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Abstract—Linear genetic programming (LGP) has been suc-
cessfully applied to dynamic job shop scheduling (DJSS) to
automatically evolve dispatching rules. Flow control operations
are crucial in concisely describing complex knowledge of dis-
patching rules, such as different dispatching rules in different
conditions. However, existing LGP methods for DJSS have not
fully considered the use of flow control operations. They simply
included flow control operations in their primitive set, which
inevitably leads to a huge number of redundant and obscure
solutions in LGP search spaces. To move one step toward
evolving effective and interpretable dispatching rules, this paper
explicitly considers the characteristics of flow control operations
via grammar-guided linear genetic programming and focuses on
IF operations as a starting point. Specifically, this paper designs a
new set of normalized terminals to improve the interpretability of
IF operations and proposes three restrictions by grammar rules
on the usage of IF operations: specifying the available inputs, the
maximum number, and the possible locations of IF operations.
The experiment results verify that the proposed method can
achieve significantly better test performance than state-of-the-
art LGP methods and improves interpretability by IF-included
dispatching rules. Further investigation confirms that the explicit
introduction of IF operations helps effectively evolve different
dispatching rules according to their decision situations.

Index Terms—Grammar-guided Linear Genetic Programming,
Flow Control Operations, Dynamic Job Shop Scheduling, Hyper
Heuristics.

I. INTRODUCTION

Automatically designing effective dispatching rules for dy-
namic job shop scheduling (DJSS) has great value on both
commercial and academic sides. Many real-world problems,
which have to face dynamic events during optimization, such
as traffic management [1] and airport management [2], are
intrinsically DJSS problems. On the other hand, the dynamic
events during optimization and the symbolic search space
both make the dispatching rule design very complicated and
challenging.
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Flow control operations are important in designing dispatch-
ing rules [3]–[5]. For example, DJSS problems need IF oper-
ations to prioritize energy-efficient jobs if the power cost rate
is high and prioritize other jobs otherwise. Moreover, many
human programs and expertise knowledge need flow control
operations to describe their complex procedure. Finding an
effective way to evolve flow control operations in dispatching
rules facilitates humans to make use of domain knowledge and
improve the flexibility of dispatching rules.

Genetic programming (GP) is an evolutionary computation
method that searches symbolic solutions for an optimization
problem [6]. It has been widely applied to a wide spectrum
of applications such as classification [7], [8], regression [9],
[10], and program synthesis [11]. In the last decade, there have
been extensive studies applying genetic programming-based
hyper heuristic (GPHH) techniques to help humans design
dispatching rules for scheduling problems [12], [13].

Linear genetic programming (LGP) is a special variant of
GP whose solutions are represented by a list of register-
based instructions [14]. LGP can easily reuse common build-
ing blocks and adapt real-world programming skills into its
search space because of its linear representation. Existing
studies have shown the superior performance of linear genetic
programming-based hyper heuristic (LGPHH) in designing
dispatching rules for DJSS problems over tree-based GP
methods [15], [16].

However, existing studies of LGPHH for DJSS did not
effectively evolve flow control operations, mainly due to the
following three challenges.

1) Dimension inconsistency: flow control operations likely
use input features with different physical dimensions
(e.g., if “3 meters” is larger than “2 seconds”). The
inconsistent dimension makes dispatching rules difficult
to be understood.

2) Inactive sub-rules: flow control operations easily lead to
inactive sub-rules (i.e., introns [14]). For example, the
contradictory conditions (i.e., conditions that are always
false) of IF operations easily skip a large number of
instructions, which makes a dispatching rule quite naive.
The variation on flow control operations also likely
makes a huge difference in the behaviors of dispatching
rules since the variation often substantially changes the
data flow in dispatching rules.

3) Ineffective sub-rules: the effectiveness of flow control
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operations is highly dependent on their sub-rules. A
flow control operation is useful only when their sub-
rules are effective. To ensure the effectiveness of flow
control operations, we have to take the effectiveness of
sub-rules into consideration.

Existing studies of LGP did not fully consider these three
challenges when evolving flow control operations. They sim-
ply introduce flow control operations into their primitive set
and neglect the characteristics of flow control operations. This
inevitably leads to many redundant and obscure solutions in
the LGP search space, which impairs the search effectiveness
and efficiency of LGP.

This paper focuses on IF operations as a step towards
evolving flow control operations in dispatching rules. IF op-
erations are the basis of many other flow control operations.
Maximum functions and WHILE loops both inherently need
IF operations to perform logical decisions. Investigating IF
operations inspires the evolution of many other flow con-
trol operations. Specifically, this paper proposes to enhance
LGPHH with IF operations by grammar-guided linear genetic
programming [17]. The proposed method restricts the usage
of IF operations in dispatching rules by grammar, to get rid of
unreasonable input features and fragile and less-effective IF
branches. Specifically, this paper has four main contributions:

1) To address the dimension inconsistency, we design a set
of normalized terminals for DJSS and restrict that IF
operations can only compare the proposed normalized
terminals with constants. By this means, information in
all different dimensions is used in a normalized form,
which is easier for humans to understand.

2) To address the inactive sub-rules of IF operations, we
design a set of grammar rules to constrain the number
and possible positions of IF operations. We restrict dis-
patching rules to only use IF operations at the beginning
of rules with a limited number. This limits the negative
impact caused by inactive sub-rules of IF operations.

3) To address the ineffective sub-rules, we coordinate the
grammar rules for different parts of a dispatching rule,
including IF-included parts and the rest of it. By design-
ing grammar rules for different parts in a coordinating
manner, we improve the effectiveness of flow control
operations.

4) We made an empirical investigation on IF-included
dispatching rules for solving DJSS problems. The in-
vestigation verifies that IF operations are necessary and
effective for complex DJSS scenarios.

II. BACKGROUND

A. Dynamic Job Shop Scheduling

A job shop has a set of machines M, each with an available
operation queue q(m). The job shop accepts a set of jobs
J and processes them by the machines. A job j consists of a
sequence of operations Oj . Oj = {oj1, ..., oji, ..., ojkj} where
kj is the number of operations in job j. The operation sequence
specifies the execution order of operations in each job (e.g.,
oj1 must be executed prior to oj2). When an operation oji is
available, it enters the corresponding operation queue and is

processed based on its priority by the machine. oji is removed
from q(m) when it is processed, and its next operation oj,i+1,
if it exists, will enter the corresponding machine queue after
oji is finished. The main task in job shop scheduling is to
sequence the execution order of operations on each machine
so that the job shop performance can be optimized.

One of the most distinctive features of DJSS problems
is that there are dynamic events during optimization which
greatly affect the performance of existing schedules. To ensure
the performance of job shops, we have to make an instant
reaction to make a new schedule or adjust the existing one.
Specifically, this paper focuses on DJSS with new job arrival.
Each job arrives at the job shop at time αj . The job shop does
not know the information about new jobs until they arrive.
Each operation oji(1 ≤ i ≤ kj) is processed by a certain
machine m with a given processing time p(oji), and each
machine processes at most one operation at any time. Each
job has a weight of ωj and a due date dj . When a job is
completed, we record the job completion time cj to evaluate
the performance of DJSS problems. Specifically, we take
tardiness and flowtime of DJSS problems as the performance
metrics. Tardiness denotes the delay of the job completion time
cj from the given due date dj . Flowtime denotes the total time
consumption of a job from completion time cj to arrival time
αj .

Dispatching rules are commonly used to schedule the new
coming jobs in DJSS, which enables job shops to make
instant decisions [3]. Specifically, a dispatching rule estimates
the priority of all the available operations. When machines
turn idle, they process the operations with the smallest (i.e.,
most preferred) priority value. However, designing effective
dispatching rules for different DJSS scenarios is non-trivial
as it requires a lot of expertise. Therefore, we use genetic
programming-based hyper heuristics to automatically design
dispatching rules for us [12], [13]. More specifically, this paper
uses linear genetic programming [14], [18], an important GP
variant, to evolve dispatching rules, which has shown very
promising performance in existing studies [15], [16].

B. Related Work

1) Flow Control Operations in GPHH for DJSS: Flow
control operations decide which parts of a dispatching rule
can be executed based on the input or program context. There
are many different implementations of flow control operations
in existing GPHH methods for DJSS. For example, GP-3
[4] fixed IF at the output of dispatching rules and designed
an IF-included template to explicitly divide the dispatching
rule into three sub-rules, one for scheduling bottleneck ma-
chines, one for scheduling non-bottleneck machines, and one
for detecting bottleneck machines. If the dispatching rule
detects a machine as a bottleneck in the job shop, the job
shop uses the bottleneck-machine dispatching rule to make
decisions and uses the non-bottleneck-machine dispatching
rule otherwise. Ðurasević et. al. [19] used a unary flow
control operation which returns the operand if the operand
is larger than 0 and returns 0 otherwise to control program
execution flow. Hildebrandt et.al. [20] and Christopher et al.
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R0 = x1 / x2
R1 = x2 + x2
R0 = R0 × R1

(a) (b)

Fig. 1. (a) An LGP program and (b) a basic tree-based GP program.

[21] simultaneously include binary flow control operations
(e.g., maximum and minimum) and a ternary IF operation in
evolving dispatching rules. The ternary IF operation accepts
three arguments, returns the second input argument if the first
argument is larger than 0, and returns the third input argument
otherwise.

When DJSS scenarios become more complex, flow control
operations become more important in designing dispatching
rules. For example, Masood et. al. [22]–[24] used maximum,
minimum, and a ternary IF operation in solving multi-objective
job shop scheduling. Karunakaran et. al. [25], [26] included
these operations in solving DJSS problems under uncertainty.
Park et. al. [27], [28] also included flow control operations in
GP primitive set when solving DJSS with machine breakdown.

In addition to the flow control operations mentioned above,
Miyashita [29] develop a four-argument IF operation, which
returns the third argument if the first argument is less than or
equal to the second argument and returns the fourth argument
otherwise. Nguyen et al. [30] showed that flow control oper-
ations are effective in designing due-date estimation models.

However, the mentioned studies have not fully investigated
flow control operations. They simply included flow control
operations into the function set and treated them equivalently
with other arithmetic operations. The existing studies did
not consider the three challenges mentioned in Section I,
which inevitably leads to a huge search space and a large
number of redundant solutions. Moreover, designing flow
control operations for tree-based programs in existing studies
is not straightforward since tree-based programs are greatly
different from human line-by-line programs. This precluded us
from introducing our programming skills in existing studies.

