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Abstract. Dynamic job shop scheduling (DJSS) is an NP-hard opti-
misation problem requiring real-time responses to newly arrived jobs.
Scheduling heuristics generated by genetic programming can make high-
quality decisions in DJSS, but evaluating these heuristics through simula-
tions is very time-consuming. To speed up evaluations, surrogate models
based on machine learning have been developed to predict fitness values.
However, existing surrogates are primarily simplistic machine learning
models with overly simplified input features, which overlook important
characteristics of scheduling heuristics. To enhance prediction accuracy,
we propose a new feature representation that comprehensively represents
the behaviour of a scheduling heuristic. Additionally, a neural network
binary classifier is employed as the surrogate model to learn the complex
patterns in the proposed feature representation. Experimental results
indicate that the proposed algorithm can find better scheduling heuris-
tics and converge faster compared to the existing algorithms. Further
analysis reveals both the new feature representation and the neural net-
work binary classification-based surrogate model enhance the prediction
accuracy and contribute to the performance improvement.

Keywords: Dynamic job shop scheduling + Genetic programming *
Surrogate - Neural network

1 Introduction

Dynamic job shop scheduling (DJSS) necessitates constant adaptation to fre-
quent job arrivals, requiring immediate dispatch decisions. Genetic Programming
(GP) has been widely used for automatically evolving scheduling heuristics for
DJSS [4,14,15]. GP treats scheduling rules as individuals that are improved gen-
eration by generation through evolutionary principles. The fitness evaluation of
these individuals requires time-consuming scheduling simulations. To expedite
the evaluation process, various surrogate-assisted GP methods have been devel-
oped [6,13]. Instead of running expensive simulations, they use computationally
cheaper surrogate models to predict fitness values. Many competitive surrogates
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are built using machine learning (ML) models [2,8]. However, existing state-
of-the-art machine learning surrogates primarily use simplistic models, such as
K-Nearest Neighbours (KNN). These models have limited ability to learn the
complex relationships in the data. Additionally, the input features are often over-
simplified through extensive feature engineering, resulting in the loss of crucial
information needed for accurate predictions. Furthermore, existing state-of-the-
art surrogates are primarily regression models that directly predict fitness values.
Since the GP algorithm changes the scheduling instance each generation (known
as instance rotation [8]), the fitness values of individuals across different gener-
ations are incomparable. Consequently, incorporating individuals from different
generations into the training data is challenging for existing methods, making it
difficult to fully utilise all evaluated individuals.

To address the above issues, we propose a new feature representation, the
raw-type Phenotypic Characterisation (PC), to comprehensively represent the
behaviours of the individual and employ a neural network (NN) as the surro-
gate model to capture the complex patterns in the raw-type PC. Additionally,
the surrogate operates in a binary classification manner by comparing pairs of
individuals and predicts the superior one. In this mechanism, evaluated individ-
uals within the same generation are compared to form training data. Training
data from different generations are comparable because the relative relation-
ships between pairs of individuals remain stable and are less affected by instance
rotation. Consequently, the surrogate model can leverage more training data.

The primary aim of this research is to enhance the effectiveness and efficiency
of GP in evolving high-quality scheduling rules through the proposed surrogate.
To achieve this aim, the following research objectives are established:

1. Design a new feature representation that comprehensively reflects the
behaviour of individuals, thereby assisting surrogate models in making accu-
rate predictions.

2. Develop a surrogate model based on a NN binary classifier to predict the
relative relationship between two scheduling rules, which not only effectively
learns complex patterns from data but also leverages a larger volume of train-
ing data.

3. Conduct experiments to compare the proposed method with both basic GP
and existing GP with KNN-based surrogates, analysing prediction accuracy
and assessing the impact of data volume on the surrogate model.

2 Literature Review

2.1 Dynamic Job Shop Scheduling

Job shop scheduling is an NP-hard combinatorial optimisation problem that
involves determining the processing order of a set of jobs on a set of machines.
Each job has a due date and comprises a sequence of operations that must be
executed in a predefined order. Each operation is processed on a specific machine
for a duration without interruption. A machine can only process one operation
at a time. This article focuses on the dynamic scheduling problem, where new
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Priority

Fig. 1. An example of a scheduling heuristic.

jobs continuously arrive. The information for these jobs is unknown until they
arrive [6]. In this paper, we consider minimising three common objectives [3]:
mean tardiness (Tean), weighted tardiness (WT pean ), and maximum tardiness
(Tmax)~

