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Abstract—Dynamic flexible job shop scheduling is an impor-
tant combinatorial optimisation problem which has rich real-
world applications such as product processing in manufactur-
ing. Genetic programming has been successfully used to learn
scheduling heuristics for dynamic flexible job shop scheduling.
Intuitively, users prefer small and effective scheduling heuristics
that can not only generate promising schedules but also are
computationally efficient and easy to be understood. However,
a scheduling heuristic with better effectiveness tends to have
a larger size, and the effectiveness of rules and rule size are
potentially conflicting objectives. With the traditional dominance
relation based multi-objective algorithms, there is a search bias
towards rule size, since rule size is much easier to be optimised
than effectiveness and larger rules are easily abandoned, resulting
in the loss of effectiveness. To address this issue, this paper
develops a novel multi-objective genetic programming algorithm
that takes size and effectiveness of scheduling heuristics for
optimisation via multitask learning mechanism. Specifically, we
construct two tasks for the multi-objective optimisation with
biased objectives using different search mechanisms for each
task. The focus of the proposed algorithm is to improve the
effectiveness of learned small rules by knowledge sharing between
constructed tasks which is implemented with the crossover
operator. The results show that our proposed algorithm per-
forms significantly better, i.e., with smaller and more effective
scheduling heuristics, than the state-of-the-art algorithms in the
examined scenarios. By analysing the population diversity, we
find that the proposed algorithm has a good balance between
exploration and exploitation during the evolutionary process.

Impact Statement—Genetic programming is a popular ap-
proach to learning scheduling heuristics for scheduling problems.
However, traditional dominace-relation based multi-objective ge-
netic programming algorithms are limited to biasing easily to
small and ineffective scheduling heuristics. This paper presents
a ground-breaking approach to multi-objective dynamic flexible
job shop scheduling by integrating rule size considerations via
multitask learning. The effectiveness of the proposed algorithm
is realised by knowledge sharing among rules of similar size.
Through extensive experimental validation, the effectiveness of
the approach is empirically demonstrated. The research con-
tributes methodologically by introducing a novel framework for
integrating rule size considerations via multitask learning with
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knowledge sharing into scheduling algorithms, paving the way
for further advancements in optimisation techniques. The paper
could offer diverse interpretable solutions to enhance productivity
and reduce costs in various industries.

Index Terms—Multi-objective Dynamic Flexible Job Shop
Scheduling, Scheduling Heuristics, Multi-objective with Biased
Objectives, Genetic Programming, Multitask Learning.

I. INTRODUCTION

ob shop scheduling is an important combinatorial opti-

misation problem, which aims to optimise machine re-
sources to process a set of jobs that consists of a number
of operations [1]. In traditional job shop scheduling, each
operation can be processed by a predefined machine. Flexible
job shop scheduling is an extension of traditional job shop
scheduling, where each operation can be processed on more
than one machine [2]. Thus, we need to make machine
assignment decision to allocate jobs/operations to machines,
and operation sequencing decision to choose which operation
will be processed next when a machine becomes idle and
there are operations in its queue, simultaneously. Dynamic
flexible job shop scheduling (DFJSS) [3] makes machine
assignment and operation sequencing decisions under dynamic
environments such as job arrivals over time and machine
breakdown. DFJSS has many practical applications such as
order picking in warehouse [4] and production process in
manufacturing [5] which can contribute to great economic
benefits. In such domains, learning small/simple and effective
scheduling heuristics becomes more important, since people
including production management and floor shop operators
prefer to understand the learned rules rather than bearing the
risk of loss [6].

According to the ways of finding solutions for job shop
scheduling, the methods can be classified into solution opti-
misation methods and hyper-heuristic methods. Solution opti-
misation methods such as exact methods including linear pro-
gramming [7] and traditional meta-heuristic methods including
genetic algorithms [8], aim to optimise solutions (i.e., sched-
ules in DFJSS) for a problem directly. However, exact methods
are normally used for static and small scale problems due to
their high computational complexity. Meta-heuristic methods
can handle large scale problems well, however, traditional
meta-heuristic methods are not efficient in dynamic problems
since they face with rescheduling issues of dynamic events. In-
stead of learning solutions directly, scheduling heuristics, e.g.,
shortest processing time as priority rule [9], have been widely
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used to handle DFJSS by prioritising machines or operations
due to their efficiency for handling DFJSS. However, it is time-
consuming to manually design such rules that can be effective
for a variety of scenarios. Hyper-heuristic approach targets on
finding scheduling heuristics in heuristic search space. Genetic
programming (GP), as a hyper-heuristic approach [10], [11],
[12], [13], [14], has been successfully used to learn scheduling
heuristics in DFJSS.

In general, a rule with smaller number of nodes is more
likely to be understand easily and be accepted for real-world
applications [15]. In addition, compared with large rules, small
rules are computationally cheaper which can make real-time
decisions more efficient. However, existing studies of GP in
DFJSS mainly focus only on the effectiveness of scheduling
heuristics [16], [17], [18]. Effective scheduling heuristics are
more likely to have larger sizes [19], [20]. The objectives
of effectiveness and rule size are potentially conflicting,
which makes the optimisation of effectiveness and rule size
a multi-objective optimisation problem. Dominance relation
based multi-objective optimisation algorithms, such as non-
dominated sorting genetic algorithm II (NSGA-II) [21], have
been popularly used for multi-objective optimisation problems.
However, taking the effectiveness (e.g., minimisation of max-
flowtime) and rule size of scheduling as objectives with
traditional non-dominated sorting has a bias issue to rule
size, and the algorithm can only evolve small but ineffective
scheduling heuristics. The reason is that the rule size is much
easier to optimise than effectiveness, thus only small rules will
survive during the evolutionary process. In this paper, we call
a multi-objective problem in which an objective is easier to
be optimised than other objectives a multi-objective problem
with biased objectives.

The existing studies considering size and effectiveness of
scheduling heuristics with GP in DFJSS are limited. However,
there are some related studies from a similar dynamic com-
binatorial optimisation problem, i.e., arc routing. To handle
the search bias issue in multi-objective optimisation with
biased objectives, [22] investigated a two-stage non-dominated
sorting GP (NSGP) to evolve routing policies for arc routing
problems. Specifically, in the first stage, only the effectiveness
of rules is considered, and a single objective optimisation
problem is formed. At the end of the first stage, the population
can contain large and effective rules. In the second stage,
NSGP is used, inheriting the first stage’s population containing
effective (large) rules, and using an archive to save rules in the
Pareto front across generations. a-dominance relation based
NSGP was proposed for multi-objective GP by giving different
selection pressures on biased objectives adaptively to select
the parents [23]. The algorithm in [23] was further extended
with a new « adaptation scheme and an archive strategy in
[24]. The algorithm [24] was adapted into DFJSS but with
the Pareto front obtained by traditional non-dominated sorting
as a reference to update o and archive [25] rather than a-
dominance relation. The results show that the algorithm in [25]
performs better than the one in [24]. These studies show the
effectiveness of using a-dominance relation for handling the
search bias in multi-objective with biased objectives, however,
they only focus on the balance of search on rule size and rule

effectiveness.

