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   Abstract—A  large  number  of  features  are  involved  in  fault
diagnosis,  and it is challenging to identify important and relative
features  for  fault  classification.  Feature  selection  selects  suitable
features from the fault dataset to determine the root cause of the
fault.  Particle  swarm  optimization  (PSO)  has  shown  promising
results in performing feature selection due to its promising search
effectiveness  and  ease  of  implementation.  However,  most  PSO-
based feature selection approaches for fault diagnosis do not ade-
quately take domain-specific a priori  knowledge into account.  In
this study, we propose a correlation-guided PSO feature selection
approach for fault diagnosis that focuses on improving the initial-
isation  effectiveness,  individual  exploration  ability,  and  popula-
tion diversity. To be more specific, an initialisation strategy based
on  feature  correlation  is  designed  to  enhance  the  quality  of  the
initial population, while a probability individual updating mecha-
nism is proposed to improve the exploitation ability. In addition, a
sample  shrinkage  strategy  is  developed  to  enhance  the  ability  to
jump out  of  local  optimal.  Results  on four public  fault  diagnosis
datasets show that the proposed approach can select smaller fea-
ture  subsets  to  achieve  higher  classification  accuracy  than  other
state-of-the-art  feature  selection methods  in  most  cases.  Further-
more,  the  effectiveness  of  the  proposed  approach  is  also  verified
by examining real-world fault diagnosis problems.
    Index Terms— Classification, correlation, fault  diagnosis, feature
selection, particle swarm optimization.
  

I.  Introduction

EQUIPMENT  health  management  is  the  key  to  ensuring
the  safe,  efficient,  and  reliable  operation  of  mechanical

equipment [1], [2].  Fault  diagnosis  is  one  of  the  important
steps  of  equipment  health  management,  which  is  crucial  to

guarantee the availability and safety of mechanical systems to
avoid  the  occurrence  of  dangerous  situations [3], [4].  Fault
diagnosis  is  essentially  a  classification  task.  Its  purpose  is  to
classify  fault  categories  according  to  the  information  pre-
sented  by  their  features.  Methods  for  fault  diagnosis  can  be
divided into  three  classes  based on the  type  of  data  and how
the data is processed: model-based methods, knowledge-based
methods,  and  signal-based  methods [5].  The  model-based
approach  determines  the  type  of  fault  by  the  residuals  of  the
model’s results and the actual results. Knowledge-based meth-
ods lee to determine the failure mode based on the knowledge
base.  Signal-based  methods  determine  the  type  of  fault  by
analysing  the  information  in  various  signals.  Model-based
methods are limited to specific classes of mechanical systems
and faults [6]. Knowledge-based methods mainly rely on arti-
ficial  intelligence  methods  to  directly  determine  the  system
fault,  which can only  be  detected within  the  scope of  known
knowledge and the structure of  the method is  more complex.
However,  the  signal-based  methods  do  not  rely  on  precise
models  or  detailed  a  priori  knowledge  of  a  particular  system
and can therefore be applied to a wide range of different types
of systems. It makes direct use of the actual signals generated
during  the  operation  of  the  system,  which  provide  the  truest
reflection  of  the  current  state  of  the  system.  Signal-based
methods will be the focus of this work.

In signal-based fault diagnosis methods, fault features need
to  be  extracted  from  multiple  perspectives  in  order  to  better
demonstrate  the  main  characteristics  of  each  fault [7].  Thus,
fault features are gradually becoming more dimensional [8]. It
is possible for feature selection (FS) to have 2n subsets of fea-
tures  when n represents  the  number  of  all  available  features.
This  makes  exhaustive  search  techniques  almost  useless  for
identifying the root cause of fault problem. Furthermore, when
it  comes  to  this  data,  there  is  often  a  large  amount  of  irrele-
vant and redundant information that can seriously affect fault
diagnosis  accuracy.  Therefore,  proper  selection  of  features  is
the key to fault diagnosis.

FS is an important part of data preprocessing to select a sub-
set  of  relevant  and  complementary  fault  features [9].  FS
approaches  can  be  categorized  into  three  types,  i.e.,  filter-
based,  wrapper-based,  and  embedded-based  approaches [10],
[11].  Filter-based  approaches  select  features  based  on  data
characteristics  without  utilizing  learning  algorithms [12].
Wrapper-based  approaches  typically  use  learning  algorithms
to  evaluate  selected  features  until  the  maximum  number  of
iterations  or  the  maximum  number  of  evaluations  is  reached
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[13].  Embedded-based  approaches  embed  FS  into  the  learn-
ing process [14]. The classification accuracy of wrapper-based
and embedded-based approaches is generally higher than that
of filter-based approaches [15]. With the same number of fea-
tures,  the  wrapper-based  approach  has  a  shorter  computation
time  than  the  embedded-based  approach.  Hence,  the  purpose
of this study is to create a new wrapper-based FS method for
fault diagnosis problems.

Evolutionary  computation  (EC)  techniques  have  received
significant attention due to their powerful search ability. Com-
pared  to  other  kinds  of  evolutionary  algorithms,  particle
swarm  optimization  (PSO)  has  faster  convergence,  provides
better exploration of the feature space, and has better fitness in
the face of fault diagnosis problems. These significant advan-
tages  make  PSO  as  an  ideal  choice  in  the  feature  selection
phase of signal-based fault diagnosis methods [16]. For bear-
ing  fault  diagnosis  in [17],  the  Fisher  criterion  is  used  for
determining the fitness function as well as the PSO approach
based on maximum class separability. The use of F-score and
Fisher discriminate analysis before using the PSO approach to
eliminate redundant and unnecessary features can improve the
effectiveness  of  fault  diagnosis [18].  In [19],  a  FS  approach
based PSO was used for fault diagnosis of a wind power con-
version system, which applied Euclidean distance to measure
the dissimilarity between fault features. Nevertheless, the non-
linear relationships inherent in the fault diagnosis domain are
not adequately considered by this approach. Hence, additional
research  is  required  to  investigate  the  development  of  new
fault diagnosis methods based on evolutionary computation.

For fault  diagnosis problems, there is a non-linear relation-
ship between features and faults  under certain operating con-
ditions.  For example,  in a mechanical system, the peak value
of the vibration signal is relatively stable during normal opera-
tion. When an unbalance fault occurs, the peak increases, but
this  increase  is  not  linear.  As  the  degree  of  imbalance
increases,  the  peak  value  may  first  increase  slowly  and  then
rise  sharply  at  some stage.  By exploiting  the  non-linear  rela-
tionship  between  fault  features  in  fault  diagnosis  problems,
invalid searches can be avoided and feature subset quality can
be  improved [20].  There  is  a  correlation  between  fault  fea-
tures and states in [21] that uses the Pearson correlation coef-
ficient to determine the extent to which they are correlated. It
utilizes features with high correlation as inputs for the neural
network, which reduces the noise features in the fault dataset
to a certain extent and shortens the training time for learning
classifiers.  Most  existing  strategies,  however,  work  in  the
same  manner  as  the  methods  described  above,  namely,  by
eliminating  all  noise  directly  from the  problem search  space.
If  features  with  low  correlation  are  directly  removed,  it  will
have  an  impact  on  the  search  effectiveness  of  an  algorithm.
For example, multiple features with low correlation may also
produce  better  results  when  combined  together.  At  the  same
time, a similar problem exists in the initialisation phase. Fea-
tures  with  low  correlation  cannot  be  directly  removed  alto-
gether  in  the  initialisation  phase,  and  their  potential  value
needs to  be determined gradually during the exploration pro-
cess. As a solution to the above problems, we propose an ini-
tialisation  strategy,  and  a  probability  updating  mechanism

using correlation  information derived from the  fault  datasets.
By  using  these  strategies,  the  initial  population  can  be
improved  in  terms  of  quality,  and  more  potential  combina-
tions  of  features  can  be  identified.  The  initialisation  strategy
of  feature  grouping  can  better  adapt  to  the  characteristics  of
different types of features and improve the algorithm’s search
effect  in  different  feature  groups.  Furthermore,  by  increasing
the  flip  probability,  the  algorithm  can  try  different  combina-
tions  of  features  more  aggressively,  increasing the  likelihood
of finding a better subset of features.

