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Abstract. The tugboat scheduling task aims to efficiently allocate tug-
boat resources to assist ships entering and leaving the port in maritime
transportation. Many existing scheduling methods focus on directly find-
ing scheduling solutions. However, they are not suitable to deal with the
large-scale and dynamic characteristics of maritime transportation sys-
tems due to long scheduling time. Therefore, this paper focuses on find-
ing scheduling rules for large-scale dynamic tugboat scheduling problem
(DTug-sp), including two core tasks: allocating ships to tugboats (i.e.,
the allocation rule) and determining the execution order of ships assigned
to a particular tugboat (i.e., the order rule). To solve this problem, we
propose a multi-tree genetic programming method for DTug-sp, termed
as MTGP-DTsp, which uses a dual-tree encoding strategy to represent
the ship allocation rule and the tugboat execution order rule, respec-
tively. Additionally, a new crossover operator is introduced to enhance
the effectiveness of the generated scheduling rules. Experimental results
demonstrate that MTGP-DTsp can effectively evolve scheduling rules
suitable for DTug-sp, achieving the goal of minimizing tugboat assist-
ing time and detecting the minimum weighted average tugboat assisting
time, separately.

Keywords: Dynamic tugboat scheduling problem · Dual-tree
encoding strategy · Multi-tree genetic programming

1 Introduction

Throughput is a key criterion for measuring the scale and efficiency of port
operations, and it is influenced by the scheduling of port terminal resources
such as cranes, berths, yards and tugboats [1–6]. The rationalization of port
resources is an important part in improving the effectiveness of port operations.
At present, the researchers have undertaken studies of cranes [1], berths [2,5],
and yards scheduling [4]. As the “first service station” for ships entering the
port and the “last link” for ships leaving the port, tugboat scheduling directly
affects the efficiency of port operations such as the total number of ships han-
dled by the port [6]. Early studies have been made in the tugboat scheduling
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problem (Tug-sp) using traditional scheduling algorithms such as integer pro-
gramming, yet this approach has proven inefficient for handling Tug-sp on a
large scale problems [7,8]. Additionally, most existing Tug-sp studies focus on
static scheduling problems, but dynamic factors such as uncertain ship arrival
times can affect tugboat operations [8–10]. Moreover, most algorithms used to
solve Tug-sp problems require a large amount of computational resources, and
the solutions generated are typically applicable to only a single instance, which
limits their flexibility and effectiveness in varying scenarios [8]. As the problem
scale increases, manually designed rules e.g., first come first served and shortest
processing time, can generate solutions quickly, making it easier to handle large-
scale problems and dynamic changes. However, they have limited effectiveness
for tugboat scheduling.

Genetic programming (GP) is an effective approach for scheduling problems
by evolving the scheduling rules [11]. GP has been widely used to learn rules for
scheduling problems such as the dynamic flexible job shop scheduling problem
[12–16]. A multi-tree GP (MTGP) was proposed to solve the dynamic flexible
job shop scheduling problem [15]. DTug-sp is similar to the dynamic flexible job
shop scheduling problem which evolves two rules for allocating jobs to machines
and executing jobs on machines. Similarly, solving DTug-sp involves determining
how to allocate ships to tugboats (i.e., allocation rule) and the order of execut-
ing ships on a tugboat (i.e., order rule). In this work, we construct DTug-sp
as a coordinated decision-making process with two key rules. A dual-tree solu-
tion encoding (DTSE) strategy is employed for MTGP-DTsp to represent both
the ship allocation rule and the tugboat execution order rule. Additionally, a
crossover operator is borrowed for the DTSE strategy to promote the effective-
ness of the generation of offspring in GP for the next generation.

2 Background

2.1 Tugboat Scheduling Problems

When the ship reaches the port, it normally waits at the anchorage. If a berth
is available for loading and unloading operations, the ship needs to be towed
by a tugboat with appropriate horsepower, facilitating the movement of ships
entering and leaving the port, as illustrated in Fig. 1. There are three types of
tugboat scheduling operations for ships in the channel at the port: 1) Berthing
which involves assisting the ship in reaching the berth; 2) Shifting which entails
moving the ship from one berth to another; and 3) Unberthing which assists
the ship in departing from the berth.

