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Abstract—This paper studies the Dynamic Electric Dial-A-
Ride Problem (DEDARP), which is a combinatorial optimisation
problem that has applications in real-world ridesharing services
with electric vehicles. In addition to the challenges from classical
scheduling and route planning, we consider here the extra
challenge of making real-time dispatching decisions in dynamic
environments with new requests arriving over time and selecting
proper times for the vehicles to recharge. To solve DEDARP
effectively, we propose a Genetic Programming Hyper-Heuristic
(GPHH) that evolves heuristics/policies to dispatch vehicles in real
time. We have developed a simulation process that generates a
solution for any given instance by two policies, one for vehicle
allocation and the other for request allocation, and design fitness
evaluations based on the simulation. Moreover, we propose
a multi-tree GP to evolve these two policies simultaneously,
which makes use of advanced terminals to comprehensively
represent the state. Experimental results on a wide range of
instances show that GPHH can evolve effective policies that make
significantly better real-time dispatching decisions than human-
designed policies based on prior knowledge.

I. INTRODUCTION

The Dial-a-Ride Problem (DARP) is a well known chal-

lenging combinatorial optimisation problem with applications

in modern on-demand public transport services [1]. It aims to

dispatch vehicles to serve a set of customer requests with pick-

up and drop-off locations within given time windows. Unlike

traditional taxi/Uber services, passengers may share the rides

in DARP; thus, limited detours from the most direct routes

between the customers’ pick-up and drop-off locations may oc-

cur. This way, the overall efficiency may be greatly improved

and costs reduced. This paper investigates more specifically the

Dynamic Electric Dial-a-Ride Problem (DEDARP), which is a

special DARP variant in which electric vehicles are considered

with their necessity of charging. Moreover, online decision-

making is necessary as knowledge of requests to serve only

becomes available over time.

For dynamic optimisation problems, existing methods can

be mainly divided into three categories: (1) robust proactive

approaches which aim to find robust solutions that can perform

reasonably well (possibly with naive recourse operators) in

all possible environments; (2) completely reactive approaches

that make real-time decisions without needing a preplanned

solution; and (3) proactive-reactive approaches that consist

of an offline-optimised solution and a (fast) re-optimisation

process applied when an environment change is detected.

We consider solving the DEDARP by a reactive approach,

i.e., learning policies that can make effective real-time de-

cisions. This approach has shown success in many dynamic

optimisation and decision-making problems [2]–[4] due to its

ability to make effective and truly real-time decisions after an

off-line training procedure. In contrast, the robust proactive

approach is often highly inflexible, and the robustness of the

obtained single solution is usually limited. The proactive-

reactive approach is more widely used in a rolling horizon

manner, but it is non-trivial to predefine the trade-off between

the effectiveness and efficiency of re-optimisation, since the

time allowed for re-optimisation is often unknown in advance.

For learning real-time decision-making policies, existing

studies mainly consider reinforcement learning and Genetic

Programming (GP). Reinforcement learning methods formu-

late the problem as a Markov Decision Process (MDP) by

defining the states, possible actions, a policy, and a reward

function. However, the performance of reinforcement learning

highly depends on the problem-specific design, especially the

reward function, and is also sensitive to parameter settings

such as the learning rate. Moreover, with the commonly

adopted neural network representation of the policy, it is

difficult for users to understand the learned policy. A GP

approach learns the policies as a hyper-heuristic. Each possible

policy is an individual in GP, and its fitness is evaluated

by applying the policy to a set of real-time decision-making

simulations. Compared to reinforcement learning, GP requires

no specific reward function, the learning process often is more

stable, and it has higher potential to obtain more interpretable

policies due to its symbolic representation.

In this paper, we aim to solve DEDARP by a GP Hyper-

Heuristic (GPHH), with the following research objectives:

1) We develop a DEDARP simulation to reflect real-world

scenarios. Given a DEDARP instance and a policy for

the real-time decisions, the simulation always generates

a feasible solution in terms of all the constraints.

