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Abstract—Genetic programming (GP) has been popularly
used to learn scheduling rules for dynamic flexible job shop
scheduling. These scheduling rules serve as priority functions to
prioritise candidate machines or operations at decision points.
In the implementation level, a high prioritised machine and
operation can be the ones with the highest or lowest priority
value calculated with a scheduling rule in the decision making
process. In theory, GP can adaptively evolve scheduling rules
to accommodate different priority settings. However, research
exploring the possible hidden differences during the evolutionary
process remains limited. To fill this gap, this paper presents
a comprehensive investigation into scheduling rules learned by
GP under varying priority settings. The results show that while
GP achieves similar performance in most investigated scenar-
ios with different priority settings, GP-low where candidates
with the lowest priority values are selected, can learn effective
scheduling rules faster. Specifically, GP-low can learn smaller
sequencing rules. Furthermore, visualisations of the scheduling
rules illustrate how GP adaptively adjusts node positions to
evolve effective rules. The study also highlights an inherent bias
in initialised scheduling rules, which tend to prefer candidates
with lower priority values in the examined scenarios. Moreover,
GP-low exhibits a broader distribution of priority values. These
findings can provide deeper insights into GP’s adaptive learning
mechanisms and offer valuable guidance for decision-making of
using scheduling rules.

Index Terms—scheduling rules, decision making, genetic pro-
gramming, dynamic flexible job shop scheduling

I. INTRODUCTION

Dynamic flexible job shop scheduling (DFJSS) is a criti-

cal combinatorial optimisation problem that has been widely

applied in various domains, including manufacturing [1], [2]

and cloud computing [3]. DFJSS aims to optimise resource

allocation efficiently. In DFJSS, multiple jobs need to be pro-

cessed by several machines. Each job consists of a predefined

sequence of operations. Due to the flexibility of the job shop,

each operation can be processed by more than one machine.

Consequently, two decisions need be made simultaneously.

The first is machine assignment (i.e., assign a ready operation

to a particular machine). The second is operation sequencing

(i.e., select a specific operation processed first in an idle

machine). Furthermore, decision-making must be conducted

in some dynamic environments, such as job arrivals [4], [5].

Scheduling rules [6] have been extensively employed to ad-

dress DFJSS. These rules operate as priority functions, assign-

ing priority values to candidates at some decision points and

selecting specific options based on obtained priority values.

However, the design process of manual rules typically requires

domain experts to rely on prior experience and costly trial-and-

error processes. Furthermore, these rules are highly sensitive to

the scenarios in which they are applied, often resulting in good

performance only within certain specific situations [1]. Genetic

programming (GP) [7], a hyper-heuristic approach [8], has

been successfully applied to automatically learning scheduling

rules for DFJSS [9]. Specially, only few domain knowledge is

needed in the process of learning rules with GP. Scheduling

rules learned by GP tend to have better performance and

generalisation ability compared to manually designed rules.

A crucial aspect of decision-making in scheduling rules

is priority settings. Priority settings typically follows two

approaches. One approach assigns the highest priority to the

candidate with the lowest priority value. For example, the

commonly used dispatching rule Shortest Processing Time

(SPT) [10] prioritises jobs with the lowest processing time.

Conversely, the other approach assigns the highest priority

to the candidate with the highest priority value. A typical

example is the Weighted Shortest Processing Time (WSPT)

rule [11], which selects the job with the highest weight-to-

processing-time ratio. Theoretically, GP can adaptively learn

effective scheduling rules under different priority settings.

Therefore, whether GP is designed to select candidates with

the lowest or highest priority values during training, it can

autonomously evolve effective scheduling rules for DFJSS.

Although GP ultimately achieves comparable performance

under different priority settings, certain differences may arise

during the evolutionary process. These differences may result

from GP’s adaptive learning of scheduling rules. It is worth

investigating these differences and their underlying causes.

However, little research has been conducted to explore these

aspects. To fill this gap, this paper compares and analy-

ses scheduling rules learned under different decision-making

strategies from multiple perspectives, aiming to answer the

following questions:

• Although different priority settings may lead to similar979-8-3315-3431-8/25/$31.00 ©2025 IEEE
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final performance, which setting enables faster discovery

of superior solutions during evolution?