Currently, the tugboat scheduling problem can be classified into two cate-
gories according to the available information, i.e., either static or dynamic prob-
lem. Static Tug-sp problem generally assumes that all information is known in
advance before making [7]. Dynamic Tug-sp problem (i.e., DTug-sp) considers
some dynamic events which is closer to real-world applications. However, this
is rarely studied. Specifically, the ship dynamic arrivals are the most common
uncertain events in the real world. As time progresses, ships dynamically request
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Fig. 1. An example of tugboat operations.

services, and subsequent tugboat scheduling plans need to be arranged in real-
time based on ship demand. There are only a few studies focusing on DTug-sp to
minimize operation costs [7,17,18]. Some methods employ heuristic algorithms
to address DTug-sp. For large-scale uncertain tugboat scheduling, Li et al. [19]
considered the dynamic scheduling of ship multi-tugboat berthing bases and pro-
posed a grey wolf optimization algorithm to minimize energy consumption and
total delay costs. Sun et al. [17] proposed an improved genetic algorithm based
on reverse operations to solve the tugboat optimization problem, accounting for
the uncertainty in cross-regional operations of tugboats at multiple terminals.
Wang et al. [20] conducted tugboat scheduling on ships based on manual rules.
These methods are limited by assumptions specific to certain operational condi-
tions, which may not generalize to multiple tugboat scheduling scenarios. Addi-
tionally, relying on heuristic methods may result in suboptimal solutions under
high uncertainty, and manual scheduling lacks scalability and adaptability for
large-scale operations. This paper proposes to use GP approach to overcome
these limitations, enhancing adaptability and optimizing scheduling rules across
diverse scenarios.

2.2 GP for Scheduling Problems

GP generates multiple heuristic search schemes which uses low-level heuristics
(simple rules) to generate high-level heuristics (comprehensive rules) [13]. It has
been applied in various scheduling problems [14,21,22]. Many studies have shown
that the production scheduling heuristic learned by GP is superior to the heuris-
tic designed manually in literature [15,23]. However, current research has not yet
considered applying GP to solve DTug-sp problems. At present, the scheduling
of tugboats in ports is mostly based on the manually designed rules, such as first
come first served and shortest processing time. These rules are relatively lim-
ited to fully reflect the current resource occupancy status. Therefore, we design
MTGP-DTsp to search for more effective rules for tugboat scheduling.
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Table 1. Model parameter definition.

Symbols Definitions

S The set of arrived ships, S = {S1, S2, . . . , Sn}
B The set of available tugboats, B = {B1, B2, . . . , Bm}
i The number of the operations of a ship, i = {1, 2}
Sj The water displacement of the j-th ship (ton)

Cs Ship resistance coefficient

Bp
l The horsepower value of the l-th tugboat

K Horsepower conversion coefficient

T0 Correction coefficient of time

oji The operational tasks of ship j in operation i

tprooji The total work time of the task oji

tstroji
The operation oji starting time of ship j

wj Priority of ship j

N A sufficiently large constant

3 The Proposed MTGP-DTsp Algorithm for DTug-sp

3.1 Problem Description

If more than 100 ships arrive per day, it will be considered as a large-scale
problem [24]. We design three simulation scenarios for the ship arrivals, with
the number of ships set at 120, 150, and 200, respectively. The notations and
decision variables are provided in Table 1. The assistance of tugboats is required
for ships to enter and leave port berths, and the probability of shifting from one
berth to another is low. Therefore, in the construction of this model, we only
consider berthing and berthing operations for the tugboat assistance required by
each ship at the port. Therefore, the operation process of each ship is abstracted
as two-stage operations, and the set of operations for all ships arriving at the
port is set as {O11, O12, O21, O22, · · · On1, On2}, where n is the number of ships
need to be handled. Unberthing operations only occur after the completion of
berthing operations. Two types of decisions need to be handled in real time.
Figure 2 shows an example of the decision process of DTug-sp.

– Decision 1 (D1): Allocating ship’s operations to the queue of tugboats. The
first operation of a ship, or the second operation of a ship whose precedent
operation (first operation) has been executed are the ready operations to be
allocated to tugboat. The tugboat with the highest priority value will be
selected to execute an operation of a ship.