Multitask learning is a type of machine learning approach
where models are trained to perform multiple tasks simultane-
ously. Evolutionary multitask learning aims to solve multiple
related tasks simultaneously with evolutionary computation
algorithms [26]. This approach can lead to improved learn-
ing effectiveness and efficiency for the task-specific models
compared to training them separately [27], [28]. Multitask
learning has been successfully used to handle multiple tasks
by sharing knowledge between tasks [29], [30], [31]. Inspired
by multitask learning, the goal of this paper is to design an
effective multi-objective algorithm via multitask learning by
taking the optimisation with small rules as a separate task.
Specifically, we will treat the optimisation with a-dominance
for DFIJSS as the first task (main task, has search control on
size and effectiveness), and the optimisation with traditional
dominance as the second task (auxiliary task, will bias to
small rules). The proposed algorithm is expected to achieve
better performance for DFJSS from the main task by sharing
knowledge with the auxiliary task. It is noted that the goal of
this paper is not to handle a multitask problem, but to use the
idea of multitask learning for a multi-objective task/problem
with biased objectives. Specifically, the major contributions of
this paper are shown as follows:

1) We have proposed a new knowledge sharing based
framework to improve the effectiveness of small rules
obtained by a-dominance based multi-objective GP via
multitask learning. To answer the question which indi-
viduals are small rules for knowledge sharing, we have
developed an adaptive rule size range deciding strategy
for small rules. In addition, different from the algorithm
in [25], this paper has got rid of maintaining archive.

2) We have developed a novel and effective multi-objective
GP algorithm via multitask learning with the proposed
rule size range deciding strategy. Specifically, we evolve
rules in the first subpopulation with the a-dominance
multi-objective GP algorithm, and evolve rules in the
second subpopulation with the traditional dominance
multi-objective algorithm. More importantly, we share
knowledge among rules with sizes within the range ob-
tained by the designed rule size range deciding strategy
from different subpopulations. The results show that
the proposed multi-objective GP algorithm via multitask
learning has achieved better performance with smaller
and more effective scheduling heuristics compared with
the state-of-the-art algorithms.

3) Further analyses show that the proposed algorithm can
maintain both the size of the routing rule and sequencing
rules’ sizes well. We have investigated the effect of
the proposed algorithm on population diversity, we find
that the proposed algorithm has a higher population
diversity in the early stage of the evolutionary process,
representing a better exploration ability. In addition,
the population diversity stays at a proper level, leading
to a good exploitation ability in the late stage of the
evolutionary process. We can see that the proposed
algorithm has achieved a good balance of exploration
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and exploitation.

A. Organisation

The rest of this paper is organised as follows. Section II
presents the background of this paper. Detailed descriptions
of the proposed algorithm are given in Section III. The exper-
iment design is shown in Section IV. Results and discussions
are presented in Section V. Further analyses are conducted in
Section VI. Section VII concludes this paper.

II. BACKGROUND
A. Multi-objective Dynamic Flexible Job Shop Scheduling

DFJSS requires the processing of jobs J = {J1, Jo, ..., Ju }
using a set of machines M = {Mj, My, ..., M,,}. Each
job is comprised of a sequence of operations that must be
executed in order, and each operation can be processed on
multiple machines [32], indicating the flexibility of machine
resources. However, each operation will be executed on one
of its feasible machines, and the duration of its processing
relies on the machine that handles it. This paper works on
the dynamic event of stochastic and dynamic arrival of new
jobs [33], [34], as it is the most frequently occurring dynamic
event in practical scenarios. The details regarding a new job
remain undisclosed until it arrives on the shop floor. The main
constraints of DFJSS are shown as follows.

o Each machine can execute a maximum of one operation

at a given time.

o Each operation can only be processed by one of its

feasible machines at a time.

o The processing of an operation cannot occur until all its

preceding operations have been executed.

o Once an operation is commenced, it must be carried out

without interruption until its completion.

The multi-objective studied in this paper consists of two
objectives, i.e., one is effectiveness related, and the other is
rule size (i.e., the number of nodes). Three commonly used
effectiveness related objectives are considered to form different
scenarios with rule size in this paper, which is shown below:

o Max-flowtime: max{C7 —r1,C2 — ro,...,C; — 1;}
o Mean-flowtime: + 37", (Cj —r;)
o Mean-weighted-tardiness:

1 > = wj xmax{0, C; — d;}

where C; is the completion time of a job J;, r; is the
release time of J;, d; is the due date of J;, w; is the weight
(importance) of job J;, and n is the number of jobs.

B. Multi-objective Genetic Programming for DFJSS

GP has been widely used to learn scheduling heuristics for
dynamic scheduling [5], [18], [35]. NSGP can be considered
as a variation of NSGA-II [21] that incorporates GP with a
non-dominated sorting strategy for multi-objective DFJSS. GP
has several advantages that make it a natural fit for learning
scheduling heuristics for dynamic scheduling. First, GP offers
a flexible representation that can represent various scheduling
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Fig. 1. The flowchart of NSGP to learn a Pareto front of scheduling heuristics
for DFJSS.
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heuristics for DFJSS. Even scheduling heuristics with the
same behaviour can be represented using different genotypes,
providing diverse genetic materials to generate promising
scheduling heuristics during the evolutionary process. This
diversity allows for the exploration of a wider range of
possible scheduling solutions. Second, scheduling heuristics
represented by GP can be considered as priority functions,
allowing for straightforward integration of domain expertise
into the scheduling heuristics. Third, scheduling heuristics that
employ tree-based structures tend to be easy to interpret. Last
but not least, it is quite efficient to use scheduling heuristics to
make real-time decisions in DFJSS by prioritising machines
and operations, especially small rules, which is a crucial aspect
for their practical applications.

Fig. 1 shows the flowchart of NSGP to learn scheduling
heuristics for DFJSS. The main processes are the same as
the typical GP for a single objective. The major difference
is that the individuals have two objective values in multi-
objective optimisation. GP mimics the evolutionary process
in nature to improve the offspring generation by generation,
and it has four main processes (i.e., initialisation, evaluation,
parent selection, and evolution). GP starts with a number
of randomly initialised individuals. The quality of each GP
individual is measured with DFJSS instances (i.e., simulations)
during the evaluation. If the stopping criterion (e.g., maximal
number of generations, maxGen) is not met, parent selection
is conducted to enhance the chance to produce new offspring
with good quality by selecting individuals with good fitness
as parents. Then, genetic operators, i.e., elitism, reproduction,
crossover and mutation, are used to generate offspring based
on the parents. Otherwise, the best learned Pareto front of
scheduling heuristic so far is reported as the output of the
NSGP algorithm for the DFJSS problem to be solved.

1) Representation: Using a routing rule for machine as-
signment and a sequencing rule for operation sequencing has
shown to be an effective way to generate schedules for DFJSS
[20], [36]. This paper applies multi-tree representation of GP
to learn these two rules simultaneously [37]. Fig. 2 shows an
example of a GP individual to represent the routing rule and
the sequencing rule for DFJSS. The routing rule prioritises
machines based on MWT + WIQ / NIQ, where MWT is
needed time for a machine becomes idle, WIQ is the total
time for a machine to finish the operations in the machine’s
queue, and NIQ is the number of operations in the queue
of a machine. The sequencing rule is the well-known WSPT
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__________________________________________

Routing Rule Sequencing Rule

Fig. 2. An example of a GP individual with a routing rule and a sequencing
rule for DFJSS.

