
following results, “1”, “]”, and “~” indicate the corresponding

TABLE III: The parameter setting of GP.

Parameter Value
*Number of subpopulations 2
*Subpopulation size 500
Population size 1000
Method for initialising population ramped-half-and-half
Initial minimum/maximum depth 2/6
Maximal depth of programs 8
The number of elites 10

Crossover/Mutation/Reproduction rate 80% 1 15% I 5%
Parent selection Tournament selection with size 7
Number of generations 51
Terminal/non-terminal selection rate 10% / 90%

* is for CCGPrs only.
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Fig. 7: The violin plots of GPs, GPr, GPrs, MTGPrs and
CCGPrs over 30 independent runs in six flowtime related
DFIJSS scenarios.

CCGPrs

result is statistically significantly better than, worse than, or
similar to the compared one. One algorithm will compare with
the ones in the left of the corresponding table.

A. Quality of Learned Scheduling Heuristics

Table IV shows the mean and standard deviations of the
objective values of GPs, GPr, GPrs, MTGPrs and CCGPrs
on 12 scenarios. The results show that CCGPrs performs the
best with the smallest rank, and is significantly better than the
algorithms in most of the scenarios. MTGPrs is the second-
best among all other algorithms. However, the algorithms
that learn only one rule have the worst performance. We
can conclude that learning two rules simultaneously is more
effective than learning one rule only.

Fig. 7 shows the violin plots of the test performance of
GPs, GPr, GPrs, MTGPrs and CCGPrs on the scenarios with
flowtime related objectives. Taking the algorithms that only
learn one rule into consideration (i.e., GPs and GPr), GPr is
significantly better than GPs in 4 out of 6 scenarios (i.e.,
<Fmean, 0.85>, <Fmean, 0.95>, <WFmean, 0.85> and
<WFmean, 0.95>). However, GPr is worse than GPs in two
max-flowtime scenarios (i.e., <Fmax, 0.85> and <Fmax,
0.95>). One possible reason is that the importance of the
routing rule and the sequencing rule is sensitive to the op-
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TABLE IV: The mean (standard deviation) of the objective values of GPs, GPr, GPrs, MTGPrs, and CCGPrs over 30 independent

runs for 12 DFIJSS scenarios.

Scenario GPs GPr GPrs MTGPrs CCGPrs

<Fmax, 0.85> 1399.96(11.00)  2060.52(35.77)({) 1253.12(49.29)(M)(1)  1230.97(38.00)(M)(M)(=)  1223.12(31.23)(MH(H(P) (=)
<Fmax, 0.95> 2124.99(23.16)  4999.75(201.09)({)  2007.37(85.52)(P)(1)  1969.66(52.8 )(T)(T)(T) 1934.40(27.84) ()P
<Fmean, 0.85> 493.02(0.29) 393.98(1.57)(1) 385.66(2.69)(1)(1) 386.76(3.52)(P)(1H)(=) 384.69(1.63)(H(M(=)(1)
<Fmean, 0.95> 669.31(1.13) 642.50(8.69)(1) 552.62(4.25)(T)(1) 556.53(8.98)(T)(M) (=) 550.94(5.79)(T)(H(T(T)
<WFmean, 0.85> 1067.55(0.63) 865.91(3.55)(1) 836.18(8.96)(1)(1) 832.18(6.10)(T)(TH(1) 830.03(4.63)(HH(H ()
<WFmean, 0.95> 1373.79(1.71) 1405.72(26.68)({) 1117.81(11.94H)(M)()  1119.90(17.67)(D(H)(=)  1113.78(17.3)(PH(H(T(T)