• Will different priority settings influence rule size (i.e., the

number of nodes within a GP tree) and selected features?

• How does GP adaptively learn effective scheduling rules

in response to changes in priority settings?

II. BACKGROUND

A. Dynamic Flexible Job Shop Scheduling

DFJSS aims to optimise the allocation of machine resources

for processing jobs in the job shop. In DFJSS, m machines

M = {M1,M2, ...,Mm} are required to process n jobs

J = {J1, J2, ..., Jn}. Each job has a number of operations

Oj = {Oj1, Oj2, ..., Ojlj} that must be handled in a fixed

order. Each operation Oji can be processed by more than one

machine M(Oji) ⊆ π(Oji). In addition, DFJSS involves two

distinct scheduling rules. One is routing rule which determines

which specific machine can process an operation, and the other

is the sequencing rule which decides which operation should

be first handled on an idle machine. A common dynamic event,

i.e., new job arrival, is considered, where the details of a new

job remain unknown until it is released to the shop floor. The

main constraints in DFJSS are outlined below.

• A machine can process only one operation at a time.

• Each operation can only be processed by one of its

candidate machines at a time.

• An operation cannot begin processing until all of its

preceding operations have been completed.

• Once an operation has started, its processing cannot be

stopped or paused until it is completed.

This paper aims to minimise two time-based objectives

and maximise one profit-based objective, respectively. Their

calculations are demonstrated as follows.

• Mean-flowtime: 1

n

∑n

j=1
(Cj − rj)

• Mean-tardiness: 1

n

∑n

j=1
max{0, Cj − dj}

• Mean-weighted-tardiness: 1

n

∑n

j=1
wj ·max{0, Cj − dj}

• Profit:
∑n

j=1
(Rj − αj ·max{0, Cj − dj})

where n is the number of jobs, rj denotes the release time

of Jj , Cj is the completion time of a job Jj , dj is the due

date of Jj and wj represents the weight of Jj , Rj is the total

revenue obtained from the completion of Jj before dj , αj

represents unit time delay penalty of Jj beyond dj .

Simulation techniques is used to mimic DFJSS situations.

Referring to the widely used DFJSS simulation [12], we

assume that ten machines need to process 5000 jobs. Jobs

have different weights w, and a larger weight indicates a more

important job. The weights of 20%, 60%, and 20% jobs are

set as 1, 2, and 4. The due date of a job is set to be a due

date factor (e.g., 1.5) multiplied by its processing time PT
plus the arrival time.

In addition, the number of operations in each job varies

uniformly between 1 and 10. The processing time for each

operation is drawn from a discrete uniform distribution ranging

from 1 to 99. Each operation is assigned between 1 and
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Fig. 1. An example of a multi-tree GP individual representation.
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Fig. 2. The flowchart of MTGP to learn scheduling rules for DFJSS.

10 candidate machines, also based on a uniform distribution.

The revenue R of each job follows a lognormal distribution

based on a standard normal distribution with a mean of 0

and a standard deviation of 1 [13]. The unit time delay

penalty beyond the due date, denoted as α, is calculated as

α = w ·R/(4PT ), where w is the job weight and PT is the

total processing time. New jobs arrive over time according to

a Poisson process with an arrival rate λ, which is determined

by the system utilisation level p. Specifically, λ is computed

using the equation λ = µ · PM/p, where µ is the average

processing time and PM represents the probability of a job

visiting a given machine. To obtain steady-state performance,

we collect data of 5000 completed jobs after 1000 warm-up

jobs arrival.

B. Genetic Programming for DFJSS

GP has been successfully used to learn scheduling rules

for DFJSS problems. The multi-tree GP structure [14] is

a commonly used representation for evolving both the se-

quencing rule and the routing rule simultaneously. Each GP

individual consists of two trees, where one tree corresponds to

the sequencing rule and the other to the routing rule, forming a

scheduling rule pair. An example of a multi-tree GP individual

representation is shown in Fig. 1. PT, NOR, W, WIQ are

features related to the job shop, representing the processing

time of an operation, the number of remaining operations for

a job, the weight of a job, and the total work in the machine’s

waiting queue, respectively. The sequencing rule is a priority

function PT + NOR * W, which assigns priority values to its
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TABLE I
AN EXAMPLE OF THE DECISION MAKING OF THE SEQUENCING RULE PT +
NOR * W AT A SEQUENCING DECISION POINT WITH THREE CANDIDATE

OPEARTIONS.

