
Accepted: 30 November 2024
© The Author(s) 2025

 Meng Xu
meng.xu@ecs.vuw.ac.nz

 Fangfang Zhang
fangfang.zhang@ecs.vuw.ac.nz

Yi Mei
yi.mei@ecs.vuw.ac.nz

Mengjie Zhang
mengjie.zhang@ecs.vuw.ac.nz

1	 Centre	for	Data	Science	and	Artificial	Intelligence	&	School	of	Engineering	and	Computer	
Science,	Victoria	University	of	Wellington,	Kelburn	Parade,	Wellington	6012,	New	Zealand

Learn to optimise for job shop scheduling: a survey
with comparison between genetic programming and
reinforcement learning

Meng Xu1 · Yi Mei1 · Fangfang Zhang1 · Mengjie Zhang1

Artificial Intelligence Review (2025) 58:160
https://doi.org/10.1007/s10462-024-11059-9

Abstract
Job	 shop	 scheduling	 holds	 significant	 importance	 due	 to	 its	 relevance	 and	 impact	 on	
various	industrial	and	manufacturing	processes.	It	involves	dynamically	assigning	and	se-
quencing	jobs	to	machines	in	a	flexible	production	environment,	where	job	characteristics,	
machine	availability,	and	other	factors	might	change	over	time.	Genetic	programming	and	
reinforcement	learning	have	emerged	as	powerful	approaches	to	automatically	learn	high-
quality	scheduling	heuristics	or	directly	optimise	sequences	of	specific	job-machine	pairs	
to	generate	efficient	schedules	in	manufacturing.	Existing	surveys	on	job	shop	scheduling	
typically	provide	overviews	 from	a	singular	perspective,	 focusing	solely	on	genetic	pro-
gramming	 or	 reinforcement	 learning,	 but	 overlook	 the	 hybridisation	 and	 comparison	 of	
both	approaches.	This	 survey	aims	 to	bridge	 this	gap	by	 reviewing	 recent	developments	
in	 genetic	 programming	 and	 reinforcement	 learning	 approaches	 for	 job	 shop	 scheduling	
problems,	providing	a	comparison	 in	 terms	of	 the	 learning	principles	and	characteristics	
for	solving	different	kinds	of	job	shop	scheduling	problems.	In	addition,	this	survey	identi-
fies	and	discusses	current	issues	and	challenges	in	the	field	of	learning	to	optimise	for	job	
shop	scheduling.	This	comprehensive	exploration	of	genetic	programming	and	reinforce-
ment	 learning	 in	 job	 shop	 scheduling	 provides	 valuable	 insights	 into	 the	 learning	 prin-
ciples	for	optimising	different	job	shop	scheduling	problems.	It	deepens	our	understanding	
of	recent	developments,	suggesting	potential	research	directions	for	future	advancements.

Keywords Hyper-heuristic	·	Job	shop	scheduling	·	Genetic	programming	·	
Reinforcement	learning

1 3

http://crossmark.crossref.org/dialog/?doi=10.1007/s10462-024-11059-9&domain=pdf&date_stamp=2025-3-5

M. Xu et al.

1 Introduction

Job	 shop	 scheduling	 (JSS)	 is	 a	 complex	 combinatorial	 optimisation	 problem	 that	 plays	
a	 critical	 role	 in	 both	 scholarly	 research	 and	 industrial	 applications	 (xiong	 et	 al.	 2022).	
For	production	in	manufacturing,	JSS	involves	the	allocation	of	operations	of	jobs	to	a	set	
of	machines,	each	with	specific	processing	requirements,	considering	constraints	such	as	
machine	availability	and	precedence	relationships	between	operations	(ouelhadj	and	Petro-
vic 2009).	Efficient	and	effective	JSS	directly	impacts	operational	efficiency,	resource	utili-
sation,	and	ultimately,	the	overall	productivity	of	manufacturing	processes.	JSS	has	many	
applications	in	practical	fields,	such	as	automotive	assembly	(zhou	and	Wen	2023),	textile	
manufacturing	(wang	and	Zhang	2023),	chemical	material	processing	(xu	et	al.	2023),	and	
semiconductor	manufacturing	(gao	et	al.	2019).

JSS	can	be	categorised	into	various	 types	based	on	its	characteristics,	 including	static	
and	dynamic,	flexible	and	non-flexible.	There	are	several	approaches	for	solving	different	
kinds	 of	 JSS	 problems,	 including	 exact	 approaches	 such	 as	 branch-and-bound	 (Zhou	 et	
al.	 1995)	 and	dynamic	programming	 (Chen	et	 al.	 1998),	 iterative improvement heuristic
approaches	such	as	genetic	algorithm	(Gonçalves	et	al.	2005;	Mattfeld	and	Bierwirth	2004),	
and	artificial	bee	colony	optimisation	(Chong	et	al.	2006;	Zhang	et	al.	2013),	and	sched-
uling heuristics	 approaches	 like	 shortest	 processing	 time	first	 (Shanker	 and	Tzen	1985).	
Scheduling heuristics	provide	real-time	scheduling	capability,	making	them	widely	popular	
in	real-world	scheduling	applications	(Zhang	et	al.	2023).	These	approaches	assign	priori-
ties	to	operations	or	machines	at	decision	points	based	on	the	system	state,	with	operations	
and	machines	being	dispatched	according	to	their	priorities,	selecting	the	highest-priority	
operation	or	machine.

However,	manually	designing	effective	scheduling	heuristics	demands	a	lot	of	domain	
knowledge	 and	 is	 a	 time-consuming	 process.	Hyper-heuristic	 approaches	 (Burke	 et	 al.	
2013),	 including	 both	 heuristic	 selection	 and	 heuristic	 generation,	 represent	 advanced	
approaches	for	complex	and	dynamic	JSS.	These	approaches	operate	at	a	high	level,	auto-
mating	the	process	of	selecting	or	generating	heuristics	to	optimise	scheduling	performance.	
Heuristic selection	involves	selecting	from	a	predefined	set	of	existing	heuristics	based	on	
their	performance	in	specific	situations.	Heuristic generation	goes	beyond	using	predefined	
high-level	heuristics	by	creating	new	high-level	heuristics	by	combining	existing	low-level	
ones	to	adapt	to	the	given	problem.	Genetic	programming	(GP)	(Koza	and	Koza	1992)	is	
commonly	employed	as	a	heuristic	generation	method	and	has	found	extensive	applications	
in	automatically	generating	scheduling	heuristics	to	solve	different	kinds	of	JSS	problems	
(Nguyen	et	al.	2019;	Zhang	et	al.	2020).	Reinforcement	learning	(RL),	especially	deep	RL,	
depending	on	the	nature	of	the	JSS	problem,	is	utilised	either	as	a	heuristic	selection	method	
for	selecting	heuristics	or	a	policy-driven	decision	framework	for	optimising	sequences	of	
job-machine	pairs	(Zhang	et	al.	2022;	Chen	et	al.	2024;	Luo	2020;	Gui	et	al.	2023; Chang et
al.	2022;	Liu	et	al.	2022).	GP	uses	the	Darwinian	natural	selection	(evolutionary)	principles	
for	 learning	 scheduling	 heuristics	 through	 an	 iterative,	 population-based,	 and	 stochastic	
evolutionary	process	Chand	et	al.	(2018).	RL	learns	to	optimise	by	interacting	with	an	envi-
ronment,	receiving	feedback	in	the	form	of	rewards,	and	adjusting	its	actions	to	maximise	
cumulative	rewards	over	time	(Li	2017).	The	functionality	of	RL-learned	scheduling	heuris-
tics/policies	can	vary.	It	can	be	designed	to	either	select	a	specific	job-machine	pair	at	each	
decision	point	or	choose	from	a	set	of	predefined	heuristics,	with	the	selected	heuristic	then	

1 3

 160 Page 2 of 53

Learn to optimise for job shop scheduling: a survey with comparison…

making	the	scheduling	decision.	RL	aims	to	learn	to	obtain	an	optimal	schedule	for	different	
JSS	problems	by	carefully	designing	states,	actions,	and	rewards.	However,	achieving	an	
optimal	solution	remains	challenging,	particularly	for	large-scale	or	complex	JSS	problems.

Recent	reviews	on	learning	to	optimise	for	JSS	can	be	found	in	the	literature,	including	
(Branke	et	al.	2015;	Nguyen	et	al.	2017;	Zhang	et	al.	2023;	Wang	et	al.	2021, 2022; Cunha
et	al.	2020;	Puiseau	et	al.	2022;	Kayhan	and	Yildiz	2023;	Wang	et	al.	2024).	These	reviews	
can	be	categorised	into	two	main	streams:	those	focusing	on	learning	through	GP	(Branke	
et	 al.	2015;	Nguyen	et	 al.	2017;	Zhang	et	 al.	2023)	and	 those	concentrating	on	 learning	
through	RL	(Wang	et	al.	2021, 2022;	Cunha	et	al.	2020;	Puiseau	et	al.	2022;	Kayhan	and	
Yildiz	2023;	Wang	et	al.	2024).	Figure	1	illustrates	the	publication	trends	of	GP	and	RL	for	
scheduling	problems	over	the	past	couple	of	decades.	The	overall	trend	reveals	a	consistent	
increase	in	the	number	of	publications.	GP	has	been	an	emerging	and	dominant	technique	
in	this	area	for	the	past	20	years,	resulting	in	a	much	larger	number	of	publications	on	JSS	
compared	with	RL	before	2022.	RL,	on	the	other	hand,	started	later	but	has	garnered	signifi-
cant	attention	recently,	leading	to	a	substantial	volume	of	research	papers	on	JSS	since	2022.	
Moreover,	both	GP	and	RL	have	shown	much	less	focus	on	multi-objective	JSS	compared	
with	general	JSS.	GP	publications	have	been	gradually	increasing	since	2004,	with	steady	
growth	peaking	in	2022	at	17	publications,	followed	by	slight	fluctuations.	In	contrast,	RL	
publications	 on	multi-objective	 JSS	 are	 sparse	 in	 the	 early	 years,	with	minimal	 activity	
until	2017.	However,	reflecting	the	overall	trend	of	RL,	there	has	been	significant	growth	in	
recent	years,	particularly	in	2023,	when	RL	publications	on	multi-objective	JSS	reached	18.

Concerning	reviews	on	GP	for	JSS,	the	discussions	in	2016	(Branke	et	al.	2015)	focused	
on	design	choices,	encompassing	learning	methods,	 representations	of	priority	functions,	
and	the	evaluation	of	hyper-heuristic	approaches.	This	study	provides	a	high-level	overview	
of	 automatic	 scheduling	heuristics	designed	with	basic	GP,	 focusing	on	 limited	 types	of	
JSS.	Moving	forward,	a	unified	GP	framework	was	explored	for	JSS	in	2017	(Nguyen	et	al.	
2017),	offering	insights	into	how	to	leverage	GP	for	learning	scheduling	heuristics,	with	a	
foundation	in	GP	basics	applied	to	general	JSS	scenarios.	A	more	recent	and	comprehensive	
review	in	2023	(Zhang	et	al.	2023)	encompasses	GP	and	machine	learning	techniques,	pro-

Fig. 1	 The	number	of	publications	on	GP	and	RL	for	JSS	(retrieved	from	Scopus	in	October	2024	using	
the	 keywords	 “genetic	 programming”/“reinforcement	 learning”	 and	 “job	 shop	 scheduling”	within	 the	
title,	 abstract,	 and	 keywords)	 is	 provided.	Additionally,	 the	 number	 of	 publications	 specifically	 ad-
dressing	multi-objective	JSS	(MO-JSS)	for	GP	and	RL	(using	 the	same	keywords,	along	with	“multi-
objective”/“multiobjective”)	is	also	included

1 3

Page 3 of 53 160

M. Xu et al.

viding	an	extensive	survey	on	automatic	scheduling	heuristic	design	with	different	machine	
learning	techniques	across	various	JSS	problems.

Regarding	reviews	on	RL	for	JSS,	Cunha	et	al.	(2020)	presented	a	review	in	2020,	dis-
cussing	two	distinct	types	of	approaches:	iterative	improvement	heuristic	and	deep	RL	for	
JSS.	A	subsequent	review	in	2021	(Wang	et	al.	2021)	summarised	the	designs	of	state	and	
action	of	RL-based	methods	for	different	scheduling	problems,	also	exploring	 the	fusion	
modes	of	RL	and	meta-heuristics.	 In	2022,	Wang	et	 al.	 (2022)	offered	a	brief	 review	of	
RL	on	JSS,	only	with	limited	publications	and	a	focus	on	general	categories	of	RL	in	JSS.	
Another	survey	in	2022	(Puiseau	et	al.	2022)	addressed	questions	regarding	the	reliability	
of	schedules	obtained	through	deep	RL-based	scheduling	approaches.	In	2023,	Kayhan	and	
Yildiz	(2023)	examined	essential	aspects	of	RL	in	JSS,	identifying	frequently	investigated	
problem	types,	objectives,	and	constraints,	and	highlighting	limitations	and	promising	areas	
in	the	literature.	In	the	same	year,	another	review	(Zhang	et	al.	2023)	summarised	and	ana-
lysed	the	state?of?the?art	research	in	applying	deep	RL	for	three	optimisation	problems	in	
manufacturing,	including	scheduling,	routing,	and	bin	packing.	A	recent	survey	(Wang	et	al.	
2024)	focuses	on	the	typical	design	patterns	and	combinations	of	common	components	in	
RL,	including	the	agent,	environment,	state,	action,	and	reward.

However,	 existing	 reviews	 on	 learning	 scheduling	 heuristics/policies	 for	 JSS	 tend	 to	
focus	on	either	GP	or	RL,	or	cover	only	a	limited	number	of	studies,	resulting	in	a	lack	of	
comprehensive	coverage	of	the	extensive	body	of	work	in	this	domain.	A	significant	gap	
exists	 in	 reviews	discussing	both	GP	and	RL	for	JSS,	along	with	an	exploration	of	 their	
strengths	and	limitations.	This	survey	aims	to	fill	this	gap	by	providing	a	comprehensive	
investigation	with	a	comparison	between	GP	and	RL	(mainly	about	deep	RL)	approaches	
in JSS.

Different	from	existing	surveys,	our	survey	involves	discussing	the	similarities	and	dif-
ferences	between	GP	and	RL	approaches	in	terms	of	their	learning	principles	and	explor-
ing	recent	methodologies	in	both	GP	and	RL	for	tackling	diverse	types	of	JSS	problems,	
thereby	highlighting	their	respective	characteristics.	Furthermore,	we	discuss	the	strengths	
and	limitations	of	GP	and	RL	for	automatic	scheduling	heuristics/policies	learning	in	the	
JSS	domain.	We	believe	that	this	survey	will	capture	the	attention	of	scholars	and	industry	
professionals	 engaged	 in	GP	 and	RL,	 fostering	 a	 deeper	 understanding	 of	 challenges	 in	
JSS	and	other	combinatorial	optimisation	problems.	Moreover,	this	survey	aims	to	promote	
further	efforts	in	hybridising	GP	and	RL,	taking	advantage	of	both	approaches	for	effective	
JSS.

2 Problems and methods

2.1 Job shop scheduling

On	the	shop	floor,	there	are	a	set	of	machines	M = {M1, M2, ..., Mm}	and	numerous	jobs	
await	processing	J = {J1, J2, ..., Jn}.	Each	job	Ji	has	an	arrival	 time	ri, a due date di,
and	consists	of	multiple	operations	[Oi,1, Oi,2, ..., Oi,pi]	that	need	to	be	processed	in	order.	
Additionally,	each	job	may	be	assigned	a	weight	wi,	indicating	its	relative	importance.	Each	
operation	Oi,j 	has	a	workload	πi,j and each machine Mk	has	a	unique	processing	rate	γk

.	The	processing	time	ti,j,k	of	operation	Oi,j on machine Mk	is	defined	as	ti,j,k = πi,j/γk

1 3

 160 Page 4 of 53

Learn to optimise for job shop scheduling: a survey with comparison…

.	JSS	is	a	sequential	decision-making	problem	(Wen	et	al.	2023)	wherein	scheduling	deci-
sions	must	be	made	at	multiple	decision	points	throughout	the	scheduling	process	to	achieve	
the	ultimate	goal	(Huang	et	al.	2023).	Figure	2	illustrates	the	sequential	decision-making	
process	of	JSS.	As	depicted	in	Fig.	2,	at	each	decision	point	t,	the	scheduling	state	is	deter-
mined,	with	the	present	state	st	becoming	active	following	the	decision	at−1 made in the
past	state	st−1.	Then,	based	on	the	present	state	st, a decision at is necessary to advance the
scheduling	process	to	a	future	state	st+1	until	the	entire	scheduling	process	is	completed.

Recognising	JSS	as	a	sequential	decision-making	problem	makes	it	straightforward	to	
apply	GP,	RL,	 or	 other	 learning/optimisation	 techniques	 to	find	 optimal	 or	 near-optimal	
scheduling	decisions.

During	the	scheduling	process,	the	following	constraints	need	to	be	considered.

 ● An	operation	is	only	allowed	to	be	processed	after	its	preceding	operations	have	been	
completed.

 ● The	operation	can	only	be	processed	by	one	of	its	optional	machine(s).
 ● A	machine	can	only	process	one	operation	at	a	time.
 ● Preemption	is	not	allowed,	meaning	a	machine	cannot	switch	to	process	another	opera-
tion	until	completing	the	current	operation.JSS	can	be	classified	into	various	categories	
based	on	its	characteristics.	Table	1	outlines	the	distinctive	features	of	job	information	
and	decision	requirements	across	different	categories	of	JSS.	Subsequently,	this	survey	
offers	a	detailed	description	of	each	category	to	offer	a	comprehensive	understanding	of	
the	challenges	inherent	in	the	problem.

2.1.1 Classical static JSS

In	static	JSS,	the	job	information	(e.g.,	operations,	processing	time	of	each	operation,	due	
date)	is	known	in	advance	(Ingimundardottir	and	Runarsson	2018).	Each	operation	can	only	
be	processed	by	a	specified	machine	and	its	processing	time	depends	on	the	machine	that	
processes	it.	JSS	aims	to	determine	which	operation	will	be	chosen	to	process	next	by	an	
idle	machine	(Brizuela	and	Sannomiya	1999).

Problem Static
JSS

Dynam-
ic JSS

Flex-
ible	
JSS

Dynamic
flexible	
JSS

Job	information Known √ √

Unknown √ √

Decision Sequencing √ √ √ √

Routing √ √

Table 1	 The	characteristics	of	
job	information	and	decision	
requirements	in	different	types	
of JSS

Fig. 2	 The	sequential	decision-making	process	
of	a	flexible	JSS

1 3

Page 5 of 53 160

M. Xu et al.

2.1.2 Dynamic JSS

In	reality,	the	job	information	is	not	always	available	in	advance	(Sharma	and	Jain	2015).	
The	 system	 state	 is	 dynamically	 changeable,	 e.g.,	 jobs	 arrive	 dynamically	 (Zhou	 et	 al.	
2018; Zhou and Yang 2019;	Zhang	et	al.	2020, 2020),	and	machines	break	down	during	
the	assignment	(Yin	et	al.	2003).	The	dynamically	changed	system	state	makes	the	problem	
more	complex	and	makes	it	more	relevant	for	practical	applications,	which	is	known	as	the	
dynamic	JSS	problem	(Karunakaran	et	al.	2017).

2.1.3 Flexible JSS

In	JSS,	the	operation	can	only	be	processed	by	the	fixed	single	machine.	Flexible	JSS	intro-
duces	flexibility	in	terms	of	machine	assignments,	allowing	an	operation	to	be	processed	
on	multiple	machines	(Pezzella	et	al.	2008;	Xie	et	al.	2019).	Consequently,	in	flexible	JSS,	
decisions	involve	selecting	the	specific	machine	to	process	a	ready	operation,	rather	than	
just	choosing	an	idle	machine	for	processing	a	ready	operation	(Gomes	et	al.	2013).	This	
distinction	leads	to	the	consideration	of	two	types	of	decision	points:	routing	decision	point	
and	sequencing	decision	point,	which	are	shown	as	follows.

 ● Routing decision point:	represents	the	situation	when	an	operation	becomes	ready.	At	a	
routing	decision	point,	a	routing rule	is	required	to	select	a	machine	for	a	ready	opera-
tion.

 ● Sequencing decision point:	represents	the	situation	when	a	machine	becomes	idle.	At	the	
sequencing	decision	point,	a	sequencing rule	is	required	to	choose	an	operation	from	the	
waiting	queue	to	be	processed	next.

2.1.4 Dynamic flexible JSS

Dynamic	flexible	JSS	(Zhou	et	al.	2018)	considers	the	flexibility	of	machines	and	incorpo-
rates the dynamic environments at the same time.

2.2 Methods for job shop scheduling

This	 section	 provides	 a	 comprehensive	 investigation	 of	 various	 approaches	 for	 solving	
JSS	 problems.	The	main	 approaches	 are	 categorised	 into	 three	 classes,	which	 are	 exact	
approaches,	(meta-)heuristic	approaches,	and	hyper-heuristic	approaches.

2.2.1 Exact approaches

Exact	approaches	for	solving	JSS	problems	involve	algorithms	and	techniques	that	guar-
antee	the	identification	of	an	optimal	solution	within	a	reasonable	amount	of	time.	These	
methods	are	particularly	effective	for	smaller	problem	instances,	where	the	computational	
complexity	remains	manageable.	Some	key	exact	methods	used	in	JSS	include	branch-and-
bound	(Zhou	et	al.	1995)	and	dynamic	programming	(Chen	et	al.	1998).	Branch-and-bound
explores	the	solution	space	by	dividing	it	into	sub-problems	and	bounding	the	solution	space	
based	on	certain	criteria	(Ashour	and	Hiremath	1973;	Artigues	et	al.	2009).	Branch-and-

1 3

 160 Page 6 of 53

Learn to optimise for job shop scheduling: a survey with comparison…

bound	with	time-indexed	formulation	is	a	variation	of	branch-and-bound	that	formulates	the	
problem	in	a	time-indexed	representation	(Azem	et	al.	2007),	allowing	for	a	more	efficient	
exploration	of	the	solution	space.	Some	other	variations	of	branch-and-bound	methods	were	
proposed	and	successfully	applied	to	many	small-scale	scheduling	problems	(Sarin	et	al.	
1988;	Potts	and	Van	Wassenhove	1985).	Dynamic programming	(Chen	et	al.	1998)	is	often	
used	for	specific	cases,	such	as	in	the	context	of	parallel	machine	scheduling	(Chen	et	al.	
1998;	Gromicho	et	al.	2012;	Ozolins	2020).	 It	breaks	down	the	scheduling	problem	into	
smaller	sub-problems	and	utilises	optimal	solutions	to	these	sub-problems	to	construct	an	
optimal	solution	for	the	overall	problem.	Although	exact	methods	guarantee	optimal	solu-
tions,	 they	often	become	computationally	 intractable	 for	 larger	problem	 instances	due	 to	
their	inherent	complexity	(Zhang	et	al.	2019).	Additionally,	exact	methods	struggle	to	adapt	
to	dynamically	changing	environments.

2.2.2 Meta-heuristic approaches

Meta-Heuristic	approaches,	unlike	exact	approaches,	do	not	guarantee	to	find	an	optimal	
solution.	Instead,	meta-heuristic	approaches	aim	to	find	good	enough	solutions.	Common	
meta-heuristic	approaches	for	JSS	include	genetic	algorithms	(Gonçalves	et	al.	2005; Matt-
feld	and	Bierwirth	2004),	tabu	search	(Saidi-Mehrabad	and	Fattahi	2007;	Vilcot	and	Billaut	
2011;	Fattahi	et	al.	2018),	simulated	annealing	(Aydin	and	Fogarty	2004),	artificial	bee	col-
ony	optimisation	(Chong	et	al.	2006;	Zhang	et	al.	2013),	ant	colony	optimisation	(Heinonen	
and	Pettersson	2007;	Huang	and	Liao	2008),	and	particle	swarm	optimisation	(Lian	et	al.	
2006;	Lin	et	al.	2010).	Genetic	algorithms	explore	the	solution	space	efficiently,	leveraging	
the	principles	of	survival	of	the	fittest	to	converge	towards	good-quality	solutions	(Pezzella	
et	al.	2008;	Xie	et	al.	2019).	Tabu	search	(Glover	and	Laguna	1998)	starts	from	an	initial	
feasible	solution	and	explores	the	neighborhood	of	the	current	solution	iteratively.	In	Saidi-
Mehrabad	and	Fattahi	 (2007),	 tabu	search	was	proposed	 for	flexible	JSS	and	 it	achieves	
better	performance	when	compared	to	the	branch-and-bound	method.	Simulated	annealing	
is	a	probabilistic	optimisation	algorithm	that	mimics	the	annealing	process	 in	metallurgy	
(Aydin	and	Fogarty	2004).	The	algorithm	accepts	moves	that	lead	to	both	better	and	worse	
solutions,	allowing	it	to	escape	local	optima	(Bertsimas	and	Tsitsiklis	1993).	The	ant	colony	
optimisation,	bee	colony	optimisation,	and	particle	swarm	optimisation	are	nature-inspired	
optimisation	algorithms	that	leverage	the	principles	of	collective	intelligence	observed	in	
social	insects	or	particles	to	guide	the	search	for	high-quality	schedules,	as	evidenced	by	
studies	such	as	(Chong	et	al.	2006;	Engin	and	Güçlü	2018;	Fontes	et	al.	2023; Huang and Yu
2017;	Wang	et	al.	2017).	Overall,	the	iterative	improvement	heuristic	approaches	can	find	
good	solutions	and	can	handle	large-scale	problems	well.	However,	 they	are	not	suitable	
for	dynamic	JSS,	since	the	rescheduling	process	inherent	in	iterative	improvement	heuristic	
approaches	is	time-consuming,	making	it	inefficient	for	reacting	to	dynamic	events.

2.2.3 Scheduling heuristics

Scheduling	heuristics	offer	real-time	schedule	generation,	making	them	suitable	for	dynamic	
JSS	 problems.	These	 approaches	 assign	 priorities	 to	 operations	 or	machines	 at	 decision	
points	based	on	the	system	state.	Then,	operations	and	machines	are	dispatched	based	on	
their	priorities,	with	the	highest-priority	operation	or	machine	being	selected	first.	Common	

1 3

Page 7 of 53 160

M. Xu et al.

scheduling	heuristics	 include	first-in-first-out	 and	 shortest	 processing	 time	first	 (Shanker	
and	Tzen	1985).	The	choice	of	a	scheduling	heuristic	depends	on	the	specific	practical	prob-
lems	or	customer	requirements.	Designing	scheduling	heuristics	capable	of	excelling	across	
diverse	scenarios	and	addressing	multiple	objectives	simultaneously	is	a	challenging	task.	It	
necessitates	extensive	domain	knowledge	and	consumes	significant	time	and	effort.

2.2.4 Hyper-heuristic approaches

Hyper-heuristic	 (Burke	 et	 al.	 2013),	 encompassing	 both	 heuristic	 selection	 and	 genera-
tion,	stand	as	advanced	approaches	for	tackling	hard	computational	search	problems.	These	
approaches	operate	at	a	high	level,	automating	the	process	of	selecting	or	generating	heuris-
tics	to	enhance	scheduling	performance.

Heuristic selection	involves	selecting	from	a	predefined	set	of	heuristics	based	on	their	
performance	in	specific	situations	(Bianchi	et	al.	2008).	The	selection	mechanism	relies	on	
historical	information	or	problem-specific	features	to	identify	the	most	suitable	heuristic	for	
the	current	situation.	This	adaptability	allows	the	hyper-heuristic	to	dynamically	choose	the	
most	effective	heuristic	for	different	instances.	RL	is	widely	used	as	a	heuristic	selection	
method,	particularly	beneficial	when	the	number	of	candidate	machines	or	operations	varies	
at	different	decision	points,	making	it	challenging	to	define	a	predetermined	action	space	
(Luo	2020;	Gui	et	al.	2023;	Chang	et	al.	2022;	Liu	et	al.	2022).	In	this	case,	RL	is	often	
applied	to	treat	manual	scheduling	heuristics	as	actions	(Gui	et	al.	2023),	with	the	process	
involving	the	dynamic	selection	of	appropriate	actions	when	encountering	decision	points	
(Chang	et	al.	2022;	Liu	et	al.	2022).	RL	also	serves	as	a	policy-driven	decision	framework	
for	optimising	sequences	of	job-machine	pairs,	often	employed	in	an	end-to-end	manner,	
selecting	appropriate	machines	or	operations	when	encountering	decision	points.

Heuristic generation	goes	beyond	selecting	from	predefined	heuristics	but	creates	new	
heuristics	or	combines	existing	ones	to	adapt	to	the	given	problem	(Burke	et	al.	2007).	It	
dynamically	learns	or	evolves	heuristics	during	the	optimisation/learning	process.	GP	is	a	
popular	heuristic	generation	method,	which	evolves	a	population	of	heuristics	over	multiple	
generations	(Nguyen	et	al.	2019).

Both	GP	and	RL	have	extensive	applications	in	automatically	learning	scheduling	heu-
ristics/policies	for	solving	JSS	problems,	capable	of	making	effective	scheduling	decisions	
that	outperform	many	manually	designed	ones	by	human	experts	in	the	literature.	Overall,	
hyper-heuristic	approaches,	whether	through	heuristic	selection	or	generation,	represent	a	
powerful	paradigm	to	address	JSS	problems.	These	approaches	leverage	adaptability	and	
computational	 intelligence	 to	dynamically	choose	or	create	heuristics/policies,	ultimately	
enhancing	scheduling	performance	across	diverse	instances	of	the	JSS	problems.

3 Learning to optimise for JSS

In	the	field	of	automatic	learning	scheduling	heuristics/policies	for	JSS,	GP	(Koza	and	Koza	
1992)	and	RL	(Luo	et	al.	2021)	represent	two	typical	hyper-heuristic	approaches	(Zhang	et	
al.	2020;	Song	et	al.	2022;	Liu	et	al.	2022;	Zhang	et	al.	2020;	Zhou	et	al.	2020;	Karunak-
aran 2019).	Figure	3	illustrates	the	general	framework	depicting	how	these	hyper-heuristic	
approaches,	GP	and	RL,	learn	scheduling	heuristics/policies	for	JSS	problems.	Notably,	GP	

1 3

 160 Page 8 of 53

Learn to optimise for job shop scheduling: a survey with comparison…

and	RL	share	some	similarities.	Firstly,	both	GP	and	RL	need	to	initialise	(randomly	gener-
ate)	candidate	scheduling	heuristics/policies	at	 the	beginning.	Secondly,	both	GP	and	RL	
need	to	evaluate	the	performance	of	these	candidate	scheduling	heuristics/policies.	Thirdly,	
both	GP	and	RL	approaches	explore	the	search	space	and	finally	output	a	scheduling	heu-
ristic/policy	by	 interacting	with	 the	dynamic	environment	 throughout	a	 learning	process.	
However,	they	differ	in	the	detailed	processes	of	several	key	aspects:	representation,	evalu-
ation,	and	search	mechanisms.	Next,	we	introduce	and	compare	the	principles	of	GP	and	RL	
for	learning	scheduling	heuristics/policies	in	terms	of	these	key	aspects.

