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Abstract—Dynamic flexible job shop scheduling (DFJSS) aims
to achieve the optimal efficiency for production planning in the
face of dynamic events. In practice, deep Q-network (DQN)
algorithms have been intensively studied for solving various
DFJSS problems. However, these algorithms often cause moving
targets for the given job-shop state. This will inevitably lead to
unstable training and severe deterioration of the performance.
In this paper, we propose a training algorithm based on genetic
algorithm to efficiently and effectively address this critical issue.
Specifically, a state feature extraction method is first developed,
which can effectively represent different job shop scenarios.
Furthermore, a genetic encoding strategy is designed, which
can reduce the encoding length to enhance search ability. In
addition, an evaluation strategy is proposed to calculate a fixed
target for each job-shop state, which can avoid the parameter
update of target networks. With the designs, the DQNs could
be stably trained, thus their performance is greatly improved.
Extensive experiments demonstrate that the proposed algorithm
outperforms the state-of-the-art peer competitors in terms of both
effectiveness and generalizability to multiple scheduling scenarios
with different scales. In addition, the ablation study also reveals
that the proposed algorithm can outperform the DQN algorithms
with different updating frequencies of target networks.

Index Terms—Dynamic flexible job shop scheduling, deep Q-
network, evolutionary algorithm, dispatching rules

I. INTRODUCTION

JOb shop scheduling (JSS) involves finding effective sched-
ules for processing a number of jobs on a set of machines,

aiming to minimize lead time and total cost [1]. In JSS,
each job consists of multiple operations with strict sequencing
constraints, and each operation can be processed by a specific
machine. Flexible JSS (FJSS) is an extension of JSS [2]. In
FJSS, each operation can be processed by several candidate
machines, and the processing time for each operation varies
among different machines with dissimilar configurations. In
principle, two important tasks need to be processed simulta-
neously in FJSS [3]. One is machine assignment, aiming to
allocate operations to available machines when an operation
can proceed [4]. The other is the operation sequence to
determine the next operation to be processed by an idle
machine [5]. Although FJSS allows for more flexibility and
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adaptability than JSS, it does not take into account the dy-
namic events frequently occurring in real-world applications,
such as new job arrivals [6] and machine breakdown [7].
Dynamic FJSS (DFJSS) is developed to simultaneously handle
both machine assignments and operation sequencing under
a dynamic environment, such as job arrivals over time and
machine breakdown. DFJSS is more practical in the actual
manufacturing environment, such as aircraft assembly [8]
and automotive industry [9]. Furthermore, DFJSS is more
challenging than JSS and FJSS due to the uncertainty brought
by dynamic events [10].

Existing methods to solve DFJSS problems can be generally
divided into three different categories. They are exact opti-
mization algorithms [11], approximate solution optimization
algorithms [12], and dispatching rules [13]. In practice, the
exact optimization algorithms can often guarantee the global
optimal solution yet are not efficient for dynamic scheduling
environments of DFJSS [14]. Approximate optimization algo-
rithms can get a good solution for both FJSS and DFJSS in
a reasonable time. Unfortunately, such methods cannot timely
respond to frequent reschedules in DFJSS [15]. Dispatching
rules are currently the most popular methods for handling
DFJSS owing to their simplicity of implementation and ability
to react in real-time. These rules can efficiently allocate
resources based on empirically designed criteria by prioritizing
operations and machines at decision points (i.e., the moment
when dynamic events occur) [16]. Many dispatching rules have
been widely used in DFJSS, such as LPT (Longest processing
time) [17], WSPT (Weighted shortest processing time) [18],
and some combination rules [19].

Typically, the dispatching rules are manually designed for
a particular DFJSS problem, which highly relies on exper-
tise [20]. Moreover, most dispatching rules follow the same
criteria at decision points without incorporating feedback from
the environment. For DFJSS, environmental change may cause
the rule inapplicable, which limits its adaptability and perfor-
mance [21]. Therefore, it is necessary to select the appropriate
dispatching rules adaptively according to the environment.
Based on this, the selection methods of dispatching rules have
been studied, such as analytic hierarchy [22], semantics [23],
and the Deep Q-network (DQN) based deep reinforcement
learning [24]. Among those, DQN is well-known for feedback
exploration [25]. Specifically, during the training process,
DQN receives immediate feedback in the form of rewards
calculated by the outcomes of the decisions [26]. Meanwhile,
DQN learns to approximate the targets representing the ex-
pected accumulation of these rewards, to achieve optimal
decisions. The targets are evaluated via target network, which

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2024.3367181

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on February 21,2024 at 01:33:03 UTC from IEEE Xplore.  Restrictions apply. 



2

has become a common practice in solving DFJSS.
However, the use of target networks has the limitation of

unstable training [27]. This will affect the generalization and
effectiveness of DQN in solving different DFJSS instances.
To be specific, the target networks need to be updated during
the training. If the target network updates frequently, the Q-
network will try to follow the rapidly moving target. Con-
sequently, the oscillation will appear [28] and the selection
of the optimal dispatching rule would be difficult in DFJSS.
In contrast, if the target network is not updated frequently
enough, the Q-network may fail to adapt to the changes, and
poor dispatching rules would be selected [29]. To address
this issue, research has been devoted to determining the
optimal updating frequency. For example, Zhao et al. [30]
conducted experiments to simultaneously optimize the pro-
duction objectives. Li et al. [31] weighted the parameters of
two networks in DQN at each training step and then updated
the frequency. In essential, the primary cause of training
instability in DQN lies in the update of target networks, which
introduces moving targets. Although these methods alleviate
the instability to some extent, the moving targets still exist in
their training processes, which will further bring the following
issues for DFJSS. First, the moving targets may introduce
fluctuations in the training signal, further bringing noise [32].
Existing research has reported that the noise may lead to
overfitting [33]. Second, the update frequency still needs to
be properly predefined, which requires expertise and multiple
experimental validations. In practice, the setting process is
prohibitively time-consuming [34].

The goal of this paper is to design an effective algorithm for
target evaluation based on genetic algorithms (GAs). To the
best of our knowledge, this study is the first to use a GA in
DQN training for DFJSS. GA is a stochastic global search
algorithm, that adapts the meta-heuristic pattern motivated
by the theory of natural evolution [35]. GA has potential in
generating high-quality targets for achieving stable training of
DQNs. On one hand, DQN requires weight updating based on
the gradient information during the process of training, which
is the primary cause of training instability, as discussed above.
Whereas GA does not rely on gradient information, and several
critical parameters affecting solutions are predetermined and
remain constant during the optimization process [36]. On
the other hand, GA is based on a population of candidate
solutions rather than a network [37]. By maintaining a diverse
population and implementing efficient fitness evaluation, GAs
can potentially discover high-quality targets [38]. Note that
other evolutionary algorithms can be also used to calculate the
scheduling solutions for training the Q-network, while in this
work, GA is used just with the consideration of its popularity
in the community.

The benefit of the proposed algorithm lies in the direct
calculation of the best targets, and not requiring any discussion
on the update frequency of the target network during the
training process of DQN. The contributions of the proposed
method are summarized as follows.
• A new genetic encoding strategy is designed, which can

flexibly encode the schedule at each decision point and
greatly reduce the length of chromosomes, accordingly

successfully avoiding the disadvantages of the existing
strategy. The existing encoding strategies usually encode
a complete solution of DFJSS, which are lacking of
flexibility and cannot adapt to dynamic events. Moreover,
the encoding of a complete solution will also inevitably
include some invalid information, which unnecessarily
increases the search space and lower the search efficiency
of GAs.

• A new fitness evaluation strategy is developed, which can
facilitate obtaining targets for particular states with the
new mutation operations. The existing methods are based
on the target networks, which often cause moving targets
and make the training unstable. With the developed eval-
uation strategy, the calculated fixed targets can benefit the
Q-network to achieve stable training for the application
across different scheduling tasks.

• A new state feature extraction method is developed,
which can effectively extract valid information from the
state expression. Raw data often contains a large number
of features, which can lead to the curse of dimension-
ality. With the developed method, the state features are
efficiently extracted, and the resulting representations
can be more domain-independent, allowing the model to
generalize well across different DFJSS instances.

• Extensive experiments are conducted on multiple DFJSS
instances with different scales. The results reveal the
excellent feature extraction capability of the proposed
algorithm, facilitating efficient learning of the underlying
patterns and relationships of the training data. In addition,
a comparative analysis is also performed on the proposed
algorithm against DQN algorithms with different update
ways of the target network. The results show that em-
ploying GA instead of the target network to train the
Q-network can effectively improve the stability of the
training.

The remainder of this paper is summarized as follows. The
background and related work are described in Section II,
followed by the details of the proposed algorithm in Sec-
tion III. Sections IV and V present the experiment designs
and experimental results, respectively. Finally, the conclusions
and future work are drawn in Section VI.