Opeartion

Number (PT

Feature

NOR W)

Priority

Value

Chosen

Operation

O1 30 3 2 36

O2 10 8 4 42 O2 or O3

O3 20 1 1 21

candidate operations. The operation with the highest or lowest

priority value is processed first.

Fig. 2 illustrates the flowchart of GP to learn scheduling

heuristics for DFJSS problems. The process begins with a

randomly generated population, and all individuals in the

population are then evaluated to get their fitness values. If the

stopping condition is not met, parent selection method will

be used to select individuals as parents based on their fitness

values. These parents generate new offspring through genetic

operators (i.e., crossover, mutation, and reproduction), forming

a new population. Otherwise, the GP algorithm will output the

best individual (scheduling rule pair) in the current generation.

C. Decision Making of Scheduling Rules

Taking the sequencing rule PT + NOR * W as an example,

assume that three operations (i.e., O1, O2 and O3) are waiting

to be processed in an idle machine, which is shown in Table I.

Given the feature values of three operations, the priority values

of O1, O2 and O3 are 93, 58 and 121, respectively. According

to the priority values, this machine will handle O3 first if

we define sequencing rule select candidate operation with the

lowest priority value. Conversely, if selecting the operation

with the highest priority, O2 will be chosen for processing first.

Different decision making would affect resource allocation,

which directly impacts the optimisation objective values in this

instance. Thus, a scheduling rule may exhibit different fitness

values depending on the priority settings. GP will adaptively

evolve scheduling rules based on their fitness values.

III. EXPERIMENT STUDIES

A. Design of Comparisons

We simulate various DFJSS scenarios to evaluate the quality

of learned rules. Specifically, we use three utilisation levels

(i.e., 0.75, 0.85 and 0.95), three commonly used minimised ob-

jectives i.e., mean-flowtime (Fmean), mean-tardiness (Tmean)

and mean-weighted-tardiness (WTmean), and one fix due date

factor (i.e., 1.5), resulting in nine examined minimisation sce-

narios. Additionally, for maxmisation scenarios, we combine

three utilisation levels (i.e., 0.75, 0.85 and 0.95), three due date

factor (i.e., 1.0, 1.2, and 1.5) and one maximised objective (i.e.,

profit), forming nine maximisation scenarios. Each scenario is

represented as <objective, utilisation level, due date factor>
such as <Fmean, 0.85, 1.5>. The settings remain consistent

between training and test instances. The rules obtained after

training are evaluated on 50 unseen instances, and the average

TABLE II
THE TERMINAL SET.

Notation Description

MWT A machine’s waiting time
WIQ Current work in the queue
NIQ The number of operations in the queue
NPT Median processing time for the next operation
OWT The waiting time of an operation

PT Processing time of an operation on a specified machine
WKR Median amount of work remaining for a job
NOR The number of operations remaining for a job
TIS Time in system
W Weight of a job
R⋆ Revenue of a job

⋆: for profit-objective only;

TABLE III
THE PARAMETER SETTINGS IN GP.

Parameter Value

Population size 500
The number of elites for population 10

The number of generations 100
Initial minimum / maximum depth 2 / 6

Maximal depth of programs 8
Crossover / Mutation / Reproduction rate 80% / 15% / 5%

Terminal / non-terminal selection rate 10% / 90%
Method for initialising population ramped-half-and-half

Parent selection Tournament selection
with size 5

objective value across these instances is reported as the rule’s

test performance. This paper aims to explore potential hidden

differences in the evolutionary process of GP under different

priority settings. Since including other methods would not

directly support this investigation, only GP with different

priority settings are included for comparison.

1) GP-low: the highest priority represented by the lowest

priority values in scheduling rules learned by GP.

2) GP-high: the highest priority represented by the highest

priority values in scheduling rules learned by GP.

B. Parameter Settings

GP individuals are composed of terminals and functions.

Following the configuration in [15], the details of the terminal

set are provided in Table II. The function set is set to {+,

−, ∗, protected /, max, min}. The protected “/” returns one

if divided by zero. The other parameter settings of the GP

algorithm are shown in Table III.