3.1 Representation

The	 representation	 is	 not	 only	 related	 to	 the	 algorithm	 itself	 but	 also	 closely	 tied	 to	 the	
nature	of	the	specific	scheduling	problem	being	addressed.	Figure	4 shows the categories
of	mainly	used	representations.	All	these	representations	necessitate	problem-specific	state	
features	(terminals)	as	input.	Table	2	presents	examples	of	state	features	that	can	be	used	by	
both	GP	and	RL	about	machines,	jobs,	and	operations.

3.1.1 Representation of GP

Tree-based structure.	In	terms	of	GP	for	JSS	problems,	the	commonly	employed	represen-
tation	is	the	tree-based	one.	In	(dynamic)	JSS,	where	only	sequencing	decisions	are	consid-
ered,	a	single	tree	is	used	(Dimopoulos	and	Zalzala	2001).	This	tree	is	formed	by	combining	
different	functions	and	states	(Mei	et	al.	2017).	In	the	case	of	(dynamic)	flexible	JSS,	where	
two	types	of	decision	points	need	consideration	(sequencing	and	routing),	two	typical	repre-
sentations	can	be	used.	One	option	involves	a	tree-based	representation	with	two	subpopula-
tions,	each	dedicated	to	a	specific	decision	point	(Nguyen	et	al.	2013).	Another	option	is	a	
multi-tree-based	representation,	where	one	tree	is	designated	for	the	sequencing	rule,	and	
the	other	is	for	the	routing	rule	(Zhang	et	al.	2018;	Xu	et	al.	2022).	An	illustrative	example	

Fig. 4	 The	categories	of	mainly	used	representations	
in	GP	and	RL	for	JSS

Fig. 3	 The	general	framework	of	hyper-heuristic:	GP	and	RL,	for	learning	scheduling	heuristics/policies	
for	JSS	problems

1 3

Page 9 of 53 160

M. Xu et al.

of	the	tree-based	representation	for	a	sequencing	rule	and	a	routing	rule	is	depicted	in	Fig.	5.
If	a	smaller	value	represents	a	higher	priority,	the	routing	rule	prefers	machines	providing	
shorter	processing	time,	smaller	working	in	the	queue,	and	larger	ready	time.	The	sequenc-
ing	rule	prefers	operations	with	shorter	processing	time	and	smaller	time	in	the	system.

Linear/graph structure.	Another	commonly	used	type	of	representation	in	GP	for	JSS	
is	the	linear/graph	representation.	This	representation	involves	a	sequence	of	register-based	
instructions	(Huang	et	al.	2021).	Each	register-based	 instruction	comprises	 three	compo-
nents:	the	destination	register,	the	operator	(also	known	as	the	function	indicator),	and	the	
source	registers.	During	execution,	the	operation	specified	in	the	instruction	takes	the	values	
from	the	source	registers	as	inputs	and	assigns	the	calculation	results	to	the	destination	reg-
ister.	These	instructions	are	executed	sequentially,	and	the	values	in	the	predefined	output	
registers	are	considered	the	output	of	the	entire	program.	The	arrangement	of	these	instruc-
tions	 and	 their	 sequential	 execution	 form	 the	 fundamental	 concept	 of	 “linear”.	 Figure	 6

Table 2	 The	example	state	features	used	for	representations	of	GP	and	RL
Categories States Description
Machine W IQm(t) The	remaining	work	(total	processing	time	of	all	the	operations)	in	

the waiting queue of machine Ωm at time t
NIQm(t) The	number	of	operations	in	the	waiting	queue	of	machine	Ωm at

time t
MRTm(t) The	ready	time	of	machine	Ωm at time t,	i.e.,	when	machine	be-

comes	idle
MW Tm(t) The	waiting	time	of	machine	Ωm at time t, MW Tm(t)

= t − MRTm(t)
Job T ISj(t) The	time	spent	in	the	system	by	job	Jj at time t

NORj(t) The	number	of	the	remaining	operations	of	the	job	Jj at time t
W KRj(t) The	work	remaining,	representing	the	total	processing	time	of	the	job	

Jj 	for	the	remaining	operations	at	time	t
T T Dj(t) The	time	until	due,	meaning	the	remaining	time	of	the	job	Jj 	until	

the due date at time t
SLACKj(t) The	slack	of	the	job	Jj at time t,

SLACKj(t) = tdue
j − t − W KRj(t)

Operation P Tj,i,m(t) The	processing	time	of	the	operation	Oj,i on the machine Ωm at
time t

NP Tj,i+1(t) The	median	of	the	processing	time	for	the	next	operation	Oj,i+1 at
time t

Fig. 6	 An	example	of	linear	representation	in	GP

Fig. 5	 An	example	of	tree-based	representation	for	a	
sequencing	rule	and	a	routing	rule

1 3

 160 Page 10 of 53

Learn to optimise for job shop scheduling: a survey with comparison…

provides	 a	 simple	 example	 of	 a	 linear	 representation	 used	 to	 express	 a	 sequencing	 rule	
max(PT 2, T IS) × PT 2.	In	this	example,	all	registers	(i.e.,	Ri, i ∈ [0, 1, 2])	are	initialised	
to	0	for	simplicity.	In	the	program,	PT, PT 2, and max(PT 2, T IS) are stored in the registers
accordingly,	and	 these	 intermediate	calculation	 results	are	ultimately	aggregated	 into	 the	
predefined	output	register	(i.e.,	R0).

Grammar-based structure.	 Grammar-based	 representation	 in	 GP	 is	 an	 advanced	
technique	 that	uses	 formal	grammar	 to	define	 the	structure	of	 individuals	 (Nguyen	et	al.	
2012).	Instead	of	representing	individuals	purely	as	trees	(like	in	traditional	GP),	grammar-
based	GP	 ensures	 that	 the	 individuals	 generated	 during	 the	 evolutionary	 process	 follow	
a	 predefined	 syntax	 and	 structure.	 For	 example,	 Fig.	 7	 illustrates	 a	 grammar-based	 rep-
resentation	 for	 a	 sequencing	 rule	 in	 the	 JSS	problem.	 In	 this	method,	 the	genotype	 rep-
resents	 the	 selection	of	 each	 component	 in	 the	 rule,	 and	 the	genotype	 is	 decoded	 into	 a	
sequencing	rule	with	a	 tree	structure.	Specifically,	 this	grammar	defines	a	fixed	structure	
for	 a	 sequencing	 rule:	 “if attribute operation threshold, use rule else use rule”.	 In	
this	 structure,	five	elements	must	be	determined:	 the	attribute, operation, threshold, and
two rules.	For	instance,	possible	candidates	for	the	attribute are c1, c2,	and	c3.	As	shown	
in Fig. 7,	the	first	value	in	the	genotype	is	0,	then	c1	is	selected.	The	remaining	four	ele-
ments-operation,	threshold,	and	the	two	rules-are	selected	in	the	same	manner	based	on	the	
genotype	values.	In	this	example,	the	final	sequencing	rule	derived	from	the	genotype	is:	
if c1 > 40%, use PT else use WIQ.

Gene expression structure.	Gene	expression	structure	represents	individuals	as	linear	
chromosomes,	which	are	sequences	of	genes	(Shady	et	al.	2023;	Ozturk	et	al.	2019).	Each	
gene	encodes	a	part	of	the	solution	but	does	not	directly	represent	a	complete	expression	
(Nie	et	al.	2013;	Zhang	et	al.	2021).	Instead,	the	genes	are	decoded	into	a	tree	structure.	This	
involves	translating	the	gene	expression	representation	into	a	tree	format.	Figure	8	provides	
an	example	of	a	gene	expression	structure	and	its	decoding	process	into	a	tree.	Unlike	the	
traditional	tree-based	structure,	gene	expression	structures	include	K-expressions	(coding	
regions)	and	non-coding	regions.	The	K-expression	is	the	part	of	the	chromosome	that	gets	
decoded	into	a	tree,	while	the	non-coding	region	is	ignored	during	the	decoding	process.	
However,	this	does	not	mean	that	the	non-coding	region	is	entirely	useless.	The	non-coding	
region	serves	as	a	spacer	or	regulatory	component.	While	it	is	not	directly	involved	in	the	

Fig. 8	 An	example	of	gene	expression	repre-
sentation	in	GP

Fig. 7	 An	example	of	grammar-based	representation	in	GP

1 3

Page 11 of 53 160

M. Xu et al.

decoding	process	into	a	tree	structure,	it	plays	an	important	role	in	maintaining	the	integ-
rity	and	flexibility	of	the	chromosome.	The	non-coding	region	may	influence	the	structure	
of	the	solution	indirectly	by	providing	space	for	genetic	operations	such	as	mutation	and	
crossover,	which	can	help	in	exploring	a	broader	solution	space	during	evolutionary	algo-
rithms.	The	final	expression	is	derived	from	the	K-expression	alone.	In	this	example,	the	
final	sequencing	rule	derived	from	the	genotype	is:	PT + NPT + WIQ − NIQ.

The	tree-based	representation	in	GP	encompasses	numerous	studies	for	both	static	and	
dynamic,	flexible	and	non-flexible	scheduling	scenarios.	However,	the	utilisation	of	linear/
graph	representation	in	GP	is	predominantly	observed	in	non-flexible	scheduling	problems.	
Although	grammar-based	and	gene	expression	representations	are	also	ultimately	decoded	
into	a	 tree	structure,	 they	are	 less	 frequently	used	compared	 to	 the	 traditional	 tree-based	
approach,	as	they	involve	more	indirect	encoding	processes.	Grammar-based	representation	
is	primarily	employed	to	define	a	fixed	structure	for	complex	JSS	problems	or	to	narrow	
the	search	space,	offering	more	control	over	the	structure	of	evolved	solutions	(Huang	et	
al.	 2023).	 In	 Zhang	 et	 al.	 (2019),	 a	 novel	 tree-structure	 representation	was	 proposed	 to	
account	 for	 the	varying	contributions	of	different	 terminals.	 In	Nguyen	et	al.	 (2012),	 the	
effectiveness	of	different	representations	in	GP	for	JSS	is	verified.	Subsequently,	in	Nguyen	
et	al.	(2013),	a	new	type	of	scheduling	heuristic	known	as	iterative	scheduling	heuristic	is	
proposed	 to	 further	 enhance	 performance.	This	 heuristic	 iteratively	 refines	 schedules	 by	
leveraging	information	recorded	from	previous	or	existing	schedules	(Nguyen	et	al.	2013).	
Similarly,	Hunt	et	al.	(2014)	considers	historical	information	to	develop	a	scheduling	heu-
ristic	that	mitigates	short-sightedness.	Regardless	of	the	chosen	representation,	GP	has	been	
shown	to	be	suitable	for	addressing	various	scheduling	problems,	whether	static	or	dynamic,	
flexible	or	non-flexible	scenarios,	indicating	its	strong	generalisation	ability.

3.1.2 Representation of RL

In	the	domain	of	RL,	the	choice	of	representation	plays	an	important	role	across	various	
scheduling	problems.	Representations	such	as	graph	neural	networks,	recurrent	neural	net-
works,	and	feedforward	neural	networks	each	excel	in	specific	types	of	scenarios,	including	
static	and	dynamic,	as	well	as	flexible	and	non-flexible	scheduling	scenarios.

Graph neural networks.	Graph	neural	networks	(Zhang	et	al.	2020;	Park	et	al.	2021,
2021;	Yuan	et	al.	2023;	Zhang	et	al.	2024;	Ho	et	al.	2023;	Echeverria	et	al.	2024)	are	com-
monly	utilised	for	tackling	static	and	small-scale	JSS	problems	due	to	their	ability	to	cap-
ture	relationships	between	machines	and	operations,	as	well	as	information	throughout	the	
scheduling	process.	In	these	studies,	the	scheduling	state	is	typically	denoted	by	a	disjunc-
tive	graph,	expressed	as	G = (V, C ∪ D)	(Huang	et	al.	2023;	Lee	and	Kim	2022; Hameed
and Schwung 2020;	Liu	et	al.	2024).	Here,	V	comprises	nodes	representing	job	operations,	
C	 consists	 of	 directed	 arcs	 (conjunctions)	 illustrating	 the	 precedence	 constraints	 among	
operations,	and	D	includes	undirected	arcs	(disjunctions)	indicating	operations	processed	on	
the	same	machines.	An	illustrative	example	of	a	JSS	problem	represented	by	a	disjunctive	
graph	is	provided	in	Fig.	9.	Within	this	graph	framework,	solving	a	JSS	instance	involves	
determining the direction of each disjunction arc.

Although	 the	graph	 representation	allows	 for	handling	 size-agnostic	 scheduling	prob-
lems,	which	makes	it	applicable	for	dynamic	and/or	flexible	JSS	problems	(Pu	et	al.	2024),	
it	introduces	a	practical	challenge	when	tackling	large-scale	JSS	problems	(Park	and	Park	

1 3

 160 Page 12 of 53

Learn to optimise for job shop scheduling: a survey with comparison…

2021).	As	the	number	of	jobs	or	machines	increases,	the	graph	becomes	increasingly	intri-
cate	and	sizable,	resulting	in	a	rapid	escalation	of	computational	complexity	(Liu	and	Huang	
2023;	Park	and	Park	2021).	In	such	cases,	learning	in	large	graphs	might	not	be	effective.	
RL	with	the	graph	neural	network	as	representation	usually	serves	as	a	heuristic	generation	
method	(Huang	et	al.	2024;	Park	et	al.	2021).

Recurrent neural networks.	 Another	 heuristic	 generation	 RL	 approach	 capable	 of	
addressing	 size-agnostic	 scheduling	 challenges	 involves	 employing	 recurrent	 neural	 net-
works	(Monaci	et	al.	2021).	Recurrent	neural	networks	can	address	dynamically	changing	
action	spaces	in	scheduling	problems.	In	Monaci	et	al.	(2021),	the	recurrent	neural	network	
is	utilised	to	map	inputs	of	arbitrary	length	into	fixed-length	embeddings.	The	experiments	
conducted	involve	both	static	and	dynamic	JSS	problems,	showcasing	commendable	per-
formance.	However,	a	drawback	of	 this	method	is	 the	encode-decode	mechanism,	which	
compresses	 all	 information	 into	 a	 fixed-length	 vector,	 posing	 challenges	with	 very	 long	
inputs	(Bahdanau	et	al.	2014).

To	address	this	limitation,	certain	studies	incorporate	the	attention	mechanism,	focusing	
on	encoding	the	most	 important	features	 instead	of	all	 features	 into	a	single	fixed-length	
vector	(Yang	2022;	Wu	et	al.	2024;	Tassel	et	al.	2023;	Wang	et	al.	2023).	In	(Yang	2022;	Liu	
et	al.	2024),	the	graph	attention	network	is	employed	to	derive	a	fixed-length	vector	from	a	
disjunctive	graph,	with	other	aspects	resembling	graph	neural	network-based	RL	scheduling	
methods.	Additionally,	the	Transformer	(Vaswani	et	al.	2017),	another	widely	used	attention	
mechanism-based	model,	is	applied	to	tackle	JSS	problems.	In	Zhao	et	al.	(2022),	a	simpli-
fied	Transformer	is	introduced	to	extract	state	features	in	vector	form.	Meanwhile,	in	Chen	
et	al.	(2022),	a	novel	Transformer	is	proposed,	where	the	graph-embedding	method	is	ini-
tially	employed	to	directly	extract	state	features	from	the	disjunctive	graph.	Subsequently,	
the	attention	mechanism	aids	agents	in	learning	long-range	dependencies	more	effectively.

However,	 the	use	of	 the	attention	mechanism	is	non-straightforward	and	can	be	com-
putationally	 expensive	 (Adaloglou	 and	 Karagiannakos	 2020),	 especially	 when	 dealing	
with	large	sequences	or	high-dimensional	data.	The	process	of	computing	attention	scores	
for	each	element	in	the	input	sequence	involves	matrix	multiplications,	which	can	lead	to	
increased	computational	overhead,	particularly	in	large-scale	and	dynamic	JSS	scenarios.	
Meanwhile,	attention	mechanisms	tend	to	focus	more	on	local	information	due	to	the	nature	
of	attention	weights	(Adaloglou	and	Karagiannakos	2020).	As	a	result,	they	might	struggle	
to	capture	global	dependencies	within	sequences,	especially	when	long-range	relationships	
are	essential.	Heuristic	selection	RL	finds	greater	application	in	addressing	flexible	and/or	
dynamic	JSS	problems,	effectively	managing	the	changing	action	space	in	these	scenarios.	
Importantly,	the	effectiveness	of	heuristic	selection	RL	is	not	constrained	by	the	scale	of	the	
problem,	making	it	suitable	for	both	small-scale	and	large-scale	scenarios.

Fig. 9	 An	example	of	a	disjunctive	graph	of	a	JSS	
problem

1 3

Page 13 of 53 160

M. Xu et al.

Feedforward neural networks.	Typically,	heuristic	selection	RL	utilises	 feedforward	
neural	networks	as	 representations.	Feedforward	neural	networks	(Lin	et	al.	2019; Du et
al.	2022;	Park	et	al.	2019;	Zhang	et	al.	2023)	are	highly	flexible.	Existing	studies	demon-
strate	their	effectiveness	as	representations	for	both	heuristic	generation	RL	and	heuristic	
selection	RL.	When	the	number	of	machines/operations	remains	constant	across	decision	
points,	which	ensures	a	fixed	action	space,	feedforward	neural	networks	usually	serve	as	a	
representation	for	heuristic	generation	RL.	Moreover,	when	the	number	of	machines/opera-
tions	varies,	they	usually	serve	as	a	representation	for	heuristic	selection	RL.	In	such	cases,	
manually	designed	scheduling	heuristics	are	often	employed	as	actions	instead	of	directly	
utilising	machines/operations.

An	 example	 of	 the	 feedforward	 neural	 network-based	 representation	 for	 flexible	 JSS	
is	depicted	in	Fig.	10,	which	includes	the	arrangement	of	nodes	and	connections	(edges)	
between	them.	These	layers	can	be	broadly	categorised	into	three	types:	the	input	layer,	hid-
den	layers,	and	the	output	layer.	To	be	specific,	the	input	layer	represents	the	state	features	
related	to	 the	dynamic	flexible	JSS	scheduling	system.	Each	node	in	 the	input	 layer	cor-
responds	to	a	specific	state	of	the	scheduling	system.	Between	the	input	and	output	layers,	
there	can	be	one	or	more	hidden	layers.	Each	node	in	a	hidden	layer	represents	a	learned	
feature	based	on	 the	 input	data.	The	output	 layer	produces	 the	final	 results	of	 the	neural	
network’s	 computation.	 For	 heuristic	 generation	 RL,	 the	 actions	 directly	 represent	 the	
machines	or	operations.	For	heuristic	selection	RL,	the	actions	correspond	to	the	schedul-
ing	heuristics.	Once	the	scheduling	heuristic	is	determined,	it	subsequently	makes	the	final	
decision	regarding	the	machines	or	operations	to	be	scheduled.	The	number	of	nodes	in	the	
output	layer	is	determined	by	the	desired	output	of	the	network.	Each	connection	between	
nodes	has	an	associated	weight,	 representing	 the	strength	of	 the	connection.	 Information	
flows	from	the	input	layer,	through	the	hidden	layers,	and	finally	to	the	output	layer	through	
these	weighted	connections.	To	be	noticed,	the	number	of	hidden	layers	and	nodes	in	each	
input/hidden/output	layer	is	a	design	choice	and	can	vary	based	on	the	complexity	of	the	
problem	and	can	vary	for	sequencing	and	routing	rules.

Action design.	Action	design	is	closely	tied	to	the	representation	of	scheduling	heuris-
tics	in	RL	(Serrano	Ruiz	et	al.	2024).	It	defines	what	actions	an	RL	agent	can	take	at	each	
decision	 point	 in	 the	 scheduling	 process.	Action	 design	must	 align	with	 the	 problem	 at	
hand,	considering	the	specifics	of	different	types	of	JSS	problems,	such	as	standard	versus	
flexible	JSS	or	static	versus	dynamic	JSS.	The	way	actions	are	structured	and	represented	
fundamentally	impacts	the	agent’s	ability	to	learn	effective	scheduling	heuristics	in	complex	
environments.	This	includes	specifying	the	types	of	decisions	the	agent	can	make.

In	standard	JSS,	 the	primary	focus	 is	on	sequencing	jobs.	The	key	challenge	is	deter-
mining	which	job	should	be	processed	at	a	given	decision	point.	The	action	design	here	is	

Fig. 10	 An	example	of	the	feedforward	neural	network-based	representation	for	flexible	JSS

1 3

 160 Page 14 of 53

Learn to optimise for job shop scheduling: a survey with comparison…

usually	straightforward,	as	 the	RL	agent	selects	a	specific	job	to	be	processed	next.	This	
simplicity	allows	the	agent	to	focus	on	optimising	job	sequencing	without	the	added	com-
plexity	of	machine	flexibility.	Flexible	JSS	introduces	additional	complexity	because	mul-
tiple	machines	 can	 process	 the	 same	 job.	 In	 this	 case,	 action	 design	must	 allow	 the	RL	
agent	to	choose	both	the	job	and	the	most	appropriate	machine	from	a	set	of	alternatives.	
Some	studies	represent	all	possible	job-machine	pairs	as	distinct	actions	(Wang	et	al.	2023),	
which	provides	a	comprehensive	exploration	of	the	solution	space.	However,	this	can	lead	
to	an	overly	complex	action	space	in	large-scale	JSS,	making	it	harder	for	RL	to	converge	
to	 an	 effective	 policy.	To	 address	 this,	 hierarchical	 action	 structures	 are	 often	 employed	
(Huang	et	al.	2024).	In	this	approach,	the	agent	first	selects	a	job	and	then	chooses	the	best	
machine	(Huang	et	al.	2024).	This	hierarchical	design	allows	the	agent	to	manage	the	larger	
action	 space	more	 efficiently	while	 still	maintaining	 flexibility	 in	 decision-making.	 Fur-
thermore,	(Park	and	Park	2021)	introduces	a	continuous	action	representation	to	keep	the	
action	space	manageable,	even	as	the	number	of	jobs,	machines,	and	operation	types	fluctu-
ates.	 In	dynamic	JSS,	uncertainty	 is	 introduced	by	unpredictable	 job	arrivals	or	machine	
breakdowns.	Therefore,	action	design	must	account	for	these	real-time	changes,	enabling	
the	RL	agent	 to	 adapt	 dynamically.	Actions	 should	not	 only	 focus	 on	 job-machine	pair-
ings	but	also	allow	the	agent	to	monitor	the	environment	and	adjust	decisions	as	new	jobs	
arrive	or	machines	become	available.	 In	such	cases,	heuristic	 selection	RL	 is	a	common	
method,	where	actions	correspond	to	selecting	from	a	predefined	set	of	scheduling	heuris-
tics	(Serrano	Ruiz	et	al.	2024;	Wu	et	al.	2024).	The	selected	scheduling	heuristic	can	easily	
adapt	to	dynamically	changing	scheduling	environments.	This	simplifies	the	action	space	
and	allows	the	agent	to	learn	which	rules	perform	best	under	different	dynamic	conditions	
(Serrano	Ruiz	et	al.	2024;	Wu	et	al.	2024).	This	approach	is	also	useful	in	large-scale	JSS	
problems,	where	the	number	of	possible	job-machine	pairings	is	large,	and	simplifying	the	
action	space	can	lead	to	faster	learning	and	convergence.	However,	the	limited	set	of	actions	
can	restrict	the	agent’s	ability	to	further	improve	performance.	To	address	this	limitation,	
some	researchers	propose	composite	action	designs.	In	this	approach,	multiple	scheduling	
heuristics	are	combined	with	continuous	weight	variables	(Gui	et	al.	2023).	This	creates	a	
more	flexible	and	nuanced	action	space,	allowing	the	RL	agent	to	explore	a	wider	range	of	
potential	solutions.	The	agent	can	dynamically	adjust	these	weights	to	prioritise	different	
heuristics	based	on	the	current	state	of	the	scheduling	process	(Gui	et	al.	2023).

Given	 that	 in	 heuristic	 selection	RL,	 the	 scheduling	heuristics	 as	 actions	 remain	pre-
defined	 and	fixed	during	both	 training	 and	 test,	 leading	 to	 a	 lack	of	 diversity	 in	 the	RL	
agent’s	selection	and	making	the	performance	heavily	reliant	on	the	quality	of	these	heu-
ristics.	Compared	to	generating	scheduling	heuristics,	which,	in	theory,	can	explore	a	vast	
heuristic	space,	learning	to	select	scheduling	heuristics	involves	limited	exploration,	cov-
ering	only	a	subset	of	the	space.	Consequently,	its	performance	is	relatively	less	competi-
tive.	However,	 for	 heuristic	 generation	RL,	 its	 interpretability	 of	 the	 learned	 scheduling	
heuristics	is	poor	due	to	the	challenge	of	understanding	why	a	specific	operation/machine	is	
dispatched	when	the	action	is	generated	through	a	feedforward	neural	network	(more	like	a	
black	box),	learning	to	select	scheduling	heuristics	is	demonstrated	to	be	more	understand-
able	for	human	experts.

In	conclusion,	different	representations	of	GP	and	RL	exhibit	distinct	characteristics	and	
excel	in	solving	scenarios	with	different	features	(Zhang	et	al.	2023;	Branke	et	al.	2015).	

1 3

Page 15 of 53 160

M. Xu et al.

Table	3	illustrates	the	diverse	representations	of	GP	and	RL	and	the	scenarios	in	which	they	
excel.

3.2 Evaluation

Evaluation	is	a	critical	process	for	assessing	the	effectiveness	of	scheduling	heuristics/poli-
cies	(Koza	and	Koza	1992).	Both	GP	and	RL	utilise	evaluation	to	measure	the	heuristic/
policy	quality	and	guide	the	learning	process.

In	GP,	evaluation	measures	the	effectiveness	of	a	scheduling	heuristic	across	the	entire	
scheduling	instance(s)	using	a	fitness	function	(Xu	et	al.	2023).	Conversely,	in	RL,	evalu-
ation	 determines	 the	 effectiveness	 of	 an	 action	 selected	 by	 a	 scheduling	 heuristic/policy	
through	a	reward	function	(Luo	et	al.	2021).	Ideally,	these	functions	should	accurately	repre-
sent	the	problem	domain	to	which	the	learned	scheduling	heuristics/policies	will	be	applied.	
In	GP,	the	fitness	function	can	straightforwardly	reflect	the	objective	function.	However,	for	
RL,	the	reward	function	is	typically	designed	based	on	local	information,	and	if	not	well-
designed,	it	might	not	accurately	reflect	the	objective	function.

3.2.1 Problem instances

Static instances.	For	static	scheduling	problems,	evaluations	often	utilise	instances	from	
widely	used	benchmark	datasets	such	as	TA	(Taillard)	(Huang	et	al.	2024;	Nguyen	et	al.	
2012; Mei and Zhang 2016;	Park	et	al.	2021;	Monaci	et	al.	2021;	Pan	et	al.	2021; Zhang
et	al.	2024;	Ho	et	al.	2023;	Tassel	et	al.	2023;	Huang	et	al.	2023),	Brandimarte	(Yska	et	al.	
2018;	Teymourifar	et	al.	2020;	Yuan	et	al.	2024;	Jing	et	al.	2024),	Barnes	(Yska	et	al.	2018;
Yuan	et	al.	2024),	Dauzere	(Yska	et	al.	2018;	Yuan	et	al.	2024),	Hurink	(Yska	et	al.	2018;
Braune	et	al.	2022;	Zhang	et	al.	2023;	Yuan	et	al.	2024;	Jing	et	al.	2024),	FT(Zeiträg	et	al.	
2024;	Park	et	al.	2021;	Yuan	et	al.	2023;	Wu	et	al.	2024;	Zhang	et	al.	2024),	Synthetic	(Yuan	
et	al.	2024, 2023),	DMU	(Zhang	et	al.	2020;	Nguyen	et	al.	2013, 2012;	Lin	et	al.	2019),	
ORB	(Lin	et	al.	2019;	Nguyen	et	al.	2013, 2012;	Park	et	al.	2021;	Zhang	et	al.	2024),	LA	
(Lawrence)	(Lin	et	al.	2019;	Nguyen	et	al.	2013, 2012;	Wu	et	al.	2024;	Zhang	et	al.	2024),	
PSPLIB	(Chen	et	al.	2021;	Ðumić	et	al.	2021;	Chand	et	al.	2018),	ABZ	(Zhang	et	al.	2024),	
SWV	(Zhang	et	al.	2024),	YN	(Park	et	al.	2021;	Yuan	et	al.	2023),	or	randomly	generated	
instances	based	on	specific	assumptions	(Jakobović	and	Budin	2006;	Tay	and	Ho	2008).	The	
majority	of	studies	on	these	datasets	focus	on	small-scale	instances,	typically	involving	no	
more	than	200	jobs,	with	many	considering	only	20	or	50	jobs.

Table 3	 Different	representations	of	GP	and	RL	and	the	scenarios	in	which	they	excel
Representations Static Dynamic Small-scale Large-scale
GP Tree-based	structure √ √ √ √

Linear/graph	structure √ √ √ √

Grammar-based	structure √ √ √ √

Gene	expression	programming √ √ √ √

RL Graph	neural	network √ √

Recurrent	neural	network √ √

Feedforward	neural	network √ √ √ √

1 3

 160 Page 16 of 53

Learn to optimise for job shop scheduling: a survey with comparison…

Dynamic instances.	Dynamic	scheduling	problems	are	typically	assessed	using	simula-
tion	models	to	determine	the	steady-state	performance	of	scheduling	heuristics/policies	and	
usually	consider	 large-scale	 scenarios	with	about	3000	or	6000	 jobs	 (Zhang	et	 al.	 2018,
2021;	Karunakaran	et	al.	2017;	Holthaus	and	Rajendran	1997).	Discrete	event	simulation	
(Liu	et	al.	2022;	Xu	et	al.	2022)	is	the	primary	technique	for	estimating	the	performance	of	
scheduling	heuristics/policies	(Hildebrandt	et	al.	2010;	Liu	et	al.	2022).	These	simulation	
models	often	simulate	job	arrival	events	based	on	assumptions	such	as	a	Poisson	distribu-
tion	(Zhou	and	Yang	2019;	Nguyen	et	al.	2019).	While	job	arrival	events	(Zhang	et	al.	2019;
Yska	et	al.	2018;	Huang	et	al.	2023)	are	 the	most	commonly	simulated	dynamic	events,	
some	studies	also	investigate	machine	breakdowns	(Yin	et	al.	2003;	Park	et	al.	2018, 2017)	
and	other	factors	to	simulate	real-world	dynamic	scheduling	environments.