Another  challenge  for  fault  diagnosis  is  the  increasing
dimensionality  of  fault  features.  In  the  case  of  a  large  and
complicated  search  space,  the  approach  will  fall  into  a  local
optimum,  which  will  limit  search  performance.  When  this
happens,  it  generally  goes  one  of  two  ways,  i.e., “jumping
out” and “restarting”, i.e.,  searching in other directions based
on  the  current  solution,  or  ignoring  the  current  solution  and
searching  again  in  a  new  region.  Based  on  this  detection,  a
mutation operator is applied to the gbest value to improve per-
formance by jumping out after a certain amount of time [22].
However,  the  mutation  operator  has  a  certain  degree  of  ran-
domness,  and  does  not  discover  a  more  promising  search
direction within a limited number of iterations. In order for the
population to find a more suitable search direction as soon as
possible,  changing  the  method  of  fitness  evaluations  of  the
particles is an option, where we yse a different training set. By
pulling out or putting in a certain proportion of samples, new
information  can  be  introduced  and  the  existing  information
structure can be changed, thus providing new search clues for
the particles, changing the existing search balance, and giving
the algorithm a chance to jump out of the local optimum.

In  this  paper,  by  employing  PSO  in  the  FS  approach,  an
approach  is  proposed  to  solve  the  fault  diagnosis  problem in
this paper.  First,  the correlation information between features
and class labels is fully utilised with the initialisation strategy
and  probability  updating  mechanism,  making  the  subsequent
search more focused on promising features. Secondly, a sam-
ple  shrinkage  mechanism is  proposed  in  the  hope  of  helping
the population to jump out of the local optimum by increasing
the diversity of the population. A brief summary of this paper’
s main contributions is as follows:

1)  A  FS  approach  that  takes  into  account  the  properties  of
datasets  with  complex  relationships  is  proposed  to  improve
the  classification  performance  of  fault  diagnosis  problems.
Correlation is  introduced to fully consider the nonlinear rela-
tionship  between  fault  features  and  fault  categories,  and  to
find  a  more  promising  subset  of  features  from  the  candidate
features.

2) Based on the correlation information between features, a
correlation-guided  initialisation  strategy  and  a  probability
updating  mechanism  are  proposed  to  improve  the  quality  of
the  initial  population  and  offspring-generated  particles,
respectively. The proposed strategies can effectively guide the
feature  selection  process  to  find  more  feature  combinations
with higher quality.

3)  An  effective  sample  shrinkage  mechanism  is  designed,
which adjusts the search direction of the individual by chang-
ing  the  size  of  the  training  set.  This  strategy  can  effectively
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overcome  the  defect  of  premature  convergence  and  help
increase the diversity of the population.

The  remainder  of  this  article  is  organized  in  the  following
way. Background and related work are presented in Section II.
In Section III, the proposed approaches are described in more
detail.  Described  in  Section  IV  is  the  experimental  design,
while  described  in  Section  V  are  the  results  and  discussion.
We conduct the application process in Section VI. This article
is concluded by Section VII, which concludes the article.  

II.  Background and Related Work

This  section  briefly  describes  fault  diagnosis,  binary  parti-
cle  swarm optimization,  and  the  application  of  feature  selec-
tion in fault diagnosis.  

A.  Fault Diagnosis as a Classification Problem

[c, f1, f2, . . . ,
fD]

c

[ f1, f2, . . . , fD]

A signal-based method is used for fault classification based
on features  extracted  from original  signals [23].  The  original
signals are typically vibration signals, voltage signals, current
signals, etc. The features extracted in a certain fault state of a
mechanical  device  can  be  expressed  as  a  vector 

. There are a total of D features that are failure related. A
class  label  represents  a  fault  state.  The number  of  types  of
class labels indicates how many fault states there are. For the
same mechanical system, there may be several  different fault
states [24]. A set of fault features  obtained after
feature  extraction  of  each  acquired  signal  corresponds  to  a
class  label  indicating  that  the  signal  is  acquired  in  the  corre-
sponding  fault  state.  In  the  feature  selection  phase,  after  the
feature  selection  method  selects  a  critical  subset  of  features,
the  training  data  with  class  labels  are  input  to  the  classifica-
tion  model  for  training.  The  classification  model  adjusts  its
own parameters by learning the relationship between features
and fault modes [25]. When faced with new equipment opera-
tion data, the classification model is able to determine the fail-
ure  modes  of  mechanical  equipment  based  on  the  evaluation
of the new data [26].  

B.  Binary Particle Swarm Optimization Algorithm

pbesti = [pbestt
i1, pbestt

i2, . . . ,

pbestt
iD] gbest = [gbestt

1,

gbestt
2, . . . ,gbestt

D]

Xt
i = [Xt

i1,

Xt
i2, . . . ,X

t
iD]

V t
i = [V t

i1,V
t
i2, . . . ,V

t
iD]

It  has  been  found  that  binary  particle  swarm  optimization
(BPSO) [27] uses  particles  to  represent  candidates  for  solu-
tions  to  the  problem.  There  is  a  previously  best  position  for
the  ith  particle  represented  as 

, and so far the global best position is 
.  Hence,  the  two  best  locations  should  be

prioritized  for  further  investigation  since  they  will  guide  the
swarm  into  a  more  productive  area  in  the  near  future [28].
During  the  update  process,  the  current  position 

 of  the i-th  particle  consists  of D binary  vectors,
where  each  identifies  whether  or  not  a  specific  feature  has
been  selected  and  the  current  position  of  the  particle.  Each
particle  has  a  moving  velocity .  These
two vectors describe the direction and velocity magnitude that
the particle should move in the next update.

The optimization process of BPSO is actually the process in
which  the  particles  in  the  population  update  their  position
information  and  velocity  information  iteratively,  thus  finding
optimal  solutions  step  by  step [29].  There  are  two  types  of

velocity  and  position  information  updated  for  generation t+1
of  the i-th  particle,  and  the  formula  for  updating  them  is
shown  in  Eq.  1  and  Eq.  2.  Due  to  its  principle  of  operation,
PSO has  multiple  advantages  and  disadvantages.  On  the  one
hand,  it  is  simple  and  easy  to  implement,  and  involves  rela-
tively few parameters, which lowers the threshold of use [30].
In addition, PSO converges faster and can approach the opti-
mal  solution  quickly,  and  it  does  not  require  much  memory
and CPU, and occupies less resources. However, PSO also has
many disadvantages. It has poor local search ability and insuf-
ficient search accuracy, which may lead to missing the global
optimal  solution.  During  the  search  process,  it  is  easy  to  fall
into  local  extreme  points [31],  which  is  due  to  the  fact  that
particle diversity may disappear rapidly, which in turn gener-
ates the problem of premature convergence.
 