– Decision 2 (D2): Scheduling the execution order of operations on a specific
tugboat. Specifically, the operation with the highest priority value will be
selected to be executed next by an idle tugboat.
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Fig. 2. An example of the decision process of DTug-sp.

In DTug-sp, the terminal has a certain number of tugboats denoted by
B = {B1, B2, . . . , Bk}, each with different horsepower values P , and these
tugboats belong to different bases C = {C1, C2, . . . , Cw}. Ships, denoted by
S = {S1, S2, . . . , Sn}, dynamically arrive at the port. Each ship Sj has two
important features: an arrival time taj and a due time tdj . Each operation Oj,i

is processable only by a subset (kj,i) of tugboats. The assisting time tpro
j,i,m of

tugboat operation Oj,i depends on the selected tugboat Bm ∈ B. Once the
unberthing operation is completed, all operations for that ship are considered
complete. The main assumptions of DTug-sp are shown as follows:

1) For ship operations, once a tugboat operation is processed, it will be com-
pleted successfully without encountering obstacles.

2) The tugboat operation time varies for the same type of ship depending on
the horsepower values of the tugboat. Once a specific tugboat is selected, the
operation time of an operation of the ship is confirmed.

Different ships require different types of tugboats, and the scheduling time
for berthing operations can be shortened as the horsepower value of the chosen
tugboat increases. Table 2 shows the types of tugboats with different horsepower
values, and Table 3 shows the available tugboat types for different ships.

3.2 Objective Functions and Constraints

This paper aims to minimize the total tugboat assisting time, and minimize the
mean weighted tugboat assisting time for ships. The objective formulation is as
follows:
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Table 2. Types of tugboats.

Tugboat type Bollard pull force

A 1200 tonnes

B 2600 tonnes

C 3200 tonnes

D 3400 tonnes

E 4000 tonnes

F 5000 tonnes

Table 3. The available tugboat types for different ships.

Index Types of ships Number tugboats required Type of tugboats required

1 Up to 10000 tons 1 tugboat A,B,C,D,E,F

2 10000 to 18000 tons 1 tugboat B,C,D,E,F

3 18100 to 29900 tons 1 tugboat C,D,E,F

4 30000 to 35000 tons 1 tugboat D,E,F

5 35000 above tons 1 tugboat E,F

FTotal−time =
∑n

j=1
tcom
j − tstr

j (1)

FMean−weighted−time =

∑n
j=1 wj(tcom

j − tstr
j )

n
(2)

where tcom
j is the completion time of ship Sj unberthing work, tstr

j is the start
time of ship Sj , and wj is the priority level of ship work weight. Different ships
have different priority levels in port companies, represented by different weight
values.

The formula for calculating tugboat work time based on ship tonnage and
tugboat horsepower is as follows:

tpro
oji

=
Cs × Sj

ω

K × Bl
p × T0 (3)

where Cs is the ship resistance coefficient which is 0.04, K is the horsepower
conversion coefficient which is 0.3, and the standard time coefficient T0 is set to
1 [25]. According to the Eq. (3), as the horsepower value of the selected tugboat
increases, the scheduling time for tugboats to assist in berthing can be shortened.

The model is subject to the following constraints:

tstr
j1,i1

≤ tstr
j2,i2

− tpro
j1,i1,m + N · (1 − xj1,i1,j2,i2,m),

∀j1, j2 = 1, · · · , n;∀i1 = 1, · · · , qj1;
∀i2 = 1, · · · , qj2;∀m = 1, · · · , k

(4)

tstr
j,1 ≥ taj ,∀j = 1, · · · , n (5)



Multi-tree Genetic Programming for Dynamic Tugboat Scheduling 201

tcom
j,i = tstr

j,i + tpro
j,i,m · yj,i,m,∀j = 1, · · · , n;

∀i = 1, · · · , qj ;∀m = 1, · · · , k
(6)

tstr
j,i+1 ≥ tcom

j,i ,∀j = 1, · · · , n;∀i = 1, · · · , qj − 1 (7)
∑kj,i

m=1
yj,i,m = 1,∀j = 1, · · · , n;∀i = 1, · · · , qj (8)

xj1,i1,j2,i2,m =

{
1, if Oj1,i1 is processed by Bm before Oj2,i2 ,

0, otherwise.
(9)

yj,i,m =

{
1, if Oj,i is assigned to Bm,

0, otherwise.
(10)