II. BACKGROUND AND RELATED WORK

This section introduces the fundamentals of DFJSS, learning
dispatching rules for DFJSS, and DQN algorithms for DFJSS,
and the related work on the encoding strategy of GAs in
DFJSS.

A. Dynamic Flexible Job Shop Scheduling (DFJSS)

In a traditional DFJSS problem [9], there are m machines
M = {M1,M2, ...,Mm} and n jobs J = {J1, J2, ..., Jn}
arrive at the shop floor over time. Each job Ji has a sequence
of k operations Oi = {Oi1, Oi2, ..., Oik} that must be pro-
cessed in order. Each operation can be processed by more than
a single candidate machine, with different machines having
different processing times for an operation. The processing
time of Oij depends on the machine Mf on which Oij
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would be ultimately processed. DFJSS aims to make decisions
on routing and sequencing simultaneously under dynamic
environments. In practice, there are various dynamic environ-
ments. In this paper, we follow the convention of the DFJSS
community [39] that focuses on the dynamic environments
of new job arrival and machine failures. Specifically, in the
phase of new job arrival, the information about the new job is
unknown until it arrives at the job shop. The information about
the failed machine is unknown when the event of machine
failure occurs. In a traditional DFJSS, the following constraints
are also needed to be considered:

1) Each machine handles at most one operation at a time;
2) Each operation can only be performed by one of its

candidate machines;
3) Each sequence of operations belonging to the same job

is predefined, and the current operation cannot be started
until the previous operation has been processed;

4) Scheduling is non-preemptive, i.e., once the scheduling
of an operation starts, the process cannot be aborted until
it is completed.

In summary, DFJSS assigns the appropriate machines for
the operations and determines the sequence of operations in
the machine queue. The goal of DFJSS is to minimize the
makespan (i.e., the completion time of the last process in all
machine queues) while satisfying constraints.

B. Learning Dispatching Rules for DFJSS

Dispatching rules are critical in solving scheduling problems
because they can react in real-time based on the latest infor-
mation. In recent years, some methods that can automatically
design the dispatching rules have been studied [40]. These
methods are commonly known as hyper-heuristics, which can
be classified into the categories of heuristic generation and
heuristic selection.

The methods falling into the first category refer to creating
new heuristics based on existing low-level heuristics to handle
all situations, such as least work in the queue and first come
first serve [4]. In the literature, genetic programming (GP)
stands out owing to its flexibility and has been successfully
utilized to generate fresh high-level scheduling heuristics [41].
Different from the first category, the methods of the second
category do not generate completely new scheduling heuris-
tics. Instead, these methods select the most appropriate ones
from the existing heuristics for execution based on different
job-shop states. These methods combine the strengths of
several heuristics and have been extensively validated for their
effectiveness in solving DFJSS in different scenarios [42].
At present, there are some traditional methods for the selec-
tion, such as genetic algorithms [43], reinforcement learning
(RL) [44], and Bayesian learning [45]. According to recent
literature [46], RL, in particular the DQN, has emerged as
a growing trend to select scheduling heuristics for DFJSS.
The work in this paper is also based on RL by following the
heuristic selection.

In the last few years, researchers have shown significant
interest in exploring heuristic selection with DQN methods.
These methods employ offline training to train models and

Fig. 1. Overall process of heuristic selection via DQN in DFJSS.

subsequently utilize the trained models for online applications.
The overall process is shown in Fig. 1. For example, Luo
et al. [6] trained a double DQN model offline and applied
it online to select the most proper rules from six designed
composite dispatching rule pools to solve the DFJSS, with
the objective of minimizing total tardiness. Lei et al. [47] ob-
tained an end-to-end hierarchical DQN model through offline
training and employed it online for solving various DFJSS
scenarios with different scales. Zeng et al. [48] achieved offline
training by randomly generating DFJSS scenarios for a DQN
agent, and the trained agent sequentially constructs a complete
scheduling solution in an online application.

In general, offline training can make use of pre-existing data
to train the DQN before the deployment. In the real online
application, the trained policy is tested on unseen instances
to construct a complete scheduling solution. According to the
scheduling solution, the processing information of each job,
such as the start and finish time of each operation, can be
determined. This paradigm can learn patterns and features
from pre-existing data and improve data utilization. Owing
to this, the proposed algorithm also follows this paradigm.

C. Deep Q-network for DFJSS

Markov Decision Process (MDP) [49] is a mathematical
framework that describes the stochasticity and uncertainty in
decision making, which consists of state space S, action space
A, state transition probability P , and reward function R. MDP
can provide effective guidance for making optimal decisions
in unknown environments. The Q-learning can be modeled
as a MDP. In Q-learning, an agent observes the current state
st ∈ S at a decision point t and takes an action at ∈ A.
After that, the agent gets into a new state st+1 ∈ S with the
transition probability p ∈ P and receives an immediate reward
rt ∈ R. Furthermore, the Q-value, denoted as Qπ(s, a), is the
maximum expected reward upon taking an action a in state
s and following a specific policy π (also known as the Q-
function or action-value function).

The objective of Q-learning is to learn the optimal Qπ(s, a),
which enables the agent to take the good action in a given
state. Bellman [50] has proved that the Q-value Qπ(st, at) at
a decision point t can be described as Eq. (1),

Qπ(st, at) = Est+1
[r+γmaxat+1

Qπ(st+1, at+1)|st, at], (1)

where E represents the mathematical expectation and γ ∈
[0, 1] is the discount factor to balance the relative importance
of immediate reward r and cumulative reward Qπ(st+1, at+1).
However, as real-world problems become increasingly com-
plicated, the action space becomes large and the state space
is vast, giving rise to the issue of dimensionality explosion.
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This results in an exponential growth in the search space
of the Q-function, requiring more resources for learning the
optimal π. To address the issue, Mnih et al. [51] proposed the
deep Q-network (DQN), which uses neural networks as the
approximator of the Q-function. In practice, neural networks
can efficiently represent high-dimensional space, allowing for
more effective learning in problems where the number of
possible states and actions is vast. Moreover, the Q-function
can be approximated as a continuous function by using neural
networks, making it feasible to estimate Q-values for unseen
state-action pairs.

There are two promising properties that make DQN suitable
for solving DFJSS problems. First, DQN has the ability to
handle stochasticity by approximating the Q-function that
adapts to dynamic changes in the manufacturing process,
which is crucial for DFJSS with dynamic events. Second,
DQN can adapt to dynamic environment because of the in-
teraction between environment and agent. This nature enables
the adaptive selection of the scheduling decisions by learning
the experience from the interaction.

Over the past years, an increasing number of researchers
have attempted to apply DQN in solving the DFJSS problem.
For example, Li et al. [31] applied DQN to learn to choose the
appropriate rule based on the production state at each decision
point, which can effectively deal with disturbance events
and unseen situations through learning. Johnson et al. [52]
designed some cooperative DQN-based agents for scheduling
dynamically arriving assembly jobs in a robot assembly cell,
which demonstrated improved performance against heuristic
methods. Wang et al. [53] combined DQN with a real-time
processing framework to process each dynamic event and
generate a complete scheduling solution, which allows for
stable optimization of multi-objective in job-shop scenarios
with varying scales. In summary, existing works provide
valuable insights into the use of DQNs to improve efficiency
and optimization in DFJSS.

D. Graph Convolutional Network for DFJSS

In DFJSS, the job-shop states have been effectively rep-
resented as graph data based on the constraints (elaborated
in Section III-B). Graph embedding has garnered significant
attention due to the ability to accurately preserve attributes
and graphical structures in vector space, facilitating efficient
knowledge querying. Among various graph embedding tech-
nologies, graph convolutional network (GCN) stands out for
its exceptional capability in comprehensively learning graph
information [54]. GCN is a deep learning model designed
for graph data, enabling effective information propagation and
feature learning by capturing relationships and characteris-
tics among nodes. Recent studies have leveraged GCN for
graph embedding in DFJSS. For example, Zhang et al. [55]
introduced an industrial knowledge graph to express the job-
shop state and proposed a GCN-based embedding algorithm,
achieving the effective decomposition of scheduling tasks.
Xiao et al. [56] employed graph generation to represent the
process of scheduling and compressed the topology of the
graph by performing graph embedding with GCN. The method
can be swiftly adapted to realize flexible production. Su et

al. [57] utilized GCN to extract the embeddings of the job-
shop state expressed by a graph, facilitating the construction
of effective scheduling solutions through optimal operations
dispatch to machines. These studies collectively provide valu-
able insights into the application of GCN for graph embedding
in DFJSS, highlighting the potential for improving scheduling
processes.