2) We design a set of potentially useful terminals/features

to form a rich search space of policies.

3) We develop a GPHH method with a simulation-based

fitness evaluation based on the designed terminal set.979-8-3315-3431-8/25/$31.00 ©2025 IEEE
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4) We verify the effectiveness of the GPHH method by

comparing with manually designed rules on a wide range

of test instances.

The rest of the paper is organised as follows. Section II gives

background information, including the problem description

and related work. Section III describes the proposed GPHH

method. The experimental studies are conducted in Section

IV. Finally, the paper is concluded in Section V.

II. BACKGROUND

A. Problem Description

The Dynamic Electric Dial-a-Ride Problem (DEDARP) we

consider here is defined as follows. We are given a trans-

portation network G(V,A). Each node v ∈ V is a relevant

location in the considered geographical area, and each directed

arc (u, v) ∈ A represents the fastest route from node u
to node v. For each arc (u, v), we know the travel time

∆t(u, v) and the battery charge consumption ∆b(u, v). There

are in total N requests arriving in real time. Each request

i ∈ {1, ..., N} is characterised by an arrival time tarr
i

∈ [0, T ]
(T is the considered time horizon), pick-up and drop-off

locations ⟨v↓
i
, v↑

i
⟩ ∈ V × V , a demand (number of customers)

di, a time window for the pick-up [tstart
i

, tend
i

] ⊂ [0, T ], and a

maximal ride time ∆tmax
i

. These requests are to be served by

a fleet of K Electric Autonomous Vehicles (EAVs). Each EAV

k ∈ {1, ...,K} has a customer capacity Q, a battery capacity

B and an initial battery charge level bk(0) ∈ [0, B]. There are

C charging stations in the transportation network, where the

EAVs can recharge. Each charging station c ∈ {1, ..., C} has

a location ℓc ∈ V and a charging rate α.

The goal of DEDARP is to dispatch the EAVs to serve

the requests in real time. In the dynamic environment, the

information of a request i is unknown until its arrival time

tarr
i

. A DEDARP solution X = {X1, ..., XK} consists of a

route for each of the K vehicles. Each vehicle route Xk is

a sequence of visits of the pick-up, drop-off, and charging

station locations. The objective is to minimise the total travel

time of the vehicles in serving the requests, plus a penalty for

requests served after tend
i

. Specifically,

min

K∑

k=1

∆t(Xk) + ρ ·

N∑

i=1

max{t↓
i
− tend

i
, 0}, (1)

where ∆t(Xk) is the total travel time of the vehicle route Xk,

t↓
i

is the pick-up time of request i, and ρ is a weight to balance

between the total travel time and the penalty.

The following constraints are to be met in DEDARP.

• Each request i is served by exactly one vehicle, and v↓
i

must be visited before v↑
i

in the route.

• If a vehicle arrives at a pick-up location v↓
i

earlier than

tstart
i

, it has to wait until tstart
i

to start the service.

• For each request, the service duration is zero (it is

assumed to be integrated in the travel time).

• For each request i, the maximal ride time must not be

exceeded, i.e., t↑
i
− t↓

i
≤ ∆tmax

i
.

• Each vehicle must always retain a positive charge level.

• Only an empty vehicle that currently fulfilling no requests

can go to recharge. Once it starts recharging, it cannot

leave until fully charged. The charging time is (B−bk)/α,

where bk is the battery level of the vehicle when it arrives

at the charging station.

• Once a vehicle becomes empty, it can accept requests

from the waiting pool (see below) or go to recharge.

• Once a vehicle finishes charging, it can accept requests

from the waiting pool, but cannot go to recharge again.

• If an empty vehicle does not accept any requests and does

not go to recharge, it goes into waiting, where it may only

accept newly arrived requests.

B. Related Work

1) Existing Related Methods: DEDARP inherits the techni-

cal challenges of the complex characteristics of DARP, and in-

troduces the challenges of battery charging decisions and real-

time dynamic environment decision-making. So far, there are

only a few existing studies that consider all these challenges.