Constraint (4) specifies that tugboats can only provide assistance to one
ship at a time, with N representing a sufficiently large constant. Constraint (5)
denotes that the assisting of each ship’s first operation can commence only
after the available tugboat is released. Constraint (6) establishes the relationship
between the assisting start time tstart

j,i and the assisting completion time tcom
j,i for

the operation Oj,i. Constraint (7) states that the operation Oj,i+1 must wait for
the completion of its preceding operation Oj,i before it can be processed on the
assigned tugboat. Constraint (8) indicates that an operation can be processed
only on one of its candidate tugboats. Constraint (9) ensures that the unberthing
operation is completed before the berthing operation. Constraint (10) indicates
whether there is a tugboat serving a ship.

3.3 Framework

MTGP-DTsp aims to learn scheduling heuristics to assist the decision-making
process of tugboat scheduling. This section gives a detailed description of MTGP-
DTsp, including the solution representations, the fitness function, and the process
of initialization and evolution. MTGP-DTsp is to automatically generate the
following two rules for decision-making:

Allocation Rule (Rule 1 for D1): Select a tugboat for the berthing of ship
operation.

Order Rule (Rule 2 for D2): Select the next ship operation to be executed
by a tugboat from its queue.

Figure 3 shows the flowchart of MTGP-DTsp to learn heuristics rules for solv-
ing the DTug-sp. The algorithm framework for the initialization and evolution
processes of MTGP-DTsp refers to work [16]. A population is initialized, where
the two trees of each individual are constructed by ramp half-and-half. The evo-
lutionary algorithm of MTGP consists of four parts: population initialization,
individual evaluation, parental selection, and evolution. In MTGP-DTsp, each
individual with two trees represents the heuristic rules. For individual represen-
tation, MTGP-DTsp introduces a DTSE strategy to represent the two rules of
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Fig. 3. The flowchart of MTGP-DTsp approach.

Fig. 4. An example of the crossover operator for generating offspring.

each individual. Specifically, DTSE strategy allows each individual composed of
two trees, each of which corresponds to one rule. The first tree is used to deter-
mine the allocated tugboat, while the second tree is used to determine the order
of tasks. The fitness of an individual depends on the cooperation of these two
rules.

There are three important processes in the evolutionary process: reproduc-
tion, crossover, and mutation. To keep good individuals into the next generation,
we use reproduction to copy promising individuals into the next generation. We
perform crossover operations on both trees of the parents, resulting in two new
individuals (each individual contains two trees with two different rules). The
crossover operator is illustrated in Fig. 4. For Parent 1 and Parent 2, one same
type of trees performs the crossover operator, and the other type of trees is
swapped. For example, the subtrees (dashed circles) of Tree 1 in Parent 1 and
Parent 2 are replaced with each other to generate Tree 1, and the other tree,
tree 2 for both parents is swapped to generate the new offspring 1 and offspring
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Table 4. The terminal set of MTGP-DTsp.

No. Notation Description

1 TWT The waiting time of a ship operation
2 NRS The number of operations remaining in ready work
3 W Weight of a ship
4 NET The median assisting time for the next tugboat operation
5 WKR The median amount of work remaining for ships
6 OIQ The number of ship operations in the queue
7 CTQ The current total required assisting time of the remaining ship

operations in the queue of a tugboat
8 RWT The waiting time for tugboat in ready state
9 SET The assisting time of a ship on a specified tugboat
10 TIS Time in system

2. Meanwhile, we use mutation operator to increase the diversity of offspring
populations, i.e., a tree is randomly selected from a parent individual, and a new
subtree with the same decision type is generated to replace the selected subtree.