E. Encoding Strategy of GAs in DFJSS

GAs typically work on a population of individuals that
evolves over generations using bioinspired operators, including
selection, crossover, and mutation, to generate high-quality
solutions for a wide range of problems. In GAs, the individu-
als, representing candidate solutions, are called chromosomes.
Commonly, chromosome encoding serves as the foundation
of GA for solving problems, exerting a direct impact on the
quality of the generated optimal solution. Therefore, the valid
encoding strategy needs to be carefully designed.

In the job shop scheduling community, encoding operations
of all jobs is a straightforward way to represent a feasible
solution. However, these encoding strategies usually lead to
high-dimensional search space and lack flexibility for envi-
ronmental changes. For example, Li et al. [58] encoded all
jobs and machines into a chromosome with two parts. The first
represents the operation sequencing, and the second represents
the machine selection. Ning et al. [59] divided the encoding
into three parts, including the operation vector, machine vector,
and time vector. He et al. [60] utilized an operation-based
encoding strategy, where the value representing an operation
in the chromosome is set by the serial number of the job.

It is evident that these strategies encode all the information
in the job shop at once, in other words, a chromosome can be
considered as a complete scheduling solution. Although these
strategies have demonstrated favorable outcomes for FJSS, it
is still necessary to study a new encoding strategy to minimize
the makespan. Specifically, the work uses GA to calculate the
target in DQN at the decision point. The calculation of the
target relies on the encoding of the schedule at a decision point
(i.e., a portion of the entire scheduling solution). However, the
existing encoding strategies make encoding of some redundant
information, deteriorating the search ability. Moreover, to our
knowledge, no technique was designed in GAs for DFJSS
to generate scheduling solutions directly at decision points.
Therefore, it is necessary to design a new encoding strategy
to allow GA to flexibly calculate the target at each decision
point.

III. PROPOSED ALGORITHM

In this section, the proposed evolutionary trainer-based deep
Q-network (ETDQN) for dispatching rule selection is detailed.

A. Algorithm Overview

Algorithm 1 outlines the framework of the proposed ET-
DQN algorithm, where our contributions in this paper are
highlighted in bold. First, the DFJSS problem is modeled by
the Markov Decision Process (MDP) (Line 1). Then, a Q-
network is initialized with the random weight for DFJSS (Line
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2). Next, the Q-network is trained with the specified maximal
epochs (Lines 3-14). Finally, the optimal Q-network is applied
to solve the DFJSS problem (Line 15).

Algorithm 1: Framework of the proposed ETDQN algorithm

1 Model DFJSS with the Markov Decision Process formulation;
2 Q(θ)← Initialize a Q-network with random weight θ for DFJSS;
3 for i← 1 to the predefined training epoch number do
4 q ← Predict the Q-value based on the designed state feature

extraction method;
5 P0 ← Initialize the population with the proposed encoding

strategy;
6 t← 0;
7 while t <the predefined maximal generation number do
8 Evaluate the fitness of individuals in Pt with the proposed

fitness evaluation startegy;
9 Pt+1 ← Generate a new population with the proposed

offspring generation method;
10 t← t+ 1;
11 end
12 q′ ← Obtain the fitness of the best individual in Pt;
13 θ ← Update θ by performing gradient descent on minimizing

(q′ − q)2;
14 end
15 Apply Q(θ) to solve DFJSS problem.

During the training, the Q-values are predicted first based
on the designed state feature extraction method (Line 4). Then,
the population is initialized based on the proposed encoding
strategy (Line 5). After that, the evolution begins to take
effect until a predefined maximal generation number is reached
(Lines 7-11). Next, the fitness of the best individual is obtained
to be the target for calculating loss (Line 12). Finally, the
weights of the Q-network are updated by performing gradient
descent to minimize the loss (Line 13). During the evolution,
all individuals are evaluated first based on the proposed fitness
evaluation strategy (Line 8), and a new population is generated
with the proposed offspring generation method to participate
in subsequent evolution (Line 9).

In summary, this paper aims to address the issue of train-
ing instability caused by the target network updates, which
typically deteriorates the performance of the Q-network for
DFJSS. Fig. 2 shows one key step in the training of ETDQN
and DQN, where ETDQN utilizes GA (instead of the target
network) to evolve a population of schedules with different tar-
gets for finding an ‘optimal’ target. With this design, ETDQN
can work on different targets, improving the performance of
Q-network for DFJSS. In the following sub-sections, the key
steps in Algorithm 1 are detailed.

B. Markov Decision Process (MDP) Formulation

The MDP formulation aims to provide an effective way to
model DFJSS as a discrete-time sequential decision process.
Typically, MDP can be formalized by a tuple (S,A, P,R),
where each element of the tuple represents specific meanings
related to the DFJSS problem. The details of each element are
as follows.

1) State space S: S encompasses the possible states of the
DFJSS at each decision point, and these states can encode
factors that influence the scheduling decisions, such as job
attributes and machine availability. In this paper, the state
is represented by the disjunctive graph [48] because of the

(a) ETDQN (b) DQN

Fig. 2. One key step in the training of (a) the proposed ETDQN, and (b)
basic DQN. To obtain the loss for updating the Q-network, DQN calculates
the target q′ with a target network that can update by copying the parameters
of the Q-network and repeats the computation for repeatedly sampled data.
On the contrary, GA does not require any parameter updates and computes
for all samples only once.

intuitive presentation of the scheduling process. In theory, the
disjunctive graph can generally be defined as G = (N,V ∪E),
where N represents the operation set of all jobs in the job shop,
V is the set of conjunctive arcs, and E is the set of disjunctive
arcs. Specifically, the conjunctive arcs join all the operations
of the same job in order and the disjunctive arcs connect the
operation that can be executed on the same machine. Note
that the weights of the disjunctive arcs represent the processing
time of operations. Moreover, the vertexes also include critical
information about the operations, such as the operation name,
start time, end time, assigned machine, and job ID.

2) Action set A: A refers to the set of possible actions
that can be selected to take in a specific state. The actions
typically consist of two types of selections: job selection
and machine selection. Specifically, the job selection contains
seven common sequencing rules, which are listed in Table I.
The machine selection only contains the SPTM rule [48],
which consistently prioritizes the machine with the shortest
processing time.

TABLE I
SEVEN COMMON SEQUENCE RULES

Rules Description
SR Select the job with the shortest remaining time
LR Select the job with the longest remaining time
SPT Select the operation with the shortest processing time
LPT Select the operation with the longest processing time
FOPNR Select the job with the fewest operations remaining
MORPNR Select the job with the most operations remaining
Random Select operations in completely random order

3) State transition probability P : P refers to the probability
distribution that governs the transitions from one state to
another based on the actions taken by the model. Specifically,
P , precisely modeled as P (s′|s, a), quantifies the likelihood of
reaching state s′ from state s when the action a is executed.
It is essential to use P to capture the stochastic nature of
DFJSS because various factors can influence state transitions,
such as new job arrival and machine failure. In this paper, the
single-step state transition is chosen because of the immediate
feedback on the outcomes of action.

4) Reward function R: R uses scalar feedback to guide
training by performing action a in state s, which is based on
scheduling objectives. This study focuses on the totall time to
solve the DFJSS problem, where makespan is a best metric
for determining the reward. A smaller makespan means a more
optimal scheduling solution. Minimizing makespan maximizes
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Fig. 3. Process of the proposed state feature extraction method.

machine utilization between decision points. Therefore, the
immediate reward can be computed as Eq. (2):

R =

K∑
k=1

rk =
1

M

M∑
m=1

∑J
i=1

∑O
j=1 Pijm

Cmax(k)
=

P

M × Cmax(k)
,

(2)
where k can be interpreted as a discrete decision point in RL.
O is the number of operations belonging to job i, and J is
the number of jobs. P is the total processing time and M is
the number of machines. Cmax(k) is the makespan at decision
point k. Because M are both constant, the cumulative reward
can be further calculated as P/Cmax(k).

C. State Feature Extraction

The Q-network is the key component of the proposed ET-
DQN algorithm, which extracts state information to evaluate
the optimal action and is composed of three parts. The first
is the graph convolutional neural network (GCN) [61], the
second is the multi-headed self-attention mechanism [62],
and the third is a fully connected layer. Consequently, the
process of state feature extraction can be summarized in three
key steps. First, GCN is responsible for embedding valid
information from the disjunctive graph representing the state of
the job shop. Second, the multi-head self-attention mechanism
is used to focus on the vital state features by capturing the
relationship between different operations in all jobs. Third, the
fully connected layer takes effect to compress these features
to a fixed-length vector, which corresponds to the Q-value of
different dispatching rules.