<Tmax, 0.85> 864.73(9.16) 1373.38(36.14)({) 777.86(37.64)(T)(T) 759.78Q7.91)(M)(M) (=) 748.62(24.03)(M(M(M(=)
<Tmax, 0.95> 1690.73(24.93)  4361.76(257.20)(})  1591.44(52.45)(T)(T)  1553.64(39.29)(1)(1)(T) 1533.23(31.53)(D(MDHMD)
<Tmean, 0.85> 102.58(0.20) 47.11(0.72)(1) 40.46(1.14)(M)(1) 40.66(1.99)(MH(T) (=) 40.27(1.85)(MM(=)(~)
<Tmean, 0.95> 266.47(1.05) 262.10(9.88)(~) 180.32(4.51)(P) (1) 177.91(5.13)(P(P(1) 175.492.85)(H(MH(M(T)
<WTmean, 0.85>  209.26(0.60) 78.39(3.17)(1) 78.39(3.17)(M)(1) 76.45(4.06)(H(M)(1) 75.82(3.83)(D(P(D(D)
<WTmean, 0.95>  488.25(2.27) 565.74(26.39)(}) 302.50(11.46)(T)(1) 306.18(18.08)(T(M)(~) 294.58(9.65)(TH(H(M)(1)
Win / Draw / Lose  12/0/0 12/0/0 10/2/0 97370 N/A

Average Rank 4.46 4.52 2.34 2.09 1.61

timised objectives. In the mean flowtime related scenarios
(i.e., <Fmean, 0.85>, <Fmean, 0.95>, <WTmean, 0.85>
and <WTmean, 0.95>), it might be true that the routing rule
is more important than the sequencing rule, and learning an
effective routing rule contributes more to the performance. On
the contrary, the sequencing rule might be more important
for the max-flowtime related scenarios (i.e., <Fmax, 0.85>
and <Fmax, 0.95>), and learning an effective sequencing rule
contributes more to the performance.

Learning two rules simultaneously (i.e., GPrs, MTGPrs,
CCGPrs) shows their superiority compared with the ones
that learn only one type of rules (i.e., GPs and GPr). This
confirms that learning the routing rule and the sequencing
rule simultaneously is effective for GP in DFJSS. In addition,
MTGPrs and CCGPrs, can achieve better performance with
smaller objective values than GPrs. This indicates that using
one unique rule for both machine assignment and operation
sequencing rule is not effective. This is consistent with our
previous studies that the machine assignment and operation se-
quencing decisions have different characteristics, which leads
to various requirements for learning scheduling heuristics [18].

B. Average Sizes of the Learned Routing Rules

A smaller rule size (i.e., the number of nodes) makes it
easier for the job shop operators to understand the rules. In
addition, algorithms with smaller programs are less complex
(i.e., smaller search space). Fig. 8 shows the violin plots of
the average sizes of routing rules of GPs, GPr, GPrs, MTGPrs,
and CCGPrs over 30 independent runs in six flowtime related
scenarios. We can see that the sizes of routing rules of GPs
are 1 (i.e., fixed routing rule, WIQ) in all the scenarios.
Among the algorithms that learn routing rules, MTGPrs has
the smallest routing rules, while GPr gets the largest routing
rules. In addition, GPrs and CCGPrs have similar routing rule
sizes in the scenarios with utilisation levels of 0.85. However,
CCGPrs has smaller routing rules than GPrs in the scenarios
with utilisation levels of 0.95. Taking the test performance
of the algorithms that learn two rules simultaneously (i.e.,
GPrs, MTGPrs and CCGPrs) into consideration (as discussed
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Fig. 8: Violin plots of the average sizes of routing rules of
GPs, GPr, GPrs, MTGPrs, and CCGPrs over 30 runs in six
flowtime related scenarios.

in Section V-A), we can see that although GPrs has larger
routing rule sizes than MTGPrs and CCGPrs, it does not help
itself achieve better performance. In general, MTGPrs can get
effective rules with small rule sizes.

C. Average Sizes of the Learned Sequencing Rules

Fig. 9 shows the violin plots of the average sizes of GPs,
GPr, GPrs, MTGPrs, and CCGPrs according to 30 independent
runs in six flowtime related scenarios. For GPr, we can see
that the sizes of sequencing rules are 1 (i.e., fixed sequencing
rule, PT). The same as routing rules, MTGPrs achieves the
smallest sequencing rules in all the examined scenarios. This
is consistent with the finding in [16].