Existing	studies	on	GP	typically	focus	on	large-scale	and	dynamic	scheduling	problems	
involving	approximately	3000	or	6000	jobs.	Conversely,	existing	studies	on	RL	typically	
address	small-scale	and	static	JSS	problems	with	only	hundreds	of	 jobs.	Table	4 gives a
comparison	of	typical	GP	and	RL	across	JSS	problem	scales	and	datasets.	Note	that	some	
papers	fall	into	multiple	categories	because	they	test	their	proposed	methods	on	more	than	
one	dataset	and	sometimes	include	both	static	and	dynamic	scenarios.	The	training	instances	
used	for	the	evaluation	process	are	obtained	from	the	benchmark	datasets	or	the	simulators	
introduced	above	based	on	the	given	problem.	In	JSS,	the	final	goal	can	be	to	optimise	the	
flowtime,	tardiness,	or	other	scheduling	performance	metrics	(Zhang	et	al.	2022).

3.2.2 Evaluation of GP

Fitness function.	In	GP,	to	evaluate	an	individual’s	fitness,	in	static	JSS	scenarios	where	
problem	parameters	 are	fixed	and	known	 in	advance,	 the	 scheduling	heuristic	 is	 applied	
to	a	set	of	static	training	instance(s),	and	its	performance	is	measured	against	established	
criteria.	For	dynamic	JSS	scenarios,	 the	scheduling	heuristic	conducts	evaluation	using	a	
simulator,	which	 simulates	 the	arrival	of	new	 jobs	or	changes	 in	 job	characteristics	dur-
ing	 scheduling.	The	 fitness	 function	 assesses	 the	 capacity	 of	 the	 scheduling	 heuristic	 to	
adapt	to	these	changes	and	make	effective	scheduling	decisions.	After	evaluation,	a	fitness	
value	quantifying	how	effectively	the	scheduling	heuristic	addresses	the	given	objectives	is	
assigned.	In	scheduling	with	minimisation	objectives,	lower	values	are	typically	preferred	
(e.g.,	shorter	flowtime,	shorter	tardiness).	Fitness	values	play	a	crucial	role	in	the	selection	
process,	 influencing	 the	probability	 of	 individuals	 being	 chosen	 as	 parents	 for	 breeding.	
Better	fitness	values	increase	the	probability	of	an	individual	being	selected,	promoting	the	
evolution	of	better	solutions.

Surrogate.	Different	from	RL,	GP	commonly	employs	the	original	goal	as	the	fitness	
function	for	evaluation,	indicating	that	scheduling	heuristics	are	assessed	based	on	global	
information.	There	exist	some	studies	that	propose	alternative	surrogate	models	(Zeiträg	et	
al.	2022;	Gil-Gala	et	al.	2023)	to	estimate	the	fitness	of	scheduling	heuristics,	such	as	the	
half-shop	surrogate	model	 (Nguyen	et	al.	2016)	and	phenotypic	characteristic-based	sur-
rogate	model	 (Zhang	et	al.	2022).	These	surrogate	models	demonstrate	high	consistency	
with	the	original	fitness	function,	yielding	scheduling	performance	comparable	to	using	the	
original	function	while	reducing	training	time	in	GP	and	providing	better	scheduling	perfor-
mance when using the same training time.

1 3

Page 17 of 53 160

M. Xu et al.

Dataset Prob-
lem	
type

Scale	
(Jobs)

GP RL

TA	(Taillard) JSS Small-
scale:	
15-200	
jobs

Nguyen	et	al.	(2012, 2013) Zhang	et	al.	(2020);	Park	et	al.	
(2021);	Yuan	et	al.	(2023);	Zhang	et	
al.	(2024);	Ho	et	al.	(2023);	Huang	et	
al.	(2023);	Liu	et	al.	(2024);	Huang	
et	al.	(2024);	Monaci	et	al.	(2021);	
Yang	(2022);	Wu	et	al.	(2024);	Tassel	
et	al.	(2023);	Chen	et	al.	(2022);	
Lin	et	al.	(2019);	Pan	et	al.	(2021);	
Wang	and	Pan	(2021);	Bonetta	et	al.	
(2023);	Lee	et	al.	(2024);	Echeverria	
et	al.	(2024);	Ho	et	al.	(2024);	Dong	
et	al.	(2024)

Brandimarte Flex-
ible	
JSS

Small-
scale:	
10-20	
jobs

Yska	et	al.	(2018);	Teymouri-
far	et	al.	(2020);	Braune	et	al.	
(2022)

Pu	et	al.	(2024);	Wang	et	al.	(2023);	
Yuan	et	al.	(2024);	Jing	et	al.	(2024);	
Zhang	et	al.	(2023);	Echeverria	et	al.	
(2024);	Ho	et	al.	(2024);	Chen	et	al.	
(2020);	Yan	et	al.	(2022);	Wan	et	al.	
(2024);	Xu	et	al.	(2024);	Wan	et	al.	
(2024);	Zhang	et	al.	(2024)

Barnes JSS Small-
scale:	
20-50	
jobs

Yska	et	al.	(2018) Yuan	et	al.	(2024)

Dauzere Flex-
ible	
JSS

Small-
scale:	
20-100	
jobs

Yska	et	al.	(2018) Yuan	et	al.	(2024)

Hurink Flex-
ible	
JSS

Small-
scale:	
10-30	
jobs

Yska	et	al.	(2018);	Braune	et	
al.	(2022)

Echeverria	et	al.	(2024);	Pu	et	al.	
(2024);	Yuan	et	al.	(2024);	Jing	et	al.	
(2024);	Zhang	et	al.	(2023);	Echever-
ria	et	al.	(2024);	Wan	et	al.	(2024);	
Xu	et	al.	(2024);	Lei	et	al.	(2022,
2023)

FT JSS Small-
scale:	
6-20	
jobs

Zeiträg	et	al.	(2024) Park	et	al.	(2021);	Yuan	et	al.	(2023);	
Zhang	et	al.	(2024);	Wu	et	al.	(2024);	
Lee	et	al.	(2024);	Ho	et	al.	(2024);	
Liu	et	al.	(2020)

DMU Flex-
ible	
JSS

Small-
scale:	
10-50	
jobs

Nguyen	et	al.	(2012, 2013) Zhang	et	al.	(2020);	Yuan	et	al.	
(2023);	Liu	et	al.	(2024);	Pu	et	al.	
(2024);	Lin	et	al.	(2019);	Lee	et	al.	
(2024);	Dong	et	al.	(2024)

ORB JSS Small-
scale:	
10-20	
jobs

Nguyen	et	al.	(2012, 2013) Park	et	al.	(2021);	Yuan	et	al.	(2023);	
Zhang	et	al.	(2024);	Wu	et	al.	(2024);	
Tassel	et	al.	(2023);	Ho	et	al.	(2024);	
Lee	et	al.	(2024);	Liu	et	al.	(2020)

LA	
(Lawrence)

JSS Small-
scale:	
10-20	
jobs

Nguyen	et	al.	(2012, 2013);	
Braune	et	al.	(2022)

Zhang	et	al.	(2024);	Tassel	et	al.	
(2023);	Wang	et	al.	(2023);	Zhao	et	
al.	(2022);	Lin	et	al.	(2019);	Liu	et	
al.	(2020)

ABZ JSS Small-
scale:	
10-20	
jobs

– Yuan	et	al.	(2023);	Zhang	et	al.	
(2024);	Lee	et	al.	(2024)

Table 4	 The	comparison	of	typical	GP	and	RL	across	JSS	problem	scales	and	datasets

1 3

 160 Page 18 of 53

Learn to optimise for job shop scheduling: a survey with comparison…

Dataset Prob-
lem	
type

Scale	
(Jobs)

GP RL

SWV JSS Small-
scale:	
10-50	
jobs

– Park	et	al.	(2021);	Yuan	et	al.	(2023);	
Zhang	et	al.	(2024);	Tassel	et	al.	
(2023);	Lee	et	al.	(2024);	Ho	et	al.	
(2024)

YN JSS Small-
scale:	
10-20	
jobs

– Park	et	al.	(2021);	Yuan	et	al.	(2023);	
Zhang	et	al.	(2024);	Tassel	et	al.	
(2023);	Lee	et	al.	(2024);	Ho	et	al.	
(2024)

Randomly	
generated

JSS Small-
scale:	
5-100	
jobs

Hart	and	Sim	(2016) Hameed	and	Schwung	(2020);	Liu	
and	Huang	(2023);	Du	et	al.	(2022);	
Serrano	Ruiz	et	al.	(2024);	Liu	et	al.	
(2022)

Flex-
ible	
JSS

Small-
scale:	
10-40	
jobs

– Song	et	al.	(2022);	Park	and	Park	
(2021);	Wang	et	al.	(2023);	Park	et	
al.	(2019);	Zhang	et	al.	(2023);	Du	
and	Li	(2024);	Du	et	al.	(2022);	Ais-
sani	et	al.	(2012);	Ding	et	al.	(2024)

Dynamic
simulator

Dy-
namic
JSS

Small-
scale:		
6-600	
jobs

Yin	et	al.	(2003);	Dimopou-
los	and	Zalzala	(2001);	Gil	
Gala	et	al.	(2022);	Gil-Gala	
et	al.	(2023);	Planinić	et	al.	
(2021);	Đurasević	et	al.	(2023);	
Đurasević	et	al.	(2016);	
Đurasević	et	al.	(2023);	
Đurasević	et	al.	(2020);	
Jaklinović	et	al.	(2021);	
Đurasević	et	al.	(2018);	Gil	
Gala	et	al.	(2019);	Đurasević	et	
al.	(2018);	Song	and	Lin	(2021);	
Gil	Gala	et	al.	(2021)

Liu	et	al.	(2024);	Huang	et	al.	
(2024);	Zeng	et	al.	(2022);	Lei	et	al.	
(2024)

Large-
scale:	
3000	
jobs

Nguyen	et	al.	(2019);	Karuna-
karan	et	al.	(2017);	Shady	et	
al.	(2023);	Hunt	et	al.	(2014);	
Holthaus	and	Rajendran	(1997);	
Hildebrandt	et	al.	(2010);	Park	
et	al.	(2018, 2017);	Sitahong	et	
al.	(2022);	Shady	et	al.	(2022);	
Karunakaran	et	al.	(2017);	
Mei	et	al.	(2016);	Park	et	al.	
(2016, 2015);	Karunakaran	et	
al.	(2018);	Nguyen	et	al.	(2015,
2013, 2014);	Park	et	al.	(2018);	
Nguyen	et	al.	(2014);	Hunt	et	
al.	(2016);	Mei	et	al.	(2017);	
Zeiträg	et	al.	(2022);	Fan	et	al.	
(2021);	Park	et	al.	(2018, 2016)

Wang	(2020);	Wang	and	Yan	(2016)

Large-
scale:	
6000	
jobs

Nguyen	et	al.	(2019);	Mei	et	al.	
(2017);	Nguyen	et	al.	(2013);	
Mei	et	al.	(2017);	Nguyen	et	al.	
(2016)
Nguyen	et	al.	(2012);	Xu	et	al.	
(2021);	Zhang	et	al.	(2022);	
Huang	et	al.	(2023)

–

Table 4 (continued)

1 3

Page 19 of 53 160

M. Xu et al.

3.2.3 Evaluation of RL

In	RL,	the	reward	function	is	usually	designed	to	assess	the	performance	of	each	action	by	
providing	positive	or	negative	feedback	to	direct	the	agent	towards	desirable	outcomes	and	
away	from	undesirable	ones.	RL	relies	heavily	on	a	well-designed	reward	function,	which	
is	different	from	the	original	goal.	Designing	a	reward	function	for	RL	in	job	shop	schedul-
ing	involves	careful	consideration	of	the	problem’s	objectives,	state-action	space,	and	the	
desired	behaviour	of	 the	RL	agent	(Zhang	et	al.	2024).	Specifically,	 the	following	issues	
must	be	addressed:

 ● The	reward	function	should	align	with	the	scheduling	objectives,	such	as	minimising	
flowtime	or	minimising	tardiness,	to	ensure	that	the	RL	agent	learns	scheduling	heuris-
tics	that	lead	to	desired	outcomes.

 ● The	reward	function	should	be	based	on	the	current	state	of	the	system	and	the	action	
taken	by	the	RL	agent.	This	ensures	that	the	reward	function	accurately	evaluates	the	
impact	of	each	action	on	achieving	the	scheduling	objectives.

 ● The	reward	function	should	encourage	exploration	of	the	solution	space	while	ensuring	
effective	exploitation	of	learned	knowledge.	Balancing	exploration	and	exploitation	is	
important	 for	finding	optimal	or	near-optimal	solutions.	Care	must	be	 taken	 to	avoid	
reward	functions	that	lead	to	suboptimal	scheduling	heuristics.Overall,	designing	a	re-

Dataset Prob-
lem	
type

Scale	
(Jobs)

GP RL

Dy-
namic
flex-
ible	
JSS

Small-
scale:	
6-800	
jobs

Ozturk	et	al.	(2019);	Nie	et	al.	
(2013);	Zhang	et	al.	(2021);	
Teymourifar	et	al.	(2020);	Tay	
and	Ho	(2008);	Planinić	et	al.	
(2021);	Gil	Gala	et	al.	(2019);	
Zakaria	et	al.	(2021);	Gao	et	al.	
(2015);	Zhu	et	al.	(2020);	Ho	
and	Tay	(2005)

Luo	(2020);	Gui	et	al.	(2023);	Chang	
et	al.	(2022);	Liu	et	al.	(2022);	
Huang	et	al.	(2023);	Luo	et	al.	
(2021);	Liu	and	Huang	(2023);	Wan	
et	al.	(2024);	Luo	et	al.	(2021);	Li	et	
al.	(2022);	Wu	et	al.	(2023);	Bouazza	
et	al.	(2017);	Hu	et	al.	(2020);	Yan	et	
al.	(2022);	Said	et	al.	(2021);	Zhang	
et	al.	(2022, 2024)

Large-
scale:	
3000	
jobs

Zhou	et	al.	(2018);	Zhou	and	
Yang	(2019);	Zhou	et	al.	(2020)

–

Large-
scale:	
6000	
jobs

(xu	et	al.	(2023);	Zhang	et	al.	
(2020, 2020, 2020, 2018);	Xu	et	
al.	(2022);	Zhang	et	al.	(2019);	
Xu	et	al.	(2023);	Yska	et	al.	
(2018);	Zhang	et	al.	(2021);	Xu	
et	al.	(2022);	Zhang	et	al.	(2019,
2022);	Nguyen	et	al.	(2012);	Xu	
et	al.	(2021);	Zhang	et	al.	(2021,
2021, 2019);	Xu	et	al.	(2021);	
Yska	et	al.	(2018);	Zhang	et	al.	
(2018);	Nguyen	et	al.	(2018);	
Zhang	et	al.	(2023, 2021);	Xu	
et	al.	(2023, 2022);	Zhang	et	al.	
(2023, 2023, 2022)

–

Table 4 (continued)

1 3

 160 Page 20 of 53

Learn to optimise for job shop scheduling: a survey with comparison…

ward	function	for	RL	in	job	shop	scheduling	requires	domain	knowledge	and	iterative	
refinement	to	achieve	effective	learning	and	scheduling	performance.	The	reward	func-
tion	serves	as	a	signal	guiding	the	agent’s	actions	in	various	states,	indicating	the	desir-
ability	of	each	action.	By	optimising	its	scheduling	heuristic/policy	based	on	received	
rewards,	the	agent	learns	to	make	decisions	maximising	cumulative	rewards	as	Eq	(1).

Gt =

∞∑
k=0

γkrt+k+1,	 (1)

where γ is the discount factor, and rt+k+1 is the reward at time t + k + 1.
The	discount	 factor	γ ∈ [0, 1]	 is	a	parameter	 that	determines	 the	 importance	of	 future	

rewards	relative	to	immediate	rewards.	It	highlights	that	rewards	expected	to	be	received	in	
the	distant	future	are	considered	less	significant	than	those	obtained	in	the	immediate	future,	
indicating	RL’s	emphasis	on	prioritising	 immediate/local	 information.	A	poorly	designed	
reward	function	in	RL	could	lead	to	suboptimal	and	even	poor	search	directions	and	poten-
tial	loss	of	effective	scheduling	heuristics/policies.

3.2.4 Number of objectives

In	 scenarios	 involving	multiple	 conflicting	 objectives,	 known	 as	multi-objective	 optimi-
sation,	the	fitness	or	reward	function(s)	that	considers	multiple	objectives	simultaneously	
are	typically	utilised.	In	GP,	the	multi-objective	fitness	function	either	consolidates	diverse	
objectives	into	a	single	metric	or	evaluates	each	objective	independently	and	then	employs	
multi-objective	optimisation	techniques	such	as	Pareto	dominance	to	merge	multiple	objec-
tives	(Zhang	et	al.	2023;	xu	et	al.	2023;	Đurasević	et	al.	(2023).	In	RL,	a	straightforward	
way	 is	 to	design	multiple	reward	functions	corresponding	 to	distinct	objectives	and	give	
feedback	after	an	action	considers	these	multiple	reward	functions	collectively	(Luo	et	al.	
2021).	Other	studies	develop	more	reward	functions	than	the	number	of	objectives	consid-
ered,	aiming	to	achieve	a	favorable	compromise	between	the	objectives	over	the	long-term	
schedule	(Luo	et	al.	2021;	Wu	et	al.	2023).	They	accomplish	this	by	adaptively	selecting	
different	reward	functions	at	various	decision	points.	To	be	specific,	 in	Wu	et	al.	 (2023),	
six	reward	functions	are	developed	for	two	objectives.	They	employ	a	hierarchical	network	
architecture:	a	higher	network	determines	a	reward	function	corresponding	to	one	optimisa-
tion	objective	(e.g.,	makespan	or	total	tardiness),	while	a	lower	network	selects	an	action	
based	on	the	current	scheduling	situation	and	input	from	the	selected	reward	function	and	
other	five	 reward	 functions.	Through	 the	collaboration	between	 these	 two	networks,	dif-
ferent	reward	functions	adaptive	to	the	current	environment	alternate	to	guide	the	training	
process,	maximising	cumulative	rewards.	Some	studies	also	propose	using	a	single	aggre-
gated	reward	function	by	considering	different	objectives	together	(Du	and	Li	2024; Du et
al.	2022).

Overall,	 regardless	 of	 GP	 or	 RL,	 evaluation	 plays	 a	 key	 role	 in	 guiding	 algorithms	
towards	good	scheduling	performance.	It	steers	the	search	process	towards	improved	solu-
tions	across	iterations.	The	effectiveness	of	an	algorithm	relies	on	the	accurate	representa-
tion	of	problem-specific	objectives	 in	 the	fitness/reward	 function.	Building	on	 the	above	
introduction	and	discussion,	Table	5	summarises	the	key	characteristics	of	evaluation	in	GP	

1 3

Page 21 of 53 160

M. Xu et al.

and	RL.	It	is	important	to	note	that	these	characteristics	often	present	a	trade-off.	While	one	
approach	might	offer	an	advantage	in	a	specific	aspect,	it	might	come	at	the	cost	of	another.

3.3 Search mechanisms

The	search	mechanisms	employed	by	GP	and	RL	share	similarities	in	their	iterative	nature	
and	utilisation	of	feedback	from	the	scheduling	system	to	refine	scheduling	heuristics/poli-
cies	(Xu	et	al.	2024).	However,	significant	differences	exist	between	the	two	approaches.

In	GP,	the	search	process	revolves	around	the	operation	and	evolution	of	a	population	of	
scheduling	heuristics	(individuals)	(Zhang	et	al.	2021).	Initially,	this	population	is	generated	
randomly.	Through	 iterations,	 individuals	within	 this	 population	 undergo	 genetic	 opera-
tions	such	as	selection,	crossover,	and	mutation,	mimicking	the	process	of	natural	selection	
(Koza	et	al.	1994).	Parent	selection	for	crossover	and	mutation	is	driven	by	the	fitness	of	
each	scheduling	heuristic,	as	determined	by	a	predefined	fitness	function.	The	population	
evolves	over	time,	with	better-performing	individuals	being	more	likely	to	survive	and	pass	
on	their	traits	(building	blocks)	to	the	next	generation.	This	population	optimisation	strat-
egy	allows	GP	to	explore	a	diverse	range	of	scheduling	heuristics	and	potentially	discover	
novel	and	good	solutions.	On	the	other	hand,	RL	focuses	on	optimising	a	single	scheduling	
heuristic/policy	through	repeated	interactions	with	the	scheduling	environment	(Kaelbling	
et	al.	1996).	The	RL	agent	interacts	with	the	environment	by	selecting	actions	(scheduling	
decisions)	based	on	 its	current	 scheduling	heuristic/policy	and	 receiving	 feedback	 in	 the	
form	of	rewards	or	penalties.	These	rewards	or	penalties	are	given	by	a	designed	reward	
function.	Then	RL	uses	some	learning	algorithms	and	this	feedback	to	update	the	scheduling	
heuristic/policy	iteratively.

The	key	difference	between	GP	and	RL	lies	in	their	strategy	of	optimisation:	GP	explores	
a	diverse	population	of	scheduling	heuristics	collectively,	while	RL	focuses	on	refining	a	
single	heuristic/policy	through	iterative	interactions	with	the	environment.	This	fundamen-
tal	distinction	shapes	their	respective	search	mechanisms	and	influences	their	applicability	
to	different	scheduling	problems.	The	population-based	strategy	of	GP	offers	several	advan-
tages.	Firstly,	it	facilitates	a	diverse	exploration	of	the	search	space,	preventing	premature	

Table 5	 The	characteristics	of	evaluation	in	GP	and	RL
GP RL
1. Direct evaluation:	fitness	functions	are	often	easy	to	design	and	
understand.	2.	Global view:	evaluation	considers	overall	perfor-
mance	across	all	training	instances	using	global	information,	ensur-
ing	the	scheduling	heuristic	addresses	final	objectives.	3.	Population
evaluation:	allows	simultaneous	evaluation	of	multiple	scheduling	
heuristics,	fostering	exploration	of	diverse	scheduling	heuristics.	4.	
Loss of vocal accuracy:	focus	on	global	performance	might	overlook	
issues	with	specific	decisions	during	scheduling

1. Indirect evaluation:	reward	
functions	might	not	perfectly	align	
with	the	final	objective,	requir-
ing	careful	design	and	potential	
domain	expertise.	2.	Local focus:	
allows	for	fine-grained	learning	by	
providing	feedback	for	each	action	
using	local	information.	3.	Single
heuristic/policy evaluation:	typi-
cally	focuses	on	training	a	single	
scheduling	heuristic,	potentially	
saving	evaluation	time.	4.	Sen-
sitivity to reward design:	poorly	
designed reward functions can
lead	the	agent	towards	suboptimal	
solutions	or	totally	wrong	direction

1 3

 160 Page 22 of 53

Learn to optimise for job shop scheduling: a survey with comparison…

convergence	to	suboptimal	and	promoting	the	discovery	of	novel,	high-quality	scheduling	
heuristics.	Moreover,	it	provides	decision-makers	with	a	range	of	options	and	insights	into	
the	problem	space,	potentially	uncovering	multiple	viable	solutions.	Detailed	descriptions	
of	 the	search	mechanisms	and	key	components	utilised	by	GP	and	RL	are	 introduced	as	
follows.

3.3.1 Search mechanism of GP

The	 search	 mechanism	 of	 GP	 involves	 selection	 and	 breeding	 among	 a	 population	 of	
scheduling	heuristics	 (Gil	Gala	et	 al.	2021).	Selection	 is	 essential	 in	GP	 that	determines	
the	direction	of	evolution	(Helmuth	and	Abdelhady	2020).	Selection	can	be	divided	 into	
elite	selection	and	parent	selection.	Elite selection	 involves	preserving	a	certain	percent-
age	of	 the	best	 individuals	 from	 the	current	generation	 to	be	directly	carried	over	 to	 the	
next	generation.	This	helps	maintain	high-performing	individuals	in	the	population.	Parent
selection	determines	which	individuals	from	the	current	population	will	be	chosen	to	serve	
as	parents	for	creating	the	next	generation	(Fang	and	Li	2010).	The	choice	of	parents	signifi-
cantly	influences	the	diversity	and	quality	of	the	population.	Individuals	with	better	fitness	
values	are	more	likely	to	be	selected	as	parents.	This	approach	emphasises	the	principle	of	
“survival	of	the	fittest”	and	aims	to	propagate	genetic	material	from	individuals	that	have	
performed	well	in	solving	the	problem.	Tournament	selection	and	roulette	wheel	selection	
are	two	classical	parent	selection	examples	commonly	used	in	GP.

Tournament selection	involves	randomly	selecting	a	subset	of	individuals	from	the	popu-
lation	and	choosing	the	one	with	the	highest	fitness	as	a	parent	(Fang	and	Li	2010).	Roulette
wheel selection	allocates	a	probability	of	selection	to	each	individual	in	proportion	to	their	
fitness	(Xie	2009).	Individuals	with	better	fitness	have	larger	“slices”	of	the	roulette	wheel,	
increasing	their	chances	of	being	chosen.	Tournament	selection	and	roulette	wheel	selection	
primarily	select	parents	based	on	 their	fitness.	However,	more	advanced	parent	selection	
methods	in	JSS	further	consider	diversity	and	complementarity.	Cluster selection	identifies	
individuals	exhibiting	varied	behaviours	to	serve	as	parents	(Xu	et	al.	2022).	Diverse part-
ner selection	prioritises	individuals	who	have	complementary	strengths	as	parents	(Xu	et	
al.	2022).	Lexicase selection,	on	the	other	hand,	targets	expert	individuals	who	demonstrate	
effectiveness	in	various	cases	to	be	selected	as	parents	(Xu	et	al.	2023).	The	choice	of	par-
ent	selection	operator	depends	on	the	specific	characteristics	of	the	problem	and	the	desired	
balance	between	exploration	and	exploitation.

The	 breeding	 process	 in	 GP	 involves	 the	 creation	 of	 new	 individuals	 by	 combining	
genetic	material	from	selected	parents	(Koza	and	Koza	1992).	The	primary	genetic	opera-
tors	used	in	GP	include	crossover,	mutation,	and	reproduction.

Crossover	involves	exchanging	genetic	material	between	two	parents	to	generate	one	or	
more	offspring.	Crossover	facilitates	 the	recombination	of	building	blocks	from	different	
parents,	allowing	the	offspring	to	inherit	successful	combinations	of	genetic	material.	Vari-
ous	crossover	methods	exist,	with	subtree	crossover	being	a	typical	example.	Subtree	cross-
over	involves	selecting	a	subtree	from	one	parent	and	replacing	a	randomly	chosen	subtree	
in	the	other	parent	(Zhang	et	al.	2018).	Mutation	 introduces	small	random	changes	to	an	
individual’s	genetic	material	(Koza	and	Koza	1992).	Mutation	introduces	genetic	diversity,	
helping	the	population	explore	new	regions	of	the	solution	space	that	can	lead	to	improved	
solutions.	Mutation	can	take	various	forms,	such	as	changing	a	function	or	 terminal	 in	a	

1 3

Page 23 of 53 160

M. Xu et al.

subtree	or	adding/deleting	nodes.	Mutation	serves	as	an	exploration	mechanism,	allowing	
the	algorithm	to	discover	novel	solutions	and	prevent	premature	convergence.	Reproduction
allows	certain	individuals	selected	by	parent	selection	(not	necessarily	the	best	ones)	to	be	
directly	copied	into	the	next	generation	without	modification	(Koza	et	al.	1994).	Reproduc-
tion	allows	successful	building	blocks	(effective	parts	of	a	scheduling	heuristic)	discovered	
in	previous	generations	to	be	carried	forward	without	risking	modification	through	cross-
over	 or	mutation	 and	 continue	 to	 contribute	 to	 the	 next	 population.	Reproduction	 helps	
maintain	consistency	and	stability	in	the	population.

These	genetic	operators	often	work	simultaneously.	Typically,	a	combination	of	cross-
over,	mutation,	and	reproduction	is	applied	to	generate	offspring	in	a	new	generation	(Koza	
et	al.	1994).	Beyond	these	basic	genetic	operators,	research	on	advanced	genetic	operators	
includes	adaptive	rate	adjustment	to	achieve	a	balance	between	exploration	and	exploita-
tion	(Yang	et	al.	2024),	depth-dependent	operators	that	restrict	the	selection	of	subtrees	at	
specific	depths	(Zhang	et	al.	2022),	and	semantic	operators	that	bias	offspring	towards	pre-
defined	semantics	(Xu	et	al.	2023).	More	targeted	studies	control	the	exchange	of	specific	
subtrees	by	considering	subtree	importance.	In	(Zhang	et	al.	2020),	a	subtree	importance	
measuring	method	is	proposed	by	considering	that	subtrees	containing	more	important	fea-
tures	are	more	significant.	This	approach	gives	a	higher	probability	of	removing	unimport-
ant	 subtrees	 from	an	 individual	and	a	higher	probability	of	acquiring	 important	 subtrees	
from	the	other	parent.	However,	subtree	importance	based	solely	on	the	frequency	of	fea-
tures	might	not	be	accurate,	as	GP	individuals	may	contain	redundant	subtrees.	To	address	
this	issue,	(Zhang	et	al.	2021)	measured	subtree	importance	by	comparing	the	behaviour	of	
a	subtree	with	that	of	the	entire	tree.	Consequently,	when	performing	crossover	operations,	
if	the	offspring	are	generated	by	replacing	an	unimportant	subtree	with	an	important	subtree	
from	the	other	parent,	the	resulting	offspring	are	more	likely	to	exhibit	good	quality.