TABLE I
AN EXAMPLE OF THE DECISION MAKING OF THE ROUTING RULE MWT +
WIQ / NIQ AT A ROUTING DECISION POINT WITH THREE MACHINES.

Decision Machine Feature Priority Chosen
Situation Option (MWT WIQ NIQ) Value Machine

Mi 200 500 25 220
1 M S0 600 6 150 Mo
Ms; 100 400 4 200

rule, i.e., weighted shortest processing time, which prioritises
operations according to PT / W, where PT is the processing
time of an operation and W indicates the importance of an
operation.

2) Decision Making with Scheduling Heuristics: In DFJSS,
decision making is conducted at decision points, i.e., routing
and sequencing decision points. Routing decision points are
the situations in which an operation is ready to be processed
(i.e., the first operation of a newly arrived job or the operation
whose precedent operations have been processed). Sequencing
decision points are the cases that when a machine becomes
idle and there are operations waiting in its queue. Taking
the routing decision process as an example, Table I shows
an example of how the machines are selected to allocate a
ready operation. Table I assumes the ready operation can be
processed on machines M;, Mo, and Ms. The priority values
of the three machines are calculated based on the routing rule
shown in Fig. 2. The priority values of M;, Ms, and M;
are calculated as 220, 150, and 200, respectively. As a result,
the machine (i.e., M5) with the smallest priority value (i.e.,
marked with an underline) is selected to process the operation.

C. a-dominance based Multi-objective GP

For job shop scheduling, most existing multi-objective GP
algorithms are for learning the Pareto front for optimising
objectives with similar difficulty where the non-dominance
sorting will not bias specific objectives, e.g., max-flowtime
and mean-flowtime, and max-tardiness and mean-tardiness
[38], [39], [40]. Based on our preliminary investigations, these
algorithms are not effective for multi-objective problems with
biased objectives such as effectiveness and rule size.

Traditional dominance is a fundamental concept in multi-
objective optimisation where a solution is said to dominate
the other if it is better in at least one objective, and no worse
in the other objectives [41], [42]. a-dominance is to identify
the dominance relation among individuals [43]. As defined for
a-dominance NSGP that optimises effectiveness and rule size
[24], given two solutions x and y, we say that x a-dominates
y if dsize(x,y) <0, dop(z,y) < 0, and there is at least one

(b) a-dominance

Rule Size

Effectiveness

Fig. 3. An example of the dominance area with different cv.

inequality, where

Osize(T,y) = size(x) — size(y) + a * (eff(x) — effly)) (1)
der(,y) = eff(x) — eff(y) )

in which size() indicates the size of rules, i.e., the number of
nodes, and eff{) represents the effectiveness of rules, e.g., max-
flowtime. a-dominance based multi-objective GP has been
successfully used in arc routing [22], [23], [24].

Fig. 3 shows an example of the dominance area with differ-
ent « values, where 6 represents the degree of a-dominance.
a-dominance actually adjusts the objective bias by adapting o
value to give the objective effectiveness more attention to be
considered if needed. Taking some extreme as examples, when
« is 0, it is actually the traditional dominance relation, and
the multi-objective algorithm will consider the effectiveness
and rule size equally. We can see with traditional dominance
relation, solution A and B are non-dominated to each other
as shown in Fig. 3(a). If we have « that is larger than 0, the
a-dominance relation will bias to effectiveness. In this case, B
will be dominated by A, and A has more chance to be kept in
the population as shown in Fig. 3(b). If « is close to infinity, it
means that we only consider effectiveness, which is actually
a single objective optimisation as shown in Fig. 3(c). More
details of a-dominance multi-objective GP can be found in
[24], [25].

D. Related Work

Most existing work on GP for learning rules mainly focuses
only on improving the effectiveness of rules [17], [38], [39],
[44], [45], [46]. The studies that consider both the rule size
and the effectiveness of rules are limited [24], [47]. According
to the ways of studying the size and effectiveness of rules, we
group the existing literature into two categories, i.e., single-
objective optimisation and multi-objective optimisation with
biased objectives.

1) Single Objective Optimisation: There are mainly three
ways to learn small rules with GP under single objective
optimisation. First, a simple way to learn simple and effective
rules is to limit the rule size, e.g., tree depth [10], [48], [49].
However, how to set a proper limit for GP is non-trial, which
is also problem dependent. Second, parsimony pressure is used
to add a penalty to the fitness of each individual, and large
rules might have bad fitness due to the penalty [50], [51].
Thus, small rules have higher chances than large rules to be
selected as parents to generate small rules. Third, the learned
rules can be simplified to be smaller [52]. A commonly used
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Algorithm 1: The Proposed Multi-objective GP via Multitask Learning

Input : A multi-objective DFJSS task
Output: Learned Pareto front of scheduling heuristics
gen < 0

1:

2. Inmitialisation: randomly initialise population with two subpopulations

3. while gen < maxzGen do

4 Fitness evaluation for population (each individual has two objective

values)
5: get rulesety and rulesets for knowledge sharing with the rule size
range deciding strategy (Section III-B)
6: if gen < mazGen — 1 then
// Evolution including parent selection and
offspring generation

7 for i = 1 to 2 do

8: for j = I to subpopsize; do

9: if crossover then

10: if random < prob then

11: Choose parent; from ruleset;

12: Choose parents from the other rule set
ruleset—;

13: Produce one offspring with the origin-based
offspring reservation strategy [53]

14: else

15: Choose two parents from subpopsize; with
tournament selection, and produce two
offspring by conventional GP crossover

16: end

17: end

18: if mutation or reproduction then

19: Choose a parent from subpopsize; and apply

mutation or reproduction to generate one offspring

20: end

21: end

22: end

23: end

24: gen < gen + 1

25: end

26: return Learned Pareto front of subpopsize;

way is to remove the redundant branches of GP individuals.
However, detecting redundant branches is a challenging task,
which might affect the effectiveness of rules.

2) Multi-objective with Biased Objectives: Studies of multi-
objective optimisation with biased objectives including the rule
size for learning scheduling heuristics in job shop scheduling
are limited. However, GP has also been successfully used
to learn routing policy for a similar dynamic combinatorial
optimisation problem which is arc routing, this section will
cover these related work as well. Taking the effectiveness
and rule size as a multi-objective optimisation problem, a-
dominance based NSGP with an archive has been successfully
used to achieve small and effective routing policies [22], [23],
[24], [25]. The key idea of these studies is to balance the
search on effectiveness and rule size according to rule size
in the population, and maintain an archive to save individ-
uals in Pareto front across generations. These methods have
shown their success in performance improvement on multi-
objective problems with biased objectives. However, the key
mechanisms of these algorithms are the control of the search
of algorithms and the individual preservation in archive. There
is no learning mechanism to improve the effectiveness of small
rules, which is expected to improve the performance of multi-
objective optimisation with effectiveness and rule size.

III. PROPOSED MULTI-OBJECTIVE GP VIA MULTITASK
LEARNING

A. Framework of the Proposed Algorithm

We divide the population into two subpopulations. In the
first subpopulation, we use a-dominance based multi-objective
GP that uses the Pareto front obtained from traditional non-
dominated sorting as a reference to update « [25] (without
archive) to learn scheduling heuristics (the first task). The
first subpopulation will help to avoid the algorithm biases to
very small rules. The second subpopulation will use traditional
dominance relation for multi-objective optimisation which will
bias small rule learning (the second task). In this framework,
we consider subpopulation, for DFJSS as the main task
that learns scheduling heuristics with a-dominance relation,
while treats subpopulations as the auxiliary task which learns
scheduling heuristics without handling the objective bias issue.
Overall, the learned scheduling heuristics in subpopulation,
will be larger than the ones learned in subpopulations. It is
noted that based on our preliminary investigations and also the
conclusion in [23], neither the mechanism in subpopulation,
nor subpopulations can have good performance individually.