Fig. 3 shows an example of this process. Specifically, in
this example, there are two machines to process three jobs,
and each job contains the same number of operations. In
the disjunctive graph, S and E represent two virtual nodes,
which represent the source and sink. The other nodes represent
operations, such as O31 means the first operation belonging to
the third job. Moreover, each node contains information about
the operations, such as start time, end time, and the assigned
machine. The solid lines represent the dependencies between
all operations belonging to the same job, while the dotted
lines represent the processing order between operations that
are assigned to the same machines. With this information, the
state of the job shop is represented by the disjunctive graph.
In the first step, the disjunctive graph is directly input into the
GCN to form a vector, i.e., the embedding. In the second step,
this vector is input into the multi-head self-attention network,
which captures the relationship between the operations of the

jobs, such as the dependencies between operations in the same
job and the constraints on machine availability. Moreover,
This step outputs a vector containing contextually enriched
representations of the input vectors. In the third step, the output
in the second step is input into a fully connected layer, and
the best dispatching rule is selected, which is similar to a
traditional classification task in machine learning.

The motivation of the proposed state feature extraction
method is detailed in three parts. For the first part, the
scheduling process can be represented as a graph structure,
as discussed in Section III-B. The literature [54] shows the
reliability of the GCN for end-to-end learning on graph data
in various domains. These studies guide us to embed vertex
and structural information in graphs using GCN. Specifically,
the graph data is first fed into the GCN. GCN utilizes the
connections in the graph structure to combine information
from neighboring nodes, iteratively updating the feature repre-
sentations of the nodes. This process enables efficient extrac-
tion and representation of features in graph data. Moreover,
GCN can usually handle any size of the graph. This is
particularly essential for addressing the dynamic variations in
the disjunctive graph representing the job-shop state, arising
from the dynamic events in DFJSS. For the second part, DFJSS
has constraints on the operations of the same job and the opera-
tions processed by the same machine. Therefore, we argue that
DFJSS has a sequence of information. There is a lot of work
that uses the multi-head self-attention mechanism for sequence
processing [63]. These methods can calculate the attention
between each word in the sentence so as to learn the word
dependence relationship and capture the internal structure of
the sentence [64]. Inspired by these methods, we employ the
multi-head self-attention mechanism to learn the relationships
between different operations, enhancing the ability to focus
on the most critical elements during decision-making. After
these two parts, considering the fixed number of actions in
our model, the feature information must be compressed into
a fixed-length vector. Therefore, a fully connected layer is
used to enable flexible accommodation of output size. The
fully connected layer can aggregate the extracted features
from previous layers into a fixed-length vector. This enables
variable-size features to be mapped to the number of actions
needed in this work.

D. Population Initialization
As introduced in Section II-A, a scheduling solution usually

consists of information on machines and operations. The
performance of a scheduling solution in DFJSS highly relies
on its flexibility, which can be achieved using sequential
scheduling. In the proposed encoding strategy, we sequentially
schedule the candidate operations and idle machines to replace
the convention of encoding all information at once in GA
(the advantages will be discussed later in this section). The
candidate operation is either the first operation of a job or an
operation that follows a completed predecessor. In addition,
such machines are considered idle that have processed the last
operation in the waiting queue at the decision point.

An example of the proposed encoding strategy is shown
in Fig. 4, which is composed of three main steps. The first
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Fig. 4. Process of the proposed genetic encoding strategy.

is to extract the information of the candidate operations and
idle machines based on the state. The second is to assign all
candidate machines to the waiting queue of each idle machine.
The third is to set the length of encoding as the number of
idle machines and determine the value of each dimension. In
the example, the first dimension in the encoding represents
the machine Mk1 , and the dimension value of 3 indicates that
the third operation in the waiting queue of Mk1 is selected.
The advantage of this design is the lower dimensionality of
the individual representation. Specifically, compared with the
existing encoding strategy based on all jobs in the job shop,
the proposed encoding strategy is based on machines. There
is a mass of jobs and a small number of machines in DFJSS,
especially in large-scale DFJSS scenarios where the number
of jobs far exceeds the number of machines. Therefore, the
limited number of machines results in a lower dimensionality
of the individual representation.

Algorithm 2: Population Initialization

Input: state disjunctive graph G; the population size N ; the waiting
queue of machines Q.

Output: the initialized population P0.
1 M,O ← Obtain the idle machines and candidate operations in the

current job shop according to G;
2 D ← Calculate the number of machines in M ;
3 Q← Update Q by assigning Q to M ;
4 P0 ← ∅ ;
5 t← 0;
6 while t < N do
7 X ← ∅;
8 for i← 1 to D − 1 do
9 m← Obtain the i-th machine from M ;

10 Nq ← Calculate the number of operations in Q[m.name];
11 j ← Uniformly generated an integer between [1, Nq ];
12 X ← X ∪ j;
13 Remove the j-th operations from Q[m.name];
14 end
15 P0 ← P0 ∪X;
16 t← t+ 1;
17 end
18 Return P0.

Based on the aforementioned encoding strategy, Algorithm
2 shows the details of the population initialization. Briefly,
N individuals are uniformly initialized in the same way and
then stored in P0. During the initialization of one individual,
the candidate operations and idle machines are obtained based
on the disjunctive graph representing the state (Line 1). Next,
the number of idle machines is calculated as the length of
chromosomes (Line 2), and the waiting queues of machines are
updated by assigning the candidate operations to idle machines
(Line 3). After that, each element is configured (Lines 8-14),
and then a complete individual is stored in P0 (Line 15).

During the configuration of each element, the information of
the corresponding idle machine is obtained first (Line 9). Then,
the number of candidate operations in the waiting queue of
the machine is calculated and then assigned to Nq (Line 10).
Next, an integer, assigned to j, is generated randomly between
[1, Nq] (Line 11) and stored into X (Line 12). After that, the
corresponding operations (i.e. the j-th operation in the waiting
queue) are removed from the queue (Line 13). The motivations
behind this design are: 1) multiple dynamic events in DFJSS
require adaptive adjustment with the current scheduling, en-
coding all the information at once is inflexible to confirm its
optimal scheduling solution; and 2) evaluating individuals with
the big length encoding can be time-consuming and inefficient,
because the occurrence of dynamic events in DFJSS may
invalidate part of the information in the individuals.

Algorithm 3: Fitness Evaluation

Input: The population Pt of the individual to be evaluated; the state
S; the reward r; the current generation number t; the predicted
maximal generation number T .

Output: the population Pt of the individuals with their fitness
values.

1 if epoch == 0 then
2 Cache← ∅;
3 Set Cache to a global variable;
4 end
5 if the identifier of S in Cache then
6 v ← Query the fitness by identifier from Cache;
7 Set v to all individuals in Pt;
8 else
9 vbest ← 0;

10 γ ← Uniformly generate a number from (0, 1);
11 for individual in Pt do
12 Decode a scheduling solution based on the information

encoded in individual;
13 Cmax ← Calculate makespan with the scheduling solution;
14 v ← r + γ × 1

Cmax
;

15 if v > vbest then
16 vbest ← v;
17 end
18 end
19 if t == T − 1 then
20 Put the identifier of S and vbest into Cache;
21 end
22 end
23 Return Pt.

E. Fitness Evaluation

Algorithm 3 manifests the fitness evaluation in the proposed
ETDQN algorithm. Briefly, given the population Pt containing
all the individuals for evaluating the fitness, Algorithm 3
evaluates each individual of Pt in the same manner, and finally
returns Pt containing the individuals whose fitness has been
evaluated. Specifically, if the fitness evaluation is for the first
training step, a global cache (denoted as Cache) is created,
storing the best fitness of the individuals with the unseen
state of the job shop (Lines 1-4). The fitness is evaluated
in two ways according to the state. If the state is found in
Cache, the fitness is directly obtained from Cache (Lines 5-
8). Otherwise, the individual is asynchronously placed in the
same job-shop environment for fitness evaluation (Lines 9-
21). For each individual (denoted by individual) in Pt, first,
a scheduling solution is decoded from the individual (Line
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12) and the makespan is computed based on the scheduling
solution (Line 13). Then, Line 14 shows the fitness evaluation
of the individual. After that, the best fitness is assigned to
vbest (Lines 15-17). Finally, if the fitness evaluation is for
the maximal generation, the identifier and the best fitness are
associated to put into Cache for ease of query (Lines 19-21).
Note that the identifiers are used to identify job-shop states in
the Cache.