Bongiovanni et al. [5] considered a DEDARP with dynamic

request arrivals and proposed a two-phase heuristic approach

to deal with each dynamic request arrival. Specifically, once

a new request arrives in real time, it is first attempted to be

inserted into the current remaining vehicle routes. Then, local

search is used to improve the routes until the next request

arrives. In [6], a new learning large neighborhood search was

developed to improve performance during the second phase

of the aforementioned method. Kullman et al. [7] formulated

the problem as a Markov Decision Process (MDP) and used

deep reinforcement learning to learn a policy to make real-time

decisions for electric vehicles.

Other variants of the problem that consider only subsets

of the above challenges are more widely studied. The basic

DARP model has been extensively investigated in the past

decades, and there have been many exact methods (e.g., [8],

[9]) and meta-heuristic approaches (e.g., [10]–[12]) proposed.

Comprehensive surveys can be found in [1], [13]. The static

electric DARP has been less investigated than the basic DARP

variant, but still some exact methods (e.g., [14]) and meta-

heuristics ( [15]–[19]) have been proposed for it.

The dynamic DARP without the battery/recharging con-

straints is considered in some existing studies. For example,

Coslovich et al. [20] proposed a two-phase heuristic approach

for it. In the first phase, the method searches a neighbourhood

of the current route until the vehicle arrives at the next stop. In

the second phase, if a new request arrives, then it is inserted

into the route based on the updated neighbourhood in real time.

Tafreshian et al. [21] developed a similar two-phase method,

where a pool of candidate solutions are found offline, and the

best solutions are selected on-the-fly. Sayarshad et al. [22],

[23] formulated the dynamic DARP as a MDP, and proposed

non-myopic pricing policies to make effective and efficient

decisions during the process. Heitmann et al. [24] proposed a

method that accelerates value function approximations under

the MDP formulation. Liu et al. [25] developed a guided

insertion method for solving dynamic large-scale DARP in-
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stances with up to 300,000 requests with real-time request

arrivals. It uses machine learning techniques to learn simplified

routes, called vehicle travel patterns, from historical data of

the same/similar distributions. The learned travel patterns can

perform effective real-time insertion of new requests. Gaul

et al. [26] proposed a rolling horizon approach that divides

the decision process into sliding windows, each of which

is a static subproblem to be re-optimised by mathematical

programming in real time. Amiri et al. [27] developed an

accelerated column generation method to carry out real-time

re-optimisation whenever a request arrives. In addition to

dynamic DARP, there are existing studies for related dynamic

routing problems, such as [28], [29].

2) Genetic Programming for Policy Learning: GP has

been successfully employed in hyper-heuristic optimisation for

learning policies that can make effective and efficient real-

time decisions in complex optimisation problems involving

dynamic and/or stochastic environments, such as scheduling

heuristics for dynamic job shop scheduling [3], [30], [31],

routing policies for dynamic routing problems [32]–[35], and

real-time resource allocation in cloud computing [36], [37].

However, GP has not yet been considered for DEDARP.

III. THE PROPOSED METHOD

Our GPHH for DEDARP is illustrated in Fig. 1. It consists

of a training phase and a test phase. During the training phase,

given a set of training DEDARP instances, along with the

defined terminals, functions, and other parameter settings, GP

is used to evolve a population of individuals. Each individual

is a pair of a vehicle allocation policy (a policy used to select

vehicles) and a request allocation policy (a policy used to

select requests) (πveh, πreq), where each policy is represented

as a tree.

The evolutionary process follows a standard GP process.