Algorithm 1 shows the framework of the proposed multi-
objective GP via multitask learning. This paper proposes to
improve the effectiveness of small rules in subpopulation; by
knowledge sharing with the auxiliary task in subpopulations.
Specifically, we will let rules with similar sizes from two
subpopulations share knowledge to enhance their performance.
Specifically, the candidate rules for knowledge sharing are
decided by the proposed rule size range deciding strategy,
and the rules (ruleset; for subpopulation, and rulesets
for subpopulations) within the size range will be selected
(line 5). The knowledge sharing is realised by the crossover
operator between rules in ruleset; and rulesets (line 9 to
line 13) with the origin-based offspring reservation strategy
[53], i.e., save one offspring that corresponds to the parent
for a particular task. In addition, the frequency of knowledge
sharing is controlled by a parameter represented by prob,
i.e., probability (line 10). Finally, the learned Pareto front of
scheduling heuristics from subpopulation; will be reported
as the output of the proposed algorithm.

B. Rule Size Range Deciding Strategy for Choosing Individu-
als for Knowledge Sharing

One key issue is how to decide which individuals can
be used for knowledge sharing. As discussed earlier, in
the proposed algorithm framework, the average rule size of
subpopulations will be smaller than that of subpopulation,
due to the search bias to small rules in subpopulations. For
knowledge sharing among individuals, intuitively, individuals
with similar sizes are more likely to produce good offspring.
In other words, breeding individuals from parents with quite
different sizes tend to destroy individuals with small sizes or
does not affect individuals with large sizes. An example of
the mentioned issues can be found in Fig. 4. If we choose a
large rule in subpopulation, (good effectiveness) and a small
rule in subpopulations (poor effectiveness) for crossover, the
generated offspring offspring; is more likely not to be good
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Fig. 4. An example of potential issue that uses a large rule and a small
rule from subpopulationi and subpopulations to generate offspring for
via crossover.
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Fig. 5. An example of finding a rule size range to decide the individuals for
knowledge sharing.

for subpopulation;. The reason is that the potential large
part of good genetic materials of the parent are destroyed,
and the replaced genetic materials are not effective which
are from small rules. Also, the generated offspring offspring,
for subpopulations is likely to be a large rule and will be
abandoned quickly due to the small rule bias issue, thus be
likely not benefit the evolutionary process of subpopulations.

To this end, this paper proposes to find the common rule
size range of non-dominated individuals in the obtained
Pareto fronts with traditional NSGP from two subpopulations
as a filter to decide which individuals can be used to share
knowledge. We use ruleset; and rulesets to indicate the
possible individual sets for knowledge sharing. Fig. 5 shows an
example of finding the rule size range to decide the individuals
for knowledge sharing. We propose to share knowledge among
rules with similar sizes from two subpopulations. First, we
will find the minimal rule sizes (RSi_min and RSs_min)
and maximal rule sizes (RSi_maxr and RSs_max) of
non-dominated individuals in the real Pareto fronts from
subpopulation; and subpopulations. The range of rule sizes
of individuals that can share knowledge with others will be
(max{RS;_min, RSs_min}, min{ RS1_max, RS2_max}).
For the example in Fig. 5, it will be (RS1_min, RSa_max).
More details can be found in Algorithm 2. We can see that
the rule size range depends on the non-dominated individuals
in the Pareto fronts obtained by the traditional NSGP from
two subpopulations, but all individuals within this range in
the population have chances to share knowledge with others.

C. Knowledge Sharing

Fig. 6 shows an example of knowledge sharing be-
tween subpopulations via crossover to generate offspring for
subpopulation;. When the crossover operator applies and
random < prob as shown in line 10 of Algorithm 1 where

Algorithm 2: Rule size range deciding strategy

Input : subpopulation, and subpopulationa
Output: Chosen ruleset; and rulesets
1. ruleset; = () and rulesety = ()
2. get non-dominated individuals ParetoF'ront, by traditional
non-dominance relation for subpopulation
3. get non-dominated individuals ParetoFronts for subpopulations with
traditional non-dominance relation
4. get the rulesize range (RS1_min, RS1_max) of ParetoFront;
5. get the rulesize range (RS2_min, RS2_max) of ParetoFronts
6: the rules for knowledge sharing is within a range of
range <+ (max{RS1_min, RSa_min}, min{RS1_max, RS2_max})
7. ruleset; < individuals which are within range from subpopulation
8: rulesety <— individuals which are within range from subpopulations
9. return ruleset| and rulesets

| subpopulation 2 |

g 76

\I//—/\\\
offspring, P(/)oc\ﬁ { gﬁgb ) offspring.,
\\ v

Retained  Abandoned

Fig. 6. An example of knowledge sharing between subpopulations via the
crossover operator to generate offspring for subpopulationy.

prob is a transfer probability, two parents will be selected from
ruleset; (subset of subpopulation,) and rulesety (subset
of subpopulations), respectively. Following the suggestion
in [53], we will randomly choose two subtrees and swap
them to generate two offspring, and the one originally based
on the parent from subpopulation; which is offspring; will
be retained to the next generation for subpopulation;. If
we generate offspring for subpopulations, offsprings will be
retained for subpopulations. Thus, the generated offspring
consists of genetic materials from different subpopulations
and the knowledge sharing is realised implicitly. Note that for
the crossover between parents from the same subpopulation,
both the generated two offspring will be selected for the next
generation.

As we discussed earlier, the average rule sizes and effec-
tiveness in subpopulation; are larger/better than the ones
in subpopulation,. The knowledge sharing via crossover
between them is expected to have the following characteristics.

o The crossover operator for knowledge sharing tends
to improve the effectiveness of small rules in
subpopulation.

o This knowledge sharing design is expected to help im-
prove the effectiveness of small rules in subpopulation
via shared knowledge, thus to improve the overall perfor-
mance of the proposed algorithm. subpopulation; is the
main focus of the proposed algorithm, and the output of
the proposed algorithm is the final learned Pareto front
from subpopulation.

o Although subpopulations is used as auxiliary task, the
knowledge sharing is also expected to improve the effec-
tiveness of rules in subpopulationy due to the knowledge
sharing with subpopulation;. Note that this is a by-
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product, and is not our focus.

D. Summary

Getting rid of the archive, the proposed multi-objective
GP algorithm utilises the mechanism of multitask learning
for handling multi-objective with biased objectives. The first
task is to use a-dominance NSGP (without archive) to handle
DFIJSS, and the second task is to use traditional dominance
relation to handle DFJSS. Compared with the state-of-the-
art a-dominance based multi-objective GP with archive for
DFIJSS, the proposed algorithm that incorporates multitask
learning mechanism has the following advantages.

o First, we do not need to maintain the archive which can
heavily affect the algorithm performance.