Because the proposed algorithm is concerned with evaluat-
ing fixed targets to achieve stable training in solving DFJSS
problems, the process is modeled as an optimization problem
and optimized by GA instead of the target network in DQN.
Specifically, we define the calculation of targets as fitness,
shown in Eq. (3). The definition is based on the Bellman
equation, as discussed in Section II-C:

f(x) = r + γ × P

M × Cmax(x)
, (3)

where x is the scheduling solution in decision points, encoded
as detailed in Section III-B, and the other variables in the
equation follow the explanations given in the preceding para-
graphs. The process of optimizing targets by GA instead of
target network can be summarized as maximizing f(x) by
searching for the optimal scheduling solution. This is because
the target network converges to the optimal target by updating
the weights, which is similar to that GAs iteratively search
for the best fitness. Moreover, the fitness function is devised
to quantify the reward that may result from implementing a
scheduling solution represented by an individual in a particular
state, which is effectively equivalent to the principle of the
target in DQN. Furthermore, the cache component is used to
speed up the target evaluation, which is based on the following
considerations: 1) it is common for the state to be repeatedly
sampled for training based on conventions of RL; 2) due
to the convergence of the GA towards an optimal solution
as it progresses, and considering the complexity of fitness
evaluation, there is no need to reevaluate the target of the
resampled state again.

F. Offspring Generation

The details of offspring generation are shown in Algo-
rithm 4, which consists of three parts, i.e., crossover (Lines
1-10), mutation (Lines 12-20), and environmental selection
(Lines 21-27). During the process of crossover, the single-
point crossover is used and |Pt| offsprings will be generated,
where | · | measures the number of elements in the collection.
Specifically, two different parents are randomly selected first
(Line 3). After that, a number is randomly generated between 0
and 1 (Line 4), which is used to determine whether to perform
the crossover operation or not. If the generated number is
lower than the predefined crossover probability, two offspring
are generated from the two-parent individuals by performing a
single-point crossover operation (Line 6). Otherwise, the two
parent individuals are considered to be the offspring and put
into Xt (Line 9). During the process of mutation, a random
number is generated first (Line 13), and the mutation is applied
to the current individual if the generated number is less than
the predefined mutation probability pm (Lines 14-21). When

performing mutation on an individual, a random position
(denoted as i) is selected first (Line 15), and then obtain
the idle machine corresponding to the position (Line 16).
Next, a mutated value is randomly selected according to the
waiting queue of the machine and performed on the position i
(Lines 17-19). In the proposed algorithm, the available mutated
values are defined as the operations in the waiting queue.
During the process of selection, |Pt| individuals are selected
from the current population (Qt ∪ Xt) by using the roulette
wheel selection strategy and put into the next population
(denoted as Pt+1) (Lines 22-23). Next, the best individual is
found from (Qt∪Xt) and determined whether it has been put
into Pt+1 or not. If not, it will replace the individual with the
worst fitness in Pt+1 (Lines 24-27).

Algorithm 4: Offspring Generation

Input: The population Pt containing individuals with fitness; the
crossover probability pc; the mutation probability pm; the
length of individuals L; the waiting queueQ; the idle machines
M .

Output: The offspring population Pt+1.
1 Xt ← ∅;
2 while |Xt| < |Pt| do
3 p1, p2 ← Randomly select two different individuals from Pt;
4 r ← Randomly generate a number between (0,1);
5 if r < pc then
6 o1, o2 ← Generate two offspring from p1 and p2 by

performing a single-point crossover operation;
7 Xt ← Xt ∪ o1 ∪ o2;
8 else
9 Xt ← Xt ∪ p1 ∪ p2;

10 end
11 end
12 for individual in Xt do
13 r ← Randomly generate a number between (0,1);
14 if r < pm then
15 i← Uniformly generate an integer between [1, L];
16 m← Obtain the i-th idle machines from M ;
17 q ← Obtain the waiting queue of m from Q;
18 v ← Uniformly generate an integer between [1, |q|];
19 Perform mutation v at the point i of individual;
20 end
21 end
22 Gt ← Pt ∪Xt;
23 Pt+1 ← Select the next population from Gt by using the roulette

wheel selection strategy;
24 pbest ← Find the individual with the best fitness from Gt;
25 if pbest is not in Pt+1 then
26 Replace the one who has the worst fitness in Pt+1 by Pbest;
27 end
28 Return Pt+1.

Next, the motivation for designing such an offspring gener-
ation strategy is given. First, the proposed algorithm encodes
the individuals based on a portion of the entire scheduling
solution for calculating the targets at decision points. While
the traditional offspring generation strategies for DFJSS are for
the individuals encoding entire scheduling solutions. Second,
existing algorithms perform the mutation operator by swapping
or perturbing job sequences, which limits the search space to
some extent [65]. The proposed algorithm selects the mutation
values from the waiting queues of machines, which increases
the diversity of the solution while ensuring feasibility.

Please note that the generated offspring are still feasible.
Specifically, individuals are encoded based on machines, and
the values for each dimension are selected from the respective
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waiting queue. The proposed crossover operator exchanges the
values of the same dimension, which only means that the order
of operations performed on the same machine is exchanged.
Moreover, the designed mutation operation ensures that the
mutated values are always appropriate for the corresponding
machine because the mutated values are selected from the
corresponding waiting queue.

IV. EXPERIMENT DESIGN

A. Simulation Model

It is a convention in the DFJSS community to use simu-
lation model for experimental verification. By following the
conventions [66], in this paper, we use the simulation model
with different random seeds to simulate 123 DFJSS instances.
They can be divided into eight different scales, including 6×6,
10×6, 10×15, 15×6, 15×8, 20×6, 100×10, and 2, 000×10.
Note that 10 × 6 means that the DFJSS has ten jobs to be
processed by six machines.

In addition, two dynamic events are separately considered,
i.e., new job arrival and machine failure. Specifically, new
jobs will arrive over time according to a Poisson process.
Each job has a different operation number randomly generated
from [1, · · · , 10]. The number of candidate machines for
each operation is uniformly generated from [1, · · · , 10]. The
processing time for each candidate machine to execute the
operation is uniformly generated from [1, · · · , 99]. The new
job will join other unfinished jobs, waiting to be assigned.
In the event of machine failure, there are some principles to
be followed [31]. 1) If a machine fails, it will stop running
before the repair is completed. 2) During the failure, the faulty
machine cannot be selected. 3) If the disrupted operations have
other candidate machines, they can be immediately put back
into the job shop to wait for machine allocation.

These simulations described above will be employed to
train and test ETDQN. In the training phase, we employ an
instance with the scale of 10 × 6 for the purpose based on
the suggestion [6]. In the test phase, we divide these instances
into four categories to demonstrate ETDQN. The first is the
instances with the same scales as the training data to verify the
effectiveness of ETDQN, regarding dataset I. The second is the
instances having different scales from the training instances
(denoted as dataset II), including 6 × 6, 10 × 15, 15 × 6,
15× 8, and 20× 6, to evaluate the generalization of ETDQN
across DFJSS instances of different sizes. The third is two
instances with the scale of 100× 10 (denoted as dataset III),
to demonstrate the improved feature extraction capability of
ETDQN with fixed targets. The fourth is an instance with the
scale of 2, 000 × 10 (denoted as dataset IV), to verify the
effectiveness and efficiency of ETDQN in dealing with the
larger scale DFJSS instance.

B. Peer Competitors

The chosen peer competitors are divided into three cate-
gories based on the intention of experiments.

The first includes seven common dispatching rules manually
designed by experts, which are selected as the representatives
of non-learning-based approaches. The details of these rules

have been introduced in Section III-B. Note that we label each
dispatching rule with the sequencing rule for simplification,
e.g., ‘SPT+SPTM’ is labeled as ‘SPT’. Specifically, these rules
are limited to the same criterion. For example, SPT is to
prioritize the execution of jobs with the shortest processing
time first, and the machine with the shortest processing time
at any decision point.

The second contains two high-quality dispatching rules
automatically generated by genetic programming (GP), named
GPRule1 and GPRule2. Both are selected because they are
often claimed as high-quality GP rules demonstrating supe-
riority across multiple scheduling scenarios [3]. According to
the study [3], GPRule1 consists of the best routing rule and the
corresponding sequencing rule achieved by CCGP2a (mimic),
while GPRule2 contains the corresponding best rules obtained
by CCGP2.

The third refers to three heuristic selection methods, in-
cluding a random policy (RP) [48] serving as baseline, and
two state-of-the-art DQN-based algorithms, i.e., DDQN [67]
and DLDQN [68], to verify the decision-making ability of
ETDQN in dispatching rule selection. These rules may select
different criteria at decision points. Specifically, RP means
that the seven common dispatching rules will be selected with
equal probability. DDQN and DQLDQN are learning-based
algorithms, which can automatically decide dispatching rules
based on the state of the job shop.

C. Parameter Settings

All parameter settings are set based on the conventions [31],
[59], [69], which are summarized in Table II.