V t+1
id = ω∗V t

id + c1 ∗ r1 ∗ (pbestt
id −Xt

id)+

c2 ∗ r2 ∗ (gbestt
d −Xt

id) (1)
 

xt+1
d =

1, if rand ( ) ≤ s(vt+1
d )

0, otherwise
(2)

ω
c1 c2 r1 r2

s(vt+1
d ) = 1/(1+ e−vt+1

d )

where t denotes the current iteration number, d indicates the d-
th  dimension  of  the  search  space,  indicates  the  inertia
weight, and  and  denote acceleration constants.  and 
are  uniformly  distributed  values  in  the  interval [0,  1].

 is called a transfer function.
  

C.  Feature Selection in Fault Diagnosis
Signal-based methods involve three  major  steps:  extracting

features,  selecting  features,  and  classifying  faults [32].  As  a
result  of  the  features  extracted  from  the  data,  we  have  an
extensive feature space that provides a great deal of informa-
tion  for  fault  diagnosis.  However,  classification  in  high-
dimensional feature space is more complex and difficult  than
that in low-dimensional feature space. FS is therefore needed
to reduce feature space dimensions and make fault classifica-
tion  more  feasible,  thereby  improving  fault  diagnosis  accu-
racy.

Over the past  decades,  there have been some studies of FS
approaches  in  the  field  of  fault  diagnosis.  First,  we  look  at
correlation based FS approaches. By considering the correla-
tion  between  the  fault  features  and  fault  classes,  it  has  been
possible  to  select  dominant  features  by  examining  the  Mea-
sured  Resting  Metabolic  Rate [33].  Second,  we  look  at dis-
tance  based  FS  approaches.  A  new  distance  assessment
approach based on standard deviation is proposed in [34]. The
introduction  of  standard  deviation  can  improve  the  approach
to  analyse  the  looseness  within  the  dataset  and  compare  the
differences within the data. Third, we look at clustering based
FS  approaches.  The  approach  in [35] groups  features  with
similar  distributions to obtain a  subset  of  features that  is  low
in  redundancy  and  highly  representative.  The  search  effi-
ciency of the above approaches decreases greatly when facing
the complex nonlinear relationship between fault features and
fault states. Moreover, fault diagnosis has uncertainty, and the
fault features may be mixed with some environmental noise or
outliers,  which  may affect  the  approach’s  direction  of  search
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and  reduce  the  final  diagnostic  accuracy.  An  efficient  search
technique is an important task for the FS problem.

At  present,  some  intelligent  fault  diagnosis  frameworks
have  already  shown  promising  diagnostic  performance  in
related fields [36]. As a general rule, the PSO has proven to be
more  productive  at  specifying  the  ideal  subset  of  features
compared to other approaches. As an example, there is effec-
tive methodology for detecting bearing faults through the inte-
gration  of  multiple  approaches  for  extracting  and  selecting
features [37].  It  has been shown that  BPSO can be improved
by  using  a  group  initialisation  strategy  based  on  the  feature
weight,  a  new  update  mechanism,  and  an  effective  FS
approach,  which  are  all  capable  of  enhancing  the  classifica-
tion  accuracy  while  reducing  the  size  of  the  data  set.  As  a
means of improving fault  diagnosis performance,  in [38],  the
maximum information coefficient is first introduced as a cor-
relation measure to obtain a rough feature subset, after which
the improved PSO-based approach is used to narrow down the
best set of features. Searching at a deeper level is conducted in
the  search  area  using  particle  reset  and  swarm  initialisation
strategies.  In  addition,  there  are  some  approaches  that  com-
bine  PSO  with  other  evolutionary  approaches.  To  identify
more  salient  features  from  datasets,  PSO  and  wheelbarrow
differential evolution are used [39]. The ultimate realisation is
to improve the accuracy of diagnosing the status of induction
motors.  With  fault  diagnosis,  different  fault  classes  and  fea-
tures may have different levels of correlation and importance.
The  above  PSO  approaches  do  not  adequately  consider  the
complex relationship that exist between fault classes and fea-
tures, resulting in no deeper exploration of those potential fea-
ture subsets.  

III.  Proposed Approach

A  new  PSO-based  FS  approach  for  fault  diagnosis  is
described  in  this  section.  Specifically,  we  first  describe  the
framework  of  the  proposed  correlation-guided  BPSO
(CGBPSO),  and  then  detail  the  designed  correlation-guided
initialisation  strategy,  probability  updating  mechanism,  and
sample shrinkage mechanism.  

A.  Framework of the Proposed Approach
The  flowchart  of  the  proposed  CGBPSO  method  (Algo-

rithm 1)  is  shown in Fig.  1.The  CGBPSO algorithm consists
of  three  main  steps:  initialisation,  updating  and  evaluation.
First,  the  correlation  initialisation  strategy  in Fig.  1 corre-
sponds to Line 1 in Algorithm 1. That is, the population is ini-
tialised according to Algorithm 2 such that  features  with dif-
ferent correlations are initialised according to their respective
different  probabilities.  Secondly,  to  find more potential  com-
binations  of  features  with  moderate  correlations,  the  velocity
and position of the particles are updated (Line 7 to Line 8) by
Eq.  1  and  Algorithm  3,  where  the  probability  of  position
update  is  redefined.  Thus,  the  probability  update  mechanism
in Fig.  1 makes  it  more  (less)  probable  that  more (less)  rele-
vant  features  are  selected.  Thirdly,  it  is  necessary  to  conduct
an evaluation of  all  of  the  particles  once  the  updates  of  their
position  and velocity  have  been completed.  In  order  to  over-
come the problem where the population tends to fall into local

optimum, the sample scaling mechanism in Fig. 1 is used, i.e.,
the size of the training set used to train the model is modified
to  change  the  search  direction  of  the  population.  When  it  is
found  that  the gbest of  the  population  does  not  improve  in
consecutive generations, a portion of the samples is taken out
or put in from the training set in order to jump out of the local
optimum (Line 9 to Line 19). When the maximum number of
iterations  is  reached,  the  loop  ends  and  the  optimum  is
returned  as  the  final  subset  of  features  selected  by  the  algo-
rithm (Line 20).

Algorithm 1: Overview of CGBPSO

F = [ f1, f2, . . . ,
fD]

Input: The  population  size, N;  Original  features, 
;  The  maximum  number  of  iterations, MaxGen;  The  number  of

iterations of gbest stopped updates, NI.
Output: Selected features.
1:   Initialisation: Initialise  population  with N particles  using

Algorithm 2.
2:   Calculate fitness of Popsize particles.

pbest1
N = [pbest1

N1, pbest1
N2, . . . , pbest1

ND] gbest1 =

[gbest1
1,gbest1

2, . . . ,gbest1
D]

3:   Update  and 
 based on the fitness values.

←4:   set NI  0.
←5:   set t  1.
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Fig. 1.     Flow chart of CGBPSO.
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t← MaxGen6:   while:  do
V t7:   　Update: Calculate particle’s velocity  based on Eq. 1.

Xt8:   　Update particle’s position  using Algorithm 3.
9:   　Evolution: Calculate fitness of particles using Algorithm 4.

pbestt
N = [pbestt

N1, pbestt
N2, . . . , pbestt

ND] gbestt =

[gbestt
1,gbestt

2, . . . ,gbestt
D]

10: 　Update  and 
 based on the fitness values.

←11: 　Curve(t)  gbest.
≥12: 　if: t  2 then

13: 　　if Curve(t) = Curve(t-1) then
←14: 　　　NI  NI + 1.

15: 　　else
←16: 　　　NI  0.