« Second, the proposed multi-objective GP via multitask
learning provides a learning mechanism to improve the
effectiveness of rules. This learning mechanism tries
to improve the effectiveness of small rules directly by
knowledge sharing.

o Third, this paper effectively uses the advantages of a-
dominance based multi-objective GP to avoid the search
bias issue but also utilises the traditional dominance
relation based multi-objective GP as an auxiliary task to
learn scheduling heuristics for DFJSS.

IV. EXPERIMENT DESIGN
A. Simulation Model

This paper is based on the commonly used DFJSS instances
in [54], [55], and follows the same settings as [47]. These
instances consider the processing of 5000 jobs by 10 machines,
with new jobs arriving continuously according to a Poisson
process characterised by a rate A\. The number of operations
for each job is randomly generated from a discrete uniform
distribution ranging from 1 to 10. Each operation’s number
of candidate machines is determined by a uniform discrete
distribution with values ranging from 1 to 10. The processing
time for each operation is assigned using a uniform discrete
distribution that ranges from 1 to 99. Additionally, the due
date for each job is set to 1.5 times its processing time. The
job weights or importance are assigned such that 20%, 60%,
and 20% of jobs have weights of 1, 2, and 4, respectively, as
described in [56]. To enhance the overall generalisation ability
of evolved scheduling heuristics, a new random seed for the
simulation is assigned to change the training instance used for
each generation, as described in [57].

The level of utilisation (p) is employed in simulating various
job shop scenarios [58]. This factor denotes the proportion of
time a machine is expected to be occupied, and it is regulated
by A in the Poisson process. To calculate the utilisation level,
one needs to determine the average processing time of the
machines (u) and the probability of a job visiting a machine
(Pypr). For instance, if each job has two operations, Pjs is
2/10. Then, the utilisation level is estimated as A = p* Py /p.
Generally, a higher utilisation level results in a busier job shop.

In order to determine the steady-state performance, the
initial 1000 jobs are designated as warm-up jobs and are not

TABLE I
THE TERMINAL SET.

Notation  Description
NIQ The number of operations in the queue
WIQ Current work in the queue
MWT Waiting time of a machine

PT Processing time of an operation on a specified machine

NPT Median processing time for the next operation
OWT The waiting time of an operation
WKR Median amount of work remaining for a job
NOR The number of operations remaining for a job
w Weight of a job
TIS Time in system

factored into the objective calculations. This study gathers
data from the subsequent 5000 jobs, with the simulation
terminating upon completion of the 6000th job.

B. Design of Comparisons

We consider three different objectives with rule size (RS),
i.e., max-flowtime (Fmax) and RS, mean-flowtime (Fmean)
and RS, and mean-weighted-tardiness (WTmean) and RS, and
three utilisation levels (i.e., 0.75, 0.85, and 0.95) which are
typical distinct configurations in DFJSS [59], [60] to generate
examined scenarios. A scenario refers to a particular problem
that needs to be resolved, which includes instances generated
from the same problem but with varying configurations such
as different objectives and utilisation levels.

o The traditional non-dominated sorting based GP, named
NSGP, is the baseline algorithm. Note that NSGP is a
variation of NSGA-II [21] by replacing the genetic algo-
rithm in NSGA-II with GP for the investigated DFJSS
problems.

o The multi-objective GP with a-dominance and archive
[24], named aNSGP_a, is compared to verify the effec-
tiveness of the proposed algorithms.

o The state-of-the-art multi-objective GP algorithm in
DFIJSS based on alNSGP_a but uses the real Pareto front
as a reference to update o and archive [25] is named
ref_aNSGP_a.

o The proposed multi-objective GP algorithm via multitask
learning mechanism is named VMT_aNSGP.

VMT_aNSGP will be compared with all other algorithms
to verify the performance of the proposed multi-objective GP
via multitask learning.

C. Parameter Settings

Table II presents the features of the job shop, which serve
as the terminals of GP according to [61]. These features are
typically derived from the attributes of machines (NIQ, WIQ,
and MWT), operations (PT, NPT, and OWT), and jobs (WKR,
NOR, W, and TIS) that exist within the job shop environment.
In accordance with [61], the function set used in this study
consists of {+, —, *, /, maz, min}, with each function
requiring two arguments. Notably, the “protected division”
function returns a value of one when dividing by zero. Table
IIT outlines the other parameter settings utilised in this study,
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TABLE III <Fmax-RS, 0.75>
THE PARAMETER SETTINGS IN GP.
0.996-
Parameter Value 0.992- @ @ @ @
>
Population size 1000 T 0.988-
*subpopulation 1 size 1000 * ratio
*subpopulation 2 size 1000 * (1 - ratio) 0.984-

The number of elites 10
Parent selection

Crossover / Mutation / Reproduction rate
Method for initialising population

80% 1 15% 1 5%
ramped-half-and-half

Initial minimum / maximum depth 2/6
Maximal depth of programs 8

Terminal / non-terminal selection rate 10% / 90%
The number of generations 51
*transfer probability prob 0.1

Tournament selection with size 7

'\Q@@Qvfbm@
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Fig. 7. Violin plots of training HV values of VMT_aNSGP with different
ratios.

<Fmax-RS, 0.75>

* for VMT_aNSGP only

as suggested by [56], [61], [62]. Since VMT_aNSGP has
two subpopulations, for fair comparison, its population size
remains constant at 1000, the same as NSGP, aNSGP_a, and
ref_aNSGP_a. This paper uses a ratio to control the number
of individuals for each subpopulation.

V. RESULTS AND DISCUSSIONS

The performance of the algorithms based on 30 independent
runs is ranked using Friedman’s test with a significance level
of 0.05. If the results of Friedman’s test are significant, we
further conduct the Wilcoxon rank-sum test with Bonferroni
correction between the proposed algorithm VMT_aNSGP,
and the other algorithms, with a significance level of 0.05
for the post-hoc pairwise comparisons. The terms “Win,
Draw, Lose” are used to indicate the number of scenarios
where VMT_aNSGP performs statistically better, similarly,
or worse than a compared algorithm. The “Average Rank”
represents the algorithm’s average ranking in all examined
scenarios. Furthermore, the algorithm is compared with the
algorithm(s) that come before it one by one.

In the presented results, the symbols “1”, “|”, and “~” de-
note statistical significance, indicating that the corresponding
result is significantly better than, worse than, or similar to
its counterpart. The evaluation metrics used in this study are
hyper volume (HV) and inverted generational distance (IGD),
which are commonly used in multi-objective optimisation [63],
[64]. A higher (lower) HV (IGD) indicates better performance.
Since the true Pareto front is unknown in our problem, we
use an approximated Pareto front obtained by finding the
non-dominated solutions of the 30 independent runs of all
compared algorithms for calculating IGD.

A. Sensitivity Analyses of Parameter ratio for VMT_aNSGP

As discussed earlier, parameter ratio affects the com-
putational resource allocation for subpopulation; and
subpopulations of VMT_aNSGP by controlling the subpop-
ulation sizes. Intuitively, a large ratio gives more resources to
learn scheduling heuristics with a-dominance multi-objective
GP in subpopulation,, and fewer resources for traditional
non-dominance based multi-objective GP in subpopulations.
However, it is not clear what is a good ratio.

0.10-

IGD

0.05-

é&@&&@&

Lo
Q- Q/\ QCO Q% QD‘ Qrb Q{L Q\'
VMT_aNSGP

S A P RS
SRR oq Qq oq Qq SN

Fig. 8. Violin plots of training IGD values of VMT_aNSGP with different
ratios.