2) IF operations in Linear Genetic Programming: Linear
genetic programming (LGP) is a GP variant whose individuals
are sequences of register-based instructions [14]. Each instruc-
tion normally consists of four parts, a destination register, a
function, and two source registers. The function accepts the
values in the source registers and writes the calculation result
into the destination register. All the destination and source
registers come from the same register set. Fig. 1 shows an
LGP program and a basic tree-based GP program, representing
a formula x1/x2× (x2+x2). R0 and R1 are registers, and x1

and x2 are inputs (or constant registers). The LGP program
in Fig. 1 represents the formula by storing the intermediate
results of x1/x2 and x2 + x2 into R0 and R1 respectively,
multiplying R0 and R1, and storing the final output into R0.

LGP programs have a different design of IF operations
from tree-based programs. Because of the linear representation
(i.e., line-by-line instructions), IF-included sub-rules in LGP
programs have a similar representation to human programs.

For example, LGP programs have to indicate the closure of IF
branches (like “{...}” in C language) [14], [31]. To fulfill the
closure of IF branches, existing LGP studies either define the
number of instructions in an IF branch or design additional
labels or pointers (e.g., endif) to explicitly specify the end
of a branch.

This paper defines the closure of IF operations by specifying
the number of instructions in IF branches. For example, the
instruction “IF> #3 a b” denotes that this instruction returns
true if a is larger than b, and returns false otherwise (denoted
by “IF>”). If the instruction returns false, the following three
instructions are skipped (denoted by “#3”). Otherwise, the
following three instructions are executed.

3) Grammar-based Genetic Programming: Grammar is a
popular tool to enforce restrictions on GP search space. GP
programs can search for effective solutions faster and get rid
of redundant programs by reducing to a smaller yet effective
search space. There have been many studies about grammar-
based genetic programming [32], [33].

Context-free-grammar-based GP is a typical grammar-
guided genetic programming method [32]. A context-free
grammar is a set of production rules that define the derivation
from high-level concepts to low-level concepts regardless of
the program context. To construct a program, grammar-guided
GP recursively derives the concepts based on the production
rules and forms a tree-based program. A context-free grammar
is regularly defined by Backus Naur Form. Grammar-guided
GP is widely applied to program synthesis problems [34],
[35], regression problems [36], and automatic algorithm design
[37]. Under the umbrella of grammar-guided GP, grammatical
evolution is representative of linear grammar-guided GP meth-
ods [38], [39]. Unlike tree-based ones, grammatical evolution
searches on bit strings (or integer strings) and maps the bit
strings into computer programs based on a set of grammar
rules by a MOD operator. Grammatical evolution has under-
gone a lot of improvement. For example, Lourenço et. al.
[40], [41] developed a structured grammatical evolution that
improves the locality.

LOGENPRO [42], [43] is a tree-based grammar-guided
genetic programming that uses a context-sensitive grammar,
PROLOG Definite Clause Grammars, to define constraints
for GP search space. Due to the context-sensitive grammar,
LOGENPRO is more expressive than context-free-grammar-
basaed GP. Following LOGENPRO, Ross [44] proposed a
logic-based GP system with definite clause translation gram-
mar.

Strongly typed GP is an alternative GP method that imposes
data type constraints on GP search spaces [45]. Strongly typed
GP specifies all the possible data types of arguments and
returns for all the non-terminals. The non-terminals can only
have children with specified data types. To make the data
type constraints more flexible, strongly typed GP additionally
introduces generic functions and generic data types which
specify a set of possible data types by algebraic quantities.
Due to the flexibility in handling different data types, existing
studies applied strongly typed GP to different problems, such
as classification [7], [46], finance [47]–[49], and software
testing [50].
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Despite the differences among the mentioned grammar-
guided GP methods [51], [52], most of existing grammar-
guided GP encode programs into tree-based structures due to
recursive grammar derivation. But tree-based programs cannot
effectively reuse the common building blocks in the different
sub-trees, which limits GP to produce more compact programs.
Linear representation programs (e.g., a list of instructions) can
naturally reuse common building blocks. A few studies tried
to apply grammar to enhance GP with linear representation
programs (e.g., LGP) [53]. But they did not consider flow
control operations.

4) Grammar-based Genetic Programming in Combinatorial
Optimization: Introducing domain bias by grammar is not a
new idea to enhance GPHH for solving job shop scheduling
problems. Nguyen et. al. [5] used grammar to define three
representation templates for GP individuals, including 1) se-
lecting simple dispatching rules based on machine attributes,
2) an arithmetic representation, and 3) selecting sub-arithmetic
representations based on machine attributes. However, [5]
did not show the superior performance of their grammar-like
method in solving job shop scheduling problems. Hunt et. al.
[54] used grammar to categorize input features into different
types and defined the available input and output types for
each function. However, [54] improved the interpretability of
dispatching rules but sacrificed effectiveness although only
slightly.

Grammar-guided GP methods have also been applied to
many other combinatorial optimization problems. For exam-
ple, Pawlak and O’Neill [55] used grammatical evolution to
synthesize constraints for a diet plan optimization problem.
Fenton et. al. [56] and Saber et. al. [57] applied grammar-
guided GP for network scheduling. Correa et. al. [58] devel-
oped a grammar-guided GPHH method for solving corridor
allocation problems. Pereira et al. [59], [60] developed a
quantum-inspired grammar-based linear GP to schedule crude
oil refinery.

Although these existing studies have applied grammar to en-
hance GP in solving combinatorial optimization problems, the
grammar-guided GP methods for combinatorial optimization
are not well investigated. Grammar improves GP interpretabil-
ity or training efficiency while (not necessarily) sacrificing
test effectiveness [36], [61]. Furthermore, existing studies
mainly include arithmetic and domain-specific operators in
their grammar rules but ignore flow control operations, which
are expected to be important primitives for solving many
combinatorial optimization problems.

C. Summary

To summarize, existing GP studies have not effectively
evolved IF-included solutions as IF operations inevitably intro-
duce many redundant solutions into search spaces. Grammar-
based techniques are effective in removing redundant GP so-
lutions from search spaces. However, existing grammar-based
GP methods mainly defined the basic format of flow control
operations (e.g., IF operations must be followed by a boolean
operation) but did not address the dimension inconsistency and
inactive and ineffective sub-rules of flow control operations.

Moreover, existing grammar-based GP methods are designed
based on tree-based representations and missed linear repre-
sentations which can naturally accept human programming
skills. To evolve effective and interpretable dispatching rules
with advanced flow control operations, this paper applies
grammar-guided linear genetic programming (G2LGP) [17] to
evolve IF-included dispatching rules.

III. EVOLVING IF-INCLUDED DISPATCHING RULES BY
G2LGP

To evolve effective and interpretable IF-included dispatch-
ing rules, this section first designs a set of normalized termi-
nals for IF operations to improve interpretability. Second, we
use grammar rules to restrict the input, the number, and the
locations of IF operations, which encourages LGP to produce
more effective dispatching rules. Finally, we propose to use
G2LGP to evolve IF-included dispatching rules based on the
proposed grammar rules.

A. Normalized Terminals

The newly proposed normalized terminal set transforms
the existing terminals into a normalized form. Based on the
common terminal sets of GPHH for solving DJSS problems
[15], we design twenty normalized terminals (four of them
are introduced in Sections IV-A and IV-B), as shown below.
We mainly normalized terminals by their maximum values at
corresponding decision situations. For example, we normalize
the processing time of the operations on a machine by di-
viding the processing time of operations over the maximum
processing time on the current machine. || · ||0 denotes the
cardinality of a set or a list (e.g., the number of available
operations in the queue of machine m). || · ||1 denotes 1-
norm regularization of a set or a list (e.g., ||q(m)||1 denotes
the workload of a machine m, equivalent to

∑
o∈q(m) p(o)).

δ(o) denotes the waiting time of an operation o, equivalent to
the difference between the system time and the ready time of
the operation o. qnext(o) denotes the corresponding machine
queue that processes the next operation of o. τ(oji) denotes
the list of remaining operations in job j after finishing oji.

To facilitate understanding, we categorize these proposed
terminals into three groups: job-related, machine-related, and
job shop-related terminals, as shown in Table I. These twenty
normalized terminals depict various information in making de-
cisions, which is supposed to be comprehensive enough to let
IF-included dispatching rules understand decision situations.

B. Proposed Grammar Rules

Based on the normalized terminals, we design a set of gram-
mar rules to restrict the use of these normalized terminals in
IF operations. To improve the effectiveness and interpretability
of IF-included dispatching rules, the proposed grammar rules
fulfill three main restrictions of IF operations:

1) Input restriction: IF operations should use normalized
terminals and constants as inputs to improve the inter-
pretability of IF conditions.

2) Location restriction: IF branches should locate in the
beginning of programs and disjoint with each other (i.e.,
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TABLE I
PROPOSED NORMALIZED TERMINALS

Name Formula Description
Job-related normalized terminals

Processing time ratio PTR(oji,m) =
p(oji)

maxo′∈q(m) p(o′) The processing time of an available operation in machine m over the maximum
processing time in the current queue.

The number of remaining
operations ratio

NORR(oji,m) =
||τ(oji)||0

maxo′∈q(m) ||τ(o′)||0
The number of remaining operations of job j after processing oji, divided by the
maximum number of remaining operations among all available operations in q(m).

The remaining workload
ratio

WKRR(oji,m) =
||τ(oji)||1

maxo′∈q(m) ||τ(o′)||1
The remaining workload of job j after processing oji, divided by the maximum
remaining workload among all available operations in q(m).

The ratio of the number
of operations in the next
machine

NNQR(oji,m) =
||qnext(oji)||0

maxo′∈q(m) ||qnext(o′)||0
The number of operations in qnext(oji), divided by the maximum number of operations
in qnext(o),∀o ∈ q(m).

The ratio of the workload
of the next machine

WNQR(oji,m) =
||qnext(oji)||1

maxo′∈q(m) ||qnext(o′)||1
The total workload of qnext(oji), divided by the maximum workload in qnext(o), ∀o ∈
q(m).

The operation waiting
time ratio

OWTR(oji,m) =
δ(oji)

maxo′∈q(m) δ(o′) The waiting time of oji, divided by the maximum waiting time among all operations
in the current queue q(m).