2.2 Genetic Programming for DJSS

Scheduling heuristics enable real-time decision-making for job sequencing in
DJSS. GP is a powerful method for evolving high-quality scheduling heuristics,
renowned for its flexible representation that accommodates various heuristics
within its search space. The tree-based structure is a commonly used represen-
tation in GP [6,9]. An example of a tree-based scheduling heuristic is depicted
in Fig. 1. This heuristic maps features to priorities, with features gathered at the
decision point serving as the terminal nodes (or leaves) of the tree. Functions act
as interior nodes, and the priority is returned from the root node. In the exam-
ple in Fig. 1, the priority of a job is calculated as (PT+NPT)/W, where PT and
NPT are the processing time of the current operation and the next operation,
respectively, and W is the weight of the job. The job with the highest priority
is then selected for processing.

For evolving scheduling heuristics, GP follows a standard evolutionary pro-
cess, and evaluate each candidate scheduling heuristic by applying it to DJSS
decision-making simulations and measuring the steady-state scheduling perfor-
mance. To this end, sufficiently long simulations are required, which is time
consuming.

2.3 Surrogate-Assisted GP for DJSS

Surrogate techniques have been successfully utilised in GP to reduce the intense
computational costs associated with evaluations. In the context of DJSS, sur-
rogate models fall into two categories [9]: simplified simulation models and ML
models.

Nguyen et al. [6] introduced surrogates based on simplified simulation models,
reducing the scale of problems (i.e., fewer jobs and machines) to facilitate more
cost-effective evaluations. This technique can be used to accelerate tasks such as
feature selection for job shop scheduling [5]. Zhang et al. [12] further advanced
this by proposing an adaptive surrogate strategy that dynamically adjusts the
fidelity of simulation models across generations. The multifidelity-based surro-
gate is also employed to facilitate knowledge transfer through a collaborative
mechanism [9].
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The KNN surrogate with phenotypic characterisation, first introduced by
Hildebrandt and Branke [2], is a highly influential ML surrogate model. This
method posits that individuals with similar PC vectors likely exhibit analogous
behaviours, thus having similar fitness. The similarity between PC vectors is
quantified using their Euclidean distance. Zhang et al. [10] expanded this app-
roach to multi-tree GP, evolving both routing and sequencing rules simultane-
ously for dynamic flexible job shop scheduling problems. Subsequent studies have
confirmed the efficacy of KNN surrogate in multi-objective optimisations [7] and
the knowledge transfer for multi-task learning [11].

generated scheduling rules with new individuals
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Fig. 2. Flowchart of the SGP-NNC algorithm.
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KNN is the most commonly used ML model for building surrogates in the
aforementioned studies. However, the KNN surrogate is limited in its ability to
capture complex, non-linear relationships within the data, as it relies purely on
distance metrics. Additionally, KNN is sensitive to irrelevant or redundant fea-
tures, requiring extensive feature engineering. The potential of employing more
sophisticated ML models to directly learn from raw data remains unexplored.

3 Proposed Method

3.1 Framework

We propose a novel surrogate-assisted GP algorithm based on a NN Classifier,
referred to as SGP-NNC. This algorithm features novel preselection and surro-
gate update processes within its framework (as shown in Fig. 2, where the com-
ponents distinct from the existing surrogate-assisted GP are highlighted in dark
boxes). In this framework, we first generate random scheduling rules to initialise
the population P with size sizepo,. Individuals with identical PC vectors are
identified as duplicates and replaced with randomly regenerated ones. We evalu-
ate the individuals in P through scheduling simulations to get their real fitness.
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Decision Situation s, | Decision Situation s,
Candidate Jobs | J, J, J; J, | Js Jy S, Uy

Raw- |Ind;| 15 9 17 85|44 22 62 84
type PC
(Priority) | /nud, | 54 48 42 56 | 23 35 79 59

Ref Ranking 3 4 2 1 2 1 4 3
Ranking | /nd, 1 3
-type PC | /d, 1 4

Fig. 3. Example of calculating the raw-type and ranking-type PC.