In	addition	to	standard	search	mechanisms,	some	advanced	machine	learning	techniques,	
such	as	transfer	learning	(Zhang	et	al.	2023, 2022)	and	ensemble	learning	(Đurasević	et	al.	
2018; Hart and Sim 2016;	Gil	Gala	et	al.	2022;	Đurasević	et	al.	2023)	are	also	studied	in	
some	advanced	GP	approaches.	Transfer	learning	is	usually	applied	to	address	multi-task	
JSS	problems	(Zhang	et	al.	2023, 2022).	By	transferring	knowledge	between	subpopula-
tions	or	individuals	for	solving	different	tasks	(often	implemented	through	crossover),	trans-
fer	learning	allows	GP	to	leverage	experiences	in	solving	related	scheduling	tasks	(Zhang	
et	al.	2023, 2022, 2021).	Ensemble	Learning	involves	learning	a	group	of	scheduling	heu-
ristics	and	then	aggregating	their	decisions	(Đurasević	et	al.	2018;	Park	et	al.	2018).	This	
can	improve	the	stability	and	reliability	of	the	final	scheduling	decisions	(Xu	et	al.	2023).

3.3.2 Search mechanism of RL

The	search	mechanism	of	RL	involves	adjusting	the	parameters	of	the	scheduling	heuristics/
policies	to	improve	the	accuracy	of	decisions	based	on	some	learning	algorithms.	Different	
learning	algorithms	in	RL	can	vary	in	how	they	optimise	the	parameters	of	a	neural	network,	
which	serves	as	the	value	function	or	function	approximator	for	the	heuristic/policy.	Widely	
used	learning	algorithms	in	RL	for	scheduling	problems	can	be	categorised	into	three	main	
types	based	on	their	strategy	for	learning:	value-based,	policy-based,	and	actor-critic	meth-
ods, as shown in Fig. 11.

1 3

 160 Page 24 of 53

Learn to optimise for job shop scheduling: a survey with comparison…

Value-based	methods	 learn	 the	value	function,	which	estimates	 the	expected	return	or	
cumulative	reward	associated	with	being	in	a	particular	state	and	taking	a	specific	action.	
The	construction	and	calculation	of	the	value	function	are	central	to	value-based	RL.	Repre-
sentative	algorithms	of	value-based	learning	algorithm	in	production	scheduling	optimisa-
tion	include	SARSA	(Chen	et	al.	2020),	Q-learning	(Bouazza	et	al.	2017),	deep	Q-networks	
(DQN)	(Hu	et	al.	2020),	and	double	DQN	(Van	Hasselt	et	al.	2016).	SARSA	updates	the	
Q-value	(action-value)	based	on	the	action	actually	taken	in	the	next	state,	as	demonstrated	
in	 (Chen	 et	 al.	 2020;	Orhean	 et	 al.	 2018;	Aissani	 et	 al.	 2012).	 Different	 from	 SARSA,	
Q-learning	 updates	 its	Q-values	 based	 on	 the	maximum	Q-value	 of	 the	 next	 scheduling	
state	regardless	of	the	action	taken	(Bouazza	et	al.	2017; Wang 2020;	Stricker	et	al.	2018;
Wang and Yan 2016;	Said	et	al.	2021;	Yan	et	al.	2022).	Both	SARSA	and	Q-learning	employ	
a	table	to	record	state-action	values,	but	this	approach	becomes	impractical	when	the	state	
or	action	space	is	large.	Therefore,	the	DQN	is	proposed	by	integrating	Q-learning	and	the	
feedforward	neural	network	 to	 approximate	 the	value	 function	 (Hu	et	 al.	2020;	Li	 et	 al.	
2022;	Liu	et	al.	2022;	Yan	et	al.	2022;	He	et	al.	2022).	DQN	uses	experience	replay	and	
target	network	to	overcome	the	instability	of	the	algorithm.	However,	DQN’s	tendency	to	
overestimate	action	values	poses	a	limitation	due	to	using	the	same	network	for	action	selec-
tion	and	evaluation.	To	overcome	this	 limitation,	double	DQN	is	proposed	by	using	 two	
separate	networks:	one	for	action	selection	(the	target	network)	and	one	for	value	evalua-
tion	(the	online	network)	(Van	Hasselt	et	al.	2016;	Liu	et	al.	2022;	Du	et	al.	2022;	Wu	et	al.	
2023;	Zeng	et	al.	2022;	Ho	et	al.	2023).	The	target	network	is	periodically	updated	with	the	
parameters	of	the	online	network,	which	helps	stabilise	training	and	reduce	overestimation	
bias.	By	decoupling	action	selection	from	value	evaluation,	Double	DQN	provides	more	
accurate	Q-value	estimates	and	leads	to	improved	scheduling	performance.

Policy-based	 methods	 directly	 parameterise	 the	 neural	 networks	 (scheduling	 heuris-
tics/policies),	which	specifies	the	probability	distribution	over	actions	given	states.	REIN-
FORCE	(Wang	and	Pan	2021),	proximal	policy	optimisation	(PPO)	(Zhang	et	al.	2022; Xu
et	al.	2024),	and	trust	region	policy	optimisation	(TRPO)	(Kuhnle	et	al.	2019)	are	examples	
of	policy-based	methods	used	 in	 scheduling.	REINFORCE	directly	optimises	 the	neural	
network	by	estimating	the	gradients	of	the	expected	return	with	respect	to	the	neural	net-
work	parameters	(Wang	and	Pan	2021;	Bonetta	et	al.	2023;	Zhang	et	al.	2024).	PPO	aims	
to	 improve	 upon	REINFORCE	by	 addressing	 its	 high	 variance	 and	 instability	 issues.	 It	
constrains	 the	neural	 network	update	 step	 size	using	 a	 clipping	mechanism	or	 a	 penalty	
term,	ensuring	that	 the	neural	network	update	does	not	deviate	too	far	from	the	previous	
neural	network	(Zhang	et	al.	2020;	Rummukainen	and	Nurminen	2019;	Zhang	et	al.	2022).	
TRPO	seeks	to	further	improve	sample	efficiency	and	stability	by	constraining	the	neural	
network	update	step	size	based	on	a	trust	region	constraint	(Kuhnle	et	al.	2019).	It	aims	to	
ensure	that	the	updated	neural	network	does	not	deviate	too	far	from	the	previous	neural	

Fig. 11	 The	categories	of	RL	learning	
algorithms

1 3

Page 25 of 53 160

M. Xu et al.

network,	thereby	preventing	large	neural	network	changes	that	could	lead	to	performance	
degradation.

Actor-critic	methods	combine	elements	of	both	value-based	and	policy-based	approaches.	
They	involve	two	neural	networks:	an	actor	network	that	learns	the	scheduling	heuristic/
policy	and	a	critic	network	that	learns	the	value	function.	The	parameters	of	both	networks	
are	optimised	simultaneously	using	techniques	such	as	stochastic	gradient	descent	or	vari-
ants	like	Adam.	Deep	deterministic	policy	gradient	(DDPG)	(Liu	et	al.	2020)	and	advantage	
actor-critic	(A2C)	(Hubbs	et	al.	2020)	are	examples	of	actor-critic	methods.	DDPG	learns	
a	deterministic	scheduling	heuristic/policy,	directly	mapping	states	to	actions	without	any	
randomness	(Liu	et	al.	2020).	In	DDPG,	actions	are	selected	by	adding	exploration	noise	to	
the	output	of	the	deterministic	scheduling	heuristic/policy.	This	noise	encourages	explora-
tion	and	prevents	the	scheduling	heuristic/policy	from	getting	stuck	in	local	optima.	DDPG	
uses	a	separate	target	network	to	estimate	the	value	of	state-action	pairs.	This	target	network	
is	periodically	updated	with	the	parameters	of	the	main	network	to	stabilise	training.	A2C	
learns	a	stochastic	scheduling	heuristic/policy,	where	the	scheduling	heuristic/policy	out-
puts	a	probability	distribution	over	actions	for	a	given	state	(Hubbs	et	al.	2020).	In	A2C,	
actions	are	sampled	from	the	probability	distribution	output	by	 the	stochastic	scheduling	
heuristic/policy.	This	allows	for	more	flexible	exploration	strategies	and	can	lead	to	better	
exploration	 in	high-dimensional	or	 continuous	action	 spaces.	A2C	uses	 a	value	 function	
(critic)	 to	estimate	 the	state-value	function,	which	represents	 the	expected	return	starting	
from	a	given	state	(Wan	et	al.	2024).	Additionally,	A2C	estimates	the	advantage	function,	
which	represents	the	advantage	of	taking	a	specific	action	compared	to	the	average	action	
value	in	a	given	state.

4 GP and RL for different job shop scheduling problems

In	this	section,	we	introduce	different	kinds	of	GP	and	RL	methods	designed	for	different	
kinds	of	JSS	problems.	In	this	survey,	the	JSS	problems	are	classified	according	to	environ-
mental	conditions.	They	are	classified	into	static	scheduling	problems,	including	static	JSS	
and	static	flexible	JSS	problems,	and	dynamic	scheduling	problems,	including	dynamic	JSS	
and	dynamic	flexible	JSS	problems.	Next,	we	give	a	literature	review	of	GP	and	RL	methods	
for	each	typic	of	JSS	problem,	static	and	dynamic,	flexible	and	non-flexible.

4.1 Static scheduling problems

For	static	scheduling	problems,	all	scheduling	information	is	known	in	advance.	Specifi-
cally,	 static	 JSS	 involves	 handling	 sequencing	 decision	 points,	 while	 static	 flexible	 JSS	
requires	handling	both	sequencing	and	routing	decision	points.	In	the	domain	of	learning	
scheduling	heuristics/policies	for	static	scheduling	problems,	GP	is	used	as	a	heuristic	gen-
eration	method,	while	RL	can	serve	as	either	a	heuristic	selection	method	or	directly	opti-
mise	sequences	of	job-machine	pairs.	However,	RL	is	more	usually	used	to	directly	optimise	
sequences	of	job-machine	pairs	for	static	scheduling	problems.	Following	are	some	exam-
ples	illustrating	the	application	of	GP	and	RL	in	JSS	and	flexible	JSS.

1 3

 160 Page 26 of 53

Learn to optimise for job shop scheduling: a survey with comparison…

4.1.1 Static JSS

For	learning	scheduling	heuristics/policies	for	static	JSS	problems,	both	GP	and	RL	usu-
ally	only	need	to	learn	a	sequencing	rule,	as	the	machine	to	process	an	operation	is	given	
in advance.

In	the	early	stages,	GP	was	primarily	applied	to	address	static	JSS	problems	(Miyashita	
2000).	Experimental	results	revealed	that	GP	could	evolve	effective	scheduling	heuristics	
for	solving	such	problems.	Some	foundational	studies	(Nguyen	et	al.	2012, 2013)	investi-
gate	representations	in	this	domain.	Beyond	these,	several	studies	have	explored	advanced	
strategies.	For	instance,	Nguyen	et	al.	proposed	two	selection	strategies	to	aid	surrogate-
assisted	GP	in	evolving	scheduling	heuristics	for	JSS	(Nguyen	et	al.	2014).	These	strate-
gies	aim	to	enhance	population	diversity	by	selecting	individuals	with	different	behaviours	
(phenotypes)	or	genotypes.	Additionally,	Mei	et	al.	introduced	an	efficient	feature	selection	
strategy	 for	GP	 to	 solve	 JSS	problems	 (Mei	 et	 al.	 2017).	 Specifically,	 they	 developed	 a	
niching-based	search	framework	to	extract	a	diverse	set	of	good	scheduling	heuristics,	while	
employing	a	surrogate	model	to	reduce	the	complexity	of	fitness	evaluation.

In	Karunakaran	et	al.	(2016),	the	focus	is	on	addressing	the	multi-objective	JSS	problems	
using	a	novel	GP	method	assisted	by	the	island	model.	The	experimental	results	reveal	that	
this	innovative	GP	method,	in	conjunction	with	the	island	model,	exhibits	superior	perfor-
mance	 compared	 to	 classical	multi-objective	 optimisation	methods.	The	paper	 considers	
three	objectives.	In	related	work,	the	many-objective	JSS	problem	is	addressed,	involving	
four	or	more	objectives	(Masood	et	al.	2016, 2018;	Đurasević	et	al.	2018;	Masood	et	al.	
2019).	To	tackle	this	complex	problem,	the	study	proposes	a	new	hybridised	algorithm	that	
combines	GP	and	NSGAIII,	 showcasing	 a	 comprehensive	 approach	 to	 address	 the	 chal-
lenges	posed	by	many	objectives	in	the	JSS	domain.

For	RL	approaches	that	directly	optimise	sequences	of	job-machine	pairs	in	static	JSS,	the	
method	functions	as	an	end-to-end	approach,	where	the	learned	scheduling	policy	directly	
selects	from	available	operations	at	each	decision	point.	Particularly,	some	representative	
works	regarding	end-to-end	RL	include	(Zhang	et	al.	2020;	Park	et	al.	2021, 2021; Yuan et
al.	2023).	In	these	studies,	the	scheduling	state	in	static	JSS	scenarios	is	typically	denoted	by	
a	disjunctive	graph	(Dong	et	al.	2024).	Within	this	graph	framework,	solving	a	JSS	instance	
usually	involves	using	a	graph	neural	network	to	learn	the	embeddings	of	operations	(nodes)	
within	the	disjunctive	graph	(Ho	et	al.	2024).	Different	learning	algorithms	for	optimising	
the	parameters	of	the	graph	neural	network	can	be	used.	For	example,	in	Zhang	et	al.	(2020),	
the	 scheduling	policy	 is	 trained	using	a	policy	gradient	 algorithm.	 In	Park	et	 al.	 (2021),	
Park	et	al.	(2021),	Yuan	et	al.	(2023),	Liu	and	Huang	(2023),	the	PPO	learning	algorithm	
and	its	variants	are	applied	for	stable	learning	performance.	Instead	of	only	testing	on	static	
scheduling	scenarios	(Park	et	al.	2021, 2021;	Yuan	et	al.	2023),	the	study	by	Liu	and	Huang	
(2023)	extends	its	analysis	to	include	dynamic	scheduling	scenarios	for	testing	the	trained	
scheduling	policies	on	 test	 scenarios.	The	authors	claim	 that	 the	 scheduling	policies	can	
be	statically	trained	and	directly	tested	in	either	a	static	or	dynamic	environment	without	
additional	adjustments,	showcasing	 the	flexibility	of	 their	method.	Nevertheless,	 training	
in	a	static	environment	and	applying	the	model	to	a	dynamic	environment	might	result	in	
the	 loss	 of	 important	 information	 during	 the	 training	 process.	Consequently,	 the	models	
trained	on	static	instances	might	exhibit	poor	performance	when	faced	with	unseen	dynamic	
instances.	Beyond	the	graph	neural	network,	in	the	study	by	Pan	et	al.	(2021),	a	novel	RL	

1 3

Page 27 of 53 160

M. Xu et al.

method	with	an	innovative	network	architecture	is	developed	to	address	the	static	permu-
tation	flow	shop	 scheduling	problem.	This	novel	network	 integrates	 the	 recurrent	neural	
network	and	feedforward	neural	network,	augmented	with	a	convolutional	layer	to	enhance	
its	flexibility	 for	 solving	different	 scales	of	 scheduling	problems.	The	parameters	of	 this	
network	are	trained	using	the	actor-critic	algorithm.

Rather	than	employing	RL	as	an	end-to-end	method	for	JSS,	some	studies	leverage	RL	
as	a	heuristic	selection	method,	aiming	to	learn	the	selection	of	scheduling	heuristics	from	
a	predefined	set	Ding	et	al.	(2024);	Lee	et	al.	(2024).	In	these	studies,	feedforward	neural	
networks	are	usually	used	to	map	the	input	scheduling	state	to	the	actions,	which	are	usu-
ally	manually	designed	scheduling	heuristics	 (Lin	et	al.	2019).	When	a	decision	point	 is	
encountered,	a	scheduling	heuristic	is	selected.	Then,	the	chosen	scheduling	heuristic	will	
determine	which	machine/operation	to	select.	In	addition,	a	replay	memory	is	commonly	
used	to	store	some	experience	which	will	be	used	as	guidance	for	future	decisions.

4.1.2 Static flexible JSS

For	flexible	JSS,	we	need	to	consider	not	only	the	operation	sequencing	but	also	the	machine	
allocation	(routing).	The	key	aspect	here	is	how	to	consider	the	sequencing	and	routing	situ-
ation	together	in	GP	and	RL.

In	Braune	et	al.	(2022),	an	investigation	of	both	single-tree	and	multi-tree	representations	
in	GP	 for	 solving	 the	flexible	 JSS	problem	 is	 conducted.	For	 the	 single-tree	 representa-
tion,	the	work	involves	learning	sequencing	and	routing	rules	in	two	parallel	GP	methods,	
while	 the	 GP	with	multi-tree	 representation	 simultaneously	 learns	 scheduling	 heuristics	
with	sequencing	and	routing	rules.	The	effectiveness	of	both	representations	is	validated	on	
benchmark	flexible	JSS	instances	against	manually	designed	scheduling	heuristics.	Further-
more,	 this	study	extends	its	evaluation	to	dynamic	and	real-world	flexible	JSS	instances,	
verifying	 the	 effectiveness	 of	 the	 proposed	methods.	 In	 a	more	 specialised	 context,	 the	
study	in	Ho	and	Tay	(2005)	employs	GP	to	evolve	scheduling	heuristics	for	solving	a	more	
complex	flexible	JSS	problem	with	recirculation,	which	means	a	job	can	typically	visit	a	
machine	more	than	once.	In	Zhu	et	al.	(2020),	GP	is	used	to	address	a	specific	flexible	JSS	
problem	incorporating	multi-process	planning.	The	evolved	scheduling	heuristics	demon-
strate	superiority	over	manually	designed	scheduling	heuristics.	These	studies	showcase	the	
effectiveness	of	GP	in	solving	specific	challenges	within	the	flexible	JSS	problem	domain.	
In	Tay	and	Ho	(2008),	the	multi-objective	flexible	JSS	problem	is	studied	with	three	objec-
tives	considered.	However,	these	objectives	are	linearly	combined	into	a	single	objective,	
transforming	the	original	multi-objective	flexible	JSS	problem	into	a	single-objective	flex-
ible	JSS	problem.	In	Zhou	et	al.	(2019),	a	multi-agent-based	GP	is	proposed	for	solving	the	
flexible	JSS	problem,	with	a	 focus	on	a	 real-world	application	of	GP	 in	an	Aero-Engine	
blade	manufacturing	plant.

Concerning	RL	for	flexible	JSS,	in	Song	et	al.	(2022),	an	end-to-end	RL	is	introduced	for	
automatically	learning	scheduling	policies	for	flexible	JSS.	This	approach	combines	opera-
tion	selection	and	machine	assignment	into	a	composite	decision	and	incorporates	a	hetero-
geneous	graph	structure	to	capture	intricate	relationships	among	operations	and	machines	
Wan	et	al.	(2024).	The	actions	in	this	context	correspond	to	feasible	job-machine	pairs.	The	
obtained	results	indicate	that	the	learned	scheduling	policies	outperform	traditional	manu-
ally	designed	heuristics.	Similarly,	the	study	in	Yuan	et	al.	(2024)	also	employs	a	graph	to	

1 3

 160 Page 28 of 53

Learn to optimise for job shop scheduling: a survey with comparison…

encode	scheduling	information	and	combines	operation	selection	with	machine	assignment	
as	a	composite	decision,	and	actions	correspond	to	feasible	job-machine	pairs.	In	Zhang	et	
al.	(2023),	Jing	et	al.	(2024),	the	multi-agent	graph	is	constructed	to	represent	the	relation-
ships	between	operations	among	machines	and	jobs.	Each	agent	collaborates	with	its	neigh-
boring	agents	to	take	coordinated	actions,	addressing	both	sequencing	and	routing	decisions	
simultaneously.	While	end-to-end	RL	can	address	the	changing	action	space	of	flexible	JSS	
problems,	its	applicability	is	limited	due	to	the	encoding	of	scheduling	information	using	
a	graph.	This	limitation	renders	it	suitable	primarily	for	small-scale	JSS	problems	(Song	et	
al.	2022).	Heuristic	selection	RL	is	demonstrated	to	be	more	applicable	and	prevalent	in	the	
flexible	JSS	domain.	For	example,	in	Du	et	al.	(2022),	a	heuristic	selection	RL	is	proposed	
to	 solve	 a	multi-objective	flexible	 JSS	problem.	To	 tackle	 the	 operation	 sequencing	 and	
machine	 routing	within	 flexible	 JSS,	 this	 paper	 integrates	manually	 designed	 composite	
scheduling	 heuristics,	 combining	 these	 sub-problems	 into	 a	 unified	 framework.	Then	 an	
agent	is	learned	to	make	decisions	among	these	composite	scheduling	heuristics.

4.2 Dynamic scheduling problems

Differing	from	static	JSS,	dynamic	JSS	involves	incomplete	advanced	knowledge	of	job	or	
machine	information	(Đurasević	et	al.	2016;	Đurasević	et	al.	2023).	Specifically,	dynamic	
JSS	 involves	 managing	 sequencing	 decision	 points	 in	 a	 dynamic	 environment,	 while	
dynamic	flexible	JSS	requires	handling	both	sequencing	and	routing	decision	points	in	such	
an	environment.	In	the	domain	of	learning	scheduling	heuristics/policies	for	dynamic	sched-
uling	problems,	GP	is	used	as	a	heuristic	generation	method,	while	RL	can	serve	as	either	a	
heuristic	selection	method	or	directly	optimise	sequences	of	job-machine	pairs.	However,	
RL	is	more	often	used	as	a	heuristic	selection	method	for	dynamic	scheduling	problems.	
Following	are	some	examples	illustrating	the	application	of	GP	and	RL	in	dynamic	JSS	and	
dynamic	flexible	JSS.

4.2.1 Dynamic JSS

In	dynamic	JSS,	GP	is	applied	to	evolve	effective	scheduling	heuristics	considering	various	
dynamic	events.	Example	studies	such	as	(Xu	et	al.	2021;	Gil	Gala	et	al.	2019;	Fan	et	al.	
2021;	Karunakaran	et	al.	2017;	Park	et	al.	2018)	focus	on	GP	for	dynamic	JSS,	particularly	
with	a	focus	on	new	job	dynamic	arrival	events.	These	studies	validate	the	effectiveness	of	
GP	against	manually	designed	scheduling	heuristics.	A	study	in	Park	et	al.	(2018)	extends	
their	focus	to	consider	both	new	job	dynamic	arrival	events	and	machine	breakdown	events,	
with	the	introduction	of	new	machine	breakdown	terminals.	Enhanced	GP	methods,	inte-
grating	various	machine	learning	techniques	such	as	feature	selection	(Shady	et	al.	2022,
2023;	Mei	et	al.	2016;	Sitahong	et	al.	2022),	multi-task	learning	(Huang	et	al.	2023; Zhang
et	al.	2021),	ensemble	(Park	et	al.	2018),	niching	(Park	et	al.	2016;	Zakaria	et	al.	2019),	
and	surrogate	(Zeiträg	et	al.	2022;	Zhang	et	al.	2022),	have	been	studied	to	further	improve	
the	effectiveness	of	GP	in	dynamic	JSS.	In	the	above	studies,	a	single-tree	representation	is	
employed	to	learn	scheduling	heuristics	with	a	single	sequencing	rule.

Nevertheless,	in	specific	scenarios,	employing	two	rules	can	yield	superior	results.	Dif-
fering	from	the	sequencing	rule	and	routing	rule	 typically	utilised	for	flexible	JSS,	 these	
two	rules	consist	of	a	general	sequencing	rule	and	a	specialised	rule	designed	for	a	specific	

1 3

Page 29 of 53 160

M. Xu et al.

goal.	For	example,	in	Park	et	al.	(2018),	a	specialised	rule	for	effectively	handling	various	
machine	breakdown	issues	is	developed.	In	Nguyen	et	al.	(2012),	a	due-date	assignment	rule	
is	evolved	specifically	for	optimising	the	tardiness	objective.	In	addition	to	the	effective-
ness,	certain	studies	focus	on	the	interpretability	of	evolved	scheduling	heuristics	by	GP	for	
dynamic	JSS	(Mei	et	al.	2017;	Hunt	et	al.	2016).

Moreover,	several	studies	concentrate	on	the	application	of	GP	to	address	multi-objective	
dynamic	 JSS.	 For	 example,	 in	Nguyen	 et	 al.	 (2013),	 novel	multi-objective	GP	methods	
are	formulated	by	integrating	GP	with	classical	multi-objective	algorithms,	including	non-
dominated	sorting	genetic	algorithm	II	 (NSGAII)	and	strength	Pareto	evolutionary	algo-
rithm	2	(SPEA2).	In	Karunakaran	et	al.	(2018)	a	novel	GP	for	evolving	sampling	heuristics	
for	multi-objective	dynamic	 JSS	 is	developed.	Specifically,	 during	 the	 evolutionary	pro-
cess,	sampling	heuristics	are	employed	to	discard	poor	instances	in	favor	of	good	instances,	
thereby	enhancing	the	Pareto	front.	More	studies	of	GP	for	multi-objective	dynamic	JSS	can	
refer	to	(Nguyen	et	al.	2013, 2015, 2012;	Yin	et	al.	2003).

Both	 end-to-end	RL	and	heuristic	 selection	RL	can	be	used	 for	 dynamic	 JSS.	 In	Liu	
and	Huang	(2023),	a	novel	end-to-end	RL	with	graph	neural	networks	is	proposed	for	the	
dynamic	JSS	problems	considering	stochastic	job	arrivals	and	random	machine	breakdowns.	
Different	from	the	studies	of	the	RL	with	graph	neural	networks	for	static	JSS,	the	graph	
neural	networks	are	required	to	update	frequently	as	new	jobs	continue	to	arrive	and/or	when	
machine	breakdown	happens.	In	the	application	of	heuristic	selection	RL	to	dynamic	JSS	
problems	(Zeng	et	al.	2022;	Wu	et	al.	2024;	Lei	et	al.	2024),	manually	designed	sequencing	
rules	are	commonly	employed	as	the	agents’	actions,	instead	of	directly	utilising	operations	
as	actions.	These	RL	methods	address	the	challenges	faced	by	end-to-end	RL	approaches,	
which	encounter	difficulties	with	dynamically	changing	action	spaces	(Zeng	et	al.	2022).

4.2.2 Dynamic flexible JSS

Dynamic	 flexible	 JSS	 is	more	 complex	 compared	 to	 other	 types	 of	 JSS	 due	 to	 compli-
cated	 interactions	 between	 sequencing	 and	 routing	 decisions	 in	 a	 dynamic	 environment	
(Nguyen	et	al.	2018).	Dynamic	flexible	JSS	has	been	attracting	more	and	more	attention	
from	researchers	due	to	its	practical	value.

For	dynamic	flexible	JSS,	cooperative	coevolution	GP	(Yska	et	al.	2018)	and	multi-tree	
GP	 (Zhang	 et	 al.	 2018)	 are	 two	 typical	GP	methods.	 In	 the	 cooperative	 coevolution	GP	
approach,	the	sequencing	rule	and	routing	rule	are	evolved	in	two	distinct	sub-populations	
(Yska	et	al.	2018).	On	the	other	hand,	the	multi-tree	GP	method	evolves	both	sequencing	
and	routing	rules	simultaneously	within	a	single	population,	with	each	individual	compris-
ing	two	trees	(Zhang	et	al.	2018).	Research	indicates	that	both	of	these	methods	can	achieve	
superior	 performance	 compared	 to	 manually	 designed	 scheduling	 heuristics.	 On	 top	 of	
that,	certain	improved	cooperative	coevolution	GP	methods	and	multi-tree	GP	methods	are	
developed	by	combining	them	with	one	or	multiple	machine	learning	techniques,	involving	
feature	selection	(Yska	et	al.	2018;	Zhang	et	al.	2019;	Zakaria	et	al.	2021;	Zhang	et	al.	2020,
2020, 2020, 2021),	surrogate	(Zhang	et	al.	2018;	Zhou	et	al.	2020;	Zhang	et	al.	2021),	multi-
task	learning	(Zhang	et	al.	2023),	ensemble	(Gao	et	al.	2015;	Park	et	al.	2015; Rodrigueset
al.	2020;	Xu	et	al.	2023;	Park	et	al.	2016),	and	hybirdisation	of	these	techniques	(Zhang	et	
al.	2021, 2021).	A	more	detailed	review	of	GP	with	these	machine	learning	techniques	for	
JSS	problems	can	refer	to	a	survey	in	Zhang	et	al.	(2023).

1 3

 160 Page 30 of 53

Learn to optimise for job shop scheduling: a survey with comparison…

Moreover,	 various	GP	methods	 find	 extensive	 application	 in	 addressing	 the	 dynamic	
flexible	JSS	problems	with	multiple	objectives	considering	new	job	dynamic	arrival	events	
(Zhou	et	al.	2018;	Zhang	et	al.	2019; Zhou and Yang 2019;	Zhang	et	al.	2023, 2022)	or	
machine	breakdown	events	(Chen	et	al.	2018;	Park	et	al.	2017).	In	Teymourifar	et	al.	(2020),	
the	multi-objective	dynamic	flexible	JSS	problems	incorporating	both	new	job	arrivals	and	
machine	breakdowns	are	explored.	These	approaches	typically	make	routing	and	sequenc-
ing	decisions	 in	a	delay-free	manner,	which	might	have	 limitations	 in	dynamic	environ-
ments.	To	address	 this,	Xu	et	al.	 (2021)	proposes	a	delay	method	for	 the	multi-objective	
dynamic	 flexible	 JSS	 problem,	 delaying	 routing	 decisions	 to	 ensure	 decisions	 are	made	
under	the	latest	and	most	accurate	information.	Specifically,	ready	jobs	are	sent	to	a	pool	
instead	of	 immediately	 assigning	 them	 to	machines.	When	 a	machine	becomes	 idle,	 the	
delayed	routing	policy	is	employed	to	create	a	candidate	operation	set	for	that	idle	machine.	
In	Zhang	et	al.	(2023),	an	interpretability-aware	multi-objective	GP	is	proposed,	optimising	
not	only	for	scheduling	quality	but	also	for	smaller	heuristic	sizes	to	enhance	interpretabil-
ity.	Some	studies	simultaneously	handle	multiple	tasks	and	multiple	objectives	in	dynamic	
flexible	JSS	(Zhang	et	al.	2022, 2023).