The weight ratio WR(oji,m) =
ω(oji)

maxω(o′)∈q(m) ω(o′) The weight value of oji divided by the maximum weight value among all operations
in q(m)

The relative flow due date
ratio

rFDR(oji,m) =
αj+

∑i
0 p(oji)−t

maxo′
ji

∈q(m) αj+
∑i

0 p(o′ji)−t
The relative flow due date of oji, divided by the maximum relative flow due date among
all operations in q(m), where t is the system time [62].

The ratio of energy cost
rate of a job

JERO(j) =
re(j)
max re

re(j) denotes the energy cost rate of a job j. max re = 3 in our simulation. Refer to
Sections IV-A and IV-B.

Machine-related normalized terminals
The number of operations
in the machine queue ratio

NIQR(m) =
||q(m)||0∑

m′∈M ||q(m′)||0
It indicates the burden of machine m by comparing the number of operations in the
machine queue q(m) with the overall number of available operations in the job shop.

The workload in the ma-
chine queue ratio

WIQR(m) =
||q(m)||1∑

m′∈M ||q(m′)||1
It indicates the burden of machine m by comparing the total workload of in the machine
queue q(m) with the overall workload in the job shop.

Deviation of processing
time

DPT(m) =
mino∈q(m) p(o)

maxo′∈q(m) p(o′) A simple index to show the processing time discrepancy of the available operations in
machine m by comparing minimum processing time with maximum processing time
among available operations in q(m).

Deviation of operation
waiting time

DOWT(m) =
mino∈q(m) δ(o)

maxo′∈q(m) δ(o′) A simple index to show the waiting time discrepancy of the available operations in
machine m by comparing minimum waiting time with maximum wait time among
available operations in q(m).

Deviation of the process-
ing time of the next oper-
ation

DNPT(m) =
minoji∈q(m) p(oj,i+1)

maxo′
ji

∈q(m) p(o′j,i+1)
A simple index to show the discrepancy of one-step-further decision situations of
available operations in q(m) by comparing the minimum processing time of the next
operation and the maximum processing time of the next operation.

Deviation of the number
of operations in the next
machine

DNNQ(m) =
mino∈q(m) ||qnext(o)||0

maxo′∈q(m) ||qnext(o′)||0
A simple index to show the discrepancy of one-step-further decision situations of
available operations in q(m) by comparing the minimum number of available operations
in the next machine with the maximum number of available operations in the next
machine.

Deviation of the workload
of the next machine

DWNQ(m) =
mino∈q(m) ||qnext(o)||1

maxo′∈q(m) ||qnext(o′)||1
A simple index to show the discrepancy of one-step-further decision situations of
available operations in q(m) by comparing the minimum workload in the next machine
with the maximum workload in the next machine.

The idle energy consump-
tion rate

MER(m) = rm
max rm

The normalized energy consumption rate of an idle machine over time. max rm = 7500
in our simulation. Refer to Sections IV-A and IV-B.

Job shop-related normalized terminals
Bottleneck workload ratio
[5]

BWR= maxm∈M WIQR(m) An index of bottleneck by comparing the workload of bottleneck machines with overall
workload. Bottleneck machines are the machines with the largest workload at a particular
time [5].

Energy price rate EPR= pe
max pe

The normalized job shop-wide energy price. max pe = 0.015 in our simulation. Refer
to Sections IV-A and IV-B.

The response cost rate ra-
tio

SFR= φ
maxφ

The normalized job shop-wide cost rate for job response time. maxφ = 2.3 in our
simulation. Refer to Sections IV-A and IV-B.

In our experiment, the data ranges are: PTR∈ [0.01, 1], WR∈ [0.25, 1], rFDR∈ (−∞,∞), JERO∈ [0.4, 1], NIQR∈ (0, 1], WIQR∈ (0, 1], DPT∈ [0.01, 1],
DNPT∈ [0.01, 1], MER∈ [0.236, 1], BWR∈ (0, 1], EPR∈ [0.33, 1], and SFR∈ [0.087, 1]. The data ranges of the other normalized terminals (i.e., NORR,
WKRR, NNQR, WNQR, OWTR, DOWT, DNNQ, and DWNQ) are [0, 1].

no nested IF branches) to avoid meaningless program
output caused by IF conditions.

3) Number restriction: Dispatching rules should only use a
limited number of IF operations to reduce redundant IF
branches.

Fig. 2 is an example to illustrate the three restrictions.
The raw and restricted LGP-based dispatching rules both
manipulate three registers, R0, R1, and R2. The final out-
puts of dispatching rules are stored in the first register R0.
Each dispatching rule in Fig. 2 contains three IF conditions.
“IF> #N a b” denotes that if a is larger than b, the program
executes N subsequent instructions. Otherwise, the program
skips the next N instructions.

(a) explainable (b) less-explainable

IF>#1  WIQR  0.5

R0= PT

R0= PT+NPT
IF>#1  WIQ  WINQ

R0= PT

R0= PT+NPT

IF>#1  WIQR  0.5
R1= R2 - NPT

R2= PT + NPT

IF>#1  WR  0.6

IF<#1  rFDR  0.1

R1= R2 / W

R1= R2 + rFDD

R0= R2 + R1

IF>#1  WIQ  WINQ
R2= PT + NPT

R0= R2 - NPT
IF<#1  rFDD  R1

R0=R1=R2=0R0=R1=R2=0

IF>#2  W  2
R1= R2 + rFDD
R0= R1 / W

//Initialize registers.Line 0
Line 1
Line 2
Line 3
Line 4
Line 5
Line 6
Line 7
Line 8

//If the machine is busy
//Shortest processing time
//Lines 4-7: If an operation 
delays from a due date, 
prioritize it by “+rFDD”. 
If a job is important, 
prioritize it by “/W”.

Restricted ruleRaw rule Comments

Fig. 2. Examples of non-restricted and restricted dispatching rules in the
LGP representation. The meanings of PT, WIQ, WINQ, rFDD, and W refer
to Table. II.

The two dispatching rules show a similar scheduling pattern.
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defset FUNS {add,sub,mul,div,max,min};
defset FLOWCTRL {IfLarge1,IfLessEq1};
defset rawINPUT 
{PT,NPT,WINQ,NINQ,rFDD,rDD,SL,W,OWT,NWT,TIS,WKR,NOR};
defset conditionINPUT {NIQR,WIQR,DPT,DOWT,DNNQ,DWNQ,DNPT,BWR,
PTR,NORR,WKRR,NNQR,WNQR,OWTR,WR,rFDR};
defset INPUT {conditionINPUT,rawINPUT};
defset REG {R0,R1,R2,R3,R4,R5,R6,R7};
defset constant {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9};

begin modulec_0
uncondition(I\O\R) ::= <O\{FUNS}\R+I\R+I>;

branch ::= <{R0}\{FLOWCTRL}\{conditionINPUT}\{constant}>;

condition(I\O\R) ::= <O\{FUNS}\R+I\R+I> :: branch :: <O\{FUNS}\
R+I\R+I>;

PROGRAM ::= condition(I~{INPUT}\O~{REG}\
R~{REG})*5::uncondition(I~{rawINPUT}\O~{REG}\R~{REG})*;
end modulec_0

… /* other rules are the same as the proposed rules */

branch ::= <{R0}\{FLOWCTRL}\{conditionINPUT}\{constant}>;
branch ::= <{R0}\{FLOWCTRL}\{INPUT,REG,constant}\{INPUT,REG,constant}>;

… /* other rules are the same as the proposed rules */

… /* other rules are the same as the proposed rules */

condition(I\O\R) ::= <O\{FUNS}\R+I\R+I> :: branch :: <O\{FUNS}\R+I\R+I>;
condition(I\O\R) ::= branch :: <O\{FUNS}\R+I\R+I> | 
uncondition(I~I\O~O\R~R);

PROGRAM ::= condition(I~{INPUT}\O~{REG}\
R~{REG})*5::uncondition(I~{rawINPUT}\O~{REG}\R~{REG})*;
PROGRAM ::= condition(I~{rawINPUT}\O~{REG}\R~{REG})*;
end modulec_0

Fig. 3. The proposed grammar rules for evolving IF-included dispatching
rules for DJSS

When the workload in a machine queue is heavy (Line 2 for
both rules), the two dispatching rules encourage the machine to
finish its operations as soon as possible to improve the pipeline
level of the job shop, that is, prioritizing operations mainly
based on their processing time (i.e., shortest-processing-time-
first rule). If an operation is already delayed from its given
due date, we prioritize it by adding rFDD (rFDD<0 if an
operation is delayed). If a job (and its operations) is important
(i.e., with a high weight value), we prioritize the operations
by dividing them by W. In summary, when the machine is
busy, the operation is delayed, and the job is important, the
corresponding decision will be most preferred (i.e., smallest
dispatching rule value).

However, the two dispatching rules have different inter-
pretability and effectiveness. With the input restriction, the
restricted rule uses a normalized terminal WIQR to indicate the
workload burden of a machine and uses a constant 0.5 to define
that the workload is heavy if the workload of this machine
accounts for more than half of the overall workload. Contrarily,
the raw rule has to compare the features with different physical
meanings (i.e., WIQ and WINQ) to approximate the heavy
workload (i.e., large enough WIQ), which is not comprehen-
sive enough. With the location restriction, the restricted rule
adds one unconditional instruction (i.e., line 8) to assemble
register values. But the raw rule overwrites the output register
R0 in IF branches, which might lead to meaningless R0 (i.e.,
returning the initial value of R0) if all the branches are skipped
(i.e., all the IF conditions are not satisfied). The nested IF
conditions in the raw rule (i.e., lines 4 and 5) also increase
the probability that the raw rule skips lines 6 and 7. Although
the two rules in Fig. 2 use the same number of IF branches, we
advocate that unlimited IF conditions easily lead to redundant
or contradictory building blocks.

Based on the three restrictions and the domain knowledge of
DJSS problems, we design the following grammar rules based
on module context-free grammar (MCFG) [17], as shown
in Fig. 3. Specifically, MCFG treats different sub-parts of
an LGP program as modules, each with different available
primitives. MCFG defines the sequential relationship of mod-
ules by “::” and defines the maximum repetition of modules
by “*”. We first categorize the input features into different
concepts (i.e., primitive sets), including arithmetic functions
(FUNS), IF operations (FLOWCTRL), raw job shop features

(rawINPUT), normalized terminals (conditionINPUT),
registers (REG), and constants (constant). We denote the
IF operations (“IF> #1” and “IF<= #1”) by IfLarge1
and IfLessEq1 respectively. The settings of the primitive set
follow the results obtained from the existing LGPHH studies
for DJSS problems [15], [63].