The PC vectors and real fitness of these individuals are used as training data to
update the NNC surrogate. Subsequently, we conduct tournament selection to
choose parents and produce offspring through crossover, mutation, and elitism
(copying top individuals in P). We continue generating new offspring, retaining
only those with unique PC vectors, until the intermediate population, which is
considerably larger than P, is fully filled. Population P is then emptied, and top
individuals in P;,,q are selected using the min-heap technique. A min-heap is a
binary tree data structure where the value of parent nodes is less than or equal
to the value of its children. Individuals in P;,,4 are first randomly assigned to a
balanced binary tree. We then build the min-heap (detailed in [1]) by comparing
pairs of individuals using the NNC surrogate to predict the better individual.
The desired individual can be found at the root node of the binary tree. This
selection process is repeated until the top sizep,, individuals are selected.

This preselection approach is markedly distinct from existing surrogates that
sort the entire P;,,q based on the fitness values of individuals. The min-heap
offers a time complexity advantage over sorting algorithms when we only need
to find the top subset and do not require ordering the remaining elements.

3.2 New Phenotypic Characterisation Representation

The behavioural features of an individual are extracted as the PC vector and
serve as the input to the NNC surrogate model. To represent the behaviour
of an individual, we apply them to a set of predefined decision situations and
concatenate the priority values into the PC vector. Figure 3 presents a simple
example with two decision situations, each containing four candidate jobs. After
analysing the situation, an individual assigns a priority value to each candidate.
We visualise priority values with rectangular bars and highlight the highest prior-
ity in each decision situation in orange. Priority values comprehensively reflect
the detailed assessment of the candidates, according to which the individual
makes scheduling decisions. We propose using priority values as a new PC rep-
resentation, referred to as the raw-type PC, as priorities are the raw output
of an individual. In Fig. 3, the raw-type PC of Ind; is an 8-dimensional vector
(15,9,17,85,44, 22,62, 84).

The commonly used existing PC representation neglects the detailed infor-
mation in priority values and directly takes the scheduling decision (candidate
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Fig. 4. Architecture of the NNC surrogate.

with the highest priority) as the behaviour of an individual. To quantify dif-
ferences in decisions among different individuals, a manually designed reference
rule is introduced. It provides a ref ranking for each candidate, and the ranking
value corresponding to the highest priority is recorded as an element of the PC
vector [2]. This PC representation is a vector of ref rankings, so we refer to it as
the ranking-type PC. For instance, the ranking-type PC of Ind; in Fig. 3 is the
vector (1, 3).

Ranking-type PC utilises domain knowledge to refine the features as low-
dimensional vectors. Although it is easy to process by ML models, it has two major
flaws. Firstly, it heavily relies on the reference rule, which is a scheduling heuris-
tic. The performance of the reference rule cannot be guaranteed, and features
extracted by this method may vary when using different reference rules. However,
PC is an inherent property of an individual and should not be influenced by exter-
nal factors such as the setting of the reference rules. Secondly, ranking-type PC
struggles to distinguish subtle differences in individual behaviours. Taking the two
individuals in Fig. 3 as an example, ranking-type PC sees their behaviour in deci-
sion situation s; as identical since they both assign the highest priority to job
J4. However, there are subtle differences in their assessments of the candidates.
Ind; assigns a considerably higher priority to Jy than to other candidates, firmly
choosing this candidate; by contrast, Inds allocates similar priorities across all
four candidates, indicating a lack of strong preference.

The raw-type PC overcomes these flaws because it does not depend on ref-
erence rules, eliminates ambiguity in representing individual behaviours, and
accurately reflects the nuances in individual behaviours.

3.3 Surrogate Model Based on Neural Network Binary Classifier

The proposed NNC surrogate model is shown in Fig. 4. It compares two individ-
uals by horizontally concatenating their PC vectors (normalised using min-max
scaling according to the minimum and maximum values of a PC vector) into
a single vector which is then fed into a neural network. The output is a single
value representing the probability that Ind, is superior to Indp.

The updating of surrogate models is an online learning process where new
data (evaluated individuals) arrives each generation. These updates enable the
surrogate to adapt to constantly evolving individuals. Unlike KNN surrogate,
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Table 1. Parameter settings for surrogate-assisted GP.

GP Parameter Value NNC surrogate parameter | Value
Population size (sizepop) 1000 Number of hidden layers |3
Intermediate Population size | 3000 Number of neurons 64, 64, 32
Crossover / Mutation rate | 90% / 10% Activation ReLU
Elitism 10 Learning rate 0.001
Parent selection Tournament (size 7) | Optimiser Adam
Maximum depth 8

which must clear previous data and rebuild the surrogate from scratch, SGP-
NNC can retain previously learned knowledge as it does not conflict with new
data. This capability allows for the neural network parameters in SGP-NNC
to be updated through incremental learning. To collect the training data, the
evaluated individuals in each generation are compared with each other; if Ind,
has a better real fitness than Indy, the label for this pair is set to 0, otherwise,
it is set to 1. The NN parameters are updated using stochastic gradient descent
to minimise the binary cross-entropy loss.