To answer this question, this section investigates different
settings of ratio, which are from 0.1 to 0.98. Fig. 7 shows
the violin plots of training HV values of VMT_aNSGP with
different ratio settings. We can see VMT_aNSGP achieves
the best performance with ratio of 0.9. In addition, we find
that VMT_aNSGP with ratio of 0.9 provides low standard
deviations which indicates VMT_aNSGP with ratio of 0.9
is more stable. Fig. 8 shows the violin plots of training
IGD values of VMT_aNSGP with different ratio settings.
The results also show that 0.9 is a good value to use for
VMT_aNSGP since it achieves much better (smaller) IGD
values than other settings. The same as our findings in HV,
VMT_aNSGP with ratio of 0.9 is also the most stable one
that has the smallest standard deviation.

In summary, based on the parameter analyses of ratio,
we decide to use ratio of 0.9, and the following results of
VMT_aNSGP are with ratio of 0.9.

B. Quality of Learned Pareto Front

1) Statistical Test: Table IV shows the mean and standard
deviations of HV and IGD values of NSGP, aNSGP_a,
ref_aNSGP_a and VMT_aNSGP on training and test in-
stances over 30 runs in nine scenarios. Overall, in terms of
HV and IGD, the results show that our proposed algorithm
VMT_aNSGP achieves the best performance among all al-
gorithms with the smallest average rank value in training and
test. In addition, our proposed algorithm ref_aNSGP_a is the
second best among the four compared algorithms.

For the HV in training, we can see that the adopted
algorithm oNSGP_a from [24] is only significantly better
than NSGP in 4 out of 9 scenarios. ref_aNSGP_a [25]
is significantly better than NSGP in all scenarios, and also
significantly better than aNSGP_a in 6 out of 9 scenarios. In
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9
TABLE IV
THE MEAN (STANDARD DEVIATION) OF THE HV AND IGD ON TRAINING AND TEST INSTANCES OF NSGP, aNSGP_a, ref_aNSGP_a AND
VMT_aNSGP BASED ON 30 INDEPENDENT RUNS IN NINE SCENARIOS WHICH ARE REPRESENTED BY THE OBJECTIVE AND UTILISATION LEVEL.
HV IGD
Training
Scenario NSGP aNSGP_a ref_aNSGP_a VMT_aNSGP ‘ NSGP aNSGP_a ref_aNSGP_a VMT_aNSGP

<Fmax-RS, 0.75>
<Fmax-RS, 0.85>
<Fmax-RS, 0.95>

0.869(0.018) 0.889(0.031)(1) 0.895(0.022)(1=) 0.940(0.014)(T11)
0.840(0.033) 0.878(0.041)(1) 0.894(0.019)(1~) 0.945(0.013)(T11)
0.869(0.025) 0.887(0.053)(1) 0.908(0.025)(1=) 0.954(0.010)(T11)

0.278(0.027) 0.159(0.051)(1) 0.133(0.035)(11) 0.070(0.023)(1-11)
0.272(0.031) 0.177(0.050)(1) 0.137(0.037)(11) 0.070(0.020)(111)
0.168(0.022) 0.121(0.044)(T) 0.101(0.028)(T=) 0.048(0.014)(111)

<Fmean-RS, 0.75>
<Fmean-RS, 0.85>
<Fmean-RS, 0.95>

0.982(0.002) 0.979(0.008)(=~) 0.987(0.003)(11) 0.991(0.002)(T11)
0.975(0.001) 0.976(0.012)(=2) 0.987(0.004)(11) 0.990(0.003)(111)
0.969(0.003) 0.972(0.012)(~) 0.985(0.006)(11) 0.989(0.004)(111)

0.198(0.034) 0.111(0.036)(1) 0.063(0.034)(11) 0.049(0.027)(11~)
0.190(0.015) 0.115(0.036)(T) 0.062(0.029)(11) 0.053(0.020)(1-11)
0.065(0.016) 0.033(0.013)(1) 0.023(0.008)(11) 0.025(0.016)(11~)

<WTmean-RS, 0.75>
<WTmean-RS, 0.85>
<WTmean-RS, 0.95>

0.986(0.001) 0.981(0.011)(=) 0.992(0.002)(11) 0.994(0.002)(111)
0.977(0.000) 0.968(0.027)(=%) 0.987(0.004)(14) 0.991(0.003)(111)
0.948(0.008) 0.968(0.015)(1) 0.977(0.007)(11) 0.982(0.007)(117)

0.135(0.018) 0.074(0.026)(1) 0.051(0.020)(+1) 0.033(0.014)(+11)
0.114(0.011) 0.053(0.022)(1) 0.027(0.014)(+1) 0.026(0.010)(+1=2)
0.118(0.021) 0.038(0.012)(1) 0.024(0.007)(+1) 0.025(0.012(11=%)

Win / Draw / Lose
Average Rank

9/0/0 9/0/0 9/0/0 N/A
3.59 3.03 2.14 1.24

9/0/0 9/0/0 5/4/0 N/A
3.94 2.74 1.92 14

<Fmax-RS, 0.75>
<Fmax-RS, 0.85>
<Fmax-RS, 0.95>

Test

0.835(0.033) 0.890(0.036)(1) 0.890(0.025)(12%) 0.933(0.017)(111)
0.837(0.040) 0.903(0.034)(1) 0.912(0.019)(1=%) 0.948(0.015)(117)
0.907(0.023) 0.928(0.041)(1) 0.943(0.023)(12) 0.971(0.008)(111)

0.222(0.030) 0.135(0.038)(1) 0.122(0.019)(+a2) 0.080(0.018)(+11)
0.227(0.036) 0.115(0.035)(1) 0.100(0.022)(+a%) 0.065(0.018)(+11)
0.131(0.023) 0.095(0.031)(1) 0.081(0.024)(+a2) 0.042(0.012)(+11)

<Fmean-RS, 0.75>
<Fmean-RS, 0.85>
<Fmean-RS, 0.95>

0.985(0.001) 0.980(0.008)(~) 0.988(0.003)(11) 0.991(0.002)(T11)
0.980(0.001) 0.979(0.011)(=2) 0.990(0.004)(11) 0.992(0.002)(T11)
0.975(0.002) 0.975(0.013)(~) 0.987(0.005)(11) 0.991(0.003)(1T11)

0.131(0.025) 0.066(0.025)(1) 0.037(0.021)(11) 0.040(0.015)(11~)
0.091(0.014) 0.047(0.015)(T) 0.027(0.010)(11) 0.026(0.012)(11=)
0.069(0.016) 0.036(0.015)(1) 0.025(0.009)(11) 0.021(0.009)(111)

<WTmean-RS, 0.75>
<WTmean-RS, 0.85>
<WTmean-RS, 0.95>

0.988(0.001) 0.982(0.011)(}) 0.993(0.002)(11) 0.995(0.001)(111)
0.983(0.000) 0.971(0.027)(=) 0.991(0.003)(11) 0.994(0.002)(111)
0.964(0.003) 0.974(0.015)(1) 0.983(0.006)(1) 0.987(0.005)(117)