4 Experimental Studies

4.1 Parameter Setting

To verify the effectiveness of the rules, the simulation is configured with the
number of arriving ships set to 120, 150, and 200 for different scenarios. The
weights for 20%, 60%, and 20% ships are set to 1, 2, and 4, respectively. Based
on the most common specifications of tugboat horsepower and ship tonnage at
the terminal [8], the model includes six of tugboats with horsepower values of
1200 HP, 2600 HP, 3200 HP, 4000 HP, 5000 HP, and over 5500 HP, as well as five
ship tonnage categories of 30,000 tons, 50,000 tons, 80,000 tons, 120,000 tons,
and 150,000 tons. Different types of tugboats can serve different types of ships.
The utilization levels are set as 0.8, 0.85, 0.9, and 0.95 in different scenarios.
The ship uncertain arrival time simulates according to a Poisson process with
a rate of λ. The utilization level (p) is an important indicator of the busy level
of tugboats. It is expressed as p = λ ∗ μ ∗ PM , where μ is the average operation
time of the tugboat. PM is the probability that a ship is assigned to a tugboat.
Each ship has two operations, then the PM is 2/10.

The GP requires terminal nodes and functional nodes to construct a tree
representing individuals. The terminal set for MTGP-DTsp is shown in Table 4.
The function set of the function nodes is generally set as {+,−, ∗, /,Max,Min},
the “/” operator is a protected division that returns 1 when it is divided by 0.
The other parameters of MTGP-DTsp are shown in Table 5.
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4.2 Design of Comparisons

To verify the effectiveness of the rules obtained by the proposed MTGP-DTsp
algorithm, we compare the rule obtained by MTGP-DTsp with its two variations
and the commonly used manual rules [16] as shown in Table 6. Firstly, to ver-
ify the effectiveness in optimizing the Total-time objective, DTsp-L (using the
Least Work in Queue (LWQ) rule) is for only learning the allocation decision and
DTsp-S (using the Shortest Processing Time (SPT) rule) is for only learning the
order decision, named as DTsp-L, DTsp-S, respectively. In addition, L&S uses
the manually rules, i.e., LWQ rule and SPT rule simultaneously. Secondly, to
verify the effectiveness in optimizing the Mean-weighted-time objective, DTsp-E
(using the early preparation time (ERT) rule) is for only learning the alloca-
tion decision and DTsp-F (using the first come first served (FCFS) rule) is for
only learning the order decision the order decision, named as DTsp-E, DTsp-F,
respectively. In addition, E&F uses the manually rules, i.e., ERT rule and FCFS
rule simultaneously.

Table 5. Other parameter settings of MTGP-DTsp.

Parameter Value

population size 200

Maximal depth 8

Crossover/Mutation/Reproduction 80%/15%/5%

Parent selection Tournament selection with size 5

Elitism 2 best individuals

Number of generations 51

Table 6. Comparison of MTGP-DTsp variants and manually designed rules.

Objective Algorithm Name Allocation rule Order rule

Total-time MTGP-DTsp GP-Rule GP-Rule
DTsp-L LWQ GP-Rule
DTsp-S GP-Rule SPT
L&S LWQ SPT

Mean-weighted-time MTGP-DTsp GP-Rule GP-Rule
DTsp-E ERT GP-Rule
DTsp-F GP-Rule FCFS
E&F ERT FCFS
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4.3 Results and Discussions

The Quality of Learned Scheduling Rules: In this experiment, 12 scenarios
are set for each objective (using 4 different utilization levels for three types of
ship arrival test samples) to test the performance of MTGP-DTsp. The perfor-
mance of the proposed algorithm is evaluated on the basis of the results of 30
independent runs. We compare MTGP-DTsp with the manual rules commonly
used for the investigated problems. The significance level of the Wilcoxon test is
0.05, and the Wilcoxon rank sum test with Bonferroni correction is conducted
between the proposed algorithm and other algorithms. In the following results,
“↑” and “↓” indicate that the corresponding result is significantly better than, or
worse than its counterpart, respectively.

Table 7 shows the mean and standard deviation of Total-time among four
methods in 12 test scenarios over 30 runs. The smaller number represents the
better performance. The bold numbers represent the best overall performance.
The results show that MTGP-DTsp has a significant advantage over L&S, DTsp-
S, and DTsp-L. MTGP-DTsp consistently achieves lower total times across all
12 scenarios, defined by different ship arrival rates and tugboat utilization rates.
Compared to L&S, MTGP-DTsp shows a significant improvement, nearly halving
the total time in all scenarios. Compared to DTsp-S, MTGP-DTsp is competi-
tive, with significantly better performance in all scenarios. MTGP-DTsp shows a
substantial advantage compared with DTsp-L, achieving much lower total times.
Compared with L&S, DTsp-S and DTsp-L performs significantly better in all sce-
narios, which indicates that learning either of the two rules with GP can improve
the performance. However, when comparing with DTsp-L, DTsp-S performs sig-
nificantly better, which indicates that learning allocation rule with GP has a
bigger effect on the performance improvement than learning order rule with GP.