At first, we initialise each policy in each individual by the

ramp-half-and-half method and evaluate each initial individual

(details shown in Section III-C). In each generation, we create

an empty new population, and copy the top individuals from

the current population into it (i.e., elitism). Then, we keep

generating offspring to fill the new population until it is

full. For each offspring generation, we select the parent(s) by

tournament selection and randomly select a genetic operator

(crossover, mutation, or reproduction) to generate offspring

from the parent(s). For crossover, we apply the diversity-

preserving crossover operator [38], which has shown to be

effective in multi-tree GP. Given two pairs of policies as

parents, this operator randomly selects one type of policy from

both parents and conducts standard tree-based crossover on

them. Then, it swaps the other type of policy between the

two parents. For mutation, given a pair of policies as the

parent, we randomly select a policy and conduct standard tree-

based mutation on it. More details about these crossover and

mutation operators can be found in [38]. For reproduction, the

select parent is directly copied as the offspring. Finally, we

evaluate the fitness of each offspring individual.

The evolutionary process yields at its end the overall best

individual found to be later deployed to the unseen test

instances during the test phase. The best individual is the one

across all generations that generalises the best to an unseen

validation instance set.

Fig. 1. Flowchart for the proposed GPHH method for DEDARP.

A. Representation of Individuals

The proposed GPHH evolves the vehicle allocation pol-

icy and request allocation policy simultaneously, and thus

adopts a multi-tree representation. Each individual contains

two trees, one for the vehicle allocation policy and the other

for the request allocation policy. An example of the multi-

tree representation is shown in Fig. 2. In the example, the

vehicle allocation policy πveh = TVPU∗CRD, where TVPU
indicates the travel time from the vehicle to the pick-up

location of the request, and CRD represents the crowdedness

of the region of the request. The request allocation policy

πreq = TVPU + SLACK, where SLACK is the slack of the

request1. Depending on the defined terminal, function sets, and

maximal tree depth, we are able to obtain much more complex

policies than the two shown in Fig. 2.

Fig. 2. An example of the multi-tree representation in the proposed GPHH.

B. Terminals and Functions

Suitable problem-specific terminals and functions are es-

sential for determining the search space of GP. For DEDARP,

we aim to design a minimal terminal set that enables a most

effective decision-making for the vehicles and requests. To this

end, we design the terminals based on our prior knowledge

1Feature details will be given in Table I.
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about the most relevant/useful features for dispatching vehicles

to requests, which are given in Table I. They are categorised

into three groups: vehicle features V, request features R, and

features of a (vehicle, request) pair (V,R).

TABLE I
TERMINALS USED IN THE PROPOSED GPHH FOR DEDARP.

Symbol Group Description

TVPU (V,R) Travel time from the vehicle to the pick-up location
of the request.

COST (V,R) Expected cost (additional objective value caused) for
the vehicle to serve the request.

OBV (V,R) The best (smallest) waiting time out of all vehicles
other than the specified vehicle.

DEM R Demand of the request.
DUR R Request duration: travel time from the pick-up to the

drop-off location of the request.

SLACK R Slack of the request: tend
i

minus current time minus
earliest arrival time of all the vehicles.

CRD R Crowdedness of the request, estimated by the average
travel time from its pick-up location to all the pick-
up and drop-off locations of the existing requests.

CHRQ R Whether the request is a recharging decision or an
actual request (the two are considered in the same
capacity by the problem simulation).

RQ V Remaining capacity of the vehicle.
RT V Remaining travel time of the vehicle due to its

remaining battery.
FRT V Remaining travel time of the vehicle due to its

remaining battery at its latest known point.
VSLACK V Vehicle slack: the minimal slack of the requests in

the vehicle’s planned route.
TVC V Travel time from the vehicle to the closest charging

station.

As function set we use {+,−, ∗, /,min,max}, which are

the commonly used functions in GPHH for dynamic combina-

torial optimisation problems. The “/” operator is the protected

division, which returns one in case of a division by zero.