In	terms	of	RL	for	dynamic	flexible	JSS,	the	study	in	Lei	et	al.	(2023)	proposed	a	end-to-
end	RL.	The	main	principle	is	to	divide	the	dynamic	flexible	JSS	problem	into	multiple	static	
scheduling	problems.	However,	the	inherent	essence	of	such	an	approach	is	still	to	view	the	
dynamic	problem	as	a	static	problem	to	be	solved.	This	does	not	allow	for	timely	response	
to	changes	in	the	scheduling	environment	and	real-time	decision-making,	which	ultimately	
affects	the	quality	of	the	solution.	Moreover,	such	an	approach	is	not	efficient.	Several	other	
studies	employ	heuristic	selection	RL	methods.	Unlike	the	application	of	heuristic	selec-
tion	RL	on	static/dynamic	JSS,	where	only	a	sequencing	rule	is	required,	dynamic	flexible	
JSS	necessitates	both	 a	 routing	 rule	 and	a	 sequencing	 rule.	To	address	 the	 simultaneous	
challenges	of	routing	and	sequencing,	some	studies	manually	design	composite	scheduling	
heuristics	as	actions	for	RL	and	train	an	agent	to	select	among	these	composite	scheduling	
heuristics	(Zhang	et	al.	2023;	Chang	et	al.	2022;	Luo	2020;	Wu	et	al.	2023).	However,	the	
strategy	of	combining	the	two	sub-problems	is	typically	not	optimal.	It	fails	to	fully	capture	
the	interaction	between	routing	and	sequencing	rules	(Zhang	et	al.	2018),	potentially	leading	
to	a	reduction	in	the	search	space	and	limiting	the	exploration	of	superior	solutions.

In	 addition,	 some	 approaches	 leverage	RL	 to	 learn	 the	weights	 associated	with	 these	
manually	designed	composite	scheduling	heuristics,	resulting	in	a	weighted	scheduling	heu-
ristic	(Gui	et	al.	2023).	This	method	can	be	effective	in	adapting	to	dynamic	and	changeable	
environments,	 as	 it	 does	 not	 necessitate	 consideration	 of	 the	 impact	 of	 variations	 in	 the	
number	of	candidate	machines/operations	at	different	decision	points.	However,	a	notable	
limitation	of	this	method	is	the	pre-determination	of	the	aggregation	function,	which	solely	
relies	on	a	weighted	sum	function.	This	predetermined	choice	still	narrows	down	the	search	
space	by	limiting	the	range	of	functions	available.	Additionally,	no	sufficient	evidence	is	
provided	to	explain	why	this	particular	predetermined	aggregation	function	can	yield	good	
results.	Different	from	the	aforementioned	studies	utilising	composite	scheduling	heuristics	
as	actions	to	jointly	address	sequencing	and	routing	decisions,	a	distinct	training	strategy	
is	employed	in	Liu	et	al.	(2022).	Specifically,	the	sequencing	rule	and	the	routing	rule	are	
trained	separately.

1 3

Page 31 of 53 160

M. Xu et al.

4.3 Quantitative comparison of GP and RL

Comparing	GP	and	RL	in	their	performance	on	various	JSS	problems	is	essential	for	gaining	
insights	into	their	respective	capabilities,	limitations,	and	potential	synergies.	This	under-
standing	can	facilitate	the	development	of	more	effective	scheduling	solutions,	benefiting	
both	academic	research	and	practical	applications.	Despite	its	importance,	there	have	been	
relatively	few	studies	that	directly	compare	GP	and	RL.	For	those	interested	in	making	this	
comparison,	the	following	guidelines	can	be	considered	for	effectively	evaluating	GP	and	
RL	methods	in	the	context	of	JSS:

 ● Benchmark	Instances:	Selecting	appropriate	and	well-established	benchmark	instances	
is	crucial.	We	recommend	using	both	static	and	dynamic	JSS	benchmarks	 to	cover	a	
range	 of	 problem	 complexities,	where	 the	widely	 used	 benchmarks	 can	 be	 found	 in	
Table	4.

 ● Experiment	Setting:	It	is	important	to	standardise	the	training	and	test	datasets	across	
methods	to	ensure	a	fair	comparison.	For	both	GP	and	RL,	care	should	be	taken	to	use	
consistent	splits	and	random	seeds	where	applicable,	as	different	splits	may	significantly	
impact	performance.

 ● Performance	Metrics:	The	choice	of	performance	metrics	is	crucial	for	evaluating	meth-
ods.	While	makespan	 is	 commonly	used	 in	 JSS,	 other	 objectives,	 such	 as	flow	 time	
or	 tardiness,	may	 be	more	 relevant	 depending	 on	 the	 application.	 In	multi-objective	
settings,	comparing	GP	and	RL	should	 involve	metrics	 like	hypervolume	or	 inverted	
generational	distance.	Additionally,	incorporating	metrics	that	analyse	the	structures	of	
the	heuristics	 learned	by	GP	and	RL	can	provide	a	more	comprehensive	and	holistic	
comparison.

 ● Result	Discussion:	When	discussing	results,	it	is	beneficial	to	analyse	both	the	quantita-
tive	and	qualitative	aspects.	For	instance,	GP’s	interpretability	and	generalisation	abil-
ity	versus	RL’s	adaptability	to	complex	environments	can	provide	insights	into	which	
method	may	be	more	suited	for	a	particular	problem.

 ● Pitfalls	to	Avoid:	A	common	pitfall	is	the	use	of	inconsistent	lower	bounds	or	evaluation	
measures	across	studies.	Recalculating	results	when	necessary	and	ensuring	the	compa-
rability	of	metrics	are	essential	to	avoid	misleading	conclusions.	Another	pitfall	is	ne-
glecting	the	impact	of	training	time.	It	is	crucial	to	either	use	the	same	or	similar	training	
durations	or	ensure	both	GP	and	RL	methods	have	fully	converged	before	comparing	
the	learned	heuristics	for	a	fair	evaluation.This	survey	conducts	a	quantitative	compari-
son	of	GP	and	RL	on	static	and	dynamic	JSS	datasets	as	Table	6 to give a more concrete
understanding	of	the	relative	performance	of	GP	and	RL	under	the	same	conditions.	It	is	
important	to	highlight	that,	while	many	GP	and	RL	studies	utilise	the	same	benchmark	
datasets	(as	indicated	in	Table	4),	direct	comparisons	are	often	hindered	by	variations	in	
experiment	design,	training	and	test	set	splits,	and	performance	evaluation	methods.	In	
our	analysis,	we	identified	GP1	(Yska	et	al.	2018),	GP2	(Braune	et	al.	2022),	GP3	(Xu	
et	al.	2024),	as	well	as	RL1	(Yuan	et	al.	2024),	RL2	(Song	et	al.	2022),	RL3	(Lei	et	al.	
2022),	and	RL4	(Xu	et	al.	2024),	noting	that	these	methods	are	comparable	as	they	used	
the	same	training	and	test	sets.	Importantly,	we	do	not	implement	their	methods	but	di-
rectly	collect	results	from	their	respective	papers.	To	ensure	a	fair	comparison,	we	recal-
culate	the	makespan	results,	as	some	studies	reported	only	the	makespan	gap	relative	to	

1 3

 160 Page 32 of 53

Learn to optimise for job shop scheduling: a survey with comparison…

a	lower	bound	without	providing	the	actual	makespan	or	using	different	lower	bounds.	
By	recalculating	the	makespan,	we	ensure	a	consistent	comparison	of	the	makespan	gap	
for	various	GP	and	RL	methods	on	static	flexible	JSS	datasets,	and	directly	compared	
makespan	performance	on	dynamic	flexible	JSS	datasets.

From	the	 table,	we	observe	 that	GP	methods	outperform	RL	methods	on	both	static	and	
dynamic	datasets,	particularly	on	dynamic	datasets.	Additionally,	as	most	of	these	studies	
do	not	report	computation	time,	we	do	not	include	it	in	the	comparison.	Ideally,	a	fair	com-
parison	would	involve	ensuring	that	both	GP	and	RL	methods	have	similar	or	equal	training	
times	when	learning	heuristics/policies.	Unfortunately,	the	lack	of	reported	training	times	
in	these	papers	makes	this	impossible.	Nonetheless,	since	both	GP	and	RL	involve	a	train-
ing	process	to	learn	heuristics/policies,	the	application	of	the	learned	heuristics/policies	can	
operate	in	real	time.	As	a	result,	comparing	response	times	directly	is	less	critical,	and	both	
GP	and	RL	methods	are	capable	of	delivering	real-time	responses	in	practical	applications.

Table 6	 Quantitative	comparison	of	GP	and	RL	on	static	and	dynamic	JSS	datasets
Instance	type Instance Method Objective	value	gap		

(Makespan)
References

Flexible	JSS Barnes	(21	instances) GP1 6.5% Yska	et	al.	(2018)

RL1 13.83% Yuan	et	al.	(2024)

RL2 17.88% Song	et	al.	(2022)

RL3 28.96% Lei	et	al.	(2022)
Brandimarte	(10	
instances)

GP1 6.2% Yska	et	al.	(2018)

GP1 10.64% Braune	et	al.	
(2022)

RL1 13.24% Yuan	et	al.	(2024)

RL2 30.04% Song	et	al.	(2022)

RL3 13.59% Lei	et	al.	(2022)
Dauzere	(18	
instances)

GP1 6.1% Yska	et	al.	(2018)

RL1 11.02% Yuan	et	al.	(2024)

RL2 8.88% Song	et	al.	(2022)

RL3 15.68% Lei	et	al.	(2022)
Instance	type Instance Method Objective	value		

(Tardiness)
References

Dynamic	flexible	
JSS

HH	(124	jobs) GP3 962.94(178.56) Xu	et	al.	(2024)

RL4 1170.68(37.13) Xu	et	al.	(2024)
HL	(124	jobs) GP3 389.28(130.55) Xu	et	al.	(2024)

RL4 617.22(66.95) Xu	et	al.	(2024)
LH	(124	jobs) GP3 1856.63(216.37) Xu	et	al.	(2024)

RL4 2134.25(54.61) Xu	et	al.	(2024)
LL	(124	jobs) GP3 770.37(102.55) Xu	et	al.	(2024)

RL4 1089.42(62.75) Xu	et	al.	(2024)
The	bold	represents	the	better	performance	on	the	related	instance

1 3

Page 33 of 53 160

M. Xu et al.

5 Pros and cons of GP and RL

Based	on	the	literature	review,	both	GP	and	RL	demonstrate	their	respective	strengths	and	
limitations	in	solving	JSS	problems.	The	pros	and	cons	of	GP	and	RL	are	summarised	as	
follows.

5.1 Scalability

Scalability	refers	to	the	algorithm’s	ability	to	handle	more	complex	problems	or	much	larger	
scale	instances	and	maintain	its	effectiveness	(Paliouras	1993).	GP	is	more	frequently	used	
for	large-scale	JSS	instances	(as	shown	in	Table	4)	and	is	generally	considered	more	scal-
able.	GP	representations	are	not	directly	affected	by	the	problem	scale,	allowing	them	to	
handle	variations	in	the	problem	scale.	Conversely,	the	scalability	of	RL	in	JSS	is	influenced	
by	its	representations.	When	RL	is	used	to	select	among	existing	scheduling	heuristics,	it	
can	maintain	scalability	as	the	core	decision-making	logic	is	independent	of	the	problem	
scale.	When	RL	is	used	to	directly	choose	a	specific	job-machine	pair,	scalability	becomes	
a	 concern.	 If	RL	uses	 feedforward	neural	 networks,	 it	 can	maintain	 good	 scalability	 for	
problems	with	a	constant	number	of	candidate	machines/operations	at	each	decision	point,	
as	the	network	size	remains	manageable	regardless	of	the	problem	scale.	On	the	other	hand,	
RL	approaches	leveraging	graph	neural	networks	for	making	scheduling	decision	may	face	
scalability	issues	as	the	problem	size	and	complexity	increase.	This	is	because	graph	neural	
networks	can	become	significantly	complex	and	large,	potentially	hindering	performance	in	
large-scale	JSS	instances.	In	a	word,	for	large-scale	JSS,	GP	is	often	the	preferred	choice	
due	to	its	inherent	scalability.	For	small-scale	JSS,	both	GP	and	RL	can	be	viable	options.	
The	specific	RL	approach	(heuristic	selection	vs.	end-to-end)	and	network	architecture	(rep-
resentations)	will	influence	scalability.	Moreover,	further	research	on	RL	for	large-scale	JSS	
is	worth	exploring.

5.2 Generalisation ability

Generalisation	ability	refers	to	the	capacity	of	an	algorithm	to	perform	well	on	unseen	or	
new	data,	beyond	the	specific	data	or	tasks	it	is	trained	on.	In	the	context	of	GP	and	RL	for	
JSS,	generalisation	ability	 refers	 to	how	well	 the	 learned	heuristics/policies	can	adapt	 to	
new	scenarios	or	changes	in	the	problem	environment,	such	as	different	job	configurations	
or dynamic conditions.

Before	assessing	whether	the	learned	heuristics/policies	from	GP	and	RL	can	perform	
well	on	unseen	scenarios,	the	first	consideration	is	whether	they	can	be	directly	applied	to	
different	unseen	scenarios	without	retraining.	GP	evolves	scheduling	heuristics,	 typically	
represented	as	tree	structures	or	other	flexible	representations.	These	representations	are	not	
constrained	by	the	number	of	candidate	jobs	or	machines,	meaning	that	the	learned	sched-
uling	heuristics	can	be	applied	to	new	scheduling	scenarios	with	varying	configurations	or	
dynamic	conditions	without	the	need	for	retraining.	This	gives	GP	a	degree	of	versatility	in	
handling	unseen	situations.	In	contrast,	the	generalisation	ability	of	RL	is	highly	dependent	
on	 the	design	and	representation	of	 its	action	space.	When	RL	 is	employed	for	heuristic	
selection-where	actions	involve	selecting	predefined	heuristics-the	learned	scheduling	heu-
ristics	 can	adapt	 to	new	problem	 instances	without	 requiring	 retraining,	which	enhances	

1 3

 160 Page 34 of 53

Learn to optimise for job shop scheduling: a survey with comparison…

RL’s	generalisation	ability	in	these	cases.	However,	for	end-to-end	RL,	the	generalisation	
ability	varies.	If	RL	is	trained	with	a	fixed	action	space	(e.g.,	a	set	number	of	machines	or	
operations),	its	ability	to	generalise	is	limited,	as	the	learned	scheduling	policies	could	not	
necessarily	adapt	to	different	scenarios	involving	a	different	number	of	machines	or	opera-
tions.	On	the	other	hand,	if	the	RL	network	is	designed	to	dynamically	adjust	to	changes	in	
the	environment,	it	exhibits	better	generalisation	capabilities.

Regarding	 how	well	 the	 learned	 heuristics/policies	 can	 perform	on	 unseen	 scenarios,	
a	 fair	 comparison	 between	GP	 and	RL	 is	 essential.	A	 study	 in	Xu	 et	 al.	 (2024)	 directly	
compared	scheduling	heuristics/policies	learned	by	a	typical	GP	and	RL	model	for	solving	
a	dynamic	flexible	JSS	problem.	This	study,	using	the	same	dataset,	demonstrated	that	the	
chosen	GP	offered	better	performance	(generalisation	ability)	than	the	selected	RL	on	this	
specific	problem	type.	This	survey	also	includes	a	comparison	between	GP	and	RL	based	on	
existing	studies,	revealing	that	without	sophisticated	design	and/or	fine	tuning,	GP	methods	
tend	to	outperform	RL	methods	in	static	Barnes,	Brandimarte,	and	Dauzere	scenarios	and	
randomly	generated	dynamic	flexible	 JSS	scenarios,	 as	discussed	 in	Sect.	4.3. However,
existing	 research	on	directly	 comparing	GP	and	RL	 for	 generalisation	 in	 JSS	 is	 limited.	
While	the	current	evidence	suggests	GP	might	have	an	edge	in	generalisation	for	specific	
JSS	problems	(Xu	et	al.	2024),	more	research	is	necessary	for	a	definitive	conclusion.	Since	
the	study	 in	Xu	et	al.	 (2024)	 focuses	on	a	single	 type	of	JSS	problem	(dynamic	flexible	
JSS).	Generalisation	ability	might	differ	for	other	JSS	variants.	Moreover,	both	GP	and	RL	
encompass	various	algorithms	and	configurations.	Different	implementations	of	GP	and	RL	
might	provide	different	conclusions.	In	this	case,	comparing	GP	and	RL	across	diverse	JSS	
problem	types	and	exploring	various	configurations	and	algorithms	within	both	GP	and	RL	
are	required	to	compare	their	generalisation	ability.

5.3 Considered scheduling information

Regardless	of	whether	used	in	end-to-end	or	heuristic	selection	way,	RL	tends	to	focus	on	
local	information.	Following	each	action,	a	reward	is	assigned	to	indicate	the	quality	of	that	
action	based	on	a	predefined	reward	function.	This	reward	function	often	differs	from	the	
original	optimisation	goal,	as	it	can	only	assess	partial	information	before	completing	the	
entire	scheduling	 task.	Therefore,	 the	design	of	 the	reward	function	 is	critical	 in	guiding	
the	learning	process.	A	well-designed	reward	function	facilitates	the	discovery	of	effective	
scheduling	heuristics/policies,	whereas	a	poorly	designed	one	might	yield	inferior	results.	
Unlike	RL,	GP	directly	evaluates	the	scheduling	heuristics	based	on	a	fitness	function,	typi-
cally	directly	 reflecting	 the	original	optimisation	goal.	However,	 this	global	optimisation	
approach	prioritises	overall	performance	but	might	result	in	suboptimal	decisions	at	indi-
vidual	decision	points	throughout	the	scheduling	process.	GP’s	emphasis	on	global	infor-
mation	and	global	performance	might	lead	to	a	loss	of	local	search	capability,	potentially	
overlooking	expert	scheduling	heuristics	good	for	specific	scenarios.	Besides,	for	heuris-
tic	selection	RL,	utilising	manually	designed	scheduling	heuristics	as	actions	 rather	 than	
directly	employing	machines/operations	can	constrain	the	search	space,	potentially	limiting	
the	model’s	ability	to	explore	alternative	solutions	and	use	more	information.

1 3

Page 35 of 53 160

M. Xu et al.

5.4 Search mechanisms

RL	 focuses	 on	 iteratively	 adjusting	 and	 improving	 a	 single	 scheduling	 heuristic/policy,	
while	GP	 optimises	 a	 population	 of	 scheduling	 heuristics	 simultaneously.	 Theoretically,	
both	GP	and	RL	can	achieve	optimal	schedules	if	the	training	data	is	sufficiently	large,	the	
model	structure	is	flexible	enough,	and	the	search	space	includes	the	optimal	mapping	from	
scheduling	states	to	selected	candidates	(e.g.,	job	or	machine).	However,	in	practice,	achiev-
ing	optimal	solutions	is	challenging,	especially	in	large-scale	or	complex	JSS	problems.	GP	
is	designed	to	efficiently	learn	scheduling	heuristics	that	offer	good-quality	solutions,	rather	
than	guaranteeing	optimality.	It	fosters	diversity	within	the	population	of	heuristics,	allow-
ing	for	the	coexistence	of	highly	effective	and	moderately	effective	heuristics,	thus	avoiding	
stagnation	in	local	optima.	RL,	on	the	other	hand,	is	designed	with	a	focus	on	finding	the	
optimal	solution.	However,	RL	(whether	 in	heuristic	selection	or	end-to-end)	 is	 typically	
only	able	to	find	optimal	solutions	in	small-scale	or	simple	JSS	scenarios.	In	large-scale	or	
dynamic	JSS	problems,	though,	RL	tends	to	focus	on	finding	high-quality	solutions	rather	
than	exact	optimal	solutions.

5.5 Training time

GP’s	 training	process	can	be	 time-consuming	due	 to	 the	management	of	a	population	of	
scheduling	heuristics.	In	contrast,	RL	focuses	on	adjusting	and	improving	a	single	schedul-
ing	heuristic/policy	 (neural	network)	 iteratively,	and	 thus	generally	 requires	 less	 training	
time	compared	to	GP.

5.6 Interpretability

GP	 typically	 represents	 scheduling	heuristics	 using	 tree-based	or	 linear/graph	 structures,	
offering	flexibility	in	automatically	utilising	linear	or	non-linear	functions	to	construct	the	
heuristics.	These	 structures	 also	 facilitate	 interpretability,	making	 it	 easier	 to	 understand	
the	decision-making	process	compared	to	neural	networks	(Mei	et	al.	2022).	The	interpret-
ability	of	RL	is	rather	limited.	The	complex	neural	networks	inherent	in	RL,	characterised	
by	numerous	nodes	and	weights,	often	resemble	black	boxes,	potentially	undermining	user	
confidence	in	using	the	learned	scheduling	heuristics/policies.

5.7 Degree of automated design

The	degree	of	automated	design	refers	to	the	level	of	automation	involved	in	designing	an	
algorithm.	It	essentially	reflects	how	much	human	intervention	is	required	in	the	algorithm-
building	process.	For	RL,	different	scenarios	might	necessitate	specific	network	architec-
tures	and	hyperparameter	 tuning,	demanding	significant	effort	and	domain	knowledge	 in	
algorithm	design.	Moreover,	when	RL	is	used	as	a	heuristic	selection	method,	an	important	
consideration	is	to	ensure	that	the	manually	designed	scheduling	heuristics	as	actions	are	
adept	at	handling	different	decision	points.	In	this	case,	 the	manual	scheduling	heuristics	
need	to	be	carefully	designed,	and	the	process	of	designing	these	scheduling	heuristics	man-
ually	can	be	time-consuming	and	requires	a	large	amount	of	domain	knowledge.	In	addition,	
RL’s	effectiveness	is	affected	by	the	design	of	the	reward	function.	Changing	the	JSS	objec-

1 3

 160 Page 36 of 53

Learn to optimise for job shop scheduling: a survey with comparison…

tives	necessitates	adjustments	 to	 the	 reward	 function,	which	can	be	 time-consuming	and	
requires	domain	expertise.	Different	from	RL,	GP	directly	evaluates	scheduling	heuristics	
based	on	a	fitness	function,	typically	aligned	with	the	optimisation	goal.	This	eliminates	the	
need	for	complex	reward	function	design	in	RL.	Additionally,	GP	representations	are	well-
suited	for	various	JSS	scenarios	and	do	not	require	the	establishment	of	an	initial	structure	
like	neural	networks,	thereby	reducing	the	overall	effort	involved.	Generally,	RL	demands	
more	design	effort	and	domain	knowledge	compared	to	GP.

Based	on	the	above	discussion,	Table	7	summarises	the	pros	and	cons	of	GP	and	RL.

Table 7	 The	pros	and	cons	of	GP	and	RL
Features GP RL
Scalability Maintains	good	scalability	

across	different	scenarios
Affected	by	RL’s	roles	and	representations.
Heuristic	selection	RL	and	end-to-end	RL	with	feed-
forward	neural	networks	scale	well,	while	graph	neu-
ral	network-based	end-to-end	RL	has	poor	scalability

Generalisation	
sbility

Good	generalisation	ability	to	
unseen instances

Depends	on	the	action	design.
Good	generalisation	ability	to	unseen	instances	with	
heuristic	selection	RL	and	end-to-end	RL	that	is	de-
signed	to	handle	dynamically	changing	action	spaces.
Poor	generalisation	ability	with	end-to-end	RL	with	
fixed	action	spaces

Information	focus Focuses	on	global	information	
and	might	loss	local	accuracy

Focuses	on	local	information	through	reward	feed-
back,	but	sensitive	to	reward	function	design

Search
mechanisms

Explores	diverse	scheduling	
heuristics	simultaneously	
using	Darwinian	selection	

strategies.
Theoretically	capable	of	

finding	the	optimal	solution	
when it is designed to con-

sider	all	possible	job-machine	
pairs	without	sacrificing	the	
solution	space,	but	quite	

challenging.
Focus	on	learning	scheduling	
heuristics	that	offer	reason-
ably	good	quality	in	complex	
scenarios	rather	than	optimal	

solution

Maintains	and	modifies	a	single	scheduling	heuristic/
policy	through	trial-and-error	interaction	with	the	
environment.
Theoretically	capable	of	finding	the	optimal	solution	
when	it	is	designed	to	consider	all	possible	job-
machine	pairs	without	sacrificing	the	solution	space,	
but	quite	challenging.
Focus	on	learning	scheduling	heuristics/policies	to	
find	optimal	solutions	on	small-scale	and	simple	JSS	
instances.
Focus	on	learning	scheduling	heuristics/policies	that	
offer	reasonably	good	quality	in	complex	scenarios	
rather	than	optimal	solution

Training	time More training time due to
maintaining	a	population	of	

scheduling	heuristics

Less	training	time	as	it	maintains	only	one	scheduling	
heuristic/policy

Interpretability Good	interpretability	as	the	
structure	of	learned	schedul-
ing	heuristics	can	be	easily	

inspected

Poor	interpretability	as	the	structure	of	learned	
scheduling	heuristics/policies	have	complex	neural	
networks	with	many	nodes	and	weights

Degree of auto-
mated design

High degree of automated
design,	requiring	less	human	
effort	in	algorithm	design

Low	degree	of	automated	design	due	to	the	need	for	
domain	knowledge	in	reward	function	and	neural	
network	design

1 3

Page 37 of 53 160

M. Xu et al.

6 Issues and future directions

Based	on	the	above	literature	review	and	taking	into	account	the	strengths	and	limitations	
of	both	GP	and	RL	in	JSS,	some	issues	and	future	research	directions	are	provided.	These	
directions	encompass	advancements	in	both	GP	and	RL	individually,	as	well	as	the	coopera-
tive	enhancement	achieved	by	their	integration.

6.1 Training time reduction

Both	GP	and	RL	involve	iterative	learning	processes,	leading	to	considerable	computational	
demands	during	training.	While	surrogate	techniques	have	been	employed	in	GP	to	miti-
gate	training	time	in	large-scale	JSS	problems,	their	effectiveness	remains	limited.	Mean-
while,	in	multi-objective	JSS	domains	where	evaluation	processes	and	Pareto	dominance	
calculations	are	particularly	time-consuming,	there	is	a	significant	demand	for	strategies	to	
reduce	training	time.	However,	the	exploration	of	surrogates	in	multi-objective	JSS	remains	
limited.	 In	 addition,	 existing	RL	methods	 primarily	 target	 small-scale	 JSS	 problems	 (as	
shown	in	Table	4),	where	training	time	concerns	are	less	pronounced.	However,	there	is	a	
growing	demand	for	RL	to	address	large-scale	JSS	problems	closer	to	real-world	applica-
tions,	necessitating	attention	to	training	time	issues.	While	it	is	feasible	to	train	scheduling	
heuristics/policies	using	small-scale	scenarios	and	apply	them	to	large-scale	scenarios,	the	
performance	might	 not	meet	 the	desired	 standards	 compared	 to	direct	 training	on	 large-
scale	scenarios.	Therefore,	there	is	a	pressing	requirement	for	a	more	focused	exploration	
of	strategies	aimed	at	reducing	training	time	in	both	GP	and	RL.	The	following	are	some	
potential	future	directions:	

1.	 Efficient	fitness	evaluation:	Propose	more	accurate	and	lightweight	surrogate	models,	
approximation	methods,	or	pre-selection	strategies	to	identify	promising	candidates	for	
more	thorough	evaluation.

2.	 Smart	 initialisation	and	warm	starting:	Develop	 intelligent	 initialisation	 strategies	 to	
provide	a	good	starting	point	for	GP	and	RL	can	aid	in	quicker	convergence.	Warm-
starting	approaches,	where	the	initial	scheduling	heuristics/policies	are	initialised	with	
information	from	previous	runs,	or	integrating	transfer	learning	techniques	to	leverage	
domain	knowledge	from	similar	tasks,	offer	promising	avenues	to	accelerate	the	con-
vergence	process.

3.	 Algorithmic	improvements:	Investigate	algorithmic	enhancements,	such	as	more	effi-
cient	crossover	and	mutation	operators	for	GP	and	more	efficient	neural	network	updat-
ing	strategies	for	RL,	can	contribute	to	faster	convergence.

6.2 Interpretability

In	 learning	 scheduling	 heuristics/policies	 for	 JSS,	 interpretability	 encompasses	 two	 key	
aspects.	Firstly,	 it	 is	 the	 interpretability	 of	 scheduling	heuristic/policy	 structures.	Under-
standing	the	decision-making	processes	of	evolved	scheduling	heuristics/policies	by	GP	and	
RL	is	important	for	their	acceptance	and	practical	implementation	(Mei	et	al.	2022).	When	
comparing	the	structures	commonly	used	in	GP	and	RL,	GP	generally	offers	superior	inter-
pretability	due	to	its	flexible	representation,	particularly	with	its	tree-based	structure.	In	con-

1 3

 160 Page 38 of 53

Learn to optimise for job shop scheduling: a survey with comparison…

trast,	the	neural	network	structures	employed	in	RL	tend	to	be	complex,	resembling	black	
boxes	with	numerous	layers,	nodes,	and	weights.	Consequently,	understanding	the	decision-
making	process	of	scheduling	heuristics/policies,	especially	in	RL,	becomes	challenging.	
Although	GP	provides	better	interpretability	than	RL,	explaining	the	rationale	behind	the	
combination	of	functions	and	terminals	remains	non-trivial.	Various	studies	have	attempted	
to	quantify	 interpretability	using	metrics	such	as	heuristic	sizes	(Zhang	et	al.	2023),	 fea-
ture	importance	analysis	(Mei	et	al.	2017),	and	grouping	terminals	into	distinct	categories	
(Zhang	et	al.	2023),	contributing	to	advancements	in	interpretability.	However,	achieving	
an	intuitive	interpretation	of	scheduling	heuristics/policies	and	providing	user	trust	in	their	
utilisation	remains	a	challenge.

Secondly,	the	interpretability	of	the	learning	process	holds	significance.	Understanding	
how	GP	and	RL	learn	enables	researchers	to	design	more	effective	and	efficient	algorithms.	
By	dissecting	the	learning	process,	researchers	can	identify	bottlenecks,	inefficiencies,	and	
areas	for	improvement,	leading	to	the	development	of	more	effective	algorithms.	In	addi-
tion,	understanding	the	learning	mechanisms	within	GP	and	RL	can	enable	the	exchange	of	
insights	and	techniques	between	them	and	across	various	problem	domains.

Overall,	 advancements	 in	 interpretability	 hold	 the	 potential	 to	 address	 challenges	 in	
understanding	 scheduling	 heuristic/policy	 decision-making	 and	 designing	more	 effective	
algorithms.	The	following	are	some	potential	future	directions:	

1.	 Explanation	mechanisms	for	evolved	heuristics/policies:	Develop	techniques	that	pro-
vide	human-readable	explanations	for	the	decisions	made	by	learned	heuristics/policies.	
This	could	 involve	 identifying	critical	features	or	decision	points	within	 the	evolved	
heuristics/policies	and	translating	them	into	understandable	rules	or	patterns.