Table 8 presents the mean and standard deviation of Mean-weighted-time
for different scheduling methods (MTGP-DTsp, E&F, DTsp-E, and DTsp-F)
across 12 scenarios defined by varying ship arrival rates (120, 150, and 200) and

Table 7. Mean and standard deviation of the Total-time for the comparison methods
in 12 test scenarios over 30 runs.

Scenarios L&S DTsp-S DTsp-L MTGP-DTsp

120(0.80) 861.50(0) 454.49(3.83E+00)(↑) 857.50(1.64E+01)(↑)(↓) 434.88(4.12E+00)(↑)(↑)(↑)
120(0.85) 866.62(0) 455.59(1.08E+01)(↑) 858.86(3.91E+00)(↑)(↓) 435.63(1.59E+01)(↑)(↑)(↑)
120(0.90) 868.90(0) 448.16(2.85E+01)(↑) 861.65(1.08E+01)(↑)(↓) 437.83(2.58E+01)(↑)(↑)(↑)
120(0.95) 870.99(0) 465.60(8.95E+00)(↑) 868.02(3.03E+01)(↑)(↓) 435.47(5.78E+00)(↑)(↑)(↑)
150(0.80) 1066.23(0) 578.06(1.71E+01)(↑) 1035.83(1.90E+01)(↑)(↓) 557.58(1.91E+01)(↑)(↑)(↑)
150(0.85) 1072.08(0) 586.68(7.36E+00)(↑) 1042.91(7.41E+00)(↑)(↓) 557.06(1.09E+01)(↑)(↑)(↑)
150(0.90) 1075.00(0) 589.57(2.36E+01)(↑) 1059.57(4.87E+01)(↑)(↓) 559.96(3.85E+01)(↑)(↑)(↑)
150(0.95) 1077.67(0) 587.67(1.47E+00)(↑) 1059.06(1.08E+02)(↑)(↓) 558.42(3.13E+00)(↑)(↑)(↑)
200(0.80) 1452.99(0) 807.82(6.91E+00)(↑) 1422.88(1.80E+01)(↑)(↓) 788.65(1.55E+01)(↑)(↑)(↑)
200(0.85) 1456.14(0) 809.31(2.25E+01)(↑) 1433.87(1.18E+01)(↑)(↓) 788.97(1.73E+01)(↑)(↑)(↑)
200(0.90) 1459.62(0) 802.30(1.19E+02)(↑) 1435.18(6.91E+01)(↑)(↓) 789.54(2.70E+00)(↑)(↑)(↑)
200(0.95) 1463.03(0) 800.42(4.75E+00)(↑) 1438.59(8.84E+01)(↑)(↓) 789.91(2.87E+00)(↑)(↑)(↑)



206 X. Xu et al.

Table 8. Mean and standard deviation of the Mean-weighted-time of the compar-
ison methods in 12 test scenarios over 30 runs.