C. Fitness Evaluation

The fitness evaluation is the key component that distin-

guishes the proposed GPHH for DEDARP from existing

GPHH methods for other problems. The evaluation scheme

we use is defined as follows (also shown in Fig. 3). Given an

individual (πveh, πreq) to be evaluated and a set of training

instances, our scheme runs a DEDARP discrete-event sim-

ulation on each training instance by using the individual’s

policies as the decision-making policies for the simulation,

generating a corresponding solution. Each generated solution

is then evaluated in terms of the objective function. Finally,

the fitness is calculated as the mean normalised objective value

among all the generated solutions. Specifically,

fit(πveh, πreq) =
1

|P train|

∑

P∈P train

ôbj(X(πveh, πreq;P )), (2)

where ôbj(·) is the normalised objective value, and

X(πveh, πreq;P ) is the solution obtained by the DEDARP

disrete-event simulation with (πveh, πreq) on instance P .

Fig. 3. The fitness evaluation process.

Fig. 4. The DEDARP discrete-event simulation.

D. Simulation Description

Details of the DEDARP discrete-event simulation are shown

in Fig. 4. Given an instance, the state and event queue are first

initialised: All vehicles are waiting at their initial locations

with empty routes, and the event queue is set to the arrival

events of all the requests. Then, the events in the queue are

triggered one by one until the event queue becomes empty.

Finally, the vehicle routes along with the departure and arrival

times are returned as solution.

There are three types of events: (1) when a new request

arrives, (2) when a vehicle completes a sub-route, i.e., a

sequence of connected requests has been fulfilled and the EAV

becomes empty, and (3) when a vehicle has been recharged.

These events are triggered in increasing order of their time

(e.g., arrival time of the request, time when charging finished).

The processes triggered by the three types of events are shown

in Figs. 5–8. Note that when triggering each event, a new event

might be created and inserted into the event queue.

When a new request i arrives (Fig. 5), the vehicle allocation

policy is called to calculate the priority value for each feasible

waiting vehicle to the new request. Feasibility is determined

by whether a vehicle can serve a request subject to battery,
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Fig. 5. Handling a request arrival event.

Fig. 6. The constructive heuristic to complete a vehicle sub-route.

demand, and maximal ride time constraints. If all the vehicles

reject the new request (e.g., their priority values for the request

exceed the threshold of zero), then we add the request to

the waiting pool. Otherwise, we select the vehicle with the

smallest priority value among those accepting the request.

Then, we use a constructive heuristic to complete that vehicle’s

sub-route, and lastly, we execute the sub-route.

The constructive heuristic is shown in Fig. 6. At each step,

the request allocation policy is called to calculate the priority

value for each feasible waiting request to the vehicle whose

sub-route is being constructed. If all the requests are rejected

(e.g., their priority values for the vehicle exceed the threshold

of zero), then it yields the vehicle sub-route. Otherwise, it

inserts the accepted request with the lowest priority value to

the sub-route greedily.

When a vehicle becomes empty again (Fig. 7), its sub-route

is set to empty, and the request allocation policy is called to

calculate the priority value for each feasible waiting request,

as well as a recharging decision (a proxy request that involves

recharging the vehicle at the nearest charging station). If all

the candidates are rejected (e.g., their priority values for the

vehicle exceed the threshold of zero), then let the vehicle wait.

Otherwise, we select the candidate with the lowest priority

value. If the recharging decision is selected, then the vehicle

goes to recharge. Otherwise, we set the vehicle sub-route to be

the selected request, complete the sub-route by the constructive

heuristic, and then execute the sub-route.

Fig. 7. Handling a vehicle empty event.

Fig. 8. Handling the vehicle recharged event.

When a vehicle finishes recharging (Fig. 8), follow the same

process as when a vehicle becomes empty, except that the

charging decision is excluded from the candidate pool.