C. Quality of Learned Scheduling Heuristics

To evaluate the performance of the algorithms over 30

independent runs, we utilise Friedman’s test and the Wilcoxon

rank-sum test with a significance level of 0.05. The “Average

Rank” reflects the mean ranking of each algorithm across all

tested scenarios. In the following tables, “↑”, “↓”, and “≈”

indicate the corresponding result is significantly better than,

worse than or similar to the compared algorithm.
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TABLE IV
THE MEAN (STANDARD DEVIATION) OF TIME-BASED OBJECTIVE VALUES

OF GP-HIGH AND GP-LOW IN NINE SCENARIOS ACCORDING TO 30
INDEPENDENT RUNS.

Scenarios GP-high GP-low

<Fmean, 0.75, 1.5> 336.21(1.48) 336.31(1.57)(≈)
<Fmean, 0.85, 1.5> 386.78(4.03) 385.84(2.83)(≈)
<Fmean, 0.95, 1.5> 553.18(7.18) 551.90(6.42)(≈)
<Tmean, 0.75, 1.5> 13.49(0.80) 13.27(0.59)(≈)
<Tmean, 0.85, 1.5> 40.50(1.95) 39.95(0.16)(≈)
<Tmean, 0.95, 1.5> 177.10(5.27) 177.54(4.52)(≈)
<WTmean, 0.75, 1.5> 28.03(2.35) 27.58(1.95)(≈)
<WTmean, 0.85, 1.5> 79.01(6.65) 75.26(2.07)(↑)
<WTmean, 0.95, 1.5> 297.57(8.36) 293.39(6.66)(↑)

Win / Draw / Lose 0 / 7 / 2 N/A
Average Rank 1.58 1.42

<WTmean, 0.75, 1.5> <WTmean, 0.85, 1.5> <WTmean, 0.95, 1.5>

<Tmean, 0.75, 1.5> <Tmean, 0.85, 1.5> <Tmean, 0.95, 1.5>

<Fmean, 0.75, 1.5> <Fmean, 0.85, 1.5> <Fmean, 0.95, 1.5>
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Fig. 3. Curves of average time-based objective values on test instances of
GP-low and GP-high in nine time-based scenarios according to 30 independent
runs.

Table IV and Table V shows the mean and standard devia-

tion of time-based and profit-based objective values of GP-

low and GP-high according to 30 independent runs, sepa-

rately. The results show that two examined algorithms perform

similarly in 7 out of 9 time-based scenarios and 7 out of 9

profit-based scenarios. This indicates that GP can adaptively

learn suitable scheduling rules as different candidate selection

changes. Although GP-low achieves slightly better average

rank across scenarios, overall, their performance is similar.

This is consistent to our expectation.

Fig. 3 and Fig. 4 shows the curves of average objective

values of GP-low and GP-high in different scenarios according

to 30 independent runs. Although the performance of two al-

gorithms is similar, GP-low, which selects candidates with the

lowest priority values, can find better solutions faster in both

TABLE V
THE MEAN (STANDARD DEVIATION) OF PROFIT-BASED OBJECTIVE

VALUES OF GP-HIGH AND GP-LOW IN NINE SCENARIOS ACCORDING TO

30 INDEPENDENT RUNS.

Scenarios GP-high GP-low

<Profit, 0.75, 1.0> 7217.70(28.03) 7221.79(42.96)(≈)
<Profit, 0.85, 1.0> 6802.44(56.92) 6829.18(39.81)(≈)
<Profit, 0.95, 1.0> 5900.23(101.57) 5874.53(131.92)(≈)
<Profit, 0.75, 1.2> 7696.57(20.78) 7695.01(23.17)(≈)
<Profit, 0.85, 1.2> 7360.34(43.56) 7357.00(51.41)(≈)
<Profit, 0.95, 1.2> 6518.90(104.06) 6586.66(66.92)(↑)
<Profit, 0.75, 1.5> 8039.90(14.84) 8040.81(15.78)(≈)
<Profit, 0.85, 1.5> 7828.52(43.37) 7842.45(30.97)(≈)
<Profit, 0.95, 1.5> 7186.38(94.84) 7234.09(56.02)(↑)