0.095(0.019) 0.044(0.021)(1) 0.024(0.010)(+1) 0.026(0.011)(11=)
0.044(0.006) 0.023(0.010)(1) 0.015(0.004)(+1) 0.009(0.007)(+11)
0.110(0.015) 0.047(0.010)(1) 0.027(0.009)(+1) 0.024(0.009)(+1=2)

Win / Draw / Lose
Average Rank

9/0/0 9/0/0 9/0/0
3.58 2.99 2.16

N/A
1.27

9/0/0 9/0/0 5/4/0 N/A
3.95 2.73 1.94 1.38

* One algorithm is compared with all algorithms before it. It might have more signals in (), if there is more than one algorithm for comparisons.

terms of IGD in training, the results show that our proposed
ref_aNSGP_a outperforms aNSGP_a in 8 out of 9 scenarios.
More importantly, for HV of test, we can see that our pro-
posed ref_aNSGP_a has significantly better performance than
NSGP in all scenarios, and outperforms aNSGP_a in most
of the scenarios. However, we can see that aNSGP_a only
performs better than NSGP in 4 out of 9 scenario, and even
performs worse than NSGP in one scenario <WTmean-RS,
0.75>. In addition, for the IGD in test, ref_aNSGP_a per-
forms better than aNSGP_a in six out of nine scenarios. We
can see that the idea of using real Pareto front as a reference
for a and archive updating represented by ref_aNSGP_a can
achieve competitive scheduling heuristics for multi-objective
with effectiveness and rule size. This finding is consistent with
the conclusion in [25].

Compared with ref_aNSGP_a (the best among NSGP,
aNSGP_a and ref_aNSGP_a), Table IV shows that
VMT_aNSGP is significantly better than ref_aNSGP_a in
all scenarios in terms of HV in both training and test sce-
narios. In addition, regarding IGD, VMT_aNSGP shows its
superiority over ref_aNSGP_a in 5 out of 9 scenarios in both
training and test. From the perspective of obtained average
rank, VMT_aNSGP has a better rank than ref_aNSGP_a
for HV on training (1.24 < 2.14) and test (1.27 < 2.16),
and IGD on training (1.4 < 1.92) and test (1.38 < 1.94).
This verifies the effectiveness of proposed VMT_aNSGP
that utilises the mechanism of multitask learning for multi-

<Fmax-RS, 0.75> <Fmax-RS, 0.85> <Fmax-RS, 0.95>
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Fig. 9. Violin plots of HV values of NSGP, aNSGP_a, ref_aNSGP_a
and VMT_aNSGP over 30 independent runs in nine test scenarios.

VMT_aNSGP

objective optimisation with biased objectives.

2) Violin Plots of HV and IGD: Fig. 9 shows the violin
plots of HV values of NSGP, aNSGP_a, ref_aNSGP_a
and VMT_aNSGP over 30 independent runs in nine test
scenarios. First, we can see that ref_aNSGP_a performs
better than NSGP and aINSGP_a with a better HV distribution
of higher HV values. We also find that although aNSGP_a
is better than NSGP overall, aNSGP_a has large standard
deviations in all scenarios. This shows the drawback of us-
ing aNSGP_a dominance based multi-objective that utilises
Pareto front obtained by a-dominance [24] to update o and
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Fig. 10. Violin plots of IGD values of NSGP, aNSGP_a, ref_aNSGP_a
and VMT_aNSGP over 30 independent runs in nine test scenarios.
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Fig. 11. Learned Pareto front of the run with medium HV values of NSGP,

aNSGP_a, ref_aNSGP_a and VMT_aNSGP in nine test scenarios.

archive. On the contrary, this shows the effectiveness of using
non-dominated individuals from the real Pareto front for o and
archive updating in [25]. Second, it is clear that the proposed
VMT_aNSGP performs the best with the highest HV value
distributions among all compared algorithms followed by
ref_aNSGP_a. We can also see that the standard deviations of
HV values obtained by VMT_aNSGP are quite small, which
shows its stabilisation on performance for different instances.

Fig. 10 shows the violin plots of IGD values of NSGP,
aNSGP_a, ref _ aNSGP_a and VMT_aNSGP over 30 in-
dependent runs in nine test scenarios. We can see the same
pattern as discussed about HV in Fig. 9. In general, our
proposed algorithm, especially VMT_aNSGP performs the
best among all compared algorithms.

C. Learned Pareto Front

The problem investigated in this paper is a minimisation
problem, a smaller rank value indicates a better performance.
Fig. 11 shows the learned Pareto front of the run with
medium HV value of NSGP, aNSGP_a, ref_aNSGP_a and
VMT_aNSGP in nine test scenarios. We can see that mostly
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Fig. 12. Violin plots of test HV values of ref_aNSGP_a and

VMT_aNSGP on generation 0, 10, 20, 30, 40 and 50 in nine scenarios.

NSGP can get some small scheduling heuristics, however,
the effectiveness of the learned scheduling heuristics is not
good as others. This is also the challenge we are handling
in this paper. ref_aNSGP_a can obtain better Pareto fronts
than aNSGP_a in different scenarios. This verifies the ef-
fectiveness of the proposed using non-dominated individuals
from the real Pareto front as a reference for updating o
and archive [25]. The proposed algorithm VMT_aNSGP can
achieve the best Pareto front among compared algorithms.
This verifies the effectiveness of the proposed idea of utilising
multitask learning mechanism for multi-objective optimisation
with biased objectives.

VI. FURTHER ANALYSES

The previous section mainly focuses on the analyses of the
effectiveness of the proposed algorithm. This section will fur-
ther investigate the effects of the proposed algorithm in terms
of its performance over generations, sizes of learned routing
and sequencing rules in the population, sizes of scheduling
heuristics for each task, and population diversity.

A. Quality of Learned Pareto Front Over Generations

From the previous section, we know that NSGP and
aNSGP_a are much worse than ref_aNSGP_a and
VMT_aNSGP, this section will only focus on ref_aNSGP_a
and VMT_aNSGP to further analyse their performance. Figs.
12 and 13 show the violin plots of test HV and IGD of
ref_aNSGP_a and VMT_aNSGP on six selected genera-
tions, i.e., generation 0, 10, 20, 30, 40 and 50, respectively.
We can see that at the beginning (i.e., generation 0), the
difference from ref_aNSGP_a and VMT_aNSGP is not
large. Along with generations, VMT_aNSGP starts to be
better than ref_aNSGP_a from an early stage, i.e., generation
10. Finally, VMT_aNSGP achieves better performance than
ref_alNSGP_a with higher HV and smaller IGD. This shows
that the learned scheduling heuristics across generations with
proposed algorithm VMT_aNSGP have good generalisation
ability to achieve good performance on unseen test scenarios.
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VMT_aNSGP on generation 0, 10, 20, 30, 40 and 50 in nine scenarios.
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Fig. 14. Curves of average sizes of evolved scheduling heuristics (routing rule
plus sequencing rule) in the population over generations of NSGP, aNSGP _a,
ref_aNSGP_a and VMT_aNSGP in nine scenarios.

B. Sizes of Learned Scheduling Heuristics in the Population

To have a better understanding of how the algorithms affect
the sizes of learned scheduling heuristics, this section will
investigate the average sizes of evolved scheduling heuristics
over population. Since the routing rule and the sequencing rule
work together to make schedules in DFJSS, it is reasonable to
consider their sizes together [47].