TABLE II
PARAMETERS SETTING

Parameters name Parameters value
Elitism Top 1
Batch size 64
Learning rate 1e− 4
Mutation rate 0.1
Crossover rate 0.8
Population size 20
Training epoch 4, 000
Size of Cache 100, 000
Size of replay memory 100, 000
Maximum number of iterations of GA 20

During the test phase, due to the stochastic nature of the
algorithms falling into the third category, 30 independent runs
are performed on each instance. While the algorithms of the
first and second categories only need to be executed once
because they are deterministic rules. Furthermore, the p-value
is calculated by performing the Wilcoxon signed-rank test with
a significance level of 0.05. The proposed ETDQN algorithm
is implemented by Pytorch, and the code runs on a computer
equipped with a CPU of Intel(R) Core(TM) i5-12500H.

V. EXPERIMENTAL RESULTS

In this section, the experimental results and analysis of
ETDQN against peer competitors are shown in Section V-A.
Then, the performance of fixed targets in ETDQN algorithm is
specifically investigated in Section V-B. Finally, the selected
dispatching rules are further analyzed in Section V-C
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TABLE III
COMPARISON RESULTS OF MAKESPAN BETWEEN ETDQN AGAINST WELL-KNOWN ALGORITHMS ON THE INSTANCES IN DATASET II AND DATASET IV.

Dynamic
event

algorithm 6× 6 10× 15 15× 6 15× 8 20× 6 2000× 10
mean p-value mean p-value mean p-value mean p-value mean p-value mean p-value

new jobs
arrival

SR 81.15 9.7e-05 74.10 1.2e-05 110.60 9.0e-08 88.95 1.2e-06 126.85 1.6e-05 45599.00 8.7e-05
LR 78.60 3.6e-04 75.95 2.0e-06 107.90 1.2e-05 88.50 2.4e-06 132.20 2.1e-06 45790.00 3.9e-05
SPT 87.80 1.4e-08 71.80 4.6e-04 107.75 2.6e-06 85.05 8.7e-06 113.85 4.3e-06 24191.00 1.2e-05
LPT 82.90 6.7e-06 74.70 4.8e-06 108.45 5.2e-08 85.95 3.6e-08 116.70 4.7e-08 67592.00 3.3e-06

FOPNR 81.75 1.5e-05 75.40 2.7e-06 106.15 2.8e-08 86.65 3.2e-06 125.25 1.9e-08 45454.00 2.9e-05
MORPNR 77.90 6.7e-05 74.85 4.4e-06 100.05 4.9e-08 86.90 3.6e-05 117.25 9.6e-06 45685.00 6.7e-05
Random 80.09 6.0e-05 77.87 5.5e-07 110.26 1.2e-08 91.56 1.8e-09 119.03 1.9e-09 68296.50 9.0e-06
GPRule1 72.30 8.7e-03 74.80 2.1e-04 105.30 1.6e-04 85.40 6.8e-05 118.50 1.2e-02 22163.15 9.5e-03
GPRule2 73.90 3.7e-04 78.15 7.9e-06 104.60 1.8e-03 86.10 9.7e-04 120.85 1.8e-02 22670.40 1.8e-03
DDQN 73.94 5.2e-04 74.89 9.7e-04 105.04 1.6e-04 85.83 7.3e-05 122.29 7.3e-05 22177.83 8.3e-03

DLDQN 73.82 3.4e-04 75.01 6.2e-03 105.06 1.4e-03 85.82 2.3e-04 122.35 1.8e-02 22172.67 8.1e-03
RP 75.44 3.8e-06 76.10 3.8e-06 106.90 3.8e-06 87.01 3.8e-06 123.98 3.8e-06 23571.00 6.7e-04

ETDQN 60.45 - 54.51 - 81.36 - 74.04 - 101.31 - 22108.17 -

machine
failure

SR 46.25 5.7e-11 57.65 1.2e-09 84.15 2.8e-09 76.95 8.8e-05 109.10 2.9e-05 48049.00 10.0e-05
LR 45.75 7.2e-11 61.25 6.5e-10 79.65 5.3e-08 75.20 1.4e-06 111.10 1.4e-06 48625.00 1.9e-06
SPT 44.95 2.4e-08 59.25 7.1e-08 84.35 8.6e-07 78.25 4.6e-06 108.10 6.5e-05 26614.00 1.5e-05
LPT 46.55 2.2e-09 61.30 2.5e-09 85.85 2.1e-09 78.65 1.6e-06 109.10 8.7e-06 26614.00 1.5e-06

FOPNR 46.05 5.0e-11 56.80 5.1e-08 82.15 1.9e-10 76.45 6.5e-07 110.00 8.7e-06 48015.00 2.3e-05
MORPNR 46.40 1.3e-09 56.55 7.2e-08 82.10 1.6e-07 76.20 7.1e-06 107.55 4.7e-04 48234.00 4.5e-05
Random 47.15 5.7e-11 67.35 6.5e-10 91.25 2.6e-09 83.65 5.6e-07 112.25 8.8e-06 48234.00 3.8e-06
GPRule1 36.65 1.8e-03 43.90 2.9e-06 85.65 6.0e-03 69.30 2.4e-03 86.75 9.5e-05 24166.85 1.9e-03
GPRule2 39.95 4.8e-04 47.35 1.9e-06 86.75 1.7e-03 71.20 2.7e-05 87.40 1.9e-06 24497.80 8.9e-03
DDQN 36.77 3.8e-06 41.72 1.9e-05 85.74 3.8e-06 69.08 1.3e-04 84.63 2.1e-04 24431.50 9.1e-03

DLDQN 37.05 3.8e-06 41.89 3.8e-06 85.24 7.1e-03 69.18 5.3e-05 84.55 2.4e-03 24339.20 9.1e-03
RP 37.47 3.8e-06 43.08 3.8e-06 87.32 3.8e-06 70.64 3.8e-06 86.73 3.8e-06 26482.25 1.6e-04

ETDQN 36.04 - 40.41 - 63.23 - 67.88 - 82.93 - 23901.05 -

*: mean indicates the average of best objectives found across the remaining problem instances.
*: p-value represents the probability of observed differences in paired data assuming no true difference between the paired samples.

Fig. 5. Box plots of superior proportion of ETDQN to other single dispatching
rules on test instances in dataset I under two dynamic events.

A. Overall Results

To validate the effectiveness and generalizability, we con-
duct a comparative analysis between the proposed ETDQN
algorithm and two categories of peer competitors on DFJSS
instances with six different scales, considering the presence
of new job arrivals and machine failures. The mean makespan
(denoted as mean) and p-values are recorded in Table III.
Furthermore, Table IV presents the average test time between
ETDQN against heuristic selection methods in the second
category, to demonstrate the decision efficiency of ETDQN. In
addition, to validate that ETDQN can make effective decisions
based on states of the job shop, we compute the superior
proportion of learned dispatching rules by ETDQN to the
dispatching rules in the first category of peer competitors and
presented these results in Fig. 5. Note that superior proportion
represents the degree of advantage of one number over another.
Specifically, the superior proportion of x to y can be calculated
by (y − x)/max(x, y), as defined in [31], where x and y
are the objective values obtained by ETDQN and the single
dispatching rules under comparison respectively.

It is clearly shown in Table III that by comparing the average
performance, the proposed ETDQN algorithm outperforms all
the chosen peer competitors. Compared to the peer competitors

in the first category, ETDQN achieves performance over the
baseline in the experimental evaluations. Specifically, these
common dispatching rules can process DFJSS instances within
a reasonable timeframe. Moreover, there are significant dif-
ferences in performance when solving DFJSS instances of
different sizes. While ETDQN can stand out in solving DFJSS
instances of any size. These results demonstrate that ETDQN
can successfully extract pertinent features from states and
make informed scheduling decisions, leading to a significant
reduction in the makespan. Comparison with GPRule1 and
GPRule2 reveals that ETDQN still achieves the best results
among all scales investigated in the experiments. Furthermore,
these two rules were automatically evolved and generated from
different scenarios and simulations, and the two rules also
belong to a kind of heuristic generation. This is different
from the main contribution of this paper focusing on heuristic
selection. So such a comparison just provides a rough idea on
how well GP-generated rules on other scheduling problems
perform on the scheduling problems presented in this paper.
Compared to the peer competitors in the third category, the
makespan obtained by ETDQN is shorter than those of DDQN
and DLDQN. Specifically, in terms of makespan, ETDQN
obtains 0.31% ∼ 22.54% and 0.29% ∼ 22.56% improvements
over DDQN and DLDQN under the dynamic events of new
jobs arrival, as well 1.97% ∼ 26.24% and 1.80% ∼ 25.81%
improvements over DDQN and DLDQN under the dynamic
events of machine failure. As the size of DFJSS instances in-
creases, the performance of ETDQN still exhibits a noticeable
gap compared to DDQN and DLDQN. The results illustrate
that ETDQN can be more effective in selecting the appropriate
dispatching rules for different decision points in most problem
instances. In addition, it can also be observed in Table III
that all p-values calculated by ETDQN with competitors are
much less than 0.05, which means that the objectives obtained
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TABLE IV
AVERAGE TEST TIME FOR ETDQN AGAINST RP, DDQN, AND DLDQN
ON DIFFERENT DFJSS INSTANCES. THE TIME UNIT IS IN SECONDS (s).