D. Average Sizes of Pairs of Routing and Sequencing Rules

We know that the routing rule and the sequencing rule
work as a pair to make two decisions in DFJSS. An effective
routing rule with an ineffective sequencing rule may have
similar performance with an effective sequencing rule with an
ineffective routing rule. Thus, it is reasonable to take the size
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Fig. 9: Violin plots of the average sizes of sequencing rules
of GPs, GPr, GPrs, MTGPrs, and CCGPrs over 30 runs in six
flowtime related scenarios.
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Fig. 10: Violin plots of the average sizes of routing rules plus
sequencing rules of GPs, GPr, GPrs, MTGPrs, and CCGPrs
over 30 independent runs in six flowtime related scenarios.

of the routing rule and sequencing rule together to investigate
the rule size. Fig. 10 shows the violin plots of the average
sizes of routing rules plus sequencing rules of GPs, GPr, GPrs,
MTGPrs, and CCGPrs according to 30 independent runs in six
flowtime related scenarios. The sizes of scheduling heuristics
of GPs are smaller than GPr in all scenarios. This indicates that
the routing rule might contribute more to the performance, and
its size is increased by GP to find effective rule for DFJSS.
The smallest rule sizes are achieved by MTGPrs, which is
consistent with the findings in sections V-B and V-C.

E. Training time

Fig. 11 shows the training time (in minutes) of GPs, GPr,
GPrs, MTGPrs, and CCGPrs over 30 independent runs in six
flowtime related scenarios. The results show that although it
is the same that GPs and GPr only learn one type of the
rules, their training time is different. The training time of
GPr is much longer than GPs in all the examined scenarios.
It is consistent with the findings of routing sizes (i.e., GPr
has larger rule sizes than GPs) in section V-D, and the

<Fmax, 0.85> <Fmean, 0.85> <WFmean, 0.85>

160-

150- 120-
120-

100- @ 907]
80-

60-

Q
£ 50-
i= 40- | S e
.E’ <Fmax, 0.95> <Fmean, 0.95> <WFmean, 0.95>
c
‘= 160- 160-
© 4
£ 160
120- 120- 120- @
80- 80- 80-
40- -7 . . 40-
Algorithm
GPs GPr GPrs MTGPrs CCGPrs

Fig. 11: Violin plots of the training time (in minutes) of GPs,
GPr, GPrs, MTGPrs, and CCGPrs over 30 independent runs
in six flowtime related scenarios.

algorithms with larger rule sizes are time-consuming. Among
GPrs, MTGPrs and CCGPrs, MTGPrs is the most efficient one.
In addition, although CCGPrs achieves better performance
than MTGPrs as shown in section V-A, CCGPrs is more time-
consuming than MTGPrs.

VI. DISCUSSIONS AND FURTHER ANALYSIS
A. Discussions

Considering the effectiveness and efficiency, MTGPrs and
CCGPrs are promising algorithms to learn the routing rule
and the sequencing rule simultaneously. However, they have
different characteristics that affect the choose of them.

e MTGPrs and CCGPrs are promising algorithms to learn
routing and sequencing rules simultaneously. However,
implementing cooperative coevolution is more complex
than using multi-tree representation. The implementation
with multi-tree representation is easier for beginners.

o If we do not consider the complexity of algorithms, GP
with cooperative coevolution and multi-tree representa-
tion are suitable for GP in DFJSS. Which one to use
depends on users’ preferences.

o If more than two rules need to be learned [19], [21], GP
with multi-tree representation is a good choice to manage
individuals to keep a simple framework. The interaction
between rules can be easily managed.

o If the algorithm focuses on investigating the characteris-
tics of routing rule and sequencing rule such as feature
importance [18] and rule importance, using GP with
cooperative coevolution is suitable to keep them separate
from each other. This makes it easier to investigate them.