4 Experimental Design

This paper adopts the widely recognised DJSS simulation configuration [3].
In each simulation scenario, jobs arriving continuously are processed by 10
machines. To ensure the simulation reflects a stable state of the job shop, we
initially release 1000 jobs to “warm up” the system. Subsequently, we monitor
the next 5000 jobs to evaluate the performance of dispatching rules. Jobs arrive
at the job shop following a Poisson process with a rate A = puPys/p, where p
represents the average processing time of the machines, and P,; signifies the
probability of a job visiting a machine. The utilisation level (p) is employed to
control the busyness of the job shop [8]; a higher utilisation level corresponds to
a busier job shop. Jobs are assigned varying weights, with 20%, 60%, and 20%
of the jobs having weights of 1, 2, and 4, respectively. The number of operations
per job follows a uniform discrete distribution ranging from 2 to 10. The pro-
cessing times for these operations are drawn from a discrete distribution with
values between 1 and 99.

Features of the job shop are extracted to support decision-making processes.
This study adopts 16 commonly used features in DJSS, as detailed in [3]. We
align our parameter settings with the mainstream settings for surrogate-assisted
GP in DJSS [2,8,10], which are presented in Table 1. Following previous stud-
ies [8,10], we calculate the PC vector based on 40 predefined decision situations,
each containing 7 candidate jobs. Consequently, the dimension of the ranking-
type PC is 40, while the dimension of the raw-type PC is 280.
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Table 2. Test performance of basic GP, SGP-random, SGP-KNNR, and SGP-NNC.

Scenario Basic GP SGP-random SGP-KNNR SGP-NNC
(WTmean, 0.85) | 718.3(6.6) 713.6(3.3)(1 710.4(2.9)(11) 710.2(2.5)(11~)
(WTmean, 0.95) | 1673.6(23.6) | 1663.3(22.1)(=) | 1646.2(17.8)(11) | 1635.9(13.2)(111)
(Tmean, 0.85) | 395.5(4.3) 392.0(2.4)(1 389.4(1.4)(17) 389.0(1.2)(17=)
(
(
(

W
W

Thean, 0.95)  1979.0(10.7) | 973.5(6.6)(T 968.3(6.9)(11) 964.6(4.7)(111)
Tmax, 0.85) 1425.9(31.5) | 1410.4(33.6)(~) | 1375.1(29.9)(17) |1372.0(25.6)(11=)
Trax, 0.95) 3263.4(131.8) | 3194.9(97.3) (=) | 3107.3(102.4)(11) | 3057.0(94.3)(T1~)
Average Rank | 3.49 2.94 1.97 1.60

5 Experiment Results

5.1 Test Performance

In the following experiments, we test the proposed SGP-NNC algorithm on
six scheduling scenarios: (WTpean,0.85), (WTmean,0.95), (Timean, 0.85),
(Tmean, 0.95), (Tiax,0.85), and (Thax, 0.95). The scheduling objectives include
WT hean, Tmean, and Tiay; and the utilisation levels of the job shop are 0.85 or
0.95. The test set for each scenario consists of 30 scheduling instances unseen
by the model. All scenarios are minimisation problems, so lower objective values
indicate better performance. In previous studies, basic GP needed to evolve for
51 generations to find high-quality scheduling rules [8,9]. Since the training time
varies when using surrogates, we set the average training time of basic GP with
51 generations as the time budget for all the compared algorithms [9].

In existing studies, the state-of-the-art machine learning surrogate employs
KNN regression and ranking-type PC to predict fitness values [2]. We refer to
the GP algorithm assisted by this surrogate as SGP-KNNR. The performance
of the proposed SGP-NNC algorithm is compared with that of Basic GP and
SGP-KNNR. Unlike SGP algorithms, basic GP lacks a preselection process that
removes duplicate individuals. To assess the net improvement from the prediction
accuracy of surrogates, we introduced a comparison algorithm, SGP-random,
which follows the same procedures as other SGPs but randomly predicts fitness
values. Table 2 shows the mean and standard deviation of objective values for the
four algorithms over 30 independent runs, analysed using the Wilcoxon rank-sum
test and the Friedman test with a significance level of 5%. “(1)” and “(])” denote
results significantly better or worse than competitors, respectively, while “(~)”
indicates no significant differences. For example, in scenario (WTpean, 0.85),
SGP-NNC performs significantly better than Basic GP and SGP-random and
performs similarly to SGP-KNNR. Additionally, we present the average rank of
each algorithm across all scenarios.