Then, we define the derivation rules to divide LGP pro-
grams into sub-programs. We divide an LGP program into
conditional (i.e., condition(I\O\R)) and non-conditional
sub programs (i.e., uncondition(I\O\R)), defined by
PROGRAM. The conditional sub-program accepts normal-
ized terminals and raw job shop features as inputs (i.e.,
I∼{INPUT}) and outputs the results to any of the eight
registers (i.e., O∼{REG}). The conditional subprogram in-
cludes three instructions, two for arithmetic instructions (i.e.,
<O\{FUNS}\R+I\R+I>) and one for logical instruction
(i.e., branch). To implement the IF-ELSE structure, the
conditional sub-program simply first executes an arithmetic
instruction unconditionally and then executes the other arith-
metic instruction based on the IF condition.

To fulfill the three proposed restrictions, we have three
designs in Fig. 3. 1) The IF condition (branch) only
uses normalized terminals (conditionINPUT) and con-
stants as inputs based on the input restriction. Note that
the predefined output register R0 in the IF condition
is useless since IF operations do not overwrite regis-
ters. 2) Based on the number restriction, the conditional
sub program repeats at most five times (i.e., “*5” af-
ter condition(I∼{INPUT}\O∼{REG}\R∼{REG}) in
PROGRAM) to limit the number of logical operations. 3) The
unconditional sub-program is executed after the conditional
sub-program to fulfill the location restriction. For the sake of
simplicity, the unconditional sub-program only accepts raw job
shop features as inputs and outputs the results to any of the
eight registers. Note that the design details in Fig. 3 are based
on our preliminary investigation and existing studies [14]. For
example, the compared method without limiting the number
of conditional sub programs averagely has five conditional sub
programs. Thus, we limit the conditional sub programs to at
most repeating five times in Fig. 3 to further reduce the search
space.

C. Individual Derivation from Grammar

Based on the grammar rules, we generate LGP individuals
by first constructing a derivation tree and second stochastically
generating a list of instructions based on the leaf nodes of the
derivation tree. Fig. 4 shows an example of the initialization
of an LGP individual.

We construct the derivation tree in a top-down way.
PROGRAM is the starting symbol in the derivation. Each tree
node is a module, remembering the input arguments specified
in the grammar rules and specifying the repeating time of sub-
modules. The input arguments are actually feasible primitives
in different positions of the program. We derive the tree nodes
to sub-trees based on the grammar rules in a recursive manner
and finally end up with instruction modules (abbreviated as
“instr<...>” in Fig. 4). All the leaf nodes of derivation trees
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PROGRAM

condition
(I~{INPUT}\O~{REG}\R~{REG})*1

uncondition(I~{rawINPUT}\
O~{REG}\R~{REG})*2

instr
<{REG}\{FUNS
}\{REG,INPUT}
\{REG,INPUT}>

branch

instr
<{R0}\{FLOWCTRL}\{co
nditionINPUT}\{constant}>

instr
<{REG}\{FUNS}\{
REG,rawINPUT}\{
REG,rawINPUT}>

instr
<{REG}\{FUNS}\{
REG,rawINPUT}\{
REG,rawINPUT}>

instr
<{REG}\{FUNS
}\{REG,INPUT}
\{REG,INPUT}>

R2 = R0 add PT IF>#1 WIQR 0.5 R1 = R0 sub NPT R1 = R1 mul W R0 = R1 add R2

Stochastic generation

Fig. 4. An example of initializing an LGP individual based on the proposed
grammar rules. The upper part is the derivation tree, and the lower part is the
LGP individual.

must be instruction modules. Each instruction module specifies
the feasible primitives for its four components, including
a destination register, a function, the first source register,
and the second source register. For example, the leftmost
leaf node specifies that 1) the destination register is one of
the eight registers (i.e., {REG}), 2) the function is one of
the six arithmetic functions (i.e., {FUNS}), and 3) the two
source registers are registers, normalized terminals, or raw
job shop features (i.e., {REG,INPUT}). We generate one
instruction for each leaf node by randomly selecting one of
the primitives given by each component to form an LGP
instruction. Specifically, there are five leaf nodes in Fig. 4,
which leads to an LGP individual with five instructions. The
LGP individual is obtained by sequentially arranging generated
instructions from the left to the right.

D. Evolutionary Framework

To evolve the individuals, we apply the evolutionary frame-
work of G2LGP [17]. We apply grammar-guided micro mu-
tation, grammar-guided macro mutation, and grammar-guided
crossover to produce new dispatching rules. The main idea of
these genetic operators is to produce new rules by first varying
the derivation tree of LGP parents and then updating the
rule based on the new derivation tree. Specifically, grammar-
guided micro mutation directly changes an LGP instruction by
randomly selecting a new primitive from the feasible primitive
set given by the leaf node. Grammar-guided macro mutation
varies a derivation tree by increasing or reducing the repeating
times of sub-modules and re-deriving sub derivation trees
and instruction sequences. Grammar-guided crossover accepts
two LGP parents and swaps the sub-derivation trees (and
their corresponding instruction sub-sequences) whose roots are
the same modules. By this means, we ensure that all LGP
offspring adhere to the predefined grammar rules.

IV. EXPERIMENT DESIGN

To verify the effectiveness of IF-included dispatching rules
and G2LGP, we design three scenario sets with different
complexities. Specifically, the first scenario set is the basic
one, only optimizing the tardiness or flowtime. The second
scenario set increases the complexity of the first scenario set

by additionally considering energy cost in the optimization.
The third scenario set further increases the complexity by
additionally considering energy cost and the response time of
operations.

A. Simulation Design

We built a job shop simulator based on the common settings
from the existing studies [13], [64], [65]. The job shop in our
simulation contains 10 machines. Jobs arrive at the job shop
based on a Poisson process:

P (t = next job arrival time) ∼ exp(− t

λ
)

λ =
v · u
ρ · |M|

where v and u are the average number of operations and
average processing time of the operations of jobs, and |M| is
the number of machines in the job shop (i.e., 10). Every new
arrival job consists of 2 to 10 operations, and each operation
has a processing time ranging from 1 to 99 time units. The
number of operations and their processing time are determined
by two uniform distributions, in which v and u have a value
of 6 and 50 respectively. We increase the utilization level
of machines ρ based on the Poisson process to simulate a
busy job shop. Specifically, we set two utilization levels in
the scenario sets, ρ = 0.85 or 0.95. We define the due date
of a job as its arrival time adding with 1.5 times the total
processing time of a job. Although we only use one due date
factor in our experiments, jobs have different emergencies by
having different weights. All the jobs have a weight of 1, 2,
or 4. The jobs with different weight values account for 20%,
60%, and 20% respectively.

1) Basic scenario set: Based on the general settings, we
first develop a basic scenario set. The basic scenario set mainly
optimize tardiness or flowtime. Specifically, we define six
optimization objectives, including maximum tardiness (Tmax),
mean tardiness (Tmean), weighted mean tardiness (WTmean),
maximum flowtime (Fmax), mean flowtime (Fmean), and
weighted mean flowtime (WFmean).

1) Tmax = maxj∈J(max(c(j)− d(j), 0))

2) Tmean =
∑

j∈J max(c(j)−d(j),0)

|J|

3) WTmean =
∑

j∈J max(c(j)−d(j),0)×ω(j)

|J|
4) Fmax = maxj∈J(c(j)− α(j))

5) Fmean =
∑

j∈J c(j)−α(j)

|J|

6) WFmean =
∑

j∈J(c(j)−α(j))×ω(j)

|J|
Together with the two utilization level settings, the basic
scenario set totally contains twelve DJSS scenarios,
which are ⟨Tmax, 0.85⟩, ⟨Tmax, 0.95⟩, ⟨Tmean, 0.85⟩,
⟨Tmean, 0.95⟩, ⟨WTmean, 0.85⟩, ⟨WTmean, 0.95⟩,
⟨Fmax, 0.85⟩, ⟨Fmax, 0.95⟩, ⟨Fmean, 0.85⟩, ⟨Fmean, 0.95⟩,
⟨WFmean, 0.85⟩, and ⟨WFmean, 0.95⟩. Each scenario
includes a set of training DJSS instances and a set of 50 test
instances. The training and test DJSS instances of the same
scenario use the same configurations but with different sets of
random seeds. To measure the performance of the job shop
in its stable status, we warmup the job shop by the first 1000
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completed jobs and only take the subsequent 5000 completed
jobs into account.

2) Second scenario set: To increase the complexity of
the problems, we introduce energy cost into optimization
objectives of the second scenario set. Specifically, each job in
the second scenario set has an energy cost rate re ∼ U(1.2, 3).
The machines consume energy in both idle and working time.
Each machine has an idle energy consumption rate rm and a
working energy consumption rate rm × re (re is the energy
cost rate of on-going jobs). The settings of rm follow [66]
(i.e., machines have different energy consumption rates). To
simulate the floating power prices in daily life, the energy price
rate pe in our simulation changes every 10 arrival jobs. The
energy price is sampled from three values 0.005, 0.01, and
0.015, based on a uniform distribution. The average energy
consumption per job per machine E is obtained as follows.

E =

∑
m∈M E(m)

|M| × |J|

E(m) =
∑
t

(τidle(t)× rm × pe(t))

+
∑
t

∑
j∈Θ(m)

τwork(t)× rm × re(j)× pe(t)

where E(m) is the total energy consumption of machine m.
τidle(t) and τwork(t) are the idle and working running time
for a machine in a time period t respectively. Θ(m) is all the
processed jobs by machine m.

Based on E, we extend the six tardiness and flowtime opti-
mization objectives by simply averaging E and tardiness and
flowtime objective values. For example, Tmax is transformed
to TE

max = 0.5Tmax + 0.5E, and Tmean is transformed to
TE
mean = 0.5Tmean + 0.5E, etc. Note that the two objective

values in the linear combination have a similar magnitude
based on our preliminary investigation. Together with the two
utilization level settings, the second scenario set also has
twelve scenarios.