17: 　　end
18: 　end
19: end
20: return Position indexes in gbest that have value 1.

Algorithm 2: Correlation-guided Initialisation

F = [ f1, f2, . . . , fD]Input: Original  features, ;  Population  size,  N;
weight set, U.

Output: Initial population, Pop.

U = [cd1,cd2, . . . ,cdD]
1:   Use  ReliefF  to  calculate  each  feature’s  weight,  and  store  the

weights of the all features in the set .
F

F′ = [ f ′1 , f
′
2 , . . . , f

′
D]

U′ = [cd′1,cd′2, . . . ,cd′D]

2:   After sorting all features in  by weight, denote the feature set
and weight set after sorting as follows:  and

.
3:   Find the knee point M according to the index and weight of the

features.
S F′ = [ f ′1 ,

f ′2 , . . . , f
′
M] WF′ = [ f ′M+1,

f ′M+2, . . . , f
′
D]

4:   Divide F' into  strongly  correlated  features  subset 
 and weakly correlated features subset 

.

S U′ = [cd′1,cd′2, . . . ,cd′M] WU′ = [cd′M+1,cd′M+2, . . . ,cd′D]
5:   The  weights  of  the  two  feature  subsets  correspond  to  the  sets

 and ,
respectively.

6:   Calculate the initialisation probability P according to Eq. 3.
7:   for i = 1 to N do
8:   　for j = 1 to D do

≤9: 　　  if j  M then
≤10:　　　 if rand  P then

xi j11:　　　　  = 1;
12: 　　　else

xi j13:　　　　  = 0;
14:　　　 end
15:　　 else
16: 　　　if rand > P then

xi j17:　　　　  = 1;
18:　　　 else

xi j19:　　　　  = 0;
20: 　　　end
21:　　 end

xi22:　　 Pop(i) = ;
23:　 end
24: end
25: return Initial population Pop.

Algorithm 3: Probability Updating Mechanism

Input: Velocity and position of the i-th particle in the t-th iteration,

V t
i Xt

i, ; Dimension of features, D.
Xt+1

iOutput: Position of the i-th particle in the t+1-th iteration, .
1:   for j = 1 to D do

V t+1
i j2:   　Determine the velocity  by Eq. 1.

3:   　Determine the flip probability TF(j) by Eq. 4.
≤4:  　 if rand  TF(j)

Xt+1
i j = 1−Xt

i j;5:   　　

6:  　 else
Xt+1

i j = Xt
i j;7:   　　

8:   　end
9: end

Xt+1
i .10: return Position of the i-th particle in the t+1-th iteration, 

  

B.  Correlation-guided Initialisation Strategy
As part  of  the FS process,  the correlation between features

and  class  labels  is  examined.  Features  with  different  correla-
tion degrees are chosen to be initialised separately. Algorithm
2 provides the steps to implement the strategy.

F

First, we calculate the significance of features. ReliefF [40]
measures  non-linear  relationships  between  variables  better
than other approaches based on correlation [41]. Other feature
weight-based methods rely  on data  obeying specific  distribu-
tion assumptions, such as having a normal distribution. When
the actual data does not conform to such assumptions, the per-
formance of these methods may be severely affected. ReliefF
does not rely on such strict data distribution assumptions, and
it  can  handle  datasets  with  a  variety  of  distributions,  includ-
ing non-normal, skewed distributions, and data with complex
mixed  distributions.  In  the  field  of  fault  diagnosis,  the  rela-
tionship  between  fault  characteristics  and  fault  type  may  not
be a simple linear relationship.  In the case of  non-linear data
distributions, ReliefF can capture complex dependencies more
accurately.  It  can  be  used  to  analyze  the  correlation  between
features and labels according to their weights. In Algorithm 2,
ReliefF  is  used  to  evaluate  the  significance  of  original  fea-
tures , and the weights are stored in the set U. Note that the
larger the weights, the higher of the correlation of a feature to
the class label. To facilitate the next step, the feature weights
are  normalised  to [0,  1].  Next,  the  features  are  sorted  in
descending order according to their correlation, and the sorted
feature set is denoted as F' and the set of weights is re-denoted
as U'.

Second, features are grouped together based on correlation.
In order to make a more effective distinction between features
with different levels of correlation, the weights threshold is set
based  on  the  data  characteristics.  The  knee  point [42] M
(rounded  to  an  integer)  is  used  to  divide  all  the  features  into
two groups (i.e., the strongly correlated feature subset SF' and
the weakly correlated feature subset WF'). The weights of the
two  feature  subsets  correspond  to  the  sets SU' and WU'
respectively. The use of the knee point enables the automatic
determination of threshold weights and grouping based on the
original features’ intrinsic characteristics.

Third,  the  two  sets  of  features  are  initialized  separately.
Strongly  correlated  features  and  weakly  correlated  features
have  different  importance  for  classification  tasks.  To  better
preserve the population information, in the initialisation strat-

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

CHEN et al.: CORRELATION-GUIDED PARTICLE SWARM OPTIMIZATION APPROACH FOR FEATURE SELECTION IN FAULT DIAGNOSIS 5 



xi = (xi1, xi1, . . . , xi10)

egy proposed in this study, the correlation of the feature sub-
set is used to determine the probability of initialisation repre-
sented by P (Eq.  3).  In  Algorithm 2 (Line 7  to  Line 24),  the
strongly  correlated  feature  subset SF' and  the  weakly  corre-
lated feature subset WF' are initialised according to the proba-
bility P, respectively. In the Fig. 2, a simple illustration of the
proposed  strategy  can  be  given  by  taking  the  particle

 as an example.
 

P =
W1

W1+W2
(3)

W1 W2where  stands for the average value of SU' and  stands
for the average value of WU'.
 
 

1F 3F 4F 5F 6F 7F 8F 9F 10F2F

1 0 1 1 0 1 0 1 0 1

5F 2F 10F8F 6F 9F3F 7F 4F

Features:

Weights: [0.31, 0.45, 0.47, 0.18, 0.51, 0.41, 0.25, 0.52, 0.22, 0.43]

1F> > > > > > > > >Sorted list:

Rand: [0.53, 0.81, 0.31, 0.28, 0.76, 0.19, 0.24, 0.83, 0.12, 0.76]

< 0.74 > 0.74 ... < 0.74 > 0.74

P = 0.74, M = 6

Particle:

Sorted 
position:

0 1 1 1 1 1 1 0 0 00 1 1 1 1 1 1 0 0 0

 
Fig. 2.     Correlation-guided initialisation.
   

C.  Probability Updating Mechanism
The  particle’s  position  is  updated  by  Eq.2  in  standard

BPSO. In the process of calculating the probability of a posi-
tion  updating  taking  a  value  of  1,  the  velocity  is  taken  into
account.  To  better  describe  the  change  of  the  particle,  the
position value of each dimension of the particle is determined
by the flip probability TF in this work.