Scenarios E&F DTsp-E DTsp-F MTGP-DTsp

120(0.80) 16.07(0) 9.29(6.82E−04)(↑) 12.19(9.29E−03)(↑)(↓) 8.29(4.80E−04)(↑)(↑)(↑)
120(0.85) 16.21(0) 9.33(1.27E−02)(↑) 12.29(1.93E−03)(↑)(↓) 8.30(2.62E−03)(↑)(↑)(↑)
120(0.90) 16.26(0) 9.33(6.37E−03)(↑) 12.44(2.82E−02)(↑)(↓) 8.33(5.99E−03)(↑)(↑)(↑)
120(0.95) 16.29(0) 9.28(3.39E−04)(↑) 12.46(1.82E−03)(↑)(↓) 8.30(7.72E−03)(↑)(↑)(↑)
150(0.80) 15.56(0) 9.13(1.07E−03)(↑) 11.76(1.31E−04)(↑)(↓) 8.14(3.98E−03)(↑)(↑)(↑)
150(0.85) 15.69(0) 9.13(7.58E−04)(↑) 11.92(1.35E−04)(↑)(↓) 8.14(2.48E−03)(↑)(↑)(↑)
150(0.90) 15.73(0) 9.16(5.75E−03)(↑) 12.02(1.34E−04)(↑)(↓) 8.17(4.88E−03)(↑)(↑)(↑)
150(0.95) 15.77(0) 9.14(3.39E−04)(↑) 12.11(6.78E−05)(↑)(↓) 8.15(6.52E−04)(↑)(↑)(↑)
200(0.80) 15.78(0) 9.60(8.08E−04)(↑) 12.56(2.13E−03)(↑)(↓) 8.59(5.49E−04)(↑)(↑)(↑)
200(0.85) 15.82(0) 9.60(1.46E−04)(↑) 12.73(9.87E−04)(↑)(↓) 8.60(7.07E−05)(↑)(↑)(↑)
200(0.90) 15.85(0) 9.61(1.93E−04)(↑) 12.83(9.72E−04)(↑)(↓) 8.62(1.78E−03)(↑)(↑)(↑)
200(0.95) 15.90(0) 9.61(1.05E−04)(↑) 12.87(2.34E−03)(↑)(↓) 8.61(1.41E−04)(↑)(↑)(↑)

tugboat utilization rates (0.80, 0.85, 0.90, and 0.95). MTGP-DTsp consistently
achieves the lowest mean weighted time, demonstrating significant improvements
over the other methods across all scenarios. This superiority is particularly evi-
dent as both arrival and utilization rates increase, where MTGP-DTsp main-
tains stable mean weighted time with low standard deviations, indicating robust
performance. For the comparison between E&F and DTsp-E, DTsp-E performs
better, with lower mean weighted time and similar or smaller standard devia-
tions in most cases. When comparing DTsp-E and DTsp-F, DTsp-E typically
performs better, achieving significantly lower mean weighted times in most sce-
narios. MTGP-DTsp stands out as the most effective scheduling method, opti-
mizing mean weighted time for tugboat scheduling and demonstrating consistent
effectiveness in different scenarios. E&F, on the other hand, has the worst perfor-
mance. Similar to the results of optimizing Total-time, we also find that learning
either rule with GP can help improve the scheduling performance, however, for
optimizing Mean-weighted-time, learning the order rule has a bigger effect on
the performance improvement.

In summary, both tables highlight the superior efficiency of the MTGP-DTsp
method, which consistently outperforms its counterparts in various scenarios.
Its ability to achieve lower total time and average weighted time prevails its
effectiveness as the preferred scheduling method in tugboat operations.

Curves of MTGP-DTsp: To explore the quality of learned rules along with
generations, we select a test scenario with 120 ship arrivals and tugboat level
utilization rate of 0.95 for comparison among GP related algorithms. From the
curves as shown in Fig. 5, we can see that MTGP-DTsp demonstrates better con-
vergence of learning promising rules and performs better than compared algo-
rithms during the whole evolutionary process. We find that there is a difference
in optimizing different objectives when learning only D2 decision with a fixed D1
decision compared to learning rules for D1 with fixed D2 learning. For optimizing
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Fig. 5. The average curves of a test dataset with 120 ships and the utilization rate of
0.90 according to 30 independent runs.

Fig. 6. An example of expression trees generated by MTGP with 120 ships at a hori-
zontal utilization rate of 0.90.

Total-time, training rules for D1 can achieve better solutions, while for optimiz-
ing Mean-weighted-time, training rules for D2 can achieve better solutions. The
reason might be that D1 and D2 decision-making stage is a key that affects
DTug-sp with objective Total-time and Mean-weighted-time, respectively. This
is consistent with our findings as shown in Table 7 and 8.

Insights of the Learned Scheduling Rules: To have further understanding
of the behavior of the scheduling heuristics evolved by the proposed method,
an evolved scheduling heuristic is selected to be analysed. Figure 6 shows two
rules from the selected scheduling heuristic evolved by MTGP-DTsp in scenario
(120, 0.90) for optimizing the objective of Total-time. In Fig. 6(a), the allocation
rule combines nine terminals (W, CTQ, TIS, OIQ, WKR, TWT, NRS, NET
and RWT) with W and NRS being the most frequently used features, indicating
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a focus on weights of ships and the number of operations remaining for jobs.