3) Third scenario set: The third scenario set further in-
creases the complexity of DJSS problems by additionally
considering job response time in the second scenario. Job
response time is an important performance metric in many
controlling systems, such as operating systems on computers.
To optimize the job response time, we define a response cost R
by multiplying the job response time Rt with a response cost
rate φ. There are three levels of φ, 0.2, 1, and 2.3. We reset
φ values among the three values every 10 arrival jobs based
on a probability of 40%:40%:20%. The average response cost
R is obtained by

R =

∑
j∈J R(j)

|J|

R(j) =
∑
t

∑
o∈Oj

Rt(o)× φ(t)

where R(j) is the response cost of job j, Rt(o) is the
response time for operations, and φ(t) is the response cost
rate during the waiting time of the operation o. We integrate
the response cost R with tardiness, flowtime, and energy

TABLE II
THE RAW TERMINAL SET

Notation Description
PT Processing time of an operation in a job
NPT Processing time of the next operation in a job
WINQ Total processing time of operations in the buffer of a machine which

is the corresponding machine of the next operation in a job
WKR Total remaining processing time of a job
rFDD Difference between the expected due date of an operation and the

system time
OWT Waiting time of an operation
NOR Number of remaining operations of a job
NINQ Number of operations in the buffer of a machine which is the

corresponding machine of the next operation in a job
W Weight of a job
rDD Difference between the expected due date of a job and the system time
NWT Waiting time of the next to-be-ready machine
TIS Difference between system time and the arrival time of a job
SL Slack: difference between the expected due date and the sum of the

system time and WKR
NIQ Number of operations in the buffer of a machine
WIQ Total processing time of operations in the buffer of a machine
MWT Waiting time of a machine
JER The energy cost rate of a job.

cost by the same linear combination to develop six optimiza-
tion objectives TER

max, TER
mean, WTER

mean, FER
max, FER

mean, and
WFER

mean. For example, TER
max = 0.4Tmax+0.3E+0.3R, and

TER
mean = 0.4Tmean+0.3E+0.3R. The three objective values

here also have similar magnitudes.

B. Comparison Design

We use five compared methods to verify the effectiveness of
the proposed grammar rules. 1) The first algorithm is the state-
of-the-art grammar-guided LGPHH [17], which has shown
promising performance for solving DJSS problems, denoted
as G2LGP. 2) The second compared algorithm extends the
basic LGPHH by including IF operations and the proposed
normalized terminals into its primitive set directly but without
grammar-guided evolutionary framework and the proposed
grammar rules, denoted as LGP+. 3) and 4) The third and
fourth compared methods are variants of the proposed method
which extend the proposed grammar rules by removing some
restrictions from Fig. 3. Specifically, the third compared
method (denoted as G2LGP/input) removes the input restric-
tion and evolves based on a set of grammar rules shown in Fig.
5. The source registers of IF operations can be any of the termi-
nals, including all the input features, registers, and constants.
The fourth compared method (denoted as G2LGP/locnum)
removes the location restriction and the number restriction
and evolves based on a set of grammar rules shown in
Fig. 6. The “∗” after the PROGRAM derivation indicates
that there can be any number of conditional sub-programs
(condition). The condition subprogram can derive to
either one logical instruction (branch) and one arithmetic
instruction (<O\{FUNS}\R+I\R+I>), or unconditional sub-
programs (uncondition(I∼I\O∼O\R∼R)) whose input
arguments are the same as the parent of the derivation. Thus,
there can be a large number of IF operations in a program, and
the IF operations can also be used at any position in a program.
The last compared method is the proposed algorithm, which
evolves G2LGP based on the normalized terminals and the
proposed grammar rules, denoted as G2LGP-IF.

The raw input features of all the compared methods are
designed based on the common settings [16], as shown in
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defset FUNS {add,sub,mul,div,max,min};
defset FLOWCTRL {IfLarge1,IfLessEq1};
defset rawINPUT 
{PT,NPT,WINQ,NINQ,rFDD,rDD,SL,W,OWT,NWT,TIS,WKR,NOR};
defset conditionINPUT {NIQR,WIQR,DPT,DOWT,DNNQ,DWNQ,DNPT,BWR,
PTR,NORR,WKRR,NNQR,WNQR,OWTR,WR,rFDR};
defset INPUT {conditionINPUT,rawINPUT};
defset REG {R0,R1,R2,R3,R4,R5,R6,R7};
defset constant {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9};

begin modulec_0
uncondition(I\O\R) ::= <O\{FUNS}\R+I\R+I>;

branch ::= <{R0}\{FLOWCTRL}\{conditionINPUT}\{constant}>;

condition(I\O\R) ::= <O\{FUNS}\R+I\R+I> :: branch :: <O\{FUNS}\
R+I\R+I>;

PROGRAM ::= condition(I~{INPUT}\O~{REG}\
R~{REG})*5::uncondition(I~{rawINPUT}\O~{REG}\R~{REG})*;
end modulec_0

… /* other rules are the same as the proposed rules */

branch ::= <{R0}\{FLOWCTRL}\{conditionINPUT}\{constant}>;
branch ::= <{R0}\{FLOWCTRL}\{INPUT,REG,constant}\{INPUT,REG,constant}>;

… /* other rules are the same as the proposed rules */

… /* other rules are the same as the proposed rules */

condition(I\O\R) ::= <O\{FUNS}\R+I\R+I> :: branch :: <O\{FUNS}\R+I\R+I>;
condition(I\O\R) ::= branch :: <O\{FUNS}\R+I\R+I> | 
uncondition(I~I\O~O\R~R);

PROGRAM ::= condition(I~{INPUT}\O~{REG}\
R~{REG})*5::uncondition(I~{rawINPUT}\O~{REG}\R~{REG})*;
PROGRAM ::= condition(I~{rawINPUT}\O~{REG}\R~{REG})*;
end modulec_0

Fig. 5. The grammar rules of G2LGP/input

defset FUNS {add,sub,mul,div,max,min};
defset FLOWCTRL {IfLarge1,IfLessEq1};
defset rawINPUT 
{PT,NPT,WINQ,NINQ,rFDD,rDD,SL,W,OWT,NWT,TIS,WKR,NOR};
defset conditionINPUT {NIQR,WIQR,DPT,DOWT,DNNQ,DWNQ,DNPT,BWR,
PTR,NORR,WKRR,NNQR,WNQR,OWTR,WR,rFDR};
defset INPUT {conditionINPUT,rawINPUT};
defset REG {R0,R1,R2,R3,R4,R5,R6,R7};
defset constant {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9};

begin modulec_0
uncondition(I\O\R) ::= <O\{FUNS}\R+I\R+I>;

branch ::= <{R0}\{FLOWCTRL}\{conditionINPUT}\{constant}>;

condition(I\O\R) ::= <O\{FUNS}\R+I\R+I> :: branch :: <O\{FUNS}\
R+I\R+I>;

PROGRAM ::= condition(I~{INPUT}\O~{REG}\
R~{REG})*5::uncondition(I~{rawINPUT}\O~{REG}\R~{REG})*;
end modulec_0

… /* other rules are the same as the proposed rules */

branch ::= <{R0}\{FLOWCTRL}\{conditionINPUT}\{constant}>;
branch ::= <{R0}\{FLOWCTRL}\{INPUT,REG,constant}\{INPUT,REG,constant}>;

… /* other rules are the same as the proposed rules */

… /* other rules are the same as the proposed rules */

condition(I\O\R) ::= <O\{FUNS}\R+I\R+I> :: branch :: <O\{FUNS}\R+I\R+I>;
condition(I\O\R) ::= branch :: <O\{FUNS}\R+I\R+I> | 
uncondition(I~I\O~O\R~R);

PROGRAM ::= condition(I~{INPUT}\O~{REG}\
R~{REG})*5::uncondition(I~{rawINPUT}\O~{REG}\R~{REG})*;
PROGRAM ::= condition(I~{rawINPUT}\O~{REG}\R~{REG})*;
end modulec_0

Fig. 6. The grammar rules of G2LGP/locnum

TABLE III
AVERAGE TEST OBJECTIVE VALUES (STD.) IN THE BASIC SCENARIO SET.

Scenarios G2LGP LGP+ G2LGP/input G2LGP/locnum G2LGP-IF
⟨Tmax,0.85⟩ 1922.1 (42.9) ≈ 1978.1 (162.1) − 1927.5 (52) ≈ 1939.2 (51.4) ≈ 1931 (44.6)
⟨Tmax,0.95⟩ 3943.1 (84) ≈ 4040.5 (218.9) − 3946.7 (79.5) ≈ 4045.6 (123.3) − 3968.8 (112.3)
⟨Tmean,0.85⟩ 417.7 (2.6) ≈ 428.8 (40) ≈ 416.9 (2.2) ≈ 418 (2.8) − 416.8 (2.9)
⟨Tmean,0.95⟩ 1116.7 (8.7) ≈ 1195.6 (167.4) ≈ 1116.4 (11.2) ≈ 1122.2 (12.1) ≈ 1116.3 (12.1)
⟨WTmean,0.85⟩ 723.6 (7.5) ≈ 770.4 (112.7) ≈ 723.1 (5.4) ≈ 728.4 (7.3) ≈ 726.5 (7.3)
⟨WTmean,0.95⟩ 1724.4 (26.6) ≈ 2103.9 (1739.3) − 1722.1 (25.5) ≈ 1740.2 (27.7) ≈ 1733 (33.9)
⟨Fmax,0.85⟩ 2534.6 (74.1) − 2529.2 (63.8) − 2490 (65.2) ≈ 2535.7 (53.1) − 2503.1 (79.7)
⟨Fmax,0.95⟩ 4599.7 (80.6) − 4760.9 (623.5) − 4505.6 (73.4) ≈ 4638.4 (120) − 4501 (74.8)
⟨Fmean,0.85⟩ 864.6 (3.2) ≈ 910 (193.4) ≈ 862.4 (2.6) ≈ 865.1 (3.5) − 863.7 (2.6)
⟨Fmean,0.95⟩ 1565.3 (10.9) ≈ 1649 (245.8) ≈ 1561.7 (9.3) ≈ 1571.3 (16.5) ≈ 1565.9 (12.6)
⟨WFmean,0.85⟩ 1701.7 (6.1) ≈ 1826.4 (661) ≈ 1701.4 (6.5) ≈ 1706.5 (7) ≈ 1703.4 (7.5)
⟨WFmean,0.95⟩ 2722.8 (25.4) ≈ 3610.6 (3943.9) − 2708 (24.7) ≈ 2724.1 (24.5) − 2711.7 (21.5)
win/draw/lose 0-10-2 0-6-6 0-12-0 0-6-6

mean rank 2.46 4.25 1.5 4.58 2.21
p-values 1.000 0.015 1.000 0.002

TABLE IV
AVERAGE TEST OBJECTIVE VALUES (STD.) IN THE SECOND SCENARIO SET.