The results show that the proposed SGP-NNC algorithm outperforms all
other algorithms, with the best average rank of 1.60. When compared with the
state-of-the-art SGP-KNNR, algorithm, SGP-NNC exhibits lower mean objec-
tive values and smaller standard deviations across all six scenarios. In scenarios

(WTmean, 0.95) and (T'iean, 0.95), the performance of SGP-NNC is significantly
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Fig. 5. Average objective value curves of Basic GP, SGP-random, SGP-KNNR, and
SGP-NNC on the test set over 30 independent runs.

better than SGP-KNNR. SGP-random shows significant improvement over Basic
GP in three of six scenarios, demonstrating that the process of removing dupli-
cates enhances algorithm performance by maintaining population diversity. Both
SGP-NNC and SGP-KNNR significantly outperform SGP-random in all six sce-
narios, indicating that accurate predictions of promising individuals help GP
find better scheduling rules.

An effective SGP algorithm is expected to exhibit high convergence speed.
To analyse the efficiency of the algorithms in comparison, we recorded their best
output (scheduling rule) at each generation and tested them on the test set. The
average objective value curves of the four algorithms on the six scheduling scenar-
ios are shown in Fig. 5. According to the figure, SGP-NNC converges much faster
than Basic GP and SGP-random in all six scenarios. The SGP-KNNR algorithm
shows comparable convergence speed, but the curves of SGP-NNC generally
lie beneath those of SGP-KNNR in most scenarios except (WT pean, 0.85). Its
advantages are particularly evident in scenarios (WT pean, 0.95) and (Tpax, 0.95),
indicating that, given the same amount of training time, SGP-NNC is most likely
to yield the best scheduling rules.

5.2 Ablation Study

SGP-NNC contains two new components: the raw PC type and the NNC sur-
rogate. Although the results demonstrate the superiority of SGP-NNC, it is
essential to investigate the effect of the raw-type PC and the NNC surrogate
separately. To this end, we pair ranking-type and raw-type PC with KNNR and
NNC surrogates to form four variants: Ranking-KNNR, Ranking-NNC, Raw-
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Table 3. Test performance of the four variants: Ranking-KNNR, Ranking-NNC, Raw-

R. Chen et al.

KNNR, and Raw-NNC.

Scenario Ranking-KNNR | Ranking-NNC | Raw-KNNR, Raw-NNC
(WThmean, 0.85) | 710.4(2.9) T1L.0(3.9)(~) | 710.7(3.2)(~~) | 710.2(2.5)(~~m)
(WTmean, 0.95) | 1646.2(17.8) | 1645.0(15.0)(~) | 1640.0(14.1)(~=) | 1635.9(13.2)(11~)
(Tomean, 0.85) | 389.4(1.4) 380.5(1.5)(~) | 388.9(1.5)(~~) | 389.1(1.2)(r~m)
(Tmean,0.95) | 968.3(6.9) 967.4(5.4)(~) |968.3(7.8)(~=) |964.6(4.7)(11~)
(Tmax, 0.85) 1375.1(29.9) 1384.6(23.0) (=) | 1377.1(26.5)(~=) | 1372.0(25.6) (~~=)
(Tmax, 0.95) 3107.3(102.4) 3126.4(74.8)(~) | 3066.7(82.5)(~1) | 3057.0(94.3)(~1=)
Average Rank | 2.61 2.79 2.41 2.20

KNNR, and Raw-NNC. Their test performances on the six scheduling scenarios
over 30 independent runs are shown in Table 3.

The p-value of the Friedman test for the four algorithms is 1.1E-4, far less
than 0.05, indicating that the performances of the four variants differ and require
further pairwise Wilcoxon rank sum tests. Raw-NNC performs best with an
average rank of 2.20, suggesting that both raw-type PC and NNC surrogate
contribute to the advantage of SGP-NNC. According to the average ranks, the
two variants using raw-type PC generally outperform those using ranking-type
PC, indicating that raw-type PC leads to the major performance improvement in
the proposed algorithm. When comparing Raw-KNNR and Raw-NNC, although
the Wilcoxon rank-sum test shows no significant difference between them, Raw-
NNC achieves better mean performance in five out of six scenarios.