2.	 Visualisations:	Create	visualisation	tools	 that	can	represent	 the	decision-making	pro-
cess	of	learned	heuristics/policies	or	the	learning	process	in	an	intuitive	and	accessible	
manner.	This	could	involve	graphical	representations	of	the	scheduling	logic	or	interac-
tive	interfaces	that	allow	users	to	explore	the	behaviour	of	evolved	heuristics/policies.

3.	 Human-in-the-loop	approaches:	 Investigate	approaches	 that	 involve	human	feedback	
in	the	interpretability	process.	This	could	include	methods	where	users	provide	input	
on	the	interpretability	of	evolved	scheduling	heuristics/policies,	helping	to	refine	the	
evolved	scheduling	heuristics/policies	iteratively.

6.3 Effective utilisation of multiple scheduling heuristics/policies

In	 practical	 scenarios,	 a	 single	 “best”	 heuristic/policy	 might	 not	 always	 be	 optimal	 for	
diverse	 and	 dynamic	 situations.	 Leveraging	 the	 diversity	 of	 evolved	 heuristics/policies	
has	the	potential	to	yield	more	robust	and	adaptable	scheduling	solutions.	Several	studies	
have	demonstrated	 the	effectiveness	of	 leveraging	multiple	scheduling	heuristics/policies	
through	 ensemble	 techniques	 (Xu	et	 al.	 2023;	Gao	 et	 al.	 2015;	Park	 et	 al.	 2015).	These	
techniques	enable	joint	decision-making	by	integrating	several	scheduling	heuristics/poli-
cies	through	methods	such	as	voting	or	weighted-sum	approaches	(Rodrigueset	al.	2020).	
However,	 existing	 ensemble	methods	 often	maintain	 the	 same	 decision-making	 strategy	
across	all	decision	points,	 requiring	a	deeper	exploration	in	 this	domain.	Future	research	
should	focus	on	developing	advanced	strategies	and	methods	that	fully	exploit	the	diversity	

1 3

Page 39 of 53 160

M. Xu et al.

and	adaptability	offered	by	multiple	scheduling	heuristics/policies	evolved	through	GP	and	
RL.	The	following	are	some	potential	future	directions:	

1.	 Ensemble	 learning	 strategies	 and	 decision	 fusion	 techniques:	 Develop	 advanced	
ensemble	learning	strategies	that	can	intelligently	select	appropriate	scheduling	heuris-
tics/policies	and	combine	the	outputs	of	multiple	heuristics/policies.	This	could	involve	
dynamic	weighting,	where	the	influence	of	each	heuristic/policy	is	adjusted	based	on	
the	characteristics	of	the	current	scheduling	instance	or	its	historical	performance.

2.	 Context-aware	adaptive	scheduling	mechanisms:	Design	mechanisms	that	dynamically	
select	and	adapt	scheduling	heuristics/policies	based	on	the	characteristics	of	the	jobs,	
machines,	or	 the	historical	performance	of	heuristics	 in	specific	contexts	of	decision	
points.

6.4 Advanced multi/many-objective optimisation

Advanced	multi/many-objective	optimisation	in	JSS	by	GP	and	RL	represents	a	key	topic	
with	a	 lot	of	 real-world	applications.	Existing	studies	 involve	combining	multi-objective	
optimisation	methods	such	as	NSGAII,	SPEA2,	or	MOEA/D	with	GP	(Zhang	et	al.	2019;
xu	et	al.	2023).	However,	the	use	of	indicator-based	multi-objective	optimisation	methods	
has	rarely	been	explored	in	GP	for	multi-objective	JSS	problems.	Additionally,	research	on	
RL	for	solving	multi-objective	JSS	problems	is	limited.	Hence,	there	is	considerable	room	
for	further	advancements	in	GP	and	RL	for	multi-objective	JSS.	The	following	are	some	
potential	future	directions:	

1.	 Hybrid	 approaches:	 Investigate	 hybrid	 approaches,	 including	 integrating	 indicator-
based	 multi-objective	 optimisation	 methods	 with	 GP,	 integrating	 multi-objective	
optimisation	methods	with	RL,	 and	 combining	GP/RL	with	 other	machine	 learning	
techniques,	such	as	surrogate	or	transfer	learning,	to	further	enhance	its	performance.

2.	 Preference-based	 multi-objective	 optimisation:	 Integrate	 preference-based	 methods	
into	GP/RL	for	multi-objective	optimisation.	This	involves	incorporating	human	pref-
erences	into	the	optimisation	process	to	guide	the	algorithm	towards	solutions	that	align	
with	the	decision-maker’s	subjective	preferences.

6.5 Hybridisation of GP and RL

It	is	indeed	notable	that	the	number	of	RL	publications	has	recently	surpassed	that	of	GP.	
However,	this	trend	only	started	around	2022	for	general	JSS	and	2023	for	multi-objective	
JSS,	which	is	quite	recent.	Prior	to	this,	GP	consistently	had	a	greater	number	of	publica-
tions	than	RL.	Thus,	overall,	GP	still	holds	a	dominant	position.	As	highlighted	in	Table	4,
which	compares	the	datasets	of	GP	and	RL	publications,	RL	has	primarily	focused	on	static	
and	small-scale	JSS	problems,	whereas	GP	has	been	applied	more	to	dynamic	and	large-
scale	 JSS	problems.	These	 data	 further	 underscore	GP’s	 advantages	 over	RL	 in	 specific	
contexts.	One	possible	reason	for	the	recent	increase	in	RL	publications	is	that	its	success	
in	other	domains	has	likely	encouraged	researchers	to	explore	its	potential	in	JSS.	In	our	
view,	this	is	a	positive	trend,	as	expanding	the	application	of	RL	to	JSS	can	lead	to	further	

1 3

 160 Page 40 of 53

Learn to optimise for job shop scheduling: a survey with comparison…

advancements	 in	 this	 important	field,	which	has	numerous	 real-world	applications.	Also,	
there	is	a	possibility	of	combining	GP	and	RL	to	further	contribute	to	this	domain.

We	believe	that	this	growing	interest	in	RL	does	not	diminish	the	value	of	GP,	but	rather	
reflects	an	evolving	research	focus.	RL	is	gaining	attention	due	to	its	recent	successes,	but	
the	strengths	of	GP,	such	as	 its	 interpretability,	 remain	crucial,	especially	 in	applications	
where	understanding	the	decision-making	process	is	essential.	This	also	presents	an	exciting	
research	opportunity	to	explore	the	integration	of	GP	and	RL,	leveraging	the	strengths	of	
both	methods.	This	collaboration	opens	up	new	possibilities	for	research	and	holds	promise	
for	addressing	complex	challenges	in	JSS	more	effectively.

To	be	specific,	considering	the	strengths	and	limitations	of	GP	and	RL,	integrating	them	
to	address	JSS	problems	offers	a	promising	approach.	In	Xu	et	al.	(2024),	a	comparison	of	a	
typical	GP	and	a	typical	RL	method	on	dynamic	flexible	JSS	is	conducted,	highlighting	their	
respective	strengths	and	weaknesses.	Building	upon	the	findings	of	(Xu	et	al.	2024)	and	this	
survey,	future	research	could	concentrate	on	developing	more	sophisticated	hybridisation	
techniques	that	integrate	GP	and	RL.	The	following	are	some	potential	future	directions:	

1.	 Considering	 both	 global	 and	 local	 feedback:	Learn	 diverse	 scheduling	 heuristics	 by	
leveraging	GP’s	exploration	capabilities	with	global	information.	Then,	further	refine	
and	optimise	these	heuristics	over	time	based	on	RL’s	exploitation	capability	with	local	
information.

2.	 Automatically	learning	RL	actions	with	GP:	Existing	heuristic	selection	RL	approaches	
often	rely	on	manually	designed	scheduling	heuristics	as	actions.	However,	the	manual	
design	of	diverse	 scheduling	heuristics	 is	 laborious	and	demands	 significant	domain	
expertise.	Exploring	the	potential	of	using	GP	to	autonomously	learn	a	set	of	high-qual-
ity	and	diverse	scheduling	heuristics	as	actions	for	RL	represents	a	promising	future	
direction.	Two	recent	studies	have	explored	this	research	direction	by	employing	the	
learned	scheduling	heuristics	by	GP	as	actions	for	RL	(Xu	et	al.	2024),	as	well	as	learn-
ing	the	weights	through	RL	of	each	learned	scheduling	heuristic	by	GP	in	an	ensemble	
(Chen	et	al.	2024).

3.	 Automatically	adapting	GP	operators	with	RL:	Several	studies	have	demonstrated	the	
potential	 of	 using	RL	 to	 guide	 the	 selection	 and	 adjustment	 of	mutation	 and	 cross-
over	operators	in	evolutionary	algorithms	(Durgut	et	al.	2021;	Zojaji	and	Kazemi	2022;
Miguel	Gomez	and	Toosi	2021;	Sakurai	et	al.	2010;	Zhang	et	al.	2024).	Building	on	
these	insights,	an	RL	agent	can	learn	rules	to	dynamically	adapt	genetic	operators	and	
adjust	search	parameters	for	GP.

4.	 Attention	mechanisms:	Certain	RL	methods	utilise	attention	mechanisms	to	prioritise	
important	information	while	disregarding	noise.	GP	can	integrate	similar	mechanisms	
to	selectively	focus	on	dominant	information	and	eliminate	the	influence	of	redundant	
or	noisy	data	that	could	potentially	degrade	performance.

5.	 Population	mechanisms:	GP	operates	by	maintaining	and	optimising	a	population	of	
scheduling	 heuristics	 concurrently.	 These	 heuristics	 explore	 the	 search	 space	 from	
various	regions	simultaneously,	providing	diversity.	RL	can	leverage	this	concept	for	
optimising	multiple	heuristics/policies	simultaneously,	allowing	them	to	reinforce	each	
other	and	collectively	contribute	to	improved	performance	and	can	avoid	being	stuck	in	
local	optima.

1 3

Page 41 of 53 160

M. Xu et al.

7 Conclusions

This	 paper	 offers	 an	 extensive	 survey	of	 recent	 studies	 on	 scheduling	heuristics/policies	
learning,	focusing	particularly	on	the	comparison	between	GP	and	RL	in	various	JSS	prob-
lems.	The	contributions	of	this	survey	are	multifaceted.

Firstly,	it	offers	in-depth	discussions	comparing	key	components	of	GP	and	RL	for	JSS,	
including	representation,	evaluation,	and	search	mechanisms.	This	comprehensive	analy-
sis	 aids	 researchers,	 particularly	 beginners	 in	 the	 field,	 in	 gaining	 a	 solid	 understanding	
of	these	core	components	and	offers	guidance	for	designing	GP/RL	methods	according	to	
their	specific	requirements.	Secondly,	by	encompassing	recent	publications	on	GP	and	RL	
across	various	JSS	problems,	this	survey	serves	as	a	guide	for	researchers	seeking	to	choose	
appropriate	GP	or	RL	techniques	for	addressing	specific	JSS	challenges.	Thirdly,	this	survey	
consolidates	the	strengths	and	weaknesses	of	GP	and	RL	methods	in	JSS,	providing	valu-
able	insights	into	heuristic/policy	learning.	Lastly,	this	survey	highlights	numerous	promis-
ing	avenues	for	future	research,	which	are	instrumental	in	advancing	the	fields	of	both	GP	
and	RL	within	JSS.	These	identified	directions	hold	the	potential	to	significantly	contribute	
to	 ongoing	 development	 and	 innovation	 in	 the	 field.	 In	 addition,	 this	 survey	 suggests	 a	
potential	future	direction	that	combines	GP	and	RL	approaches	to	complement	their	pros	
and	cons.	This	collaboration	opens	up	new	possibilities	for	research	and	holds	promise	for	
addressing	complex	challenges	in	JSS	more	effectively.

Author contributions	 Meng	Xu	drafted	 the	main	manuscript	 text.	Yi	Mei,	Fangfang	Zhang,	and	Mengjie	
Zhang	critically	reviewed	and	revised	the	manuscript.	All	authors	have	read	and	approved	the	final	version	
of	the	manuscript.

Funding	 Open	Access	funding	enabled	and	organized	by	CAUL	and	its	Member	Institutions
No	funding	was	received	to	assist	with	the	preparation	of	this	manuscript.

Data availability	 No	datasets	were	generated	or	analysed	during	the	current	study.

Declarations

Conflict of interest	 All	authors	certify	that	they	have	no	affiliations	with	or	involvement	in	any	organisation	
or	entity	with	any	financial	interest	or	non-financial	interest	in	the	subject	matter	or	materials	discussed	in	
this	manuscript.

Open Access	 	This	 article	 is	 licensed	under	 a	Creative	Commons	Attribution	 4.0	 International	License,	
which	permits	use,	sharing,	adaptation,	distribution	and	reproduction	in	any	medium	or	format,	as	long	as	
you	give	appropriate	credit	to	the	original	author(s)	and	the	source,	provide	a	link	to	the	Creative	Commons	
licence,	 and	 indicate	 if	 changes	were	made.	 The	 images	 or	 other	 third	 party	material	 in	 this	 article	 are	
included	in	the	article’s	Creative	Commons	licence,	unless	indicated	otherwise	in	a	credit	line	to	the	material.	
If	material	is	not	included	in	the	article’s	Creative	Commons	licence	and	your	intended	use	is	not	permitted	
by	statutory	regulation	or	exceeds	the	permitted	use,	you	will	need	to	obtain	permission	directly	from	the	
copyright	holder.	To	view	a	copy	of	this	licence,	visit	http://creativecommons.org/licenses/by/4.0/.

References

Adaloglou	N,	Karagiannakos	S	(2020)	How	attention	works	in	deep	learning:	understanding	the	attention	
mechanism	in	sequence	models.	https://theaisummer.com/

1 3

 160 Page 42 of 53

http://creativecommons.org/licenses/by/4.0/
https://theaisummer.com/

Learn to optimise for job shop scheduling: a survey with comparison…

Aissani	N,	Bekrar	A,	Trentesaux	D,	Beldjilali	B	(2012)	Dynamic	scheduling	for	multi-site	companies:	a	deci-
sional	approach	based	on	reinforcement	multi-agent	learning.	J	Intell	Manuf	23:2513–2529

Artigues	C,	Gendreau	M,	Rousseau	L-M,	Vergnaud	A	(2009)	Solving	an	integrated	employee	timetabling	
and	job-shop	scheduling	problem	via	hybrid	branch-and-bound.	Comput	Operat	Res	36(8):2330–2340

Ashour	S,	Hiremath	S	(1973)	A	branch-and-bound	approach	to	the	job-shop	scheduling	problem.	Int	J	Prod	
Res	11(1):47–58

Aydin	ME,	Fogarty	TC	(2004)	A	simulated	annealing	algorithm	for	multi-agent	systems:	a	job-shop	schedul-
ing	application.	J	Intell	Manuf	15:805–814

Azem	S,	Aggoune	R,	Dauzère-Pérès	S	(2007)	Disjunctive	and	time-indexed	formulations	for	non-preemptive	
job	 shop	 scheduling	with	 resource	 availability	 constraints.	 In:	 Proceedings	 of	 the	 ieee	 international	
conference	on	industrial	engineering	and	engineering	management,	pp	787–791

Bahdanau	D,	Cho	K,	Bengio	Y	(2014)	Neural	machine	translation	by	jointly	learning	to	align	and	translate.	
arXiv	preprint	arXiv:1409.0473

Bertsimas	D,	Tsitsiklis	J	(1993)	Simulated	annealing.	Stat	Sci	8(1):10–15
Bianchi	RA,	Ribeiro	CH,	Costa	AH	(2008)	Accelerating	autonomous	learning	by	using	heuristic	selection	of	

actions.	J	Heuristics	14:135–168
Bonetta	G,	Zago	D,	Cancelliere	R,	Grosso	A	(2023)	Job	shop	scheduling	via	deep	reinforcement	learning:	a	

sequence	to	sequence	approach.	In:	Proceedings	of	the	international	conference	on	learning	and	intel-
ligent	optimization,	pp	475–490

Bouazza	W,	Sallez	Y,	Beldjilali	B	(2017)	A	distributed	approach	solving	partially	flexible	job-shop	schedul-
ing	problem	with	a	q-learning	effect.	IFAC-PapersOnLine	50(1):15890–15895

Branke	J,	Nguyen	S,	Pickardt	CW,	Zhang	M	(2015)	Automated	design	of	production	scheduling	heuristics:	a	
review.	IEEE	Trans	Evol	Comput	20(1):110–124

Braune	R,	Benda	F,	Doerner	KF,	Hartl	RF	 (2022)	A	genetic	programming	 learning	approach	 to	generate	
dispatching	rules	for	flexible	shop	scheduling	problems.	Int	J	Prod	Econ	243:108342

Brizuela	CA,	Sannomiya	N	(1999)	A	diversity	study	in	genetic	algorithms	for	job	shop	scheduling	problems.	
In:	Proceedings	of	the	genetic	and	evolutionary	computation	conference,	pp	75–82

Burke	EK,	Hyde	MR,	Kendall	G,	Woodward	J	(2007)	Automatic	heuristic	generation	with	genetic	program-
ming:	evolving	a	jack-of-all-trades	or	a	master	of	one.	In:	Proceedings	of	the	genetic	and	evolutionary	
computation	conference,	pp	1559–1565

Burke	EK,	Gendreau	M,	Hyde	M,	Kendall	G,	Ochoa	G,	Özcan	E,	Qu	R	(2013)	Hyper-heuristics:	a	survey	of	
the	state	of	the	art.	J	Oper	Res	Soc	64:1695–1724

Chand	S,	Huynh	Q,	Singh	H,	Ray	T,	Wagner	M	(2018)	On	the	use	of	genetic	programming	to	evolve	priority	
rules	for	resource	constrained	project	scheduling	problems.	Inf	Sci	432:146–163

Chang	J,	Yu	D,	Hu	Y,	He	W,	Yu	H	(2022)	Deep	reinforcement	learning	for	dynamic	flexible	job	shop	schedul-
ing	with	random	job	arrival.	Processes	10(4):760

Chen	H,	Chu	C,	Proth	J-M	(1998)	An	improvement	of	the	lagrangean	relaxation	approach	for	job	shop	sched-
uling:	a	dynamic	programming	method.	IEEE	Trans	Robot	Autom	14(5):786–795

Chen	R,	Yang	B,	Li	S,	Wang	S	(2020)	A	self-learning	genetic	algorithm	based	on	reinforcement	learning	for	
flexible	job-shop	scheduling	problem.	Comput	Ind	Eng	149:106778

Chen	H,	Ding	G,	Qin	S,	Zhang	J	(2021)	A	hyper-heuristic	based	ensemble	genetic	programming	approach	for	
stochastic	resource	constrained	project	scheduling	problem.	Expert	Syst	Appl	167:114174

Chen	R,	Li	W,	Yang	H	(2022)	A	deep	reinforcement	learning	framework	based	on	an	attention	mechanism	and	
disjunctive	graph	embedding	for	the	job-shop	scheduling	problem.	IEEE	Trans	Ind	Inf	19(2):1322–1331

Chen	X,	Bai	R,	Qu	R,	Dong	 J,	 Jin	Y	 (2024)	Deep	 reinforcement	 learning	assisted	genetic	programming	
ensemble	hyper-heuristics	for	dynamic	scheduling	of	container	port	trucks.	IEEE	Trans	Evol	Comput.	
https://doi.org/10.1109/TEVC.2024.3381042

Chen	C,	Ji	Z,	Wang	Y	(2018)	Nsga-ii	applied	to	dynamic	flexible	job	shop	scheduling	problems	with	machine	
breakdown.	Modern	Phys	Lett	B	32:1840111

Chong	CS,	Low	MYH,	Sivakumar	AI,	Gay	KL	 (2006)	A	bee	colony	optimization	algorithm	 to	 job	 shop	
scheduling.	In:	Proceedings	of	the	winter	simulation	conference,	pp	1954–1961

Cunha	B,	Madureira	AM,	Fonseca	B,	Coelho	D	(2020)	Deep	reinforcement	learning	as	a	job	shop	scheduling	
solver:	a	literature	review.	In:	Proceedings	of	the	international	conference	on	hybrid	intelligent	systems,	
pp	350–359

Dimopoulos	C,	Zalzala	AM	(2001)	Investigating	the	use	of	genetic	programming	for	a	classic	one-machine	
scheduling	problem.	Adv	Eng	Softw	32(6):489–498

Ding	L,	Guan	Z,	Rauf	M,	Yue	L	(2024)	Multi-policy	deep	reinforcement	learning	for	multi-objective	multi-
plicity	flexible	job	shop	scheduling.	Swarm	Evol	Comput	87:101550

Dong	Z,	Ren	T,	Qi	F,	Weng	J,	Bai	D,	Yang	J,	Wu	C-C	(2024)	A	reinforcement	learning-based	approach	for	
solving	multi-agent	job	shop	scheduling	problem.	Int	J	Product	Res,	1–26

1 3

Page 43 of 53 160

http://arxiv.org/abs/1409.0473
https://doi.org/10.1109/TEVC.2024.3381042

M. Xu et al.

Du	Y,	Li	J	(2024)	A	deep	reinforcement	learning	based	algorithm	for	a	distributed	precast	concrete	production	
scheduling.	Int	J	Prod	Econ	268:109102

Du	Y,	 Li	 J,	 Chen	X,	Duan	 P,	 Pan	Q	 (2022)	Knowledge-based	 reinforcement	 learning	 and	 estimation	 of	
distribution	algorithm	for	flexible	job	shop	scheduling	problem.	IEEE	Trans	Emerg	Top	Comput	Intell	
7(4):1036–1050

Du	Y,	Li	J,	Li	C,	Duan	P	(2022)	A	reinforcement	learning	approach	for	flexible	job	shop	scheduling	problem	
with	crane	transportation	and	setup	times.	IEEE	Trans	Neural	Netw	Learn	Syst

Đumić	M,	Jakobović	D	(2021)	Ensembles	of	priority	rules	for	resource	constrained	project	scheduling	prob-
lem.	Appl	Soft	Comput	110:107606

Đurasević	M,	Jakobović	D	(2018)	Evolving	dispatching	rules	for	optimising	many-objective	criteria	in	the	
unrelated	machines	environment.	Genet	Program	Evolvable	Mach	19(1):9–51

Đurasević	M,	 Jakobović	D	 (2018)	Comparison	 of	 ensemble	 learning	methods	 for	 creating	 ensembles	 of	
dispatching	rules	for	the	unrelated	machines	environment.	Genet	Program	Evolvable	Mach	19:53–92

Đurasević	M,	Jakobović	D	(2020)	Comparison	of	schedule	generation	schemes	for	designing	dispatching	
rules	with	genetic	programming	in	the	unrelated	machines	environment.	Appl	Soft	Comput	96:106637

Đurasević	M,	 Jakobović	D,	Knežević	K	 (2016)	Adaptive	 scheduling	on	unrelated	machines	with	genetic	
programming.	Appl	Soft	Comput	48:419–430

Đurasević	M,	Gil-Gala	FJ,	Planinić	L,	Jakobović	D	(2023)	Collaboration	methods	for	ensembles	of	dispatch-
ing	rules	for	the	dynamic	unrelated	machines	environment.	Eng	Appl	Artif	Intell	122:106096

Đurasević	M,	Gala	FJG,	 Jakobović	D,	Coello	CAC	(2023)	Combining	single	objective	dispatching	 rules	
into	multi-objective	ensembles	for	the	dynamic	unrelated	machines	environment.	Swarm	Evol	Comput	
80:101318

Durgut	 R,	 Aydin	 ME,	 Atli	 I	 (2021)	 Adaptive	 operator	 selection	 with	 reinforcement	 learning.	 Inf	 Sci	
581:773–790

Echeverria	I,	Murua	M,	Santana	R	(2024)	Offline	reinforcement	learning	for	job-shop	scheduling	problems.	
arXiv	preprint	arXiv:2410.15714

Echeverria	 I,	Murua	M,	 Santana	R	 (2024)	 Solving	 the	 flexible	 job-shop	 scheduling	 problem	 through	 an	
enhanced	deep	reinforcement	learning	approach

Engin	O,	Güçlü	A	(2018)	A	new	hybrid	ant	colony	optimization	algorithm	for	solving	the	no-wait	flow	shop	
scheduling	problems.	Appl	Soft	Comput	72:166–176

Fan	H,	Xiong	H,	Goh	M	(2021)	Genetic	programming-based	hyper-heuristic	approach	for	solving	dynamic	
job	 shop	 scheduling	 problem	 with	 extended	 technical	 precedence	 constraints.	 Comput	 Oper	 Res	
134:105401

Fang	Y,	Li	J	(2010)	A	review	of	tournament	selection	in	genetic	programming.	In:	Proceedings	of	the	inter-
national	symposium	on	intelligence	computation	and	applications,	pp	181–192

Fattahi	P,	Messi	Bidgoli	M,	Samouei	P	(2018)	An	improved	tabu	search	algorithm	for	job	shop	scheduling	
problem	trough	hybrid	solution	representations.	J	Qual	Eng	Prod	Optim	3(1):13–26

Fontes	 DB,	 Homayouni	 SM,	 Gonçalves	 JF	 (2023)	A	 hybrid	 particle	 swarm	 optimization	 and	 simulated	
annealing	 algorithm	 for	 the	 job	 shop	 scheduling	 problem	with	 transport	 resources.	 Eur	 J	Oper	Res	
306(3):1140–1157

Gao	KZ,	Suganthan	PN,	Tasgetiren	MF,	Pan	QK,	Sun	QQ	(2015)	Effective	ensembles	of	heuristics	for	sched-
uling	flexible	job	shop	problem	with	new	job	insertion.	Comput	Ind	Eng	90:107–117

Gao	K,	Cao	Z,	Zhang	L,	Chen	Z,	Han	Y,	Pan	Q	(2019)	A	review	on	swarm	intelligence	and	evolutionary	
algorithms	for	solving	flexible	job	shop	scheduling	problems.	IEEE/CAA	J	Automat	Sin	6(4):904–916

Gil	Gala	FJ,	Mencía	C,	Sierra	MR,	Varela	R	(2019)	Evolving	priority	rules	for	on-line	scheduling	of	jobs	on	
a	single	machine	with	variable	capacity	over	time.	Appl	Soft	Comput	85:105782

Gil	Gala	FJ,	Sierra	MR,	Mencía	C,	Varela	R	(2021)	Genetic	programming	with	local	search	to	evolve	prior-
ity	rules	for	scheduling	jobs	on	a	machine	with	time-varying	capacity.	Swarm	Evol	Comput	66:100944

Gil	Gala	FJ,	Sierra	MR,	Mencía	C,	Varela	R	(2022)	Combining	hyper-heuristics	to	evolve	ensembles	of	prior-
ity	rules	for	on-line	scheduling.	Nat	Comput	21(4):553–563

Gil-Gala	FJ,	Sierra	MR,	Mencía	C,	Varela	R	 (2023)	Surrogate	model	 for	memetic	genetic	 programming	
with	application	to	the	one	machine	scheduling	problem	with	time-varying	capacity.	Expert	Syst	Appl	
233:120916

Glover	F,	Laguna	M	(1998)	Tabu	search.	Springer,	Boston,	pp	2093–2229
Gomes	MC,	Barbosa-Póvoa	AP,	Novais	AQ	 (2013)	Reactive	 scheduling	 in	 a	make-to-order	 flexible	 job	

shop	with	 re-entrant	 process	 and	 assembly:	 a	mathematical	 programming	 approach.	 Int	 J	 Prod	Res	
51(17):5120–5141

Gonçalves	JF,	Magalhães	Mendes	JJ,	Resende	MG	(2005)	A	hybrid	genetic	algorithm	for	the	job	shop	sched-
uling	problem.	Eur	J	Oper	Res	167(1):77–95

Gromicho	 JA,	Van	Hoorn	 JJ,	 Saldanha-da-Gama	F,	Timmer	GT	 (2012)	 Solving	 the	 job-shop	 scheduling	
problem	optimally	by	dynamic	programming.	Comput	Operat	Res	39(12):2968–2977

1 3

 160 Page 44 of 53

http://arxiv.org/abs/2410.15714

Learn to optimise for job shop scheduling: a survey with comparison…

Gui	Y,	Tang	D,	Zhu	H,	Zhang	Y,	Zhang	Z	(2023)	Dynamic	scheduling	for	flexible	job	shop	using	a	deep	rein-
forcement	learning	approach.	Comput	Ind	Eng	180:109255.	https://doi.org/10.1016/j.cie.2023.109255

Hameed	MSA,	Schwung	A	(2020)	Reinforcement	 learning	on	 job	shop	scheduling	problems	using	graph	
networks.	arXiv	preprint	arXiv:2009.03836

Hart	 E,	 Sim	K	 (2016)	A	 hyper-heuristic	 ensemble	method	 for	 static	 job-shop	 scheduling.	 Evol	 Comput	
24(4):609–635

He	Z,	Tran	KP,	Thomassey	S,	Zeng	X,	Xu	J,	Yi	C	(2022)	Multi-objective	optimization	of	the	textile	man-
ufacturing	 process	 using	 deep-q-network	 based	 multi-agent	 reinforcement	 learning.	 J	 Manuf	 Syst	
62:939–949

Heinonen	J,	Pettersson	F	(2007)	Hybrid	ant	colony	optimization	and	visibility	studies	applied	to	a	job-shop	
scheduling	problem.	Appl	Math	Comput	187(2):989–998

Helmuth	T,	Abdelhady	A	(2020)	Benchmarking	parent	selection	for	program	synthesis	by	genetic	program-
ming.	In:	Proceedings	of	the	genetic	and	evolutionary	computation	conference	companion,	pp	237–238

Hildebrandt	T,	Heger	J,	Scholz-Reiter	B	(2010)	Towards	improved	dispatching	rules	for	complex	shop	floor	
scenarios:	a	genetic	programming	approach.	In:	Proceedings	of	the	genetic	and	evolutionary	computa-
tion	conference,	pp	257–264

Ho	KH,	Cheng	JY,	Wu	JH,	Chiang	F,	Chen	YC,	Wu	YY,	Wu	IC	(2024)	Residual	scheduling:	a	new	reinforce-
ment	learning	approach	to	solving	job	shop	scheduling	problem.	IEEE	Access

Ho	NB,	Tay	 JC	 (2005)	Evolving	dispatching	 rules	 for	 solving	 the	flexible	 job-shop	problem.	Proc	 IEEE	
Congress	Evol	Comput	3:2848–2855