Scenarios G2LGP LGP+ G2LGP/input G2LGP/locnum G2LGP-IF
⟨TmaxE,0.85⟩ 2093.8 (24.1) − 2106.1 (38) − 2082.9 (26.5) ≈ 2096 (25.4) − 2078.4 (23.1)
⟨TmaxE,0.95⟩ 3207.8 (86.1) − 3231.4 (302.8) − 3153.2 (63.5) ≈ 3233 (128.6) − 3152.8 (65.9)
⟨TmeanE,0.85⟩ 1331.1 (2.2) ≈ 1342.7 (44.8) ≈ 1330 (1.3) ≈ 1330.6 (1.8) ≈ 1330.4 (1.5)
⟨TmeanE,0.95⟩ 1651 (6.4) ≈ 1676.6 (67.5) ≈ 1652.9 (10.6) ≈ 1652.9 (7.9) ≈ 1651.7 (9.6)
⟨WTmeanE,0.85⟩ 1487.2 (3.6) ≈ 1526.4 (82.3) − 1485.6 (3.1) + 1486.8 (3.6) ≈ 1487.6 (3.7)
⟨WTmeanE,0.95⟩ 1985.8 (17.3) ≈ 2196 (828) − 1982 (15.3) ≈ 1993.7 (17.1) ≈ 1987.2 (15.2)
⟨FmaxE,0.85⟩ 2385.3 (26.2) − 2513.3 (895.8) − 2378.6 (53.8) ≈ 2397.7 (45.5) − 2369.7 (23.1)
⟨FmaxE,0.95⟩ 3465.3 (54.9) ≈ 3474.5 (77) − 3431.8 (42.4) ≈ 3494.2 (58.4) − 3443.7 (56.3)
⟨FmeanE,0.85⟩ 1554.1 (2.2) − 1599 (198.4) − 1553.4 (1.9) ≈ 1553.9 (1.8) − 1553 (1.4)
⟨FmeanE,0.95⟩ 1875.6 (5.9) ≈ 1913.2 (95.7) ≈ 1873.4 (5.9) ≈ 1878.7 (9.1) ≈ 1876.3 (5.7)
⟨WFmeanE,0.85⟩ 1975.6 (3.5) ≈ 1999.8 (65.3) ≈ 1974.4 (3.7) ≈ 1977.7 (4) − 1975.2 (4.1)
⟨WFmeanE,0.95⟩ 2484.1 (17.4) ≈ 2592.8 (436.1) ≈ 2483.1 (17.6) ≈ 2480.4 (14.8) ≈ 2481.1 (14.7)

win/draw/lose 0-8-4 0-5-7 1-11-0 0-6-6
mean rank 2.92 4.38 1.58 4.13 2.00
p-values 1.000 0.002 1.000 0.010

Table. II. G2LGP only includes raw input features in its
primitive set as suggested in [17], and the rest of the compared
methods also include the proposed normalized terminals in
their primitive sets. The rest of the settings for the compared
methods are set as those in [17]. Specifically, all the compared
methods evolve a population of 256 individuals for 200 gen-
erations. Each LGP individual manipulates eight registers and
has maximally 50 instructions. The function set for G2LGP
is {+,−,×,÷,max,min}, and the function set for the
other four compared methods is {+,−,×,÷,max,min, IF >
#1, IF <= #1}.

V. MAIN RESULTS

A. Test Performance

This section compares the test performance of the five com-
pared methods on the three scenario sets, as shown in Table III
to V. The test performance indicates the actual tardiness and

TABLE V
AVERAGE TEST OBJECTIVE VALUES (STD.) IN THE THIRD SCENARIO SET.

Scenarios G2LGP LGP+ G2LGP/input G2LGP/locnum G2LGP-IF
⟨TmaxER,0.85⟩ 1643.9 (26.3) − 1640.2 (36.7) − 1621.5 (18) ≈ 1637.3 (25.4) − 1624.9 (20)
⟨TmaxER,0.95⟩ 2807.6 (52.5) − 2838 (112.7) − 2790.4 (61.5) ≈ 2833.9 (66.9) − 2794.5 (142.5)
⟨TmeanER,0.85⟩ 995 (2.4) − 1007.9 (35.1) ≈ 992.9 (2.6) ≈ 990.1 (4.4) + 992.7 (3.4)
⟨TmeanER,0.95⟩ 1457.5 (9.1) − 1542.5 (235.7) − 1444.7 (25.4) − 1405.3 (21.1) + 1424 (29.2)
⟨WTmeanER,0.85⟩ 1132.2 (9.6) ≈ 1174.1 (81.5) − 1128.6 (3.4) ≈ 1131.9 (4.6) ≈ 1130.4 (4.7)
⟨WTmeanER,0.95⟩ 1774.5 (21.6) ≈ 2003.5 (806) − 1767.9 (18.9) ≈ 1754.2 (29.4) ≈ 1761.2 (23.8)
⟨FmaxER,0.85⟩ 1882.5 (28.5) − 1889.2 (31) − 1858.5 (18.9) ≈ 1882.3 (61) ≈ 1866.2 (22.8)
⟨FmaxER,0.95⟩ 3053.9 (49) − 3293 (1052.1) − 3014.4 (46.1) ≈ 3054.2 (59.5) − 3000.6 (47.5)
⟨FmeanER,0.85⟩ 1173.2 (2.6) − 1206.7 (72.7) − 1171.4 (2.9) ≈ 1167.3 (4.7) + 1170.4 (3.7)
⟨FmeanER,0.95⟩ 1636.2 (9.7) − 1665.1 (95.8) − 1625.7 (20.5) − 1583.9 (22.3) + 1602.8 (29.8)
⟨WFmeanER,0.85⟩ 1523 (3.8) − 1566.3 (82.5) − 1520.6 (3.6) ≈ 1522.8 (4.5) − 1521 (3.8)
⟨WFmeanER,0.95⟩ 2174 (17.9) − 2276.6 (342) − 2162.6 (14.6) ≈ 2142.5 (29.6) + 2154.5 (22.3)

win/draw/lose 0-2-10 0-1-11 0-10-2 5-3-4
mean rank 4.25 4.42 2.17 2.33 1.83
p-values 0.002 0.000 1.000 1.000

flowtime (by time units) of the compared methods for solving
unseen instances in different scenarios. For each scenario set,
we first analyze the overall performance of the compared
methods by the Friedman’s test and then analyze the per-
formance on each scenario based on the Wilcoxon rank-sum
test with Bonferroni correction. The significance levels of the
Friedman’s test and the Wilcoxon test are 0.05. Specifically,
the “+” in Table III to V indicates that a certain method is
significantly better (i.e., having a smaller objective value) than
the proposed G2LGP-IF, the “≈” indicates that a method is
statistically similar to G2LGP-IF, and the “−” indicates that
a method is significantly worse than G2LGP-IF. The p-values
at the last row indicate the pair-wise comparison between a
certain method and G2LGP-IF, with a null hypothesis that
the performances of the two compared methods belong to the
same distribution and an alternative hypothesis of different
distributions.

For the basic scenario set, the p-value of the Friedman’s test
is 4.25E-07, which indicates a significant difference among
the compared methods. Based on the pair-wise comparison
and the mean rank, we confirm that the proposed G2LGP-IF
has a significantly better overall test performance than directly
evolving IF-included dispatching rules by basic LGPHH (i.e.,
LGP+) and G2LGP without location and number restrictions.
On the other hand, we cannot see significant performance
differences between state-of-the-art LGP (i.e., G2LGP) whose
primitive set has been well designed and G2LGP-IF, and
between G2LGP/input and G2LGP-IF. It is likely that the
existing primitive set (i.e., excluding the IF operations and
normalized terminals) is large enough to compose effective
dispatching rules for the basic scenario set, and the grammar
of G2LGP-IF and G2LGP/input effectively reduces the search
space to a similar size with G2LGP. The Wilcoxon test con-
firms our observations on the inferior performance of LGP+
and G2LGP/locnum.

The second scenario set which concerns energy cost shows
a similar pattern to the basic scenario set, with a Friedman’s
test p-value of 5.53E-06. In the second scenario, G2LGP-IF
is also superior to LGP+ and G2LGP/locnum and performs
similarly to G2LGP and G2LGP/input. It is worth mentioning
that, despite the insignificant overall performance discrep-
ancy between G2LGP and G2LGP-IF, G2LGP-IF performs
significantly better than G2LGP on four scenarios and has
better mean performance on eight scenarios. Together with
the results in Table III, the results confirm that G2LGP-IF
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has a very competitive performance with the state-of-the-
art LGPHH methods and is superior to basic LGPHH when
solving relatively simple scenarios.

The third scenario set which considers tardiness (or flow-
time), energy cost, and job response time, shows a substantial
difference. The p-value of the Friedman’s test is 7.34E-
06, indicating a significant difference among the compared
methods. Based on the pair-wise comparison, we see that
G2LGP-IF significantly outperforms G2LGP and LGP+ in
terms of test performance. The Wilcoxon test further verify
the superior performance of the proposed G2LGP-IF. On
the other hand, the other two G2LGP variants G2LGP/input
and G2LGP/locnum have a very competitive performance
with G2LGP-IF, but with worse mean ranks (i.e., 2.17 for
G2LGP/input and 2.33 for G2LGP/locnum are worse than
1.83 for G2LGP-IF). The results confirm that G2LGP with the
proposed grammar restrictions is very effective in solving the
complex scenario set which simultaneously optimizes multiple
performance metrics.

Based on the results from the basic scenario set to the more
complicated ones, we have the following observations:

1) When scenario sets become more and more complicated,
evolving IF operations by grammar rules becomes more and
more important. The evidences are twofold. First, the perfor-
mance gap between non-grammar-guided LGP and grammar-
guided LGP becomes larger and larger when the scenarios
have to optimize more and more performance metrics (e.g.,
the mean rank of LGP+ increases with scenario complexity).
Second, G2LGP, which has no IF primitives and necessary
grammar rules, cannot handle complex scenarios effectively.
It performs inferior to G2LGP-IF on more scenarios when
scenario sets become more complex (i.e., from 2 significantly
worse scenarios to 10 worse scenarios).