1

1+e
−vt+1

i j
1

1+(cd j−θ)ν

cd j

1
1+(cd j−θ)ν

cd j

1
1+(cd j−θ)ν

During  the  search,  there  are  some  features  with  moderate
correlations. They may be combined with features with Strong
or  weak correlations  to  produce  more  promising feature  sub-
sets.  Therefore,  in  order  to  fully  explore  the  features  with
moderate correlation, this section proposes a new transforma-
tion  function  to  redefine  the  probability  of  position  flipping
(Eq.  4).  Eq.  4  consists  of  two  parts,  where  can  map

the velocity to [0, 1], and  can adjust the size of the
flip  probability  using  correlation  of  features.  As  gets
closer  to  0.5  (the  more  moderate  the  correlation),  the  larger
the  value  of .  Therefore  the  value  of TF is  also
larger.  The probability  that  the position vector  corresponding
to the particle is flipped is also larger. As the  gets further
away  from  0.5  (the  stronger  or  weaker  the  correlation),  the
smaller  the  value  of .  Therefore  the  value  of TF is
also  smaller.  The  probability  of  the  particle’s  corresponding
position vector being flipped is also smaller. Within a certain
range,  the  shape  of  the  new transformation  function  satisfies
the  requirement  that  the  middle  output  value  is  large,  while
the output values on both sides are small. Thus, more promis-

ing  regions  (feature  space  with  moderate  correlation)  can  be
explored efficiently.
 

T F( j) = λ∗ 1

1+ e−vt+1
i j

+ (1−λ) 1
1+ (cd j− θ)ν

(4)

λ
Xt+1

i j Xt
i j

θ ν

λ

where TF(j)  is  the  flip  probability  of  the j-th  dimension  fea-
ture, and its value range is [0, 1]. Set  to adjust the range of
TF. , and  denote the position values of the i-th parti-
cle  on  the j-th  dimension  before  and  after  flipping,  respec-
tively.  After  analysis,  the  value  is  taken  as  0.5  and  the 
value  is  taken  as  2.  Sensitivity  analysis  will  be  performed to
determine the value of  in the experimental setting.

V t+1
i j

rand ≤ T F xt+1
i j

V t
i j

In  Algorithm  3,  the i-th  particle  is  taken  as  an  example.
Firstly, the velocity  and flip probability TF(j) of the par-
ticle  in  the j-th  dimension  needs  to  calculated  as  follows  by
Eq.  2  and  Eq.  4.  Then,  if  the j-th  dimension  feature  satisfies
the  random  event  ( ),  set  the  new  position  to
1− . Otherwise, the new position is the same as the original
position.  

D.  Sample Shrinkage Mechanism
If the problem is too complex and the dimensions of the fea-

tures  are  too  high,  PSO  is  susceptible  to  falling  into  local
optima. This subsection describes the proposed sample shrink-
age mechanism to overcome the deficiency.

pbest

pbest

There  has  been  a  substantial  amount  of  research  that  has
shown  that  changing  the  search  direction  is  a  very  effective
way of jumping out of the local optimum [43]. The particle’s
velocity  determines  its  search  direction  during  the  evolution-
ary process. From Eq. 1, when the values of gbest and 
are changed, the search direction of the population will also be
changed. The fitness value of the model will differ depending
on whether it has been trained with a different set of training
data.  Thus,  it  is  possible  to  have  an  impact  on  the  values  of
gbest and .  Each  change  of  the  fitness  value  indirectly
indicates that the population adjusts the search direction many
times  until  it  finds  a  new  search  direction.  Thus,  this  work
proposes changing the size of the training set  to find a better
solution by assisting the population in changing the direction
of the search.

ρ

As  shown  in  Algorithm  4,  the  proposed  sample  shrinkage
mechanism  is  explained  in  detail.  Particle  evaluation  begins
with  the  original  training  set T at  the  beginning  of  the  first
iteration. Then, samples of size  are taken from T in propor-
tion to the share of class labels to obtain a new training set T'
(Line 4). The number of iterations which gbest stops updating
is represented by NI. During the evolutionary process, if NI is
detected to be greater than a set threshold G,  it  indicates that
the  population  may  be  trapped  in  a  local  optimum.  Then  the
training set TS used in the previous iteration is detected to be
consistent  with T.  If  it  is  consistent, T' is  used  as  the new
training  set in  this  iteration.  Otherwise, T serves  as  the new
training  set (Line  5  to  Line  11).  When  the  value  of NI does
not exceed G, TS is still used to train the classification model
(Line 12).  Following that,  classification error rates and ratios
of  selected  features  are  combined  in  accordance  with  certain
weights to obtain the final fitness value (Line 14 to Line 18).
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Whenever the population falls into a local optimum, the train-
ing model from the previous iteration is no longer used. This
operation of changing the size of training set allows the parti-
cles to search over a wider field.

Algorithm 4: Sample Shrinkage Mechanism

Input: All particles; the number of particles; N, Dimension of fea-
tures, D; original training set; The training set from the previous iter-
ation; The number of iterations which gbest stops updating, NI.

Output: The fitness of all particles Fitness(i) (i = 1, 2,\ldots, N).
1:   for i = 1 to N do

←2:  　 TS  the training set from the previous iteration.
←3:  　 T  the original training set.
←4:  　 T'  take a part out of T.
≥5:  　 if NI  G then
≡6:  　　 if TS  T then

←7:  　　　 new training set  T'.
8:   　　else

←9:　　　 new training set  T.
10: 　　end
11: 　else

←12: 　　new training set  TS.
13: 　end
14: 　Training  the  model  with  the new  training  set through  five-

fold cross-validation.
←15: 　Error  Calculate the classification error rate.

16: 　Calculate the number of selected features in the i-th particle S.
←17: 　Sf  S / D. Feature selection rate.

←18: 　Fitness(i)  0.9 *Error+0.1 *Sf.
19: end

(i = 1,2, . . . ,N)20: return The fitness of all particles Fitness(i) .
  

E.  Algorithm Complexity
It can be solved by assuming the dataset has D features, and

the population has N particles.  CGBPSO’s complexity is  pri-
marily  determined  by  the  correlation-guided  initialisation
strategy,  probability  updating  mechanism and sample  shrink-
age mechanism. Correlation-guided initialisation strategy con-
sists  of  computing  the  ReliefF  weights  of  all  features.  The
computational  complexity  of  this  system  thus  equals O(D).
The probability updating mechanism uses the ReliefF weights
to  compute  the  probability  of  the  positional  update  with  the
probability updating mechanism. Hence, it performs O(N * D)
tasks  in  each  generation.  The  sample  Shrinkage  Mechanism
calculates  the  fitness  value  of  all  particles.  Its  computational
complexity  is O(N).  The  overall  complexity  of  CGBPSO  is
approximately O(D+N*D+2N).  

IV.  Experiment Design

In  the  following  section,  the  experimental  setup  is  descri-
bed,  including  the  dataset  composition,  comparison  approa-
ches, parameter settings, and sensitivity analysis.  

A.  Datasets
The  following  datasets  are  publicly  available  and  have

become a standard for testing different diagnostic approaches.
The features  of  the  original  vibration signals  are  extracted in
the  time  domain  frequency  domain  and  time  frequency,

respectively. Each dataset has different characteristics, and the
extracted  features  are  related  to  its  diagnostic  objects  and
operating  conditions.  The  following Table  I shows  the  basic
information about the datasets that are being used.
  

TABLE I 
Basic Information of the Datasets

Datasets #Features #Instances #Classes %Smallest
Classes

%Largest
Classes

WHU 35 180 4 25 25

CWRU 40 1687 6 29 14

JNU 40 1020 4 29 24

XJTU 48 1363 3 39 25

 
1) CWRU: This comes from the Case Western Reserve Uni-

versity Bearing Data Centre [44].
2)  XJTU: This  comes  from the  Institute  of  Design  Science

and Basic  Component  at  Xi’an Jiaotong University,  Shaanxi.
China  and  the  Changxing  Sumyoung  Technology  Co.,  Ltd.
(SY), Zhejiang. China [45].

3) WHU: This is provided by Wuhan University [46].
4) JNU: This is provided by Jiangnan University [47].  