Dynamic
event size RP DDQN DLDQN ETDQN

new jobs
arrival

6× 6 0.1920 0.7913 0.7269 0.6593
10× 15 0.1547 1.1076 1.1515 1.0146
15× 6 0.2813 2.2059 2.2365 2.2037
15× 8 0.2814 1.9925 1.9204 1.1078
20× 6 0.5554 2.9635 2.9434 2.8144

2000× 10 407.82 682.99 671.79 623.40

machine
failure

6× 6 0.1510 0.3526 0.3740 0.4188
10× 15 0.1640 0.6139 0.6288 0.5779
15× 6 0.2020 1.5935 1.5818 1.5464
15× 8 0.1519 1.2225 1.3265 1.1313
20× 6 0.2554 2.3635 2.2434 2.2144

2000× 10 413.78 692.22 684.13 679.81

by ETDQN are obviously different from the competitors. In
summary, ETDQN achieves the best makespan on all DFJSS
instances under both new job arrival and machine failure.

According to Fig. 5, the lower whisker of all boxes is above
the zero level, which indicates that ETDQN achieves the best
performance compared to these selected dispatching rules. The
yellow triangles represent the average of the corresponding
superior proportions. It is obvious that the average superior
proportions of ETDQN to these single dispatching rules are
between 5% ∼ 30% and 7% ∼ 31%, respectively. Meanwhile,
it can be seen from the upper quartile of the box plots that
ETDQN can achieve superiority of more than 10% for each
dispatching rule on 75% of the test instances. One possible
reason is that single dispatching rules do not take into account
the state information and stubbornly use one rule at any
rescheduling moment. In contrast, the trained ETDQN can
effectively extract the state features of all operations and
machines by means of the disjunctive graph, and determine the
appropriate rule for the current rescheduling state accordingly.

According to Table IV, it is evident that ETDQN consis-
tently records the shortest testing time compared to DDQN
and DLDQN. By capturing and leveraging features in the
state space, ETDQN excels in selecting dispatching rules
that align optimally with the current job-shop state. The
attribute highlights the superior capability of feature extraction
by ETDQN. This capability allows ETDQN to make more
effective selections of dispatching rules based on the current
state, ultimately leading to quicker completion of processing
FJSS instances, as discussed in Section V-C. Furthermore, it
is noteworthy that RP exhibits the shortest test time, with ET-
DQN following as the second-ranked method in terms of test
time when addressing the same DFJSS instance. Specifically,
compared to ETDQN, DDQN, and DLDQN, RP incurred less
time due to the utilization of a random policy for selecting
dispatching rules, without the need to extract the job-shop
states. However, as evident from the analysis above, it is clear
that ETDQN, DDQN, and DLDQN can select more appro-
priate dispatching rules by extracting state features, resulting
in a shorter makespan compared with RP. Shorter makespan
can provide a competitive advantage in practical production,
allowing companies to respond quickly to changing demands
and market dynamics. Therefore, we believe that investing a
certain amount of time in extracting state information holds
value in effectively selecting dispatching rules for DFJSS.

TABLE V
COMPARISON RESULTS OF MAKESPAN BETWEEN ETDQN AGAINST THE

DQN AND DQN2 ON PROBLEM INSTANCES IN DATASETS I AND II.

Size algorithm new jobs arrival machine failure
mean p-value mean p-value

6× 6
DQN 72.2249 9.68e-03 44.1010 1.24e-04

DQN2 73.1337 4.80e-03 44.0770 3.88e-04
ETDQN 60.4541 - 42.1470 -

10× 6
DQN 71.6210 3.70e-06 54.0690 1.45e-05

DQN2 70.4480 3.09e-06 54.5860 1.35e-05
ETDQN 62.7240 - 47.0350 -

10× 15
DQN 68.2851 1.73e-03 54.1445 1.17e-04

DQN2 68.3109 1.57e-03 53.5848 4.39e-04
ETDQN 54.5123 - 48.8300 -

15× 6
DQN 95.7413 4.52e-04 74.1700 1.81e-05

DQN2 95.3410 7.30e-04 73.7445 1.22e-05
ETDQN 81.3595 - 63.2345 -

15× 8
DQN 83.3310 4.57e-04 70.5850 9.51e-03

DQN2 82.8196 7.29e-04 70.8600 9.50e-03
ETDQN 74.0420 - 65.4000 -

20× 6
DQN 110.9985 2.24e-03 104.5780 1.91e-03

DQN2 109.7182 7.14e-03 104.5040 2.63e-03
ETDQN 101.3080 - 97.0065 -

During the experiments, we also noticed that the training
time of ETDQN is longer than that of the DQN-based al-
gorithms. This is because of the utilization of GA which
performs iterative evolutionary operations upon the population.
However, ETDQN will not be disadvantaged since it can
automatically select good rules for testing.

B. Ablation Study

Further experiments are performed to examine the effec-
tiveness of the proposed ETDQN algorithm with fixed targets.
By comparing different training way, we would investigate
whether the targets will affect the performance of solving
DFJSS instances or not. To achieve this, we compare ETDQN
with two DQN algorithms with different update frequencies of
the target networks, which are selected to verify whether the
fixed targets will affect the performance of training. Specif-
ically, one version of DQN employs a soft update strategy
for updating the target network, where the target network is
updated at a fixed interval [70]. The other version of DQN
uses a soft update strategy for updating the target network,
where the weights of the target network are updated at each
training step by weighting strategy [6]. For convenience, they
are called DQN and DQN2, respectively.

Table V presents the average makespan values (denoted
as mean) calculated by each algorithm to optimally solve
DFJSS instances of six different sizes and records the p-values
calculated by ETDQN with DQN and DQN2. Furthermore,
to substantiate the significant improvements in scalability and
feature extraction of ETDQN with fixed targets, we compared
ETDQN against two versions of DQN on two DFJSS in-
stances with the size of 100 × 10 (denoted as Scenario 1
and Scenario 2), considering the same dynamic events so
those in the above experiments. Fig. 6 presents the results
of each algorithm with 30 independent runs on each DFJSS
instance. In addition, to verify the effectiveness and efficiency
of ETDQN in addressing the DFJSS instance with scale of
2000 × 10, the mean and standard deviation of makespan
(denoted as mean and std, respectively), as well as the average
test time (denoted as time), are recorded in Table VI.
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Fig. 6. Violin plot of the average objective of DQN, DQN2, and ETDQN on
the instances in dataset III over 30 independent runs in both dynamic events.

In Table V, it is clearly shown that the mean obtained
by ETDQN is more satisfactory than those obtained by DQN
and DQN2 in both dynamic environments. Specifically, in the
presence of new job arrivals, the average makespan obtained
by ETDQN can reach at least 12.42% and 10.96% improve-
ment over DQN and DQN2, respectively. Additionally, the
average makespan of ETDQN is respectively improved by at
least 4.43% and 4.38% compared to DQN and DQN2 under
the dynamic events of machine failure. Moreover, all p-values
calculated by ETDQN with DQN and DQN2 are much less
than 0.05, which indicates the objective values obtained by
ETDQN are obviously different from those calculated by DQN
and DQN2. The result shows that the decision-making ability
of the proposed ETDQN algorithm is significantly improved
in solving DFJSS instances with six different sizes.

Fig. 6 shows the violin plot of the makespan of ETDQN,
DQN, and DQN2, where the horizon axis denotes the com-
parison algorithms, and the vertical axis denotes the calculated
makespan. According to Fig. 6, ETDQN achieves better per-
formance (i.e., smaller makespan) than DQN and DQN2 under
the two dynamic events. Specifically, in the case of new job
arrival, ETDQN achieves a majority of makespan distributed
at lower positions compared to DQN and DQN2. Moreover,
the maximum makespan and minimum makespan obtained by
ETDQN are better than those obtained by DQN and DQN2.
These results indicate that ETDQN exhibits the best overall
performance compared with DQN and DQN2. In the case of
machine failure, ETDQN cannot guarantee to find the min-
imum makespan in any scenario, like Scenario 1. However,
most obtained makespan values by ETDQN distribute at a
lower position than that of DQN and DQN2. This demonstrates
ETDQN achieves the best average performance. Moreover,
the majority of makespan values obtained by ETDQN in
the two scenarios are relatively concentrated in distribution,
which indicates the model has reliable stability. These results
demonstrate that ETDQN with fixed targets obtains much
better performance in solving DFJSS instances with scale of
100× 10 under two dynamic events.