2) Directly evolving IF-included dispatching rules is too
difficult for existing LGPHH methods since IF operations
introduce a large number of redundant solutions into their
search spaces. For example, LGP might waste a lot of time
searching the contradictory and tautological IF operations that
do not contribute to the final output. As shown in Table III to
V, LGP+ which directly includes IF operations in its primitive
set always has the worst performance among the compared
methods. However, without IF operations, it is hard for existing
LGPHH methods to solve complicated scenarios.

3) Tables III to V give some insights into the number
and location of IF operations. For example, limiting the
maximum number of IF operations to five (i.e., G2LGP-IF and
G2LGP/input) is effective since G2LGP-IF and G2LGP/input
show a good performance in all the three scenario sets. Setting
the number of IF operations too small (i.e., G2LGP and
LGP+) or too large (i.e., G2LGP/locnum) likely reduces the
effectiveness in complex scenarios.

To further analyze the test performance of the compared
methods, we show the average test performance of all the
compared methods over generations, as shown in Fig. 7.
Specifically, we select Tmax, WTmean, Fmax, and Fmean
with a high utilization level of 0.95 in the three scenario sets
as the example scenarios.

We can see that the proposed G2LGP-IF (i.e., the red
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Fig. 7. The test performance over generations in example scenarios.
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Fig. 8. The average effective program size (± std.) of best-of-run individuals
of the compared methods over generations and 50 independent runs.

curves) shows a very competitive performance with other
compared methods. On the contrary, basic LGPHH cannot
find stable IF-included dispatching rules (i.e., LGP+, the green
curves). In some certain generations, the test performance of
LGP+ soars up to an extremely poor level, implying that basic
LGPHH fails to evolve IF-included dispatching rules with a
good generalization ability.

B. Program Size

To have a brief understanding of the interpretability of
output rules, Fig. 8 shows the average effective program
size (i.e., the average number of effective instructions) of
best-of-run individuals for each compared method for solving
six example scenarios over 50 independent runs. We simply
assume that a concise rule (i.e., a smaller program) has good
interpretability. The curves of mean values and the shadows
of standard deviation show that the proposed G2LGP-IF and
G2LGP/input averagely achieves significantly smaller program
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size than the others. For example, in the first example scenario
⟨Tmax, 0.95⟩, the red and purple curves nearly have no overlap
with the others at the end of their evolution, indicating a
significant program size difference of output programs. Given
that both G2LGP-IF and G2LGP/input have the restrictions on
the number and locations of IF operations by grammar rules,
we believe the two proposed restrictions are essential reasons
for producing concise programs.

C. Dimension Consistency

This section analyzes the example dispatching rules of
G2LGP-IF and G2LGP/input to demonstrate the dimension
consistency achieved by the proposed normalized terminals
and input restriction. Specifically, we randomly select two best
rules of G2LGP-IF and G2LGP/input from 50 independent
runs respectively, for solving ⟨Tmean, 0.95⟩ and ⟨WFmeanER,
0.95⟩. Each pair of the selected rules for the same scenario has
a similar test performance. All the four rules have been manu-
ally simplified by replacing registers with intermediate results
and removing contradictory and tautological IF operations.

1) ⟨Tmean, 0.95⟩: The example rule from G2LGP-IF for
⟨Tmean, 0.95⟩ is shown in Eq. (1). We can see that when
the bottleneck situation is not too severe (i.e., BWR ≤ 0.9),
the dispatching rule prioritizes the operations with a large
processing time of the next operation (i.e., “−NPT ” in a).
It implies that the rule intends to use a long-term strategy to
process some tough operations before the bottleneck comes.
When there is a severe bottleneck in the job shop, the
dispatching rule prefers operations with a small processing
time to finish more operations in a shorter time (i.e., both
“PT ” in the main rule and “NPT ” in the conditional part are
positively correlated to the heuristic value). By this means,
the job shop improves the pipeline of the job shop as soon as
possible.

RULEIF = max(PT,
5a+ 4NOR

PT
) + (5a+ 4NOR)× PT

a =

{
WINQ−NPT + PT, if BWR ≤ 0.9

NPT × (NPT +NINQ), otherwise

(1)

The example rule from G2LGP/input for ⟨Tmean, 0.95⟩
is shown in Eq. (2). The main rule is relatively simple,
adding three simple terms together. However, we can see
dimension inconsistency in its conditional part a. The first
condition rFDR ≤ WKRR and WINQ ≤ 0.4 compares
the terminals with different physical meanings (i.e., rFDR
and WKRR) and compares the workload in the next machine
queue (WINQ) with a meaningless constant 0.4. Note that
WINQ is larger than 2 (the minimum workload unit for a
single operation is 2) in most cases and is equivalent to 0
only at the beginning of the simulation where most machines
are idle. Thus, the second condition is almost a tautological
condition, and the third branch of a can be neglected in many
cases.

RULEinput = NINQ+ 2PT +min(a,NPT )

a =


NOR, if rFDR ≤ WKRR

and WINQ ≤ 0.4

NINQ3, else if WINQ > 0.4

rFDD, otherwise

(2)

2) ⟨WFmeanER, 0.95⟩: When the problem considers three
performance metrics, the example rule from G2LGP-IF still
maintains a good interpretability. The rules from G2LGP-
IF and G2LGP/input are shown in Eq. (3) and Eq. (4)
respectively. For the rule from G2LGP-IF, we can see that if
the user response time is important (i.e., SFR > 0.2 implying
SFR = 1 or SFR = 2.3) or the number of operations in
the next queue is relatively large (NNQR > 0.3), the LGP
rule emphasizes the next processing time NPT. Since a small
NPT also implies that the next operation will be prioritized
when it is available (i.e., replacing PT by NPT in Eq. (3)), the
job shop prefers finishing those easy-to-process jobs so that it
can response more jobs to reduce the overall response time.
Otherwise, the job shop focuses on WKR to reduce the overall
flowtime.

RULEIF = ((4PT + a) ∗ a)2

a =
b+ PT +NINQ

W

b =

{
NPT, if SFR > 0.2 or NNQR > 0.3

WKR, otherwise

(3)

Contrarily, the example rule from G2LGP/input compares
terminals with different physical meanings in its IF operation.
The conditional part c compares the deviation of processing
time (DPT ) with the number of remaining operations NOR
and compares the number of operations in the next machine
queue (NINQ) with the processing time (PT ). These com-
parisons make the decisions from Eq. (4) hard to be interpreted
and might lead to unexpected behaviors during optimization.

RULEinput =
W · PT · a · TIS

b
+

W · PT · b · PT +WINQ ·NPT · PT

W 2
+

2b

W · PT
+ a+ c+ TIS + PT + SL

a = c+NOR

b = c+ PT

c =

{
max(NINQ,PT ), if DPT > NOR

PT, otherwise

(4)

D. Training Time

Our experiments run on Intel Broadwell (E5-2695v4, 2.1
GHz). With the same total number of fitness evaluations
(i.e., 51200), the average training time of the five compared
methods are 3.26, 5.39, 8.08, 9.06, and 9.18 hours respectively.
They show a pattern of G2LGP < LGP+ < G2LGP/input
≈ G2LGP/locnum ≈ G2LGP-IF in terms of training time.
G2LGP has the shortest training time since it uses neither
the normalized terminals nor IF operations. Although LGP+
includes the normalized terminals and IF operations in its
primitive set, there are no grammar rules to enforce each LGP
rule to use these primitives. Contrarily, the last three compared
methods that use grammar to enforce the use of the normalized
terminals and IF operations, increase the computation time of
each rule. The results show that the use of the normalized
terminals and IF operations increases the computation time of
dispatching rules.

However, we advocate that the increase in the computation
time of dispatching rules here is acceptable in practice since
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… /* other rules are the same as the proposed rules */

defset FLOWCTRL {IfLarge3,IfLessEq3};

…
condition(I\O\R) ::= <O\{FUNS}\R+I\R+I> :: branch :: <O\{FUNS}\R+I\R+I> 
:: <O\{FUNS}\R+I\R+I> :: <O\{FUNS}\R+I\R+I>;

… /* other rules are the same as the proposed rules */

… /* other rules are the same as the proposed rules */

defset FLOWCTRL {IfLarge1,IfLessEq1,IfLarge2,IfLessEq2,
IfLarge3,IfLessEq3};

…
condition(I\O\R) ::= <O\{FUNS}\R+I\R+I> :: branch :: <O\{FUNS}\R+I\
R+I>*3;

… /* other rules are the same as the proposed rules */

Fig. 9. The grammar rules of G2LGP-body3.

the training of GP methods is off-line and the decision
time (i.e., the computation time of all candidate operations)
of LGP rules is much smaller than the processing time in
reality. Take the longest training time of G2LGP-IF (i.e.,
9.18 hours) as an example. The 9.18 hours are composed
of 256 × 200 = 51200 fitness evaluations, each evaluation
processes more than 6000 jobs, and each job with 6 operations
on average. Thus, the average decision time for each operation
is about 9.18hours

51200×6000×6 = 1.8E−5 seconds, which is much
smaller than the operation processing time in many real-world
applications. Once we obtain a dispatching rule from the off-
line training, the rule can make decisions for unseen problem
instances in a very short time. Furthermore, the normalized
terminals and IF operation bring a significant performance gain
in many DJSS scenarios.

E. Summary on Main Results

This section investigates the effectiveness and interpretabil-
ity of the five compared methods. We found that existing
LGPHH methods cannot effectively evolve rules with IF oper-
ations based on the inferior performance of LGP+. But without
IF operations, state-of-the-art LGPHH cannot effectively solve
complicated DJSS scenarios (see the inferior performance of
G2LGP in the third scenario set). To make effective use
of IF operations, we propose to restrict dispatching rules to
only use a limited number of IF operations at the beginning
of the rules, which substantially improves the effectiveness
of LGPHH in solving complicated scenarios. Moreover, the
proposed normalized terminals and input restriction improve
the dimension consistency of IF operations in output rules,
which can further improve interpretability. We advocate that
evolving dispatching rules with IF operations by restricting
the input features, number, and location of IF operations has
a promising performance in terms of both effectiveness and
interpretability.