B.  Comparative Approaches and Parameter Settings
To test  the  CGBPSO’s  capability  in  a  variety  of  scenarios,

we have selected the following state-of-the-art FS approaches
as comparison approache:

●  Bare  bones  PSO  with  Adaptive  Chaotic  Jump  Strategy
based Bi-Directional FS (BBPSO) [48],

●  Hybrid  FS  based  on  Correlation-guided  Clustering  and
PSO (HFS-C-P) [49],

●  Surrogate-Assisted  PSO  based  FS  with  Correlation-
Guided Updating Strategy (CUS-SPSO) [50],

● Dynamic Sticky binary PSO based FS (SBPSO-D) [51],
●  PSO-based  FS  with  Variable-Length  Strategy  (VLPSO)

[52].
●  A  Length-Adaptive  Genetic  Algorithm  With  Markov

Blanket (LAGAM) [53]
●  Multiple  filtering  algorithm  with  a  competitive  swarm

optimizer (MFCSO) [54]
The maximum number of iterations (max_iter) and popula-

tion  size  for  the  above  five  approaches  are  both  100.  In  the
following Table  II,  you  will  find  a  summary  of  the  main
parameters that were set in these five comparison approaches.
All  other  parameters  of  these  comparison  approaches  are  set
in accordance with the recommendations of the relevant litera-
ture. Each approach is run 30 times independently. 20% of the
samples in every dataset that are used as test samples and 80%
of the samples are used as training samples based on their pro-
portion  in  each  category.  When  training  is  complete,  a  five-
fold cross-validation approach is used to evaluate the classifi-
cation error rate. Based on its performance and clarity, the k-
nearest neighbour method is used in this approach, where k is
5. To assess the test accuracy, the subset of evolved features is
evaluated on the test set after training.  

C.  Sensitivity Analysis of Parameters
CGBPSO  has  three  key  parameters:  1)  sample  size  taken
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ρ
λ

from  the  training  set  ( ).  2)  the  weight  of  the  transfer  func-
tion  to  calculate  the  selected  threshold  ( ).  3)  the  threshold
(G) which gbest stops updating.

ρ
ρ

ρ

ρ ρ
ρ

ρ

ρ

In addition to determining the size of the scaled sample set,
 also determines the direction of the population search. This

section  sets  the  value  of  is  to  {1%,  5%,  10%,  15%,  20%,
25%,  30%}. Table  III illustrates  the  average  classification
accuracy  for  different  values  for  the  FS  problems.  It  is
remarkably clear that classification accuracy increases contin-
uously with an increase in  value, but when  value reaches
a certain value, increasing  value cannot further improve the
classification  accuracy,  and  even  a  decrease  in  accuracy
occurs. From the experimental results, the good value of  is
10%,  since  the  best  classification  results  are  achieved  on  all
the datasets. Therefore, the ratio  of the scaling factor to all
samples in the CGBPSO is set to 10%.
  

TABLE III 
The Results of Average Classification Accuracy

ρ values 1% 5% 10% 15% 20% 25% 30%

WHU 99.91 100 100 100 100 100 99.81

JNU 98.13 98.13 98.21 98.11 98.20 98.05 97.90

CWRU 88.07 88.12 88.70 87.79 86.91 86.79 87.27

XJTU 97.63 97.58 98.06 97.45 97.17 97.25 97.14
 

λ

λ
λ

λ

The  size  of  determines  the  impact  of  the  feature  weight
value on the updated position value. G is an important param-
eter that determines whether to resize the training set. For the
two  parameters  and G in  the  experiment,  11  different  val-
ues of  are set to {0.01, 0.1,  0.2,  0.3,  0.4,  0.5,  0.6,  0.7,  0.8,
0.9, 0.99}, and 5 different values of G are set to {5, 6, 7, 8, 9}.
The  CWRU  dataset  is  chosen  for  the  experiments.  This  is
because the medium number of features in the CWRU dataset
provides  a  more  moderate  scenario  for  parameter  validation.
Meanwhile,  rich  samples  and  multiple  types  of  labels  can
cover more fault  types and change scenarios,  thus testing the
adaptability and robustness of the parameters in a more com-
prehensive  way.  Finally,  55  different  combinations  are
obtained. Based on data from the CWRU dataset, Fig. 3 illus-
trates  the  average  training  accuracy  of  each  combination  on
the  CWRU  dataset.  Based  on Fig.  3,  it  can  be  seen  that  the
combination of the parameters {  = 0.9, G = 8} yields the best
performance.  We  have  the  same  observations  on  other
datasets  as well.  This lead to the CGBPSO model being able

λto  use  0.9  and  8  as  the  values  of  both  parameters  and G,
respectively.  

D.  Effect of CGBPSO With Different Classifiers
In the proposed FS approach, KNN is used as a classifier to

evaluate  the  performance  of  a  selected  subset  of  features.  In
order  to  investigate  the  effect  of  different  classifiers  in  the
proposed method, we use decision tree (dt) and naive bayesian
(nb)  instead  of  KNN  in  the  proposed  method,  which  are
referred to as CGBPSO-dt and CGBPSO-nb, respectively.The
parameter  settings  of  CGBPSO-dt  and  CGBPSO-nb  are  the
same  as  those  of  CGBPSO. Table  IV shows  the  results  of
CGBPSO-dt, CGBPSO-nb and CGBPSO in terms of the num-
ber of feature selections (AvgNF), running time (Time), aver-
age  classification  accuracy  (AvgAcc)  and  the  corresponding
standard deviation (Std).

From the Table IV, it can be seen that CGBPSO has higher
accuracy  values  than  CGBPSO-dt  and  CGBPSO-nb  on  the
three datasets. The highest classification accuracy is achieved
by  CGBPSO-dt  on  the  JNU  dataset.  This  suggests  that  the
selection  of  suitable  classifiers  can  further  contribute  to  the
higher accuracy of the proposed FS approach. In terms of the
number  of  features  selected,  CGBPSO selects  the  least  num-
ber  of  features  on  the  WHU  and  JNU  datasets.  In  terms  of
training time, CGBPSO is much shorter than CGBPSO-dt and
CGBPSO-nb. The shorter runtime reduces the cost of the fault
diagnosis  method.  In  summary,  the  proposed  FS  approach
with  KNN can better  evolve  a  subset  of  features  with  higher
classification.  

 

TABLE II 
Parameter Setting

Approaches Parameter values

BBPSO Number of features per domain T = 3, Number of iterations to compute the lifted average fitness value W = 10.

HFS-C-P c1 = c2 = 0.5 λ = 0.5, selected threshold .

CUS-SPSO
c1 = c2 = 1.49445 ω = 0.9−0.5∗ nc = 2, (iter/MaxIter), the number of runs for the correlation-guided probability strategy , two
constants (A and B) used to determine A = 0.15, B = 0.05.

SBPSO-D ustkS L ustkS U iLs iUs αThe fix number of steps  = 1*MaxIter/100, and  = 10*MaxIter/100,  = 0/n, and  = 10/n, the ratio  = 2.
VLPSO α η θc = 1.49445, w = 0.9-0.5*(iter/Maxiter), the max iterations for renew exemplars  = 7, the number of divisions  = 12,  = 9.

LAGAM pc pm pl α
β

The population size p = |F|/20, the rates of crossover  = 0.8, mutation  = 0.2, length changing  = 0.3, length changing oper-ator  =
0.1,  = 0.4.