IV. EXPERIMENTAL STUDIES

A. Experiment Settings

In the experiments, we generated a set of synthetic

DEDARP instances as follows. We randomly sampled N re-

quests over a 24-hr time horizon. The locations of the requests

were sampled uniformly at random from the [−1000, 1000]×
[−1000, 1000] euclidean square. Travel times between each

pair of locations were set to the Euclidean distance multiplied

by a factor ϕ plus a constant service duration tserv, i.e.,

∆t(u, v) = ϕ · ||u − v||2 + tserv. The energy consumption

was set to the Euclidean distance multiplied by a factor

β, i.e., ∆b(u, v) = β · ||u − v||2. The arrival time of the

requests follows a homogeneous Poisson process. The start

time for each pickup is sampled uniformly after its arrival

time tstart
i

∈ [tarr, tarr +∆T ] with the end of the time window

being 15 minutes after its arrival time tend
i

= tarr + 15. For
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TABLE II
THE PARAMETERS FOR GENERATING THE INSTANCES.

Parameter Meaning Value(s)

N Number of requests 10, 20, 50
K Number of EAVs 2
C Number of charging stations 3
T Time horizon (mins) 1440
Q Request capacity 3
B Battery capacity 15.0
β Energy consumption rate 0.0005
α Charging rate 0.05
tserv Service duration 0
φ Travel time rate 0.01
ρ Weight of penalty in the objective 2.0
∆T Arrival time constant 180.0

the sake of simplicity, the demand of all the requests were set

to one. Table II shows the parameters for instance generation.

Based on the number of requests, there are three DEDARP

scenarios, i.e., 10, 20, and 50 requests. For each scenario,

we randomly generated 250 training instances, 500 validation

instances, and 500 test instances.

As there is no existing rule or learning algorithm for

DEDARP, we manually designed intuitive policies based on

two heuristics: nearest neighbour and lowest cost. For the

nearest neighbour heuristic, at each decision point, the priority

value is defined as the distance between the considered vehicle

and request. For the lowest cost heuristic, at each decision

point, the priority value is defined as the increase in objective

value caused by the resulting sub-route. During training,

validation, and test, the nearest neighbour policy was used

to normalise the objective values, i.e.,

ôbj(X(πveh, πreq;P )) =
obj(X(πveh, πreq;P ))

obj(X(πNN, πNN;P ))
. (3)

In training, the GP parameters were set in a standard manner,

in which the population size is 1000, the number of genera-

tions is 50, the tournament size for parent selection is 7, and

the crossover, mutation, and reproduction rates are 0.8, 0.15,

and 0.05, respectively. The 250 training instances were divided

into 50 subsets, each with 5 instances to be used in the fitness

evaluation for a particular generation. After the training, the

best individual of each generation was evaluated using the

500 validation instances, and the one with the best validation

performance was selected. We conducted 30 independent GP

runs, and compared the 30 results with the nearest neighbour

policy by normalisation. All the experiments were run on Intel

Core 4.8 GHz and 16G memory.

B. Results and Discussions

1) Test Performance: The first graph in Fig. 9 shows the test

performance of the GP-evolved rules in the three scenarios. It

is clear that in all the scenarios, the GP-evolved rules achieved

much better performance than the nearest neighbour policy

(i.e., the normalised values are significantly smaller than one).

Furthermore, the advantage of GP greatly increases with the
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Fig. 9. Normalised test objective values, GPHH training time, and average
decision time of the simulation during test.

TABLE III
RAW COMPARISON OF TEST OBJECTIVE VALUES (MEAN ± STANDARD

DEVIATION).

Scenario Nearest Neighbour Lowest Cost GP Policies

10-Request 371.47 309.39 246.46± 5.92
20-Request 1088.43 791.73 557.78± 20.15
50-Request 8216.66 9308.85 2478.54± 336.21

problem size. For the small scenario (10 requests), the objec-

tive values were about 65% of those obtained by the nearest

neighbour policy, and for the large scenarios (50 requests), the

objective values were around 30% of those obtained by the

nearest neighbour policy. This trend is particularly noticeable

given the additional context provided by the raw objective

values as shown in Table III, where GP policies significantly

outperformed the two manual policies on all the scenarios.

2) Computational Time: The second graph in Fig. 9 shows

the training time of the GP runs. For the scenario with

10 requests, the training time was very short (less than 10

seconds). For the scenario with 20 requests, the training time

increased to about 50 seconds. For the scenario with 50 re-

quests, the training time increased to 500 seconds on average.