Table VI clearly shows that ETDQN consistently has the
best average performance in spite of being confronted with
DFJSS instances with scale of 2000 × 10. In terms of mean,

TABLE VI
COMPARISON RESULTS OF MAKESPAN AND TEST TIME BETWEEN

ETDQN AGAINST THE DQN AND DQN2 ON THE DFJSS INSTANCES
WITH THE SCALE OF 2000× 10.

Dynamic event criteria DQN DQN2 ETDQN

new jobs arrival
mean 22534.78 22360.67 22108.17
std 309.9249 256.1432 166.7492

time 728.40 682.80 623.40

machine failure
mean 25565.10 25298.35 23901.05
std 241.4742 238.4616 222.5991

time 790.80 782.40 679.81

*: mean and std indicate mean and standard deviation of makespan.
*: time represents the average test time of three algorithms (unit: s).

the average performance of ETDQN compared to DQN and
DQN2 improves by 1.89% and 1.13% in the presence of
new job arrival, while improves by 6.51% and 5.52% facing
with machine failure, respectively. Moreover, ETDQN can
obtain the minimum std in both dynamic events. This means
that the results produced by ETDQN in different dynamic
environments show more reliable stability compared to DQN
and DQN2, which is crucial in practical applications to en-
sure stable scheduling decisions. In addition, test time is an
important criterion to measure the efficiency of algorithms.
Table VI records the CPU time spent by DQN, DQN2 and
ETDQN in processing the same DFJSS instance in dataset
IV. It is obvious that the computation time of ETDQN has
significant differences compared with DQN and DQN2, and
ETDQN consistently achieves the shortest time in finding
the highest-quality solution in both dynamic events. It is
worth noting that ETDQN, trained on the small-scale DFJSS
instance, demonstrates enhanced performance and efficiency
compared to both DQN and DQN2. This indicates a notable
enhancement in the feature extraction capability of ETDQN
with fixed targets.

One reason that ETDQN outperforms DQN and DQN2

is that the training of DQN and DQN2 is unstable due to
moving targets. Specifically, the training of DQN and DQN2

can result in moving targets due to the updates of target
network. The moving target destabilizes the gradient descent
direction because the targets are used to calculate the loss
for training. This will inevitably deteriorate the prediction
network to capture feature information. However, ETDQN
uses GA to replace the target network in calculating the
targets. There are two advantages. On the one hand, GA often
exhibits good global search ability in practice, and can explore
solution spaces through genetic operations, which can search
for an approximately optimal target for each state. The target
acts as the only objective for the job-shop state to guide Q-
network learning more effectively. On the other hand, GA does
not require parameter updates like the target network during
training, This can avoid moving targets in the root and ensures
that the Q-network updates towards fixed targets during the
training process, thereby alleviating poor performance caused
by unstable training.

Therefore, ETDQN can effectively extract state information
at rescheduling points and make more appropriate decisions
when facing different scheduling scenarios. In addition, a
possible reason for the improved computational efficiency of
ETDQN in testing is further discussed in Section V-C.
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Fig. 7. Frequency distribution of each dispatching rule.

C. Further Analyses on the Selected Dispatching Rules

In this section, we first outline how the proposed ET-
DQN selects dispatching rules and then analyse the effects
of different dynamic events and selection strategies on the
sequence of dispatching rules. In the process of dispatching
rules selection, the proposed ETDQN method computes the
Q-values of dispatching rules (described in Section III-B) by
extracting the state features of the job shop, and the one with
the maximum Q-value is selected. Then, the next operations
are assigned to the idle machines by executing the selected
dispatching rule. This process is continued until all operations
in the job shop have been assigned. To facilitate the discussion,
we record the selected dispatching rules. Table VII documents
the number of the selected dispatching rules, and Fig. 7 shows
the distribution of the selection frequency for each dispatching
rule by DTDQN in both dynamic events.

In Fig. 7, it can be seen that SR and FOPNR are selected
more frequently than other dispatching rules when new jobs
arrive. One possible reason is that the trained Q-network,
based on the analysis of workshop state features, identifies
the effectiveness of these rules. Specifically, the Q-network
gradually learns to evaluate the performance of the dispatching
rules in different job-shop states during the training process.
The process is achieved through interaction with the workshop
environment, observing decision outcomes in various states,
and receiving rewards. When new jobs arrive, the Q-network
tends to select rules that minimize the time required to com-
plete a job. The decision is based on the learned knowledge
and evaluation of the job-shop state. SR and FOPNR are
designed to minimize the processing time of a job, reducing
the potential impact of the new job on the progress of other
ongoing jobs and ensuring fast completion.

In the case of machine failure, it can be seen from Fig. 7
that SPT is selected with the highest frequency compared
with other dispatching rules. It is not hard to find that the
processing time is given more attention in this case. This
might be because shorter processing times allow operations to
be completed before a failure disrupts the entire production
process, mitigating the impact on workflow. Moreover, the
short processing time means that the machine can be released
quickly and put back into the following application. This
allows resources to be used more frequently and efficiently,
mitigating the resource competition due to machine damage.

Another insightful observation from Fig. 7 is that Ran-
dom is always selected with the smallest frequency in both
dynamic events. This is because Random lacks insight into
the dependencies between operation priorities and dynamic

TABLE VII
TIMES OF SELECTING DISPATCHING RULES BETWEEN ETDQN AGAINST

THE COMPETITORS IN NEW JOB ARRIVAL OR MACHINE FAILURE.

Algorithms new job arrival machine failure
RP 63 79

DQN 59 72
DQN2 57 69
DDQN 55 66

DLDQN 55 64
ETDQN 52 61

environments. The feature prevents it from making decisions
that mitigate the intricate impact of dynamic events, rendering
it support for the nuanced demands of dynamic job-shop
scheduling. This also underscores the significance of the well-
designed dispatching rules in efficiently addressing scheduling
challenges from other perspectives.

Table VII records the times of the selecting dispatching rules
using different algorithms. For example, in the case of new
job arrivals, ETDQN requires 52 scheduling rule selections to
complete a scheduling instance. According to Table VII, the
times of the selecting dispatching rules by ETDQN are always
the fewest compared to other heuristic selection methods in
both dynamic events. The result indicates that each dispatching
rule selected by ETDQN is better suited for the current state,
enabling the scheduling task to be completed more efficiently.
Specifically, ETDQN can learn the state features of the job
shop more efficiently, allowing ETDQN to have a powerful
ability to select dispatching rules. These selected dispatching
rules can effectively increase the machine utilization and thus
the efficiency of processing DFJSS instances, which has been
demonstrated in Section V-A and V-B. Conversely, if the
selected dispatching rules are not suitable for the current
state, it may not be able to allocate operations to a machine,
causing the machine to remain idle. As a result, additional
complexity can introduced to the scheduling process, resulting
in more dispatching rules needing to be selected to handle
all the demanded jobs. This also explains why the times of
the dispatching rules selected by ETDQN, DDQN, DQLDQN,
DQN, and DQN2 based on the learning method are less than
that of RP based on the random strategy. In addition, it can
also be noticed that this difference is more pronounced in the
case of machine failure, which is because effective dispatching
rule selection results in a shorter makespan, reducing the
scheduling complexity caused by the machine failure.

VI. CONCLUSIONS AND FUTURE WORK

The goal of this paper is to train an effective Q-network
by GA for heuristic selection in DFJSS. This goal has been
achieved by proposing an evolutionary trainer based on GA.
The proposed encoding strategy can flexibly encode the sched-
ule at decision points concisely and effectively. The proposed
fitness evaluation strategy can guide the population to search
for the ‘optimal’ targets used for training the Q-network.
The results show that the evolutionary trainer-based deep Q-
network has learned to correctly decide on appropriate dis-
patching rules in the different rescheduling states. Specifically,
the proposed ETDQN achieves the minimum makespan on
most test instances compared with peer competitors under the
dynamic events with new jobs arrival or machine failure. The
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comparison of the performance of ETDQN, DQN, and DQN2

shows that the scheduling solution obtained by ETDQN can
take less processing time in the randomly generated DFJSS
scenario with a larger scale than the training data. Moreover,
the superiority of ETDQN is verified by comparing it with
other well-known heuristic selection policies in multiple un-
seen problem instances.

Some interesting directions can be further investigated in the
future. Using the disjunction graph to represent states results in
a complicated graph, which adversely impacts computational
efficiency when solving scheduling tasks of large scales, such
as thousands or more. It is worth studying to design an appro-
priate graph representation approach, which can present suffi-
cient information while maintaining computational efficiency.
Moreover, although this work has shown that the performance
of existing scheduling heuristics based on simple single rules is
limited, this does not mean that a single constructed rule with
careful design can not work well. Therefore, it is necessary
to further investigate the single-constructed rules by fully
considering the trade-offs in scheduling.
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