MFCSO r1,r2,r3 ∈ [0,1] g1 = 0.1 g2 = g3 = g4 = 0.45 ptrans = 0.5Random numbers , weight value of task 1, 2, 3 and 4, , , transfer probability .
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Fig. 3.     Average results of 55 combinations of two parameters (calculate the
weight of the transfer function and the threshold which gbest stops updating).
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V.  Results and Discussions

This  subsection  conducts  several  experiments  to  verify  the
effectiveness  and  efficiency  of  CGBPSO.  Two  metrics  are
used in this study, namely classification accuracy and feature
subset size.  

A.  The performance of CGBPSO
All  six  approaches  are  illustrated  in Table  V,  where  the

average results are in bold, based on 30 independent classifi-
cations  of  the  four  datasets.  We  evaluate  the  performance  of
30 approaches using the Wilcoxon rank-sum test at 0.05. The
results  indicated that,  as  indicated by the percentages of “+”,
“−”, and “≈”, the proposed CGBPSO is significantly superior,
inferior, and similar to the compared approaches, respectively.
Friedman’s test determines the comprehensive performance of
the  proposed  approach.  As  shown  in  the  results  below,  the
word “Ranking” is  used  as  a  way  to  indicate  the  order  in
which they are approached. The first thing to notice is that the
CGBPSO approach has better average classification accuracy
across all the datasets than any of the comparison approaches,
as presented in Table V below. CGBPSO achieved a classifi-
cation  accuracy  of  100% in  all  30  independent  runs  on  the
WHU  dataset,  and  90.24% for  LAGAM,  with  CGBPSO
showing a  significant  improvement  over  LAGAM by 9.86%.
CGBPSO  achieves  the  greatest  improvement  on  the  JNU
dataset compared to the BBPSO approach. The average classi-
fication accuracies  of  CGBPSO and BBPSO are  98.21% and
85.24%, respectively, which is an improvement of 12.97%. As
determined  by  the  Friedman  test,  CGBPSO  performed  the
best,  followed by HFS-C-P, SBPSO-D, VLPSO, CUS-SPSO,
BBPSO,  LAGAM  and  MFCSO.  It  is  possible  that  the  lower
accuracy values obtained for the CWRU dataset are due to the
fact  that  simply  extracting  features  in  the  time  domain,  fre-
quency  domain,  and  time-frequency  domain  may  not  accu-
rately capture the features in the CWRU dataset that are most
relevant  to  fault  diagnosis.  A  significance  test  revealed  that
the CGBPSO approach is significantly more accurate than the
other approaches compared in most cases. CGBPSO based on
feature  correlation  has  been  shown  to  be  effective  in  this

study.
A  comparison  of  the  number  of  selected  features  between

CGBPSO  and  the  other  five  approaches  is  presented  in
Table  VI.  Based on all  of  the  datasets,  the  CGBPSO reaches
fewer features than the CUS-SPSO, SBPSO-D and LAGAM.
JNU  has  fewer  features  selected  by  CGBPSO  than  CUS-
SPSO,  and  its  classification  accuracy  is  higher.  Similarly,
VLPSO  and  MFCSO  select  fewer  featuresthan  CGBPSO.
During the  evolution of  VLPSO, the  length variation mecha-
nism cuts  down  the  number  of  selected  features  by  reducing
the  variation  in  length.  There  may,  however,  be  a  negative
impact  on  the  classification  performance  of  VLPSO  if  fea-
tures  are  quickly  removed.  As  demonstrated  in Table  VI,
CGBPSO  achieves  much  higher  average  classification  accu-
racy than VLPSO over all datasets. MFCSO uses multiple fil-
tering methods to generate multiple tasks. This strict filtering
mechanism results in the direct removal of a large number of
features. However, the classification accuracy of CGBPSO is
higher than that of MFCSO on all datasets. Overall, although
CGBPSO does not achieve the smallest feature set, it is able to
achieve  a  good  balance  between  improving  the  classification
process as well as reducing the number of features.  

B.  Analysis on the Three Strategies
This  subsection  investigates  the  contributions  of  the

designed strategies in the CGBPSO approach.
1)  Correlation-guided  Initialisation  Strategy: The  ran-

domly initialised CGBPSO approach is chosen as the compar-
ison approach, denoted as CGBPSO-W. To analyze the effect
of  the  strategy, Fig.  4 provides  the  training  curves  of  two
strategies  CGBPSO  and  CGBOPSO-W.  On  the  majority  of
datasets,  CGBPSO  has  the  highest  fitness.  CGBPSO  usually
generates better solutions than CGBPSO-W at the beginning.
Since  CGBPSO-W  is  primarily  focused  on  exploration,
instead of focusing on specific regions, it  finds more promis-
ing deposits than CGBPSO-W. The fitness value of CGBPSO
can  improve  over  CGBPSO-W  once  it  focuses  more  on
exploitation.

2)  Probability  Updating  Mechanism: By  comparing
CGBPSO using the proposed strategy with CGBPSO-C using
the  random  update  strategy,  this  experiment  evaluates  the
effectiveness  of  the  probability  updating  mechanism  in  the
CGBPSO.  The Table  VII records  the  average  number  of
selected  features  (AvgNF),  average  classification  accuracy
(AvgAcc), and standard deviation (Std) of AvgAcc. The pro-
posed  CGBPSO approach  achieves  a  higher  average  classifi-
cation  accuracy  on  all  the  datasets  in  comparison  with  the
existing CGBPSO approach, which can be seen in Table VII.
Based  on  this  evidence,  it  is  clear  that  the  proposed  update
strategy  effectively  uses  the  correlation  information  of  fea-
tures to create more combinations of features that have moder-
ate correlation, thus effectively enhancing the efficiency of the
search process for particles.

3)  Sample  Shrinkage  Mechanism: We  compare  the  results
using the proposed mechanism (CGBPSO) with those without
(CGBPSO-S).  As  shown  in Table  VIII,  CGBPSO  obtains
higher classification accuracy than CGBPSO-S on three out of
four  datasets,  including  WHU,  JUN  and  XJTU.On  the  three

 

TABLE IV
Compared Results of the Proposed Cgbpso

With Different Classifiers

Datasets Approaches Time AvgNF AvgAcc±Std

WHU

CGBPSO-dt 282.05 6.03 98.15±2.11(+)

CGBPSO-nb 383.41 5.60 98.80±2.02(+)

CGBPSO 13.96 4.27 100.00±0.00

JNU

CGBPSO-dt 402.44 7.50 98.92±0.86(≈)

CGBPSO-nb 806.22 7.00 98.92±1.01(≈)

CGBPSO 73.14 6.90 98.21±1.06

CWRU

CGBPSO-dt 752.66 10.90 88.27±1.65(≈)

CGBPSO-nb 671.38 11.57 88.59±1.63(≈)

CGBPSO 220.34 11.7 88.70±1.54

XJTU

CGBPSO-dt 433.82 9.40 97.80±0.88(≈)

CGBPSO-nb 792.99 8.77 95.12±2.45(+)

CGBPSO 127.00 9.87 98.06±0.77
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datasets,  compared  with  CGBPSO-S,  the  average  classifica-
tion accuracy of CGBPSO is increased by 0.09%,  0.07% and
0.47% respectively,  and  the  feature  selection  number  is
reduced by 1.3, 0.36 and 0.2 respectively.  

VI.  application

As  a  means  of  verifying  the  effectiveness  of  the  proposed
fault  diagnosis  approach,  this  section  applies  the  proposed
CGBPSO approach to a real electromechanical system.  