Win / Draw / Lose 0 / 7 / 2 N/A
Average Rank 1.55 1.45

<Profit, 0.75, 1.5> <Profit, 0.85, 1.5> <Profit, 0.95, 1.5>

<Profit, 0.75, 1.2> <Profit, 0.85, 1.2> <Profit, 0.95, 1.2>

<Profit, 0.75, 1.0> <Profit, 0.85, 1.0> <Profit, 0.95, 1.0>
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Fig. 4. Curves of average profit-based objective values on test instances
of GP-low and GP-high in nine profit-based scenarios according to 30
independent runs.

minimisation and maximisation scenarios, (i.e., <Fmean, 0.85,

1.5>, <Tmean, 0.75, 1.5>, <Tmean, 0.85, 1.5>, <WTmean,

0.85, 1.5>, <WTmean, 0.95, 1.5> and <Profit, 0.85, 1.0>),

which suggests maximisation or minimisation objectives may

be not related to priority settings. A possible reason for GP-

low’s ability to find better solutions faster is that the majority

of features utilised in GP are designed to minimise (e.g., time

and workload), which is more suitable for selecting candidates

with the lowest priority values.

In summary, GP-low and GP-high achieve comparable

performance in both time-based and profit-based scenarios,

demonstrating the adaptive capability of GP to learn schedul-

ing rules. Moreover, GP-low can generate better scheduling

rules faster in the evolutionary process, which shows there are

indeed differences between different priority settings during
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Fig. 5. Curves of average sequencing rule size over population on test
instances of GP-low and GP-high in nine time-based scenarios according to
30 independent runs.

the process of evolution.

IV. FURTHER ANALYSES

A. Rule Size Analyses

The size of a rule refers to the number of nodes within a GP

individual. In DFJSS, there are two rules, i.e., the sequencing

rule and the routing rule. Smaller rules are generally preferred

for three main reasons. First, evaluating smaller rules is faster,

which helps reduce the computational cost. Second, smaller

rules often exhibit better generalisation capabilities. Lastly,

they are easier for decision-makers to interpret compared with

large rules.

Fig. 5 and Fig. 6 illustrate the curves of average sequencing

and routing rule size over population on test instances of GP-

low and GP-high in time-based scenarios according to 30

independent runs, respectively. An interesting observation is

that, in almost all scenarios, the sequencing rule size of GP-

low is consistently smaller than that of GP-high. However,

the pattern does not extend to the routing rules. According

to the [16], routing rules play a more significant role than

sequencing rules and are inherently larger in size. As a result,

routing rules tend to remain relatively unaffected. In addition,

the increase in sequencing rule size for GP-high can be

attributed to feature design. Most features are related to time

and workload, are intended to be minimised. If these features

contribute to GP-high, they should be inverted accordingly. For

instance, operations often prefer machines with the shortest

processing time (PT). A direct scheduling rule in such cases

is PT, corresponding to selecting a machine with the lowest

priority value (i.e., PT). However, if GP-high aims to achieve

a similar result while selecting candidates with the highest

priority values, the rule needs to be adjusted. This could

involve transforming the PT feature by subtraction or division,

leading to a more complex rule like 1− PT . The size of this

new rule would increase to 3 (i.e., incorporating one node 1

and one subtraction/division function) compared to the original
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Fig. 6. Curves of average routing rule size over population on test
instances of GP-low and GP-high in nine time-based scenarios according to
30 independent runs.
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Fig. 7. Curves of mean number of unique features in the best sequencing
rule evolved by GP-low and GP-high in nine time-based scenarios according
to 30 independent runs.

size of 1. The increase in the number of unrelated features in

sequencing rule in Section IV-B also verifies this hypothesis.

In summary, although GP-low and GP-high can achieve

similar performance, GP-low can learn smaller sequencing

rules for DFJSS.

B. The Number of Unique Features in the Best Sequencing

Rules

The number of unique features denotes how many different

terminals are used in evolving the scheduling rules. If the

number of unique features in a rule is small, this rule can

be simplified easier to become smaller, which is more inter-

pretable to end-users. According to [17], we know routing

Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on July 06,2025 at 09:49:44 UTC from IEEE Xplore.  Restrictions apply. 