o Although using the same rule for routing and sequencing
is not as good as using cooperative coevolution and
multi-tree representation, its performance is not as bad
compared with learning one type of rule. We know that
the feature importance for effective routing rule and
sequencing differs [18]. Using the same rule for routing
and sequencing may not be effective. To investigate
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Fig. 12: Curves of the number of unique features of GPrs and
MTGPrs over 30 independent runs in six flowtime scenarios.

this, Fig. 12 shows the curves of the number of unique
features of GPrs and MTGPrs over 30 independent runs
in six DFJSS scenarios. For GPrs, its routing rule and
sequencing rule are the same, and there is only one line to
indicate both the number of unique features of the routing
rule and sequencing rule. The results show that the
learned rules by GPrs involve a larger number of features
than both the routing and sequencing rules obtained by
MTGPrs in most scenarios. Further looking at MTGPrs,
we can see that the routing rules contain more features
than the sequencing rule. We can conclude that GPrs do
manage to learn comprehensive rules for both routing
and sequencing by involving a larger number of unique
features. These findings can also verify the effectiveness
of the strategy of learning two rules simultaneously,
which makes it possible for the routing rule and the
sequencing rule to focus on their own characteristics.

B. Learned Scheduling Heuristics

The algorithms investigated in this paper can be categorised
into two groups based on the number of used rules for DFJSS,
i.e., learning one rule for both routing and sequencing (GPrs),
and learning a routing rule and a sequencing rule (GPs, GPr,
MTGPrs and CCGPrs). It is interesting to know how these two
kinds of rules work. In this section, we take the best learned
rules obtained by GPrs and CCGPrs in scenario <WTmean,
0.95> to analyse the characteristics of rules. Based on our
preliminary work [22], we know that in scenario <WTmean,
0.95>, MWT (marked in pink) is the most important feature
for routing rule, and W (marked in blue) is the most important
feature for sequencing rule. Taking the most important feature
for each rule as an example, Fig. 13 shows one of the best
rules obtained by GPrs that is used for making both routing
and sequencing decisions in DFJSS. We can see that this rule
aims to be comprehensive to cover the important features for
routing and sequencing. Fig. 14 shows one of the best routing
rules learned by CCGPrs. Different from the rule in Fig. 13,
this routing rule pays more attention to important features

(e.g., MWT) for making routing decisions only. Fig. 15 shows
one of the best sequencing rules learned by CCGPrs. This
sequencing rule focuses more on important features (e.g.,
W) for making sequencing decisions only. As we discussed
earlier, the performance of CCGPrs is better than GPrs. We
can conclude that using a single rule is hard to take the role
for both routing and sequencing. This is because routing and
sequencing decisions have their own characteristics which is
hard for a single rule to cover all of them. This is consistent
with our findings in Section V-A.

VII. CONCLUSIONS AND FUTURE WORK

The goal of this paper is to study different learning strate-
gies for evolving scheduling heuristics, i.e., routing rule and
sequencing rule, for GP in DFJSS. The goal has been suc-
cessfully achieved by investigating five learning strategies to
evolve the routing rule and the sequencing rule.

The results show that GP with cooperative coevolution
and GP with multi-tree representation are effective strate-
gies for learning the routing rule and the sequencing rule
simultaneously. GP with cooperative coevolution achieves
the best performance. Compared with GP algorithm with
cooperative coevolution, GP with multi-tree representation is
more efficient, and the learned scheduling heuristics are more
interpretable. We conclude that both GP with cooperative co-
evolution and multi-tree representation are effective strategies
to learn scheduling heuristics for DFJSS. If an algorithm is
designed to learn more than two rules, it is better to use
GP with multi-tree representation to make the framework
of the algorithms tidy. If an algorithm pays attention to the
characteristics of routing rules and sequencing rules separately,
using GP with cooperative coevolution is a good choice. In
addition, we find that using the same rule for routing and
sequencing is not effective. However, it does manage to cover
the features for both the routing rule and the sequencing rule.
This learning strategy is first explored in this paper.

Some interesting directions can be further investigated in
the near future. This work already shows the importance of
routing rule and sequencing rule differs in different scenarios.
We would like to find more promising ways to allocate the
computational resources properly to improve its performance.
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