5.3 Prediction Accuracy Analysis

In this section, we conduct a further analysis on the prediction accuracy of
different surrogate models. A clear performance difference among the surrogate
models can be seen in scenario (WTyean, 0.95). It is interesting to investigate if
this performance difference is truly due to the prediction abilities of the different
surrogates. To this end, we fully evaluate the individuals in Py,,q across 10 GP
runs and check if the good individuals are actually selected.

First, we rank individuals according to their real fitness, with the top 1000
being those desired to be selected. Figure 6(a) shows the proportion of individ-
uals ranked at a specific place that are correctly selected by different surrogate
models. From the figure, we observe that the better the individuals are, the
higher the proportion they are selected. Raw-NNC exhibits higher prediction
accuracy across the whole spectrum, indicating that the superior performance
of SGP-NNC is attributed to the accurate predictions made by the surrogate.

Figure 6(b) provides a detailed illustration of the 3000 offspring are selected
by the proposed NNC surrogate. Each pixel in this heatmap represents a specific
individual in a specific generation and rank, with the colour indicating the count
of selections across 10 GP runs. The yellower the colour, the more frequently the
individual is selected. From the figure, we observe that a large proportion of
top-ranked individuals are selected by the NNC surrogate.
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Fig. 6. Prediction accuracy: (a) Comparison of four surrogate variants (b) The heatmap
of individual selection counts of the proposed NNC surrogate across 10 GP runs.
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Fig. 7. Test performance of the SGP-NNC algorithm with different volumes of training
data for the surrogate.

5.4 Impact of Training Data Volume

A notable characteristic of the proposed SGP-NNC algorithm is its ability to
be trained with more data. To investigate the impact of training data volume
on SGP-NNC, we conduct an experiment where the surrogate is trained on
maximum of 1, 3, or 5 generations of data. When the training times of a NN
reached this limit, its parameters are reinitialised. The test performances of
SGP-NNC with different volumes of training data are shown in Fig.7. The x-
axis represents the maximum generations of data the surrogate is trained on,
while the “Unlimited” serves as a control group where training data contains all
the historical data. The y-axis represents the average objective value, with lower
values being better.
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From the results, we can see that the increase in training data slightly
improves algorithm performance only in scenarios (Tyean, 0.95) and (Thax, 0.95).
However, there is no apparent pattern in other scenarios, indicating that increas-
ing the training data volume does not significantly benefit the algorithm. Never-
theless, the performance does not degrade when using more than one generation
of data, suggesting that the binary classification mechanism effectively makes
data from different generations compatible.

There are three possible reasons why increasing the training data does not
improve algorithm performance as expected. First, the neural networks may have
reached their model capacity during training, so additional data does not enhance
their ability to distinguish good individuals. Second, training data from the
current generation are most influential because newly generated offspring is most
similar to individuals in the current generation. Therefore, even if the surrogate
discards previously learned knowledge and trains on only one generation of data,
it can still provide competitive performance. Third, not all training data are
equally important; individuals from previous generations can be less important
or redundant. Therefore, additional training data can introduce noise, hindering
the performance of the surrogate.

6 Conclusion

The primary goal of this paper is to design an effective surrogate model that
enhances the effectiveness of GP in discovering good scheduling rules. This goal
is achieved through the newly proposed SGP-NNC algorithm. By using priority
values as raw-type PC and employing a NN binary classifier as the surrogate
model, SGP-NNC considerably improves the prediction accuracy of the surro-
gate. Extensive experiments across six scheduling scenarios show that SGP-NNC
finds better heuristics and converges faster than basic GP and SGP-KNNR,
though increased training data does not yield notable benefits.

The study addresses previous inadequacies in the PC representation and
demonstrates the effectiveness of neural network surrogates. The proposed binary
classification mechanism sheds new light on the surrogate design, which was orig-
inally dominated by fitness value regression. Further exploration of classification-
based surrogates is expected to be promising. Additionally, the proposed surro-
gate is a general approach for predicting the performance of heuristics based on
its behaviour. Similar ideas can be applied to other combinatorial optimisation
problems, such as project scheduling and vehicle routing. Our future work will
focus on identifying important training samples, better leveraging increased data
volume, exploring improved preselection methods, and incorporating statistical
models to further assist surrogate predictions.
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