In summary, while GP training time increases drastically with

problem size, it ultimately remains affordable—though it is yet

to be seen if this holds true for even larger problem instances

with hundreds or thousands of requests.

The third graph in Fig. 9 shows the distribution of time

taken by the GP-evolved rules at each decision point in the

simulation for the three scenarios. It can be seen that the
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TABLE IV
AVERAGE POLICY SIZE OF THE BEST INDIVIDUALS (MEAN ± STANDARD

DEVIATION).

Scenario VP Size RP Size Combined Size

10 Requests 31.67± 20.17 41.33± 17.59 73.00± 27.78
20 Requests 39.80± 17.42 40.87± 21.67 80.67± 31.62
50 Requests 21.87± 16.99 46.80± 21.97 68.67± 27.85

decision time always is negligible (less than 1 millisecond)

in all scenarios. Of course, the decision time increases with

the problem size, but it remains within limits to clearly meet

practical real-time decision-making requirements.

C. Further Analysis

Table IV shows the size (number of nodes) of the vehicle

allocation policy (VP) and request allocation policy (RP)

obtained by GP in the three scenarios. The combined size is

the sum of the two policy sizes. From the table, we can see that

the policy size is relatively independent of the instance size.

In other words, the policy does not become more complex for

larger instances. In addition, we also observe that the vehicle

allocation policy tends to have a smaller size than the request

allocation policy. This is possibly due to the fact that the

request allocation policy is used in a greater variety of decision

states and thus, requires higher complexity.

1) Feature Importance: Fig. 10 shows the frequency of

terminals in the best GP individuals obtained in the three

scenarios. From the figure, we see that the terminal frequencies

are relatively consistent across all scenarios. The COST,

SLACK, and OBV were among the most often-used terminals

in the best policies. This is consistent with our prior knowledge

that (1) COST is directly related to the objective value; (2)

SLACK is directly related to the likelihood of delaying the

serving of a request, and (3) OBV reflects the best alternative

option. Besides, the other terminals were also used reasonably

often as illustrated in the figure.

2) Structural Analysis: Fig. 11 and Fig. 12 show an ex-

ample vehicle allocation policy and request allocation policy

obtained for the scenario with 50 requests. It can be seen that

the request allocation policy tends to be more complex than

the vehicle allocation policy. This is likely due to its usage

in a wider variety of decisions, i.e., the vehicle allocation

policy is only used for incoming requests, whereas the re-

quest allocation policy is used for the constructive heuristic,

allocation upon a vehicle becoming empty, and allocation

upon a vehicle becoming fully recharged. Furthermore, the

request allocation policy is in charge of recharging and waiting

decisions, which are some of the most complex decisions in the

entire problem simulation. Thus, the request allocation policy

requires a higher degree of sophistication than the vehicle

allocation policy.

V. CONCLUSIONS

This work aimed to automatically design effective policies

to make real-time decisions in the DEDARP for dispatching
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Fig. 10. Frequency of terminals in the best policies.

Fig. 11. An example vehicle allocation policy.

Fig. 12. An example request allocation policy.

EAVs to fulfill dynamically arriving request. This goal has

been successfully achieved by the developed GPHH method

with the sophisticated event-driven simulation adopting the

vehicle and request allocation policies. The experimental re-

sults show that the GP-evolved policies can greatly outperform

manual policies designed based on intuition. The learned

policies can make effective decisions in milliseconds, meeting

real-time decision requirements. This demonstrates the high

potential of GPHH in addressing this problem.

Future research directions include further improving the
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simulation to capture more nuanced behaviour, designing more

potentially informative terminals to enrich the GP search

space, testing on larger DEDARP instances and instances

with inhomogeneous arrival rates of requests, and considering

advanced technologies for improving training efficiency and

generalisation. We will also consider more realistic scenarios

on real-world data.
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