A.  Problem Description
The  experiments  carried  out  in  this  section  are  carried  out

using the experimental platform for electromechanical system
fault diagnosis, known as PT500Mini. This experimental plat-

form can be seen in Fig. 5. This test bench consists of a three-
phase asynchronous motor, a frequency converter, a bearing, a
gearbox  for  driving  the  motor  and  a  powder  magnetic  brake
for  stopping  it.  The  shaft  is  driven  by  a  motor  that  runs  at  a
certain  speed  and  uses  a  powder  magnetic  brake  to  simulate
the  load.  Vibration  signals  under  five  kinds  of  states  will  be
collected using the experimental equipment through the accel-
eration  sensors  (magnetic  suction  and  screw)  placed  on  the
bearing upper end.

There  is  a  sampling  frequency  of  10  kHz  and  a  rotation
speed  of 1200 revolutions  per  minute.  A  total  of 1178 sam-
ples are collected. The bearing type used in the experiment is
a  deep  groove  ball  bearing  (deep  groove  ball  bearing)
SKF6205, which has an inner diameter of 25 mm and an outer

 

TABLE V 
Classification Accuracies of the Eight Approaches

Datasets BBPSO HFS-C-P CUS-SPSO SBPSO-D VLPSO LAGAM MFCSO CGBPSO

WHU 92.50±5.23(+) 100.00±0.00(≈) 98.10±4.62(+) 100.00±0.00(≈) 95.12±5.68(+) 90.24±3.86(+) 93.56±5.09(+) 100.00±0.00

JNU 88.36±5.81(+) 98.11±2.88(≈) 92.02±6.18(+) 91.40±6.04(+) 97.52±1.017(+) 96.01±4.05(+) 85.24±9.81(+) 98.21±1.06

CWRU 88.07±0.99(+) 83.61±2.02(+) 88.25±1.22(+) 88.43±0.98(+) 83.79±10.50(+) 87.81±1.27(+) 84.58±1.55(+) 88.70±1.54

XJTU 97.73±1.17(+) 98.02±0.89(≈) 96.48±1.38(+) 97.38±1.17(≈) 98.03±0.86(≈) 95.22±1.42(+) 97.13±1.79(+) 98.06±0.77

+\≈\− 4\0\0 1\3\0 4\0\0 2\2\0 3\1\0 4\0\0 4\0\0

Ranking 6 2 5 3 4 7 8 1

 

TABLE VI 
Number of Selected Features of the Eight Approaches

Datasets BBPSO HFS-C-P CUS-SPSO SBPSO-D VLPSO LAGAM MFCSO CGBPSO

WHU 2.97 2.00 9.33 6.23 2.53 23.63 1.63 4.27

JNU 9.57 4.30 16.43 13.27 4.83 18.17 3.30 6.90

CWRU 6.87 13.03 14.40 11.80 6.37 29.47 6.47 11.70

XJTU 5.20 5.00 14.33 12.50 4.87 31.33 4.98 9.87
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Fig. 4.     Convergence curves of CGBPSO and CGBPSO-W.

 

TABLE VII
Compared Results oF CGBPSO and CGBPSO-C

Datasets Approaches AvgNF AvgAcc±Std

WHU
CGBPSO-C 1.47 99.58±2.28(≈)

CGBPSO 4.27 100.00±0.00

JNU
CGBPSO-C 4.67 98.04±1.99(≈)

CGBPSO 6.67 98.21±1.06

CWRU
CGBPSO-C 7.00 86.84±1.82(+)

CGBPSO 11.7 88.70±1.54

XJTU
CGBPSO-C 5.24 97.90±1.04(≈)

CGBPSO 9.17 98.06±0.77

 

TABLE VIII
Compared Results of CGBPSO and CGBPSO-S

Datasets Approaches AvgNF AvgAcc±Std

WHU
CGBPSO-S 5.57 99.91±0.51(≈)

CGBPSO 4.27 100.00±0.00

JNU
CGBPSO-S 7.03 98.14±1.36(≈)

CGBPSO 6.67 98.21±1.06

CWRU
CGBPSO-S 10.13 88.10±1.36(≈)

CGBPSO 11.7 87.70±1.54

XJTU
CGBPSO-S 9.37 97.59±1.26(+)

CGBPSO 9.17 98.06±0.77
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diameter of 52 mm, as well as a width of 15 mm and a weight
of 0.13 kg. The bearing can be in five states, which are as fol-
lows:  bearing  inner  ring  fault,  bearing  outer  ring  fault,  bear-
ing  comprehensive  fault,  rolling  element  fault,  and  normal
condition. Fig. 6 shows four of these fault states. With the col-
lected  time  series  signals,  a  27-dimensional  feature  dataset
(namely SDU) is constructed.
 
 

(a) Ball fault (b) Compound fault

(c) Inner race (d) Outer race fault
 
Fig. 6.     The different fault bearings.  

B.  Result and Analysis
Table IX provides experimental results on the SDU dataset.

On the basis of Table IX, we are able to see that the CGBPSO
approach takes a shorter amount of time to run than the rest of
the  approaches  that  have  been  compared.  A  significant
increase  in  classifier  accuracy  can  be  attributed  to  the
CGBPSO approach when it comes to the detection of signifi-
cance  as  compared  to  all  other  approaches  that  were  com-
pared.

By  using  the  proposed  CGBPSO  approach,  14.8% of  the
original  number  of  features  are  selected,  which  greatly
reduces  the  original  dataset’s  size.  The  proposed  CGBPSO
approach  selects  no  fewer  features  than  the  HFS-C-P
approach. As a result of the fast partial feature removal, HFS-
C-P  has  the  smallest  subset  of  features.  In  conclusion,  it  can

be seen that the CGBPSO only needs to use a shorter running
time  to  obtain  a  subset  of  features  with  better  discriminative
ability in fault diagnosis.  

VII.  Conclusions

This  paper  presented  a  PSO-based  feature  selection
approach for fault diagnosis, called CGBPSO. To compensate
for particle oscillations, the initialisation and updating phases
relied on correlation information of the features. By changing
the  size  of  the  training  set,  more  productive  regions  were
explored by adjusting the search direction of populations that
fall into local optimums.

On all datasets, the proposed CGBPSO approach had higher
classification  accuracy  than  the  state-of-the-art  methods  and
was  able  to  evolve  a  small  subset  of  features  in  a  shorter
period  of  time.  This  was  due  to  the  effectiveness  of  correla-
tion  information  in  the  feature  selection  process.  The  results
demonstrated  that  the  correlation-guided  initialisation  strat-
egy  and  probability  updating  mechanism  could  effectively
improve  population  convergence  and  search  abilities  while
continuously improving their quality. Moreover, the proposed
mechanism  could  successfully  maintain  population  diversity
during  search  operations.  Based  on  experimental  results  on
real-world  fault  diagnosis  problems,  we  found  that  the
CGBPSO approach could evolve a feature subset with a clas-
sification  accuracy  of  92.8%,  and  the  size  of  feature  subset
was only 14.8% of the original dataset. In summary, CGBPSO
could  be  successfully  applied  to  PSO-based  fault  diagnosis
approaches to achieve a good fault feature subset.

In  our  future  work,  we  will  study  various  types  of  feature
extraction  algorithms  in  depth,  compare  and  analyse  their
advantages and shortcomings, and construct a more complete
and efficient feature extraction system to extract the key infor-
mation  that  has  been  missed.  This  will  enable  us  to  further
explore  the  performance  of  the  proposed  method  on  more
complex fault diagnosis problems.
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