VI. FURTHER ANALYSES

A. Effectiveness of Simple IF Operations

LGP can naturally implement human-like programming
styles of IF operations, including IF branches with different
lengths and nested IF branches. In our proposed grammar
rules, we restrict IF branches to only contain one instruction
and avoid nested IF branches for simplicity, but have not
verified the effectiveness of these simple designs. Therefore,
this section investigates the effectiveness of long IF branches
and nested IF branches.

The first variant of G2LGP, denoted as G2LGP-body3,
forces IF branches to include three instructions. The grammar

… /* other rules are the same as the proposed rules */

defset FLOWCTRL {IfLarge3,IfLessEq3};

…
condition(I\O\R) ::= <O\{FUNS}\R+I\R+I> :: branch :: <O\{FUNS}\R+I\R+I> 
:: <O\{FUNS}\R+I\R+I> :: <O\{FUNS}\R+I\R+I>;

… /* other rules are the same as the proposed rules */

… /* other rules are the same as the proposed rules */

defset FLOWCTRL {IfLarge1,IfLessEq1,IfLarge2,IfLessEq2,
IfLarge3,IfLessEq3};

…
condition(I\O\R) ::= <O\{FUNS}\R+I\R+I> :: branch :: <O\{FUNS}\R+I\
R+I>*3;

… /* other rules are the same as the proposed rules */

Fig. 10. The grammar rules of G2LGP-nested.

TABLE VI
THE TEST PERFORMANCE OF THE G2LGP VARIANTS IN THE SECOND

SCENARIO SET.

Scenarios G2LGP-IF G2LGP-body3 G2LGP-nested
⟨TmaxE,0.85⟩ 2078.4 (23.1) 2085.8 (22.9) ≈ 2083.7 (23.9) ≈
⟨TmaxE,0.95⟩ 3152.8 (65.9) 3170.7 (61.5) ≈ 3164 (56.9) ≈
⟨TmeanE,0.85⟩ 1330.4 (1.5) 1330.4 (1.4) ≈ 1330.1 (1.7) ≈
⟨TmeanE,0.95⟩ 1651.7 (9.6) 1651.8 (6.6) ≈ 1650.4 (5.3) ≈
⟨WTmeanE,0.85⟩ 1487.6 (3.7) 1487.6 (3.6) ≈ 1487.6 (4.4) ≈
⟨WTmeanE,0.95⟩ 1987.2 (15.2) 1988.8 (16.4) ≈ 1989.6 (14.1) ≈
⟨FmaxE,0.85⟩ 2369.7 (23.1) 2374.3 (19.9) ≈ 2369.5 (18.5) ≈
⟨FmaxE,0.95⟩ 3443.7 (56.3) 3440.8 (55.2) ≈ 3454.4 (69.1) ≈
⟨FmeanE,0.85⟩ 1553 (1.4) 1552.9 (1.5) ≈ 1553.2 (1.5) ≈
⟨FmeanE,0.95⟩ 1876.3 (5.7) 1874.9 (6.2) ≈ 1876.2 (6.8) ≈
⟨WFmeanE,0.85⟩ 1975.2 (4.1) 1976.2 (4.3) ≈ 1976.7 (3.9) ≈
⟨WFmeanE,0.95⟩ 2481.1 (14.7) 2483.8 (21.5) ≈ 2486 (21.3) ≈

win/draw/lose 0-12-0 0-12-0
mean rank 1.71 2.08 2.21
p-values 1 0.633

of G2LGP-body3 is shown in Fig. 9, where dispatching rules
use IF operations with three instructions (i.e., IfLarge3
and IfLessEq3), and the derivation rule of condition
includes more instruction modules.

The second G2LGP variant is G2LGP-nested, which allows
an IF branch to include other IF branches (i.e., nested IF
branches). The grammar rules for G2LGP-nested are shown
in Fig. 10, where dispatching rules use IF operations with one
to three instructions, and each logical condition is followed by
up to three instruction modules (see condition in Fig. 10).

We verify the effectiveness of these two G2LGP variants
by comparing their test performance with G2LGP-IF in the
second scenario set, as shown in Table VI. We use the
second scenario set for verification because its configurations
follow the popularly used settings of existing studies [66],
which makes it comparable to existing studies. In addition,
it is more challenging than the basic scenario set, which
gives a better understanding of the proposed algorithm for
readers. The Friedman test on the test performance of the
three compared methods returns a p-value of 0.428, indicating
a null hypothesis of no significant difference among these test
performances. We can also see that both G2LGP-body3 and
G2LGP-nested are very competitive with G2LGP-IF in Table
VI. The results confirm that the proposed grammar rules for
IF operations are effective enough to produce concise and
effective rules. Increasing the complexity of IF branches by
increasing the length of IF branches or nesting IF branches
does not improve the effectiveness of IF-included dispatching
rules in our problem.

B. Patterns of Normalized Terminals

This paper moves a step forward in effectively evolving IF-
included dispatching rules for DJSS problems. To understand
the relationship between IF operations and decision situations
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Fig. 11. Frequency of the normalized terminals over 50 independent runs in the example scenarios.

and inspire the future design of IF-included dispatching rules,
this section investigates the distributions of input features of
IF operations in the produced rules. Since we restrict that
G2LGP-IF only uses the proposed normalized terminals as
the input features of IF operations, we mainly analyze the
frequency of normalized terminals in the best rules over 50
independent runs, as shown in Fig. 11. The frequently used
normalized terminals imply crucial information in different
decision situations. We select four scenarios respectively from
the three scenario sets.

In the basic scenario set (the first row of Fig. 11), all the
four example scenarios switch behaviors based on long-term
information, such as the remaining operations and workload of
a job (i.e., NORR and WKRR) and the machine that processes
the next operation (i.e., NNQR and WNQR). Besides, the
maximum objectives like Tmax and Fmax, clearly consider
processing time (i.e., PTR and DPT) more than the mean
objectives when switching behaviors. PTR and DPT are fre-
quently used in their logical operations. To reduce the maxi-
mum values, maximum objectives also switch behaviors based
on the deviation of operation waiting time (DOWT). When
some operations have a large waiting time, those operations
are likely to be delayed or have a long flowtime. Dispatching
rules should prioritize these operations before it is too late.
Contrarily, to improve global performance, Tmean and Fmean
do not consider DOWT but consider more machines in the
job shop. For example, Tmean emphasizes the deviation of
workload in the next machine (DWNQ) and bottleneck work-
load ratio (BWR). Furthermore, WFmean has the highest rate
of using the job weights (WR), with a frequency of nearly
0.15. It implies that switching dispatching behaviors based on
the job weights can effectively improve the performance of
weighted objectives.

In the energy-considered scenario set (the second row

of Fig. 11), we have two main observations. First, energy-
related terminals are all highlighted in the second scenario set.
For example, ⟨TmaxE, 0.95⟩ frequently considers MER, and
⟨TmeanE, 0.95⟩ frequently considers EPR. This implies that
different energy prices need different dispatching behaviors.
Second, the distributions of other normalized terminals are
similar to those in the basic scenario set. For example, NNQR
and WNQR are also frequently used in all four example
scenarios, ⟨TmaxE, 0.95⟩, and ⟨FmaxE, 0.95⟩ prefer pro-
cessing time-related terminals such as PTR, and ⟨WFmeanE,
0.95⟩ changes behaviors based on WR. The two observations
confirm that the G2LGP-IF dispatching rules simultaneously
optimize tardiness- or flowtime-related objectives, and energy
cost by dynamically adjusting the dispatching behaviors based
on decision situations.

In the third scenario set that simultaneously optimizes tar-
diness/flowtime, energy cost, and response time, the response
cost rate ratio SFR is extensively considered in TmeanER
and WFmeanER, which means different response cost rates
need different dispatching rules. However, the results show
that changing behaviors based on SFR is not a good choice
for optimizing maximum tardiness and maximum flowtime.
⟨TmaxER, 0.95⟩ and ⟨FmaxER, 0.95⟩ mainly change behav-
iors based on processing time (PTR) and the workload of the
next machine queue (WNQR).

Based on the twelve example scenarios, we find that WNQR
(and NNQR) and WIQR (and NIQR) are frequently used
information in all different scenarios. WNQR and NNQR
represent similar information indicating how large a work
burden the next machine has. WIQR and NIQR represent
similar information indicating how large a work burden the
current machine has. Although these four normalized terminals
might not be the most frequently used ones in the example
scenarios, WNQR (and NNQR) and WIQR (and NIQR) have
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a relatively high frequency (i.e., more than 0.1) in nearly
all the cases. The observation implies that different machine
situations likely need different dispatching rules.

The analyses for Fig. 11 have some new findings compared
to existing feature analyses of DJSS [67], [68]. Some input
features that did not show their importance in existing studies
are highlighted by IF operations. For example, existing studies
seldom see WIQ and NIQ as important features. But WIQR
and NIQR which represent the same information as WIQ and
NIQ are frequently used by IF operations. Existing studies
seldom use the operation waiting time (OWT) in output
rules. But our analyses show that operation waiting time (i.e.,
DOWT) is very useful in the IF operations of ⟨Tmax, 0.95⟩,
⟨Fmax, 0.95⟩, and ⟨TmaxE, 0.95⟩.

VII. CONCLUSIONS

This paper aims to find a way to effectively evolve dis-
patching rules with IF operations for solving complicated
DJSS problems. Specifically, we propose to evolve IF-included
dispatching rules by G2LGP. To get rid of redundant and less
effective IF branches, we first design a new set of normalized
terminals for DJSS problems and further propose a set of
grammar rules to restrict the available inputs, the number, and
the locations of IF operations.

To comprehensively investigate the effectiveness of dis-
patching rules and our proposed method, we develop three sce-
nario sets. The empirical results confirm that IF operations are
crucial for dispatching rules in complex problems. The results
have verified that using grammar rules to restrict the usage
of IF operations in LGPHH is an effective way to harness IF
operations. Armed with the proposed normalized terminals and
grammar rules, the proposed method outperforms the state-
of-the-art LGPHH method in terms of both effectiveness and
interpretability. Further analyses highlight that IF operations
greatly improve the flexibility of dispatching rules, performing
different dispatching behaviors based on different decision sit-
uations. The analyses also find three important DJSS features
that are missed by existing IF-excluded dispatching rules. This
paper shows the great potential of IF-included dispatching
rules in solving complex problems.

Standing on the achievement of this paper, we intend to
include more advanced flow control operations such as FOR
operations into GP’s primitive set in the future and investigate
the corresponding grammar rules for them. This will facilitate
GP to evolve more concise and powerful programs.
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