0 25 50 75 100

5.0

7.5

10.0

12.5

15.0

17.5

20.0

NIQ

0 25 50 75 100

10

15

20

25

30
WIQ

0 25 50 75 100

6

8

10

12

MWT

0 25 50 75 100

5

10

15

20

25

30

PT

0 25 50 75 100

2

3

4

5

6

7

NPT

0 25 50 75 100

2

3

4

5

6
OWT

0 25 50 75 100

10

15

20

25

30

35

WKR

0 25 50 75 100

5

6

7

8

9

10

11

NOR

0 25 50 75 100

10

20

30

40

50

60

70
W

0 25 50 75 100

2

4

6

8
TIS

Generation

Th
e 

N
um

be
r o

f F
ea

tu
re

s 
in

 S
eq

ue
nc

in
g 

R
ul

e

GP-low GP-high

Fig. 8. Curves of mean occurrence of features in five best sequencing rules
evolved by GP-low and GP-high in the scenario <WTmean, 0.95, 1.5>
according to 30 independent runs.

rules typically have a larger number of unique features, as

routing decisions are more critical and require a broader set

of features to construct effectively. Thus, the number of unique

features in routing rule is often unaffected, always large, we

only choose sequencing rule for analyses.

Fig. 7 shows the curve of average number of unique features

in the best sequencing rule in time-based scenarios. Specifi-

cally, the number of unique terminals in the sequencing rules

of GP-low is smaller than that of GP-high. The underlying rea-

son for this phenomenon aligns with the explanation provided

in Section IV-A. To achieve comparable performance when

selecting candidates with the highest priority values, a rule

should adapt by incorporating functions such as subtraction

or division. This adaptation increases the usage of unique

features, contributing to the observed differences.

Fig. 8 shows the curve of mean occurrence of features in

five best sequencing rules evolved by GP-low and GP-high

in the scenario <WTmean, 0.95, 1.5>. The results show that

some features, such as NIQ (i.e., the number of operations

in a machine’s waiting queue), WIQ (i.e., the workload in a

machine’s waiting queue), and MWT (i.e., a machine’s waiting

time), appear more frequently in GP-high compared to GP-low.

These features are related to machines and can be considered

as constants in sequencing rules because all the operations

prioritised by a sequencing rule are in a queue of an idle ma-

chine and have the same values for machine related features.

This indicates that GP-high incorporates some unimportant

features for distinguishing the priorities of operations, which

is one reason for the increase of the number of sequencing

rules, as shown in Fig. 5, and the rise in the number of

unique features observed in Fig. 7. This finding aligns with

our earlier assumption: GP-high needs to adaptively adjust

node positions, such as changing PT to 1−PT , where these

features effectively act like the constant 1.

In brief, different priority settings influence the number of

unique and utilized features. The scheduling rules learned by

Fig. 9. One of best sequencing rule learned by GP-low in the scenario
<WTmean, 0.95, 1.5>.

Fig. 10. One of best sequencing rule learned by GP-high in the scenario
<WTmean, 0.95, 1.5>.

GP-low incorporate fewer unique and used features, while GP-

high involves more unimportant features.

C. Insight of Learned Scheduling Rules

In order to further analyse how GP-low and GP-high

adaptively learn scheduling rules, this section examines the

sequencing rules evolved by GP-low and GP-high. Since all

scenarios have the same pattern, so we randomly choose one

(i.e., <WTmean, 0.95, 1.5>) for analyses.

Fig. 9 and Fig. 10 show one of the best sequencing rules

evolved by GP-low and GP-high, respectively. Focusing on W,

an interesting pattern emerges, all terminal nodes W appear on

the right side of subtrees in GP-low. Furthermore, the parent

nodes of terminal W tend to be division or subtraction. Even

when the immediate parent node is not division or subtraction,

one of the parent nodes in the hierarchy will always include

division or subtraction. This occurs because W is inversely

proportional to the priority function when selecting candidates

with the lowest priority values. Conversely, weight should be

directly proportional to the priority function when selecting
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Fig. 11. Fitness values of top 200 individuals in the initialised population in the scenario <WTmean, 0.95, 1.5> across 30 runs during training stage.

candidates with the highest priority values. Consequently in

GP-high, W often appears on the left side of function nodes.

For instance, after the Max function, W is positioned to the left

of multiplication or division. These observations demonstrate

that GP adjusts the positions of terminal nodes and function

nodes to evolve effective scheduling rules based on different

priority settings.