Holthaus	O,	Rajendran	C	(1997)	Efficient	dispatching	rules	for	scheduling	in	a	job	shop.	Int	J	Prod	Econ	
48(1):87–105

Ho	K,	Wu	J,	Chiang	F,	Wu	Y,	Chen	S,	Kuo	T,	Wang	F,	Wu	I	(2023)	Deep	reinforcement	learning	based	on	
graph	neural	networks	for	job-shop	scheduling.	In:	Proceedings	of	the	international	conference	on	con-
sumer	electronics-Taiwan,	pp	805–806

Huang	K,	Liao	C	(2008)	Ant	colony	optimization	combined	with	taboo	search	for	the	job	shop	scheduling	
problem.	Comput	Operat	Res	35(4):1030–1046

Huang	RH,	Yu	TH	(2017)	An	effective	ant	colony	optimization	algorithm	for	multi-objective	job-shop	sched-
uling	with	equal-size	lot-splitting.	Appl	Soft	Comput	57:642–656

Huang	J,	Gao	L,	Li	X,	Zhang	C	(2023)	A	novel	priority	dispatch	rule	generation	method	based	on	graph	neu-
ral	network	and	reinforcement	learning	for	distributed	job-shop	scheduling.	J	Manuf	Syst	69:119–134

Huang	Z,	Mei	Y,	Zhang	F,	Zhang	M	(2023)	Multitask	linear	genetic	programming	with	shared	individuals	
and	its	application	to	dynamic	job	shop	scheduling.	IEEE	Trans	Evol	Comput.		h	t	t	p	s	:	/	/	d	o	i	.	o	r	g	/	1	0	.	1	1	0	9	
/	T	E	V	C	.	2	0	2	3	.	3	2	6	3	8	7	1	

Huang	JP,	Gao	L,	Li	XY,	Zhang	C-J	(2023)	A	cooperative	hierarchical	deep	reinforcement	learning	based	
multi-agent	method	for	distributed	job	shop	scheduling	problem	with	random	job	arrivals.	Comput	Ind	
Eng	185:109650

Huang	J,	Gao	L,	Li	X	(2024)	An	end-to-end	deep	reinforcement	learning	method	based	on	graph	neural	net-
work	for	distributed	job-shop	scheduling	problem.	Expert	Syst	Appl	238:121756

Huang	JP,	Gao	L,	Li	XY	(2024)	A	hierarchical	multi-action	deep	reinforcement	learning	method	for	dynamic	
distributed	job-shop	scheduling	problem	with	job	arrivals.	IEEE	Trans	Autom	Sci	Eng.		h	t	t	p	s	:	/	/	d	o	i	.	o	r	g	/	
1	0	.	1	1	0	9	/	T	A	S	E	.	2	0	2	4	.	3	3	8	0	6	4	4	

Huang	Z,	Mei	Y,	Zhang	M	(2021)	Investigation	of	linear	genetic	programming	for	dynamic	job	shop	schedul-
ing.	In:	Proceedings	of	the	IEEE	symposium	series	on	computational	intelligence,	pp	1–8

Huang	Z,	Mei	Y,	Zhang	F,	Zhang	M	(2023)	Grammar-guided	linear	genetic	programming	for	dynamic	job	
shop	scheduling.	In:	Proceedings	of	the	genetic	and	evolutionary	computation	conference,	pp	1137–1145

Hubbs	CD,	Li	C,	Sahinidis	NV,	Grossmann	IE,	Wassick	JM	(2020)	A	deep	reinforcement	learning	approach	
for	chemical	production	scheduling.	Comput	Chem	Eng	141:106982

Hu	H,	Jia	X,	He	Q,	Fu	S,	Liu	K	(2020)	Deep	reinforcement	learning	based	agvs	real-time	scheduling	with	
mixed	rule	for	flexible	shop	floor	in	industry	4.0.	Comput	Ind	Eng	149:106749

Hunt	 RJ,	 Johnston	MR,	 Zhang	M	 (2016)	 Evolving	 dispatching	 rules	 with	 greater	 understandability	 for	
dynamic	job	shop	scheduling.	Citeseer

Hunt	R,	Johnston	M,	Zhang	M	(2014)	Evolving	“less-myopic”	scheduling	rules	for	dynamic	job	shop	sched-
uling	with	genetic	programming.	In:	Proceedings	of	the	genetic	and	evolutionary	computation	confer-
ence,	pp	927–934

Ingimundardottir	H,	Runarsson	TP	(2018)	Discovering	dispatching	rules	from	data	using	imitation	learning:	
a	case	study	for	the	job-shop	problem.	J	Sched	21:413–428

Jaklinović	K,	Đurasević	M,	Jakobović	D	(2021)	Designing	dispatching	rules	with	genetic	programming	for	
the	unrelated	machines	environment	with	constraints.	Expert	Syst	Appl	172:114548

Jakobović	D,	Budin	L	(2006)	Dynamic	scheduling	with	genetic	programming.	In:	Proceedings	of	the	Euro-
pean	conference	on	genetic	programming,	pp	73–84

1 3

Page 45 of 53 160

https://doi.org/10.1016/j.cie.2023.109255
http://arxiv.org/abs/2009.03836
https://doi.org/10.1109/TEVC.2023.3263871
https://doi.org/10.1109/TEVC.2023.3263871
https://doi.org/10.1109/TASE.2024.3380644
https://doi.org/10.1109/TASE.2024.3380644

M. Xu et al.

Jing	X,	Yao	X,	Liu	M,	Zhou	J	(2024)	Multi-agent	reinforcement	learning	based	on	graph	convolutional	net-
work	for	flexible	job	shop	scheduling.	J	Intell	Manuf	35(1):75–93

Kaelbling	LP,	Littman	ML,	Moore	AW	(1996)	Reinforcement	learning:	a	survey.	J	Artif	Intell	Res	4:237–285
Karunakaran	D	(2019)	Active	 learning	methods	for	dynamic	 job	shop	scheduling	using	genetic	program-

ming	under	uncertain	environment.	PhD	thesis,	Open	Access	Te	Herenga	Waka-Victoria	University	of	
Wellington

Karunakaran	D,	Chen	G,	Zhang	M	(2016)	Parallel	multi-objective	job	shop	scheduling	using	genetic	pro-
gramming.	In:	Proceedings	of	the	Australasian	Conference	on	Artificial	Life	and	Computational	Intel-
ligence,	pp	234–245

Karunakaran	D,	Mei	Y,	Chen	G,	Zhang	M	(2017)	Evolving	dispatching	rules	for	dynamic	job	shop	schedul-
ing	with	uncertain	processing	times.	In:	Proceedings	of	the	IEEE	congress	on	evolutionary	computation,	
pp	364–371

Karunakaran	D,	Mei	Y,	Chen	G,	Zhang	M	(2017)	Toward	evolving	dispatching	rules	for	dynamic	job	shop	
scheduling	under	uncertainty.	In:	Proceedings	of	the	genetic	and	evolutionary	computation	conference,	
pp	282–289

Karunakaran	D,	Mei	Y,	Chen	G,	Zhang	M	(2018)	Sampling	heuristics	for	multi-objective	dynamic	job	shop	
scheduling	using	island	based	parallel	genetic	programming.	In:	Proceedings	of	the	international	con-
ference	on	parallel	problem	solving	from	nature,	pp	347–359

Kayhan	BM,	Yildiz	G	(2023)	Reinforcement	learning	applications	to	machine	scheduling	problems:	a	com-
prehensive	literature	review.	J	Intell	Manuf	34(3):905–929

Koza	JR,	Koza	JR	(1992)	Genetic	programming:	on	 the	programming	of	computers	by	means	of	natural	
selection	vol.	1,

Koza	JR	et	al	(1994)	Genetic	programming	II.	MIT	press,	Cambridge
Kuhnle	A,	Röhrig	N,	Lanza	G	(2019)	Autonomous	order	dispatching	in	the	semiconductor	industry	using	

reinforcement	learning.	Procedia	CIRP	79:391–396
Lee	JH,	Kim	HJ	(2022)	Imitation	learning	for	real-time	job	shop	scheduling	using	graph-based	representa-

tion.	In:	Proceedings	of	the	winter	simulation	conference,	pp	3285–3296
Lee	J,	Kee	S,	Janakiram	M,	Runger	G	(2024)	Attention-based	reinforcement	learning	for	combinatorial	opti-

mization:	application	to	job	shop	scheduling	problem.	arXiv	preprint	arXiv:2401.16580
Lei	K,	Guo	P,	Zhao	W,	Wang	Y,	Qian	L,	Meng	X,	Tang	L	(2022)	A	multi-action	deep	reinforcement	learning	

framework	for	flexible	job-shop	scheduling	problem.	Expert	Syst	Appl	205:117796.		h	t	t	p	s	:	/	/	d	o	i	.	o	r	g	/	1	0	.	
1	0	1	6	/	j	.	e	s	w	a	.	2	0	2	2	.	1	1	7	7	9	6	

Lei	K,	Guo	P,	Wang	Y,	Zhang	J,	Meng	X,	Qian	L	(2023)	Large-scale	dynamic	scheduling	for	flexible	job-shop	
with	random	arrivals	of	new	jobs	by	hierarchical	reinforcement	learning.	IEEE	Trans	Ind	Inf.		h	t	t	p	s	:	/	/	d	
o	i	.	o	r	g	/	1	0	.	1	1	0	9	/	T	I	I	.	2	0	2	3	.	3	2	7	2	6	6	1	

Lei	Y,	Deng	Q,	Liao	M,	Gao	S	(2024)	Deep	reinforcement	learning	for	dynamic	distributed	job	shop	schedul-
ing	problem	with	transfers.	Expert	Syst	Appl	251:123970

Li	Y	(2017)	Deep	reinforcement	learning:	an	overview.	ArXiv	Preprint	ArXiv:1701.07274
Li	Y,	Gu	W,	Yuan	M,	Tang	Y	(2022)	Real-time	data-driven	dynamic	scheduling	for	flexible	job	shop	with	

insufficient	 transportation	 resources	 using	 hybrid	 deep	 q	 network.	 Robot	 Comput-Integrat	 Manuf	
74:102283

Lian	Z,	Jiao	B,	Gu	X	(2006)	A	similar	particle	swarm	optimization	algorithm	for	 job-shop	scheduling	 to	
minimize	makespan.	Appl	Math	Comput	183(2):1008–1017

Lin	TL,	Horng	SJ,	Kao	TW,	Chen	YH,	Run	RS,	Chen	RJ,	Lai	JL,	Kuo	IH	(2010)	An	efficient	job-shop	sched-
uling	algorithm	based	on	particle	swarm	optimization.	Expert	Syst	Appl	37(3):2629–2636

Lin	CC,	Deng	DJ,	Chih	YL,	Chiu	HT	(2019)	Smart	manufacturing	scheduling	with	edge	computing	using	
multiclass	deep	q	network.	IEEE	Trans	Ind	Inf	15(7):4276–4284

Liu	CL,	Huang	TH	(2023)	Dynamic	 job-shop	scheduling	problems	using	graph	neural	network	and	deep	
reinforcement	learning.	IEEE	transactions	on	systems,	man,	and	cybernetics:	systems

Liu	CL,	Chang	CC,	Tseng	CJ	(2020)	Actor-critic	deep	reinforcement	learning	for	solving	job	shop	scheduling	
problems.	IEEE	Access	8:71752–71762

Liu	Z,	Wang	Y,	Liang	X,	Ma	Y,	Feng	Y,	Cheng	G,	Liu	Z	(2022)	A	graph	neural	networks-based	deep	q-learn-
ing	approach	for	job	shop	scheduling	problems	in	traffic	management.	Inf	Sci	607:1211–1223

Liu	R,	Piplani	R,	Toro	C	(2022)	Deep	reinforcement	learning	for	dynamic	scheduling	of	a	flexible	job	shop.	
Int	J	Prod	Res	60(13):4049–4069

Liu	Z,	Mao	H,	Sa	G,	Liu	H,	Tan	J	(2024)	Dynamic	job-shop	scheduling	using	graph	reinforcement	learning	
with	auxiliary	strategy.	J	Manuf	Syst	73:1–18

Luo	S	(2020)	Dynamic	scheduling	for	flexible	job	shop	with	new	job	insertions	by	deep	reinforcement	learn-
ing.	Appl	Soft	Comput	91:106208

Luo	S,	Zhang	L,	Fan	Y	(2021)	Dynamic	multi-objective	scheduling	for	flexible	job	shop	by	deep	reinforce-
ment	learning.	Comput	Ind	Eng	159:107489

1 3

 160 Page 46 of 53

http://arxiv.org/abs/2401.16580
https://doi.org/10.1016/j.eswa.2022.117796
https://doi.org/10.1016/j.eswa.2022.117796
https://doi.org/10.1109/TII.2023.3272661
https://doi.org/10.1109/TII.2023.3272661
http://arxiv.org/abs/1701.07274

Learn to optimise for job shop scheduling: a survey with comparison…

Luo	S,	Zhang	L,	Fan	Y	(2021)	Real-time	scheduling	for	dynamic	partial-no-wait	multiobjective	flexible	job	
shop	by	deep	reinforcement	learning.	In:	IEEE	transactions	on	automation	science	and	engineering

Masood	A,	Chen	G,	Mei	Y,	Al-Sahaf	H,	Zhang	M	(2019)	Genetic	programming	with	pareto	local	search	for	
many-objective	job	shop	scheduling.	In:	Proceedings	of	the	Australasian	joint	conference	on	artificial	
intelligence,	pp	536–548

Masood	A,	Chen	G,	Mei	Y,	Zhang	M	(2018)	Reference	point	adaption	method	 for	genetic	programming	
hyper-heuristic	in	many-objective	job	shop	scheduling.	In:	Proceedings	of	the	European	conference	on	
evolutionary	computation	in	combinatorial	optimization,	pp	116–131

Masood	A,	Mei	Y,	Chen	G,	Zhang	M	(2016)	Many-objective	genetic	programming	for	job-shop	scheduling.	
In:	Proceedings	of	the	IEEE	congress	on	evolutionary	computation,	pp	209–216

Mattfeld	DC,	Bierwirth	C	(2004)	An	efficient	genetic	algorithm	for	job	shop	scheduling	with	tardiness	objec-
tives.	Eur	J	Oper	Res	155(3):616–630

Mei	Y,	Nguyen	S,	Xue	B,	Zhang	M	(2017)	An	efficient	feature	selection	algorithm	for	evolving	job	shop	
scheduling	rules	with	genetic	programming.	IEEE	Trans	Emerg	Top	Comput	Intell	1(5):339–353

Mei	Y,	Chen	Q,	Lensen	A,	Xue	B,	Zhang	M	(2022)	Explainable	artificial	intelligence	by	genetic	program-
ming:	a	survey.	IEEE	Trans	Evol	Comput.	https://doi.org/10.1109/TEVC.2022.3225509

Mei	Y,	Nguyen	S,	Zhang	M	(2017)	Constrained	dimensionally	aware	genetic	programming	for	evolving	inter-
pretable	dispatching	rules	in	dynamic	job	shop	scheduling.	In:	Proceedings	of	the	Asia-Pacific	confer-
ence	on	simulated	evolution	and	learning,	pp	435–447	.	https://doi.org/10.1007/978-3-319-68759-9_36

Mei	Y,	Nguyen	S,	Zhang	M	(2017)	Evolving	time-invariant	dispatching	rules	in	job	shop	scheduling	with	
genetic	programming.	In:	Proceedings	of	the	European	conference	on	genetic	programming,	pp	147–163

Mei	Y,	Zhang	M	(2016)	A	comprehensive	analysis	on	reusability	of	gp-evolved	job	shop	dispatching	rules.	
In:	Proceedings	of	the	IEEE	congress	on	evolutionary	computation,	pp	3590–3597

Mei	Y,	Zhang	M,	Nyugen	S	(2016)	Feature	selection	in	evolving	job	shop	dispatching	rules	with	genetic	
programming.	In:	Proceedings	of	the	genetic	and	evolutionary	computation	conference,	pp	365–372

Miguel	Gomez	A,	Toosi	FG	(2021)	Continuous	parameter	control	in	genetic	algorithms	using	policy	gradient	
reinforcement	 learning.	 In:	Proceedings	of	 the	 international	 joint	conference	on	computational	 intel-
ligence,	pp	115–122

Miyashita	K	(2000)	Job-shop	scheduling	with	genetic	programming.	In:	Proceedings	of	the	genetic	and	evo-
lutionary	computation	conference,	pp	505–512

Monaci	M,	Agasucci	V,	Grani	G	(2021)	An	actor-critic	algorithm	with	deep	double	recurrent	agents	to	solve	
the	job	shop	scheduling	problem.	arXiv	preprint	arXiv:2110.09076

Nguyen	S,	Zhang	M,	Johnston	M,	Tan	KC	(2012)	A	computational	study	of	representations	in	genetic	pro-
gramming	to	evolve	dispatching	rules	for	the	job	shop	scheduling	problem.	IEEE	Trans	Evol	Comput	
17(5):621–639

Nguyen	S,	Zhang	M,	 Johnston	M,	Tan	KC	 (2013)	Automatic	 design	 of	 scheduling	policies	 for	 dynamic	
multi-objective	 job	 shop	 scheduling	 via	 cooperative	 coevolution	 genetic	 programming.	 IEEE	Trans	
Evol	Comput	18(2):193–208

Nguyen	S,	Zhang	M,	Johnston	M,	Tan	KC	(2013)	Learning	iterative	dispatching	rules	for	job	shop	scheduling	
with	genetic	programming.	Int	J	Adv	Manuf	Technol	67(1–4):85–100

Nguyen	 S,	 Zhang	M,	 Johnston	M,	Tan	KC	 (2014)	Automatic	 programming	 via	 iterated	 local	 search	 for	
dynamic	job	shop	scheduling.	IEEE	Trans	Cybern	45(1):1–14

Nguyen	S,	Zhang	M,	Tan	KC	(2016)	Surrogate-assisted	genetic	programming	with	simplified	models	 for	
automated	design	of	dispatching	rules.	IEEE	Trans	Cybern	47(9):2951–2965

Nguyen	S,	Mei	Y,	Zhang	M	(2017)	Genetic	programming	for	production	scheduling:	a	survey	with	a	unified	
framework.	Complex	Intell	Syst	3(1):41–66

Nguyen	S,	Mei	Y,	Xue	B,	Zhang	M	(2019)	A	hybrid	genetic	programming	algorithm	for	automated	design	of	
dispatching	rules.	Evol	Comput	27(3):467–496

Nguyen	S,	Zhang	M,	Johnston	M,	Tan	KC	(2012)	A	coevolution	genetic	programming	method	 to	evolve	
scheduling	policies	for	dynamic	multi-objective	job	shop	scheduling	problems.	In:	Proceedings	of	the	
IEEE	congress	on	evolutionary	computation,	pp	1–8

Nguyen	S,	Zhang	M,	Johnston	M,	Tan	KC	(2013)	Dynamic	multi-objective	job	shop	scheduling:	a	genetic	
programming	approach.	Automated	scheduling	and	planning:	from	theory	to	practice,	251–282

Nguyen	S,	Zhang	M,	Johnston	M,	Tan	KC	(2014)	Selection	schemes	in	surrogate-assisted	genetic	program-
ming	for	job	shop	scheduling.	In:	Proceedings	of	the	Asia-Pacific	conference	on	simulated	evolution	
and	Learning,	pp	656–667

Nguyen	 S,	 Zhang	M,	 Johnston	M,	Tan	KC	 (2019)	Genetic	 programming	 for	 job	 shop	 scheduling.	 Evol	
Swarm	Intell	Algor,	143–167

Nguyen	S,	Zhang	M,	Tan	KC	(2015)	Enhancing	genetic	programming	based	hyper-heuristics	for	dynamic	
multi-objective	job	shop	scheduling	problems.	In:	Proceedings	of	the	IEEE	congress	on	evolutionary	
computation,	pp	2781–2788

1 3

Page 47 of 53 160

https://doi.org/10.1109/TEVC.2022.3225509
https://doi.org/10.1007/978-3-319-68759-9_36
http://arxiv.org/abs/2110.09076

M. Xu et al.

Nguyen	S,	Zhang	M,	Tan	KC	(2018)	Adaptive	charting	genetic	programming	for	dynamic	flexible	job	shop	
scheduling.	In:	Proceedings	of	the	genetic	and	evolutionary	computation	conference,	pp	1159–1166

Nie	L,	Gao	L,	Li	P,	Li	X	(2013)	A	gep-based	reactive	scheduling	policies	constructing	approach	for	dynamic	
flexible	job	shop	scheduling	problem	with	job	release	dates.	J	Intell	Manuf	24(4):763–774

Orhean	AI,	Pop	F,	Raicu	I	(2018)	New	scheduling	approach	using	reinforcement	learning	for	heterogeneous	
distributed	systems.	J	Parallel	Distrib	Comput	117:292–302

Ouelhadj	 D,	 Petrovic	 S	 (2009)	 A	 survey	 of	 dynamic	 scheduling	 in	 manufacturing	 systems.	 J	 Sched	
12(4):417–431

Ozolins	A	(2020)	Bounded	dynamic	programming	algorithm	for	the	job	shop	problem	with	sequence	depen-
dent	setup	times.	Oper	Res	Int	J	20(3):1701–1728

Ozturk	G,	Bahadir	O,	Teymourifar	A	(2019)	Extracting	priority	rules	for	dynamic	multi-objective	flexible	
job	shop	scheduling	problems	using	gene	expression	programming.	Int	J	Prod	Res	57(10):3121–3137

Paliouras	G	(1993)	Scalability	of	machine	learning	algorithms.	PhD	thesis,	University	of	Manchester
Pan	Z,	Wang	L,	Wang	J,	Lu	J	(2021)	Deep	reinforcement	learning	based	optimization	algorithm	for	permu-

tation	flow-shop	scheduling.	In:	IEEE	transactions	on	emerging	topics	in	computational	intelligence
Park	IB,	Park	J	(2021)	Scalable	scheduling	of	semiconductor	packaging	facilities	using	deep	reinforcement	

learning.	IEEE	Trans	Cybern	53(6):3518–3531
Park	 J,	Mei	Y,	Nguyen	S,	Chen	G,	Zhang	M	(2018)	An	 investigation	of	 ensemble	combination	 schemes	

for	genetic	programming	based	hyper-heuristic	approaches	to	dynamic	job	shop	scheduling.	Appl	Soft	
Comput	63:72–86

Park	IB,	Huh	J,	Kim	J,	Park	J	(2019)	A	reinforcement	learning	approach	to	robust	scheduling	of	semiconduc-
tor	manufacturing	facilities.	IEEE	Trans	Autom	Sci	Eng	17(3):1420–1431

Park	J,	Chun	J,	Kim	SH,	Kim	Y,	Park	J	(2021)	Learning	to	schedule	job-shop	problems:	representation	and	
policy	learning	using	graph	neural	network	and	reinforcement	learning.	Int	J	Prod	Res	59(11):3360–3377

Park	J,	Bakhtiyar	S,	Park	J	(2021)	Schedulenet:	Learn	to	solve	multi-agent	scheduling	problems	with	rein-
forcement	learning.	arXiv	preprint	arXiv:2106.03051

Park	J,	Mei	Y,	Chen	G,	Zhang	M	(2016)	Niching	genetic	programming	based	hyper-heuristic	approach	to	
dynamic	job	shop	scheduling:	an	investigation	into	distance	metrics.	In:	Proceedings	of	the	genetic	and	
evolutionary	computation	conference	companion,	pp	109–110

Park	J,	Mei	Y,	Nguyen	S,	Chen	G,	Johnston	M,	Zhang	M	(2016)	Genetic	programming	based	hyper-heuristics	
for	dynamic	job	shop	scheduling:	cooperative	coevolutionary	approaches.	In:	Proceedings	of	the	Euro-
pean	conference	on	genetic	programming,	pp	115–132

Park	J,	Mei	Y,	Nguyen	S,	Chen	G,	Zhang	M	(2017)	Investigating	 the	generality	of	genetic	programming	
based	hyper-heuristic	approach	to	dynamic	job	shop	scheduling	with	machine	breakdown.	In:	Proceed-
ings	of	the	Australasian	conference	on	artificial	life	and	computational	intelligence,	pp	301–313

Park	J,	Mei	Y,	Nguyen	S,	Chen	G,	Zhang	M	(2018)	Evolutionary	multitask	optimisation	for	dynamic	job	shop	
scheduling	using	niched	genetic	programming.	In:	Proceedings	of	the	Australasian	joint	conference	on	
artificial	intelligence,	pp	739–751

Park	J,	Mei	Y,	Nguyen	S,	Chen	G,	Zhang	M	(2018)	Investigating	a	machine	breakdown	genetic	program-
ming	approach	for	dynamic	job	shop	scheduling.	In:	Proceedings	of	the	European	conference	on	genetic	
programming,	pp	253–270

Park	J,	Nguyen	S,	Zhang	M,	Johnston	M	(2015)	A	single	population	genetic	programming	based	ensemble	
learning	approach	to	job	shop	scheduling.	In:	Proceedings	of	the	genetic	and	evolutionary	computation	
conference,	pp	1451–1452

Pezzella	F,	Morganti	G,	Ciaschetti	G	(2008)	A	genetic	algorithm	for	the	flexible	job-shop	scheduling	prob-
lem.	Comput	Oper	Res	35(10):3202–3212

Planinić	L,	Durasević	M,	Jakobović	D	(2021)	On	the	application	of	ϵ-lexicase	selection	in	the	generation	of	
dispatching	rules.	In:	Proceedings	of	the	IEEE	congress	on	evolutionary	computation,	pp	2125–2132

Potts	CN,	Van	Wassenhove	LN	(1985)	A	branch	and	bound	algorithm	for	the	total	weighted	tardiness	prob-
lem.	Oper	Res	33(2):363–377

Pu	Y,	Li	F,	Rahimifard	S	 (2024)	Multi-agent	 reinforcement	 learning	 for	 job	 shop	 scheduling	 in	dynamic	
environments.	Sustainability	16(8):3234

Puiseau	C,	Meyes	R,	Meisen	T	(2022)	On	reliability	of	reinforcement	learning	based	production	scheduling	
systems:	a	comparative	survey.	J	Intell	Manuf	33(4):911–927

Rodrigues	NM,	Batista	JE,	Silva	S	(2020)	Ensemble	genetic	programming.	In:	Proceedings	of	the	European	
conference	on	genetic	programming,	pp	151–166

Rummukainen	H,	Nurminen	JK	(2019)	Practical	reinforcement	learning-experiences	in	lot	scheduling	appli-
cation.	IFAC-PapersOnLine	52(13):1415–1420

1 3

 160 Page 48 of 53

http://arxiv.org/abs/2106.03051

Learn to optimise for job shop scheduling: a survey with comparison…

Said	NE-DA,	Samaha	Y,	Azab	E,	Shihata	LA,	Mashaly	M	(2021)	An	online	reinforcement	learning	approach	
for	solving	the	dynamic	flexible	job-shop	scheduling	problem	for	multiple	products	and	constraints.	In:	
Proceedings	of	the	international	conference	on	computational	science	and	computational	intelligence,	
pp	134–139

Saidi-Mehrabad	M,	Fattahi	P	(2007)	Flexible	 job	shop	scheduling	with	 tabu	search	algorithms.	Int	J	Adv	
Manuf	Technol	32:563–570

Sakurai	Y,	Takada	K,	Kawabe	T,	Tsuruta	S	(2010)	A	method	to	control	parameters	of	evolutionary	algorithms	
by	using	reinforcement	learning.	In:	Proceedings	of	the	international	conference	on	signal	image	tech-
nology	and	internet	based	systems,	pp	74–79

Sarin	SC,	Ahn	S,	Bishop	AB	(1988)	An	improved	branching	scheme	for	the	branch	and	bound	procedure	
of	 scheduling	 n	 jobs	 on	m	 parallel	machines	 to	minimize	 total	 weighted	 flowtime.	 Int	 J	 Prod	 Res	
26(7):1183–1191

Serrano	Ruiz	JC,	Mula	J,	Poler	R	(2024)	Job	shop	smart	manufacturing	scheduling	by	deep	reinforcement	
learning.	J	Ind	Inf	Integr	38:100582

Shady	S,	Kaihara	T,	Fujii	N,	Kokuryo	D	(2022)	A	novel	feature	selection	for	evolving	compact	dispatching	
rules	using	genetic	programming	for	dynamic	job	shop	scheduling.	Int	J	Prod	Res	60(13):4025–4048

Shady	S,	Kaihara	T,	Fujii	N,	Kokuryo	D	(2023)	Feature	selection	approach	for	evolving	reactive	scheduling	
policies	for	dynamic	job	shop	scheduling	problem	using	gene	expression	programming.	Int	J	Prod	Res	
61(15):5029–5052

Shanker	K,	Tzen	YJJ	(1985)	A	loading	and	dispatching	problem	in	a	random	flexible	manufacturing	system.	
Int	J	Prod	Res	23(3):579–595

Sharma	 P,	 Jain	A	 (2015)	 Stochastic	 dynamic	 job	 shop	 scheduling	with	 sequence-dependent	 setup	 times:	
simulation	experimentation.	J	Eng	Technol	5(1):19

Sitahong	A,	Yuan	Y,	Li	M,	Ma	J,	Ba	Z,	Lu	Y	(2022)	Designing	dispatching	rules	via	novel	genetic	program-
ming	with	feature	selection	in	dynamic	job-shop	scheduling.	Processes	11(1):65

Song	HB,	Lin	 J	 (2021)	A	genetic	 programming	hyper-heuristic	 for	 the	 distributed	 assembly	permutation	
flow-shop	scheduling	problem	with	sequence	dependent	setup	times.	Swarm	Evol	Comput	60:100807

Song	W,	Chen	X,	Li	Q,	Cao	Z	(2022)	Flexible	job	shop	scheduling	via	graph	neural	network	and	deep	rein-
forcement	learning.	IEEE	Trans	Ind	Inform

Stricker	N,	Kuhnle	A,	Sturm	R,	Friess	S	(2018)	Reinforcement	learning	for	adaptive	order	dispatching	in	the	
semiconductor	industry.	CIRP	Ann	67(1):511–514

Tassel	 P,	Gebser	M,	 Schekotihin	K	 (2023)	An	 end-to-end	 reinforcement	 learning	 approach	 for	 job-shop	
scheduling	problems	based	on	constraint	programming.	arXiv	preprint	arXiv:2306.05747

Tay	JC,	Ho	NB	(2008)	Evolving	dispatching	rules	using	genetic	programming	for	solving	multi-objective	
flexible	job-shop	problems.	Comput	Ind	Eng	54(3):453–473