Fig. 14 shows the curves of average sizes of evolved
scheduling heuristics (routing plus sequencing) in the popu-
lation over generations. The results show that the rule sizes
of NSGP are smaller than aNSGP_a, ref_aNSGP_a and
VMT_aNSGP from a very early stage, and then reduce
dramatically along with generations, resulting in quite smaller
rules. This is why NSGP cannot achieve good performance,
since the traditional dominance relation based multi-objective
optimisation has the issue of biasing the objective (e.g., rule
size) that is easy to optimise.

a-dominance relation based algorithm including aNSGP_a,
ref aNSGP_a and VMT_aNSGP start with similar rule
sizes, and can evolve rules larger than NSGP successfully.
First, compared with NSGP, we can see that aNSGP_a with
a-dominance can successfully evolve larger scheduling heuris-
tics than NSGP in the evolutionary process. Second, compared

over generations of NSGP, aNSGP_a, ref_aNSGP_a and VMT_aNSGP
in nine scenarios.
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Fig. 16.  Curves of average sizes of evolved sequencing rules in the

population over generations of NSGP, aNSGP_a, ref_aNSGP_a and
VMT_aNSGP in nine scenarios.

with aNSGP_a, ref_aNSGP_a and VMT_aNSGP have
successfully maintained the larger scheduling heuristics in the
population. Third, by looking at the curves of ref_aNSGP_a
and VMT_aNSGP, we can find that the rule size of
ref_aNSGP_a and VMT_aNSGP are similar at the early
stage of the evolutionary process. However, VMT_aNSGP
can evolve slightly larger rules than ref_aNSGP_a in most
of the scenarios from the second half of the evolution-
ary process (i.e., <Fmax-RS, 0.95>, <Fmean-RS, 0.75>,
<Fmean-RS, 0.85>, <Fmean-RS, 0.95>, <WTmean-RS,
0.75>, <WTmean-RS, 0.85>, <WTmean-RS, 0.95>), and
finally learns slightly larger scheduling heuristics.

It is interesting to know either the routing rule size or
the sequencing rule size is increased. Figs. 15 and 16 show
the curves of average sizes of evolved the routing rule and
the sequencing rule in the population over generations of
NSGP, aNSGP_a, ref_aNSGP_a and VMT_aNSGP in nine
scenarios, respectively. First, we find that the size of the
routing rule is generally larger than the sequencing rule, which
is consistent with the findings in [19], [47]. Second, although
there are differences between the sizes of the routing rule and
the sequencing rule, the patterns of the average sizes over
population along with generations of the routing rule and the
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Fig. 17. Curves of average sizes of evolved scheduling heuristics (routing
rule plus sequencing rule) in the population over generations of NSGP and
VMT_aNSGP (subpopulation 2) in nine scenarios.

sequencing rule are similar, and also similar to their sum
rule size as shown in Fig. 14. This indicates the proposed
VMT_aNSGP has successfully taken both the routing rule
and the sequencing rule into consideration.

C. Sizes of Learned Scheduling Heuristics Obtained by NSGP
and the Auxiliary Subpopulation of VMT_aNSGP

We know that NSGP only relies on dominance relation to
learn the Pareto front and does not have any control over
the objective bias issue in multi-objective optimisation. The
auxiliary (second) subpopulation of VMT_aNSGP (named
as VMT_aNSGP (subpopulation 2)) also does not have any
control over the objective bias issue. The only difference
between NSGP and VMT_aNSGP is that VMT_aNSGP
shares knowledge between its first subpopulation with the
same mechanism of ref_aNSGP_a. Another difference is that
NSGP has a population size of 1000, while VMT_aNSGP
(subpopulation 2) contains 100 individuals.

Fig. 17 shows the curves of average sizes of evolved
scheduling heuristics (routing rule plus sequencing rule)
in the population along with generations of NSGP and
VMT_aNSGP (subpopulation 2). The results show that al-
though VMT_aNSGP (subpopulation 2) has a smaller num-
ber of individuals, the sizes of rules are larger than NSGP.
The reason is that VMT_aNSGP has knowledge sharing
mechanism, and there are chances that the offspring in subpop-
ulation 2 of VMT_aNSGP are generated with larger and more
effective individuals in subpopulation 1 and thus more likely to
have effective and large scheduling heuristics in subpopulation
2. This verifies the effectiveness of the proposed knowledge
sharing with multitask learning mechanism in VMT_aNSGP
from the perspective of the effect of algorithms on rule size.

D. Diversity of Population

To investigate the effect of the proposed algorithm on the
population diversity, we use entropy to measure the diversity
of individuals during the evolutionary process. The entropy
is calculated as entropy = =) .o %log(%), where
C is the set of clusters obtained by the DBScan clustering

T T T T T T T T T

0 20 40 0 20 40 0 20 40
Generation
— NSGP  —— oNSGP.a —— ref aNSGP.a —— VMT_aNSGP
Fig. 18. Curves of entropy values which represents the diversity of NSGP,

aNSGP_a, ref_aNSGP_a and VMT_aNSGP over 30 independent runs.

algorithm [65] with the phenotypic distance measure [56]
and a cluster radius of zero. |inds| represents the number
of individuals. A larger entropy value indicates a higher
population diversity.

Fig. 18 shows the curves of entropy values of NSGP,
aNSGP_a, ref_aNSGP_a and VMT_aNSGP over 30 in-
dependent runs. It is clear that NSGP loses diversity quickly
and stays at a low value after around generation 5. This
is consistent with our intuition that along with generations,
NSGP only contains small scheduling heuristics which have a
low diversity. Compared with NSGP, we can see that the popu-
lation diversity is clearly increased by aNSGP_a which shows
the effectiveness of aNSGP_a to maintain a population with
large scheduling heuristics. In addition, ref_aNSGP_a and
VMT_aNSGP have a good diversity across generations than
aNSGP_a. Compared with ref_aNSGP_a, VMT_aNSGP
has a higher diversity at the early stage (i.e., before about
generation 10), and reaches a lower diversity in the late stages
during the evolutionary process. This shows the effectiveness
of the exploration and exploitation ability of VMT_aNSGP,
which is one of the reasons that lead to the good performance
of VMT_aNSGP. In other words, although ref_aNSGP_a
can maintain a good population diversity, continuously in-
creasing diversity in the late stages of the evolutionary process
might decrease its performance.

VII. CONCLUSIONS

This paper successfully developed an effective multi-
objective GP algorithm to learn scheduling heuristics for
DFIJSS with biased objectives. The proposed algorithm uses a
multitask learning mechanism that shares knowledge between
a-dominance and traditional dominance relations.

The proposed algorithm outperforms the state-of-the-art in
scheduling heuristics for DFJSS in Pareto fronts. It uses a
simpler yet more effective multi-objective GP via multitask
learning, eliminating the need for an archive used by the a-
dominance multi-objective algorithm. The quality of learned
scheduling heuristics and the knowledge-sharing mechanism
for performance improvement are verified by rule size and
population diversity. The proposed algorithm evolves simi-
lar or slightly larger scheduling heuristics, including routing
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and sequencing rules, compared to the state-of-the-art. The
proposed algorithm preserves diverse populations early for
exploration and maintains diversity for effective exploitation,
outperforming the state-of-the-art.

Future research can explore the routing and sequencing
rule sizes separately and model multi-objective optimisation
with three objectives. Additionally, we will investigate multi-
objective optimisation with various biased objectives.
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