Additionally, sequencing rules evolved by GP-low and GP-

high are simplified for further analysis. The sequencing rule

learned by GP-low as shown in Fig. 9 can be expressed as:

S1 = WKR ∗

(

1

W
−

W

PT

)

(1)

Since GP-low selects candidates with the lowest priority

value, this sequencing rule prioritises operations with a smaller

amount of work remaining for a job (WKR), a higher weight

(W), and a smaller processing time (PT).

The corresponding sequencing rule learned by GP-high as

shown in Fig. 10 can be simplified as:

S2 =
W 3

WKR ∗ PT ∗ (WKR+WIQ)
(2)

GP-high, which selects candidates with the highest priority

value, tends to prioritise operations with smaller WKR, smaller

PT, and higher W, which is the same as the rule learned by GP-

low. It is worth noting that WIQ (i.e., workload in a machine’s

queue) acts as a constant in this context. This observation

aligns with the findings that some unimportant features appear

in GP-high as shown in Fig. 8.

Overall, while the scheduling rules learned by GP-low and

GP-high appear to differ, they ultimately prioritise operations

with similar features. These visualisations show that GP can

adjust the positions of terminals to adaptively learn scheduling

rule learning process of GP.

D. Fitness Values of Initialised Individuals

Since one scheduling rule may have different fitness due

to different priority settings, and the scheduling rules learned

by GP-low and GP-high are only the same in the initialised

population, we analyse the fitness values of initialised popu-

lation to observe whether scheduling rules exhibit bias toward

a particular priority settings.

In this section, we analyse the fitness values of top 200 indi-

viduals in the initialised population in the scenario <WTmean,

0.95, 1.5> across 30 independent runs during training stage,

which in shown in Fig. 11.

Notably, scheduling rules learned by GP-low achieve better

fitness values in the initialised population across all runs. This

indicates that selecting candidates with the lowest priority

values is more suitable for randomly generated scheduling

rules. A possible reason for the initial bias toward lower

priority values is that most of the features used tend to be

minimised, making the initialised individuals more suitable

for selecting lower priority values. Consequently, their per-

formance is better in GP-low than in GP-high. Moreover, this

phenomenon explains why GP-low exhibits faster convergence

in Fig. 3, as it benefits from a better-initialised population.

However, as the evolution progresses, the performance of GP-

low and GP-high tends to become similar.

E. Priority Value Distribution

Due to different range of terminals, GP-low and GP-high

may assign varying priority values to machines or operations.

A wide range of priority distribution can better distinguish

candidates to select the suitable option. Fig. 12 and Fig. 13

present some operations’ priority value distribution assigned

by one of the best sequencing rule evolved by GP-low and GP-

high in one training instance under the scenario <WTmean,

0.95, 1.5>.

Both distributions exhibit a long-tail pattern. For GP-

low, most priority values are concentrated at smaller values,

whereas for GP-high, they are skewed toward larger values.

Although most data points are close to zero, the range of

priority values assigned by GP-low is significantly larger than

that of GP-high. A larger range provides a better ability to

distinguish candidates, this might be a possible reason for the

faster convergence observed in GP-low.
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Fig. 12. Priority value distribution assigned by one of the best sequencing rule
evolved by GP-low in one training instance under the scenario <WTmean,
0.95, 1.5>.

V. CONCLUSIONS AND FUTURE WORK

The goal of this paper is to investigate and analyse differ-

ences between scheduling rules learned by GP when selecting

candidates with either the highest or lowest priority values

during the evolutionary stage. Additionally, it aims to under-

stand how GP adaptively learns scheduling rules. The goal has

been successfully achieved by comparing GP-evolved rules

with different priority settings from various perspectives.

The results show that, first, consistent with consensus, GP-

low and GP-high perform similarly in the end, but GP-low

can generate better scheduling rules faster during evolution.

Second, sequencing rules in GP-low are smaller and use

fewer unique features. Third, rule visualisation shows how GP

adjusts node positions to evolve promising rules. Furthermore,

initialised scheduling rules have the bias to select candidates

with the lowest priority values. Finally, GP-low exhibits a

wider distribution of priority values. These findings suggest

GP-low is the better choice for our simulated DFJSS problem.

Some interesting directions can be further investigated in

the near future. It seems terminals appear to influence results

across different priority settings. More investigations to termi-

nal can be conducted.
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