Teymourifar	A,	Ozturk	G,	Ozturk	ZK,	Bahadir	O	(2020)	Extracting	new	dispatching	rules	for	multi-objective	
dynamic	flexible	job	shop	scheduling	with	limited	buffer	spaces.	Cogn	Comput	12(1):195–205

Van	Hasselt	H,	Guez	A,	Silver	D	(2016)	Deep	reinforcement	learning	with	double	q-learning.	In:	Proceedings	
of	the	AAAI	conference	on	artificial	intelligence,	vol.	30

Vaswani	A,	Shazeer	N,	Parmar	N,	Uszkoreit	J,	Jones	L,	Gomez	AN,	Kaiser	Ł,	Polosukhin	I	(2017)	Attention	
is	all	you	need.	Adv	Neural	Inform	Process	Syst,	30

Vilcot	G,	Billaut	J-C	(2011)	A	tabu	search	algorithm	for	solving	a	multicriteria	flexible	job	shop	scheduling	
problem.	Int	J	Prod	Res	49(23):6963–6980

Wan	L,	Fu	L,	Li	C,	Li	K	(2024)	Flexible	job	shop	scheduling	via	deep	reinforcement	learning	with	meta-path-
based	heterogeneous	graph	neural	network.	Knowl	Based	Syst	296:111940

Wan	L,	Cui	X,	Zhao	H,	Fu	L,	Li	C	(2024)	A	novel	method	for	solving	dynamic	flexible	job-shop	scheduling	
problem	via	difformer	and	deep	reinforcement	learning.	Comput	Ind	Eng	198:110688

Wang	YF	 (2020)	Adaptive	 job	shop	scheduling	strategy	based	on	weighted	q-learning	algorithm.	 J	 Intell	
Manuf	31(2):417–432

Wang	L,	Pan	Z	 (2021)	Scheduling	optimization	 for	flow-shop	based	on	deep	 reinforcement	 learning	and	
iterative	greedy	method.	Control	Decis	36(11):2609–2617

Wang	H,	Yan	H	 (2016)	An	 interoperable	 adaptive	 scheduling	 strategy	 for	 knowledgeable	manufacturing	
based	on	smgwq-learning.	J	Intell	Manuf	27:1085–1095

Wang	S,	Zhang	H	(2023)	A	matheuristic	for	flowshop	scheduling	with	batch	processing	machines	in	textile	
manufacturing.	Appl	Soft	Comput	145:110594

Wang	L,	Pan	Z,	Wang	J	(2021)	A	review	of	reinforcement	learning	based	intelligent	optimization	for	manu-
facturing	scheduling.	Complex	Syst	Model	Simul	1(4):257–270

Wang	X,	Lin	Z,	Lei	R,	Xie	K,	Wang	K,	Fei	Y,	Zhen	C	(2022)	Brief	review	on	applying	reinforcement	learning	
to	job	shop	scheduling	problems.	J	Syst	Simul	33(12):2782–2791

1 3

Page 49 of 53 160

http://arxiv.org/abs/2306.05747

M. Xu et al.

Wang	R,	Wang	G,	Sun	J,	Deng	F,	Chen	J	(2023)	Flexible	job	shop	scheduling	via	dual	attention	network-
based	reinforcement	learning.	IEEE	Trans	Neural	Netw	Learn	Syst.		h	t	t	p	s	:	/	/	d	o	i	.	o	r	g	/	1	0	.	1	1	0	9	/	T	N	N	L	S	.	2	
0	2	3	.	3	3	0	6	4	2	1	

Wang	L,	Cai	J,	Li	M,	Liu	Z	et	al	(2017)	Flexible	job	shop	scheduling	problem	using	an	improved	ant	colony	
optimization.	Sci	Programm	2017:9016303

Wang	S,	Li	J,	Jiao	Q,	Ma	F	(2024)	Design	patterns	of	deep	reinforcement	learning	models	for	job	shop	sched-
uling	problems.	J	Intell	Manuf,	1–19

Wen	M,	Lin	R,	Wang	H,	Yang	Y,	Wen	Y,	Mai	L,	Wang	J,	Zhang	H,	Zhang	W	(2023)	Large	sequence	models	
for	sequential	decision-making:	a	survey.	Front	Comp	Sci	17(6):176349

Wu	X,	Yan	X,	Guan	D,	Wei	M	(2024)	A	deep	reinforcement	learning	model	for	dynamic	job-shop	scheduling	
problem	with	uncertain	processing	time.	Eng	Appl	Artif	Intell	131:107790

Wu	Z,	Fan	H,	Sun	Y,	Peng	M	(2023)	Efficient	multi-objective	optimization	on	dynamic	flexible	job	shop	
scheduling	using	deep	reinforcement	learning	approach.	Processes	11(7):2018

Xie	H	(2009)	An	analysis	of	selection	in	genetic	programming.	PhD	thesis,	Open	Access	Te	Herenga	Waka-
Victoria	University	of	Wellington

Xie	J,	Gao	L,	Peng	K,	Li	X,	Li	H	(2019)	Review	on	flexible	job	shop	scheduling.	IET	Collab	Intell	Manuf	
1(3):67–77

Xiong	H,	Shi	S,	Ren	D,	Hu	J	(2022)	A	survey	of	job	shop	scheduling	problem:	The	types	and	models.	Comput	
Oper	Res	142:105731

Xu,	M.,	Mei,	Y.,	Zhang,	F.,	Zhang,	M.:	Multi-objective	genetic	programming	based	on	decomposition	on	
evolving	scheduling	heuristics	for	dynamic	scheduling.	In:	Proceedings	of	the	companion	conference	
on	genetic	and	evolutionary	computation,	pp	427–430	(2023)

Xu	B,	Mei	Y,	Wang	Y,	Ji	Z,	Zhang	M	(2021)	Genetic	programming	with	delayed	routing	for	multiobjective	
dynamic	flexible	job	shop	scheduling.	Evol	Comput	29(1):75–105

Xu	M,	Mei	Y,	Zhang	F,	Zhang	M	(2023)	Genetic	programming	for	dynamic	flexible	job	shop	scheduling:	
evolution	with	single	individuals	and	ensembles.	IEEE	Trans	Evol	Comput.		h	t	t	p	s	:	/	/	d	o	i	.	o	r	g	/	1	0	.	1	1	0	9	/	T	
E	V	C	.	2	0	2	3	.	3	3	3	4	6	2	6	

Xu	M,	Mei	Y,	Zhang	F,	Zhang	M	(2023)	Genetic	programming	with	lexicase	selection	for	large-scale	dynamic	
flexible	job	shop	scheduling.	IEEE	Trans	Evol	Comput.	https://doi.org/10.1109/TEVC.2023.3244607

Xu	S,	Li	Y,	Li	Q	(2024)	A	deep	reinforcement	learning	method	based	on	a	transformer	model	for	the	flexible	
job	shop	scheduling	problem.	Electronics	13(18):3696

Xu	M,	Mei	Y,	 Zhang	 F,	 Zhang	M	 (2024)	Genetic	 programming	 and	 reinforcement	 learning	 on	 learning	
heuristics	for	dynamic	scheduling:	a	preliminary	comparison.	IEEE	Comput	Intell	Mag	19(2):18–33

Xu	M,	Mei	Y,	Zhang	F,	Zhang	M	(2024)	Niching	genetic	programming	to	learn	actions	for	deep	reinforce-
ment	learning	in	dynamic	flexible	scheduling.	IEEE	Trans	Evol	Comput.		h	t	t	p	s	:	/	/	d	o	i	.	o	r	g	/	1	0	.	1	1	0	9	/	T	E	V	
C	.	2	0	2	4	.	3	3	9	5	6	9	9	

Xu	M,	Mei	Y,	Zhang	F,	Zhang	M	(2022)	Genetic	programming	with	cluster	selection	for	dynamic	flexible	job	
shop	scheduling.	In:	Proceedings	of	the	IEEE	congress	on	evolutionary	computation,	pp	1–8.		h	t	t	p	s	:		/	/	d	o	
i		.	o	r	g	/	1		0	.	1	1		0	9	/	C	E		C	5	5	0	6		5	.	2	0	2	2		.	9	8	7		0	4	3	1

Xu	M,	Mei	Y,	Zhang	F,	Zhang	M	(2022)	Genetic	programming	with	diverse	partner	selection	for	dynamic	
flexible	job	shop	scheduling.	In:	Proceedings	of	the	genetic	and	evolutionary	computation	conference	
companion,	pp	615–618	.	https://doi.org/10.1145/3520304.3528920

Xu	M,	Mei	Y,	Zhang	F,	Zhang	M	(2023)	A	semantic	genetic	programming	approach	 to	evolving	heuris-
tics	for	multi-objective	dynamic	scheduling.	In:	Australasian	joint	conference	on	artificial	intelligence.	
Springer,	pp	403–415

Xu	B,	Tao	L,	Deng	X,	Li	W	(2021)	An	evolved	dispatching	rule	based	scheduling	approach	for	solving	djss	
problem.	In:	Proceedings	of	the	Chinese	control	conference,	pp	6524–6531

Xu	M,	Zhang	F,	Mei	Y,	Zhang	M	(2022)	Genetic	programming	with	multi-case	fitness	for	dynamic	flexible	
job	shop	scheduling.	In:	Proceedings	of	the	IEEE	congress	on	evolutionary	computation,	pp	1–8.		h	t	t	p	s	
:			/		/	d	o		i	.	o	r		g	/		1	0	.		1	1		0	9	/		C	E	C	5	5			0	6	5	.	2			0	2	2	.		9	8	7	0	3	4	0

Yan	Q,	Wang	H,	Wu	F	(2022)	Digital	twin-enabled	dynamic	scheduling	with	preventive	maintenance	using	
a	double-layer	q-learning	algorithm.	Comput	Oper	Res	144:105823

Yan	Q,	Wu	W,	Wang	H	(2022)	Deep	reinforcement	learning	for	distributed	flow	shop	scheduling	with	flexible	
maintenance.	Machines	10(3):210

Yang	S	 (2022)	Using	attention	mechanism	 to	 solve	 job	 shop	 scheduling	problem.	 In:	Proceedings	of	 the	
international	conference	on	consumer	electronics	and	computer	engineering,	pp	59–62

Yang	Y,	Chen	G,	Ma	H,	Hartmann	S,	Zhang	M	(2024)	Dual-tree	genetic	programming	with	adaptive	mutation	
for	dynamic	workflow	scheduling	in	cloud	computing.	IEEE	Trans	Evol	Comput.		h	t	t	p	s	:	/	/	d	o	i	.	o	r	g	/	1	0	.	1	1	
0	9	/	T	E	V	C	.	2	0	2	4	.	3	3	9	2	9	6	8	

Yin	WJ,	Liu	M,	Wu	C	(2003)	Learning	single-machine	scheduling	heuristics	subject	to	machine	breakdowns	
with	genetic	programming.	Proc	IEEE	Congress	Evol	Comput	2:1050–1055

1 3

 160 Page 50 of 53

https://doi.org/10.1109/TNNLS.2023.3306421
https://doi.org/10.1109/TNNLS.2023.3306421
https://doi.org/10.1109/TEVC.2023.3334626
https://doi.org/10.1109/TEVC.2023.3334626
https://doi.org/10.1109/TEVC.2023.3244607
https://doi.org/10.1109/TEVC.2024.3395699
https://doi.org/10.1109/TEVC.2024.3395699
https://doi.org/10.1109/CEC55065.2022.9870431
https://doi.org/10.1109/CEC55065.2022.9870431
https://doi.org/10.1145/3520304.3528920
https://doi.org/10.1109/CEC55065.2022.9870340
https://doi.org/10.1109/CEC55065.2022.9870340
https://doi.org/10.1109/TEVC.2024.3392968
https://doi.org/10.1109/TEVC.2024.3392968

Learn to optimise for job shop scheduling: a survey with comparison…

Yska	D,	Mei	Y,	Zhang	M	(2018)	Feature	construction	in	genetic	programming	hyper-heuristic	for	dynamic	
flexible	job	shop	scheduling.	In:	Proceedings	of	the	genetic	and	evolutionary	computation	conference	
companion,	pp	149–150

Yska	D,	Mei	Y,	Zhang	M	 (2018)	Genetic	programming	hyper-heuristic	with	cooperative	coevolution	 for	
dynamic	flexible	job	shop	scheduling.	In:	Proceedings	of	the	European	conference	on	genetic	program-
ming,	pp	306–321

Yuan	E,	Cheng	S,	Wang	L,	Song	S,	Wu	F	(2023)	Solving	job	shop	scheduling	problems	via	deep	reinforce-
ment	learning.	Appl	Soft	Comput	143:110436

Yuan	E,	Wang	L,	Cheng	S,	Song	S,	Fan	W,	Li	Y	(2024)	Solving	flexible	job	shop	scheduling	problems	via	
deep	reinforcement	learning.	Expert	Syst	Appl	245:123019

Zakaria	Y,	Zakaria	Y,	BahaaElDin	A,	Hadhoud	M	(2019)	Niching-based	 feature	selection	with	multi-tree	
genetic	programming	 for	dynamic	flexible	 job	shop	scheduling.	 In:	Proceedings	of	 the	 international	
joint	conference	on	computational	intelligence,	pp	3–27

Zakaria	Y,	Zakaria	Y,	BahaaElDin	A,	Hadhoud	M	(2021)	Niching-based	 feature	selection	with	multi-tree	
genetic	programming	 for	dynamic	flexible	 job	shop	scheduling.	 In:	Proceedings	of	 the	 international	
joint	conference	on	computational	intelligence,	pp	3–27

Zeiträg	Y,	 Figueira	 JR,	 Horta	 N,	 Neves	 R	 (2022)	 Surrogate-assisted	 automatic	 evolving	 of	 dispatching	
rules	for	multi-objective	dynamic	job	shop	scheduling	using	genetic	programming.	Expert	Syst	Appl	
209:118194

Zeiträg	Y,	Rui	Figueira	J,	Figueira	G	(2024)	A	cooperative	coevolutionary	hyper-heuristic	approach	to	solve	
lot-sizing	and	job	shop	scheduling	problems	using	genetic	programming.	Int	J	Prod	Res,	1–28

Zeng	Y,	Liao	Z,	Dai	Y,	Wang	R,	Li	X,	Yuan	B	(2022)	Hybrid	intelligence	for	dynamic	job-shop	scheduling	
with	deep	reinforcement	learning	and	attention	mechanism.	arXiv	preprint	arXiv:2201.00548

Zhang	R,	Song	S,	Wu	C	(2013)	A	hybrid	artificial	bee	colony	algorithm	for	the	job	shop	scheduling	problem.	
Int	J	Prod	Econ	141(1):167–178

Zhang	F,	Mei	Y,	Nguyen	S,	Zhang	M	(2020)	Evolving	scheduling	heuristics	via	genetic	programming	with	
feature	selection	in	dynamic	flexible	job-shop	scheduling.	IEEE	Trans	Cybern	51(4):1797–1811

Zhang	C,	Song	W,	Cao	Z,	Zhang	J,	Tan	PS,	Chi	X	(2020)	Learning	to	dispatch	for	job	shop	scheduling	via	
deep	reinforcement	learning.	Adv	Neural	Inf	Process	Syst	33:1621–1632

Zhang	F,	Mei	Y,	Nguyen	S,	Zhang	M,	Tan	KC	(2021)	Surrogate-assisted	evolutionary	multitask	genetic	pro-
gramming	for	dynamic	flexible	job	shop	scheduling.	IEEE	Trans	Evol	Comput	25(4):651–665

Zhang	F,	Mei	Y,	Nguyen	S,	Zhang	M	(2021)	Correlation	coefficient	based	recombinative	guidance	for	genetic	
programming	 hyper-heuristics	 in	 dynamic	 flexible	 job	 shop	 scheduling.	 IEEE	 Trans	 Evol	 Comput	
25(3):552–566.	https://doi.org/10.1109/TEVC.2021.3056143

Zhang	F,	Mei	Y,	Nguyen	S,	Zhang	M,	Tan	KC	(2021)	Surrogate-assisted	evolutionary	multitasking	genetic	
programming	 for	 dynamic	 flexible	 job	 shop	 scheduling.	 IEEE	Trans	 Evol	 Comput	 25(4):651–665.	
https://doi.org/10.1109/TEVC.2021.3065707

Zhang	F,	Mei	Y,	Nguyen	S,	Tan	KC,	Zhang	M	 (2021)	Multitask	 genetic	 programming-based	 generative	
hyperheuristics:	a	case	study	in	dynamic	scheduling.	IEEE	Trans	Cybern	52(10):10515–10528

Zhang	C,	Zhou	Y,	Peng	K,	Li	X,	Lian	K,	Zhang	S	(2021)	Dynamic	flexible	job	shop	scheduling	method	based	
on	improved	gene	expression	programming.	Meas	Control	54(7–8):1136–1146

Zhang	 F,	 Mei	 Y,	 Nguyen	 S,	 Zhang	 M	 (2022)	 Multitask	 multiobjective	 genetic	 programming	 for	 auto-
mated	 scheduling	 heuristic	 learning	 in	 dynamic	 flexible	 job-shop	 scheduling.	 IEEE	 Trans	 Cybern	
53(7):4473–4486

Zhang	Y,	Bai	R,	Qu	R,	Tu	C,	Jin	J	(2022)	A	deep	reinforcement	learning	based	hyper-heuristic	for	combinato-
rial	optimisation	with	uncertainties.	Eur	J	Oper	Res	300(2):418–427

Zhang	F,	Mei	Y,	Nguyen	S,	Tan	KC,	Zhang	M	(2022)	Instance	rotation	based	surrogate	in	genetic	program-
ming	with	brood	recombination	for	dynamic	job	shop	scheduling.	IEEE	Trans	Evol	Comput.		h	t	t	p	s	:	/	/	d	o	
i	.	o	r	g	/	1	0	.	1	1	0	9	/	T	E	V	C	.	2	0	2	2	.	3	1	8	0	6	9	3	

Zhang	M,	Lu	Y,	Hu	Y,	Amaitik	N,	Xu	Y	(2022)	Dynamic	scheduling	method	for	job-shop	manufacturing	
systems	by	deep	reinforcement	learning	with	proximal	policy	optimization.	Sustainability	14(9):5177

Zhang	J,	He	Z,	Chan	WH,	Chow	C	(2023)	Deepmag:	deep	reinforcement	learning	with	multi-agent	graphs	
for	flexible	job	shop	scheduling.	Knowl-Based	Syst	259:110083

Zhang	L,	Feng	Y,	Xiao	Q,	Xu	Y,	Li	D,	Yang	D,	Yang	Z	(2023)	Deep	reinforcement	learning	for	dynamic	
flexible	job	shop	scheduling	problem	considering	variable	processing	times.	J	Manuf	Syst	71:257–273

Zhang	F,	Mei	Y,	Nguyen	S,	Tan	KC,	Zhang	M	(2023)	Task	relatedness	based	multitask	genetic	programming	
for	dynamic	flexible	job	shop	scheduling.	IEEE	Trans	Evol	Comput	27(6):1705–1719.		h	t	t	p	s	:	/	/	d	o	i	.	o	r	g	/	
1	0	.	1	1	0	9	/	T	E	V	C	.	2	0	2	2	.	3	1	9	9	7	8	3	

Zhang	C,	Wu	Y,	Ma	Y,	Song	W,	Le	Z,	Cao	Z,	Zhang	J	(2023)	A	review	on	learning	to	solve	combinatorial	
optimisation	problems	in	manufacturing.	IET	Collab	Intell	Manuf	5(1):12072

1 3

Page 51 of 53 160

http://arxiv.org/abs/2201.00548
https://doi.org/10.1109/TEVC.2021.3056143
https://doi.org/10.1109/TEVC.2021.3065707
https://doi.org/10.1109/TEVC.2022.3180693
https://doi.org/10.1109/TEVC.2022.3180693
https://doi.org/10.1109/TEVC.2022.3199783
https://doi.org/10.1109/TEVC.2022.3199783

M. Xu et al.

Zhang	G,	Yan	S,	Song	X,	Zhang	D,	Guo	S	(2024)	Evolutionary	algorithm	incorporating	reinforcement	learn-
ing	for	energy-conscious	flexible	job-shop	scheduling	problem	with	transportation	and	setup	times.	Eng	
Appl	Artif	Intell	133:107974

Zhang	L,	Yan	Y,	Yang	C,	Hu	Y	(2024)	Dynamic	flexible	job-shop	scheduling	by	multi-agent	reinforcement	
learning	with	reward-shaping.	Adv	Eng	Inform	62:102872

Zhang	C,	Cao	Z,	Song	W,	Wu	Y,	Zhang	J	(2024)	Deep	reinforcement	learning	guided	improvement	heuristic	
for	 job	shop	scheduling.	In:	Proceedings	of	 the	 international	conference	on	learning	representations.	
https://openreview.net/forum?id=jsWCmrsHHs

Zhang	J,	Ding	G,	Zou	Y,	Qin	S,	Fu	J	(2019)	Review	of	job	shop	scheduling	research	and	its	new	perspectives	
under	industry	4.0.	J	Intell	Manuf	30(4):1809–1830

Zhang	F,	Mei	Y,	Nguyen	S,	Zhang	M	(2020)	Genetic	programming	with	adaptive	search	based	on	the	fre-
quency	of	features	for	dynamic	flexible	job	shop	scheduling.	In:	Proceedings	of	the	European	confer-
ence	on	evolutionary	computation	in	combinatorial	optimization,	pp	214–230

Zhang	F,	Mei	Y,	Nguyen	S,	Zhang	M	(2020)	Guided	subtree	selection	for	genetic	operators	in	genetic	pro-
gramming	for	dynamic	flexible	job	shop	scheduling.	In:	Proceedings	of	the	European	conference	on	
genetic	programming,	pp	262–278

Zhang	F,	Mei	Y,	Nguyen	S,	Zhang	M	(2021)	Collaborative	multifidelity-based	surrogate	models	for	genetic	
programming	in	dynamic	flexible	job	shop	scheduling.	IEEE	Trans	Cybern

Zhang	F,	Mei	Y,	Nguyen	S,	Zhang	M	 (2022)	Phenotype	based	 surrogate-assisted	multi-objective	genetic	
programming	with	brood	recombination	for	dynamic	flexible	job	shop	scheduling.	In:	Proceedings	of	
the	IEEE	symposium	series	on	computational	intelligence,	pp	1218–1225

Zhang	F,	Mei	Y,	Nguyen	S,	Zhang	M	(2023)	Survey	on	genetic	programming	and	machine	learning	tech-
niques	for	heuristic	design	in	job	shop	scheduling.	IEEE	Trans	Evol	Comput.		h	t	t	p	s	:	/	/	d	o	i	.	o	r	g	/	1	0	.	1	1	0	9	/	
T	E	V	C	.	2	0	2	3	.	3	2	5	5	2	4	6	

Zhang	F,	Mei	Y,	Zhang	M	(2018)	Genetic	programming	with	multi-tree	representation	for	dynamic	flexible	
job	shop	scheduling.	In:	Proceedings	of	the	Australasian	joint	conference	on	artificial	intelligence,	pp	
472–484

Zhang	F,	Mei	Y,	Zhang	M	(2018)	Surrogate-assisted	genetic	programming	for	dynamic	flexible	 job	shop	
scheduling.	In:	Proceedings	of	the	Australasian	joint	conference	on	artificial	intelligence,	pp	766–772

Zhang	F,	Mei	Y,	Zhang	M	(2019)	A	new	representation	in	genetic	programming	for	evolving	dispatching	
rules	for	dynamic	flexible	job	shop	scheduling.	In:	Proceedings	of	the	European	conference	on	evolu-
tionary	computation	in	combinatorial	optimization,	pp	33–49

Zhang	F,	Mei	Y,	Zhang	M	(2019)	A	two-stage	genetic	programming	hyper-heuristic	approach	with	feature	
selection	 for	dynamic	flexible	 job	 shop	 scheduling.	 In:	Proceedings	of	 the	genetic	 and	evolutionary	
computation	conference,	pp	347–355

Zhang	F,	Mei	Y,	Zhang	M	(2019)	Evolving	dispatching	rules	for	multi-objective	dynamic	flexible	job	shop	
scheduling	via	genetic	programming	hyper-heuristics.	In:	Proceedings	of	the	IEEE	congress	on	evolu-
tionary	computation,	pp	1366–1373

Zhang	F,	Mei	Y,	Zhang	M	(2023)	An	investigation	of	terminal	settings	on	multitask	multi-objective	dynamic	
flexible	job	shop	scheduling	with	genetic	programming.	In:	Proceedings	of	the	companion	conference	
on	genetic	and	evolutionary	computation,	pp	259–262

Zhang	F,	Shi	G,	Mei	Y	(2023)	Interpretability-aware	multi-objective	genetic	programming	for	scheduling	
heuristics	learning	in	dynamic	flexible	job	shop	scheduling.	In:	Proceedings	of	the	IEEE	congress	on	
evolutionary	computation

Zhao	L,	Shen	W,	Zhang	C,	Peng	K	(2022)	An	end-to-end	deep	reinforcement	learning	approach	for	job	shop	
scheduling.	In:	Proceedings	of	the	international	conference	on	computer	supported	cooperative	work	
in	design,	pp	841–846

Zhou	B,	Wen	M	(2023)	A	dynamic	material	distribution	scheduling	of	automotive	assembly	line	considering	
material-handling	errors.	Eng	Comput	40(5):1101–1127

Zhou	Y,	Yang	J	(2019)	Automatic	design	of	scheduling	policies	for	dynamic	flexible	job	shop	scheduling	by	
multi-objective	genetic	programming	based	hyper-heuristic.	Procedia	CIRP	79:439–444

Zhou	M,	Chiu	H-S,	Xiong	HH	(1995)	Petri	net	scheduling	of	fms	using	branch	and	bound	method.	Proc	IEEE	
Conf	Ind	Electron	1:211–216

Zhou	Y,	Yang	J,	Zheng	L	(2018)	Hyper-heuristic	coevolution	of	machine	assignment	and	 job	sequencing	
rules	for	multi-objective	dynamic	flexible	job	shop	scheduling.	IEEE	Access	7:68–88

Zhou	Y,	Yang	JJ,	Zheng	LY	(2019)	Multi-agent	based	hyper-heuristics	for	multi-objective	flexible	job	shop	
scheduling:	a	case	study	in	an	aero-engine	blade	manufacturing	plant.	IEEE	Access	7:21147–21176

Zhou	Y,	Jj	Yang,	Huang	Z	(2020)	Automatic	design	of	scheduling	policies	 for	dynamic	flexible	 job	shop	
scheduling	 via	 surrogate-assisted	 cooperative	 co-evolution	 genetic	 programming.	 Int	 J	 Prod	 Res	
58(9):2561–2580

1 3

 160 Page 52 of 53

https://openreview.net/forum?id=jsWCmrsHHs
https://doi.org/10.1109/TEVC.2023.3255246
https://doi.org/10.1109/TEVC.2023.3255246

Learn to optimise for job shop scheduling: a survey with comparison…

Zhu	X,	Wang	W,	Guo	X,	Shi	L	(2020)	A	genetic	programming-based	evolutionary	approach	for	flexible	job	
shop	scheduling	with	multiple	process	plans.	In:	Proceedings	of	the	IEEE	international	conference	on	
automation	science	and	engineering,	pp	49–54

Zojaji	Z,	Kazemi	A	(2022)	Adaptive	reinforcement-based	genetic	algorithm	for	combinatorial	optimization.	
J	Comput	Secur	9(1):71–84

Publisher’s Note	 Springer	Nature	remains	neutral	with	regard	to	jurisdictional	claims	in	published	maps	and	
institutional	affiliations.

1 3

Page 53 of 53 160

	﻿Learn to optimise for job shop scheduling: a survey with comparison between genetic programming and reinforcement learning
	﻿Abstract
	﻿1﻿ ﻿Introduction
	﻿2﻿ ﻿Problems and methods
	﻿2.1﻿ ﻿Job shop scheduling
	﻿2.1.1﻿ ﻿Classical static JSS
	﻿2.1.2﻿ ﻿Dynamic JSS
	﻿2.1.3﻿ ﻿Flexible JSS
	﻿2.1.4﻿ ﻿Dynamic flexible JSS

	﻿2.2﻿ ﻿Methods for job shop scheduling
	﻿2.2.1﻿ ﻿Exact approaches
	﻿2.2.2﻿ ﻿Meta-heuristic approaches
	﻿2.2.3﻿ ﻿Scheduling heuristics
	﻿2.2.4﻿ ﻿Hyper-heuristic approaches

	﻿3﻿ ﻿Learning to optimise for JSS
	﻿3.1﻿ ﻿Representation
	﻿3.1.1﻿ ﻿Representation of GP
	﻿3.1.2﻿ ﻿Representation of RL

	﻿3.2﻿ ﻿Evaluation
	﻿3.2.1﻿ ﻿Problem instances
	﻿3.2.2﻿ ﻿Evaluation of GP
	﻿3.2.3﻿ ﻿Evaluation of RL
	﻿3.2.4﻿ ﻿Number of objectives

	﻿3.3﻿ ﻿Search mechanisms
	﻿3.3.1﻿ ﻿Search mechanism of GP
	﻿3.3.2﻿ ﻿Search mechanism of RL

	﻿4﻿ ﻿GP and RL for different job shop scheduling problems
	﻿4.1﻿ ﻿Static scheduling problems
	﻿4.1.1﻿ ﻿Static JSS
	﻿4.1.2﻿ ﻿Static flexible JSS

	﻿4.2﻿ ﻿Dynamic scheduling problems
	﻿4.2.1﻿ ﻿Dynamic JSS
	﻿4.2.2﻿ ﻿Dynamic flexible JSS

	﻿﻿4.3﻿ ﻿Quantitative comparison of GP and RL
	﻿5﻿ ﻿Pros and cons of GP and RL
	﻿5.1﻿ ﻿Scalability
	﻿5.2﻿ ﻿Generalisation ability
	﻿5.3﻿ ﻿Considered scheduling information
	﻿5.4﻿ ﻿Search mechanisms
	﻿5.5﻿ ﻿Training time
	﻿5.6﻿ ﻿Interpretability
	﻿5.7﻿ ﻿Degree of automated design

	﻿6﻿ ﻿Issues and future directions
	﻿6.1﻿ ﻿Training time reduction
	﻿6.2﻿ ﻿Interpretability
	﻿6.3﻿ ﻿Effective utilisation of multiple scheduling heuristics/policies
	﻿6.4﻿ ﻿Advanced multi/many-objective optimisation
	﻿6.5﻿ ﻿Hybridisation of GP and RL

	﻿7﻿ ﻿Conclusions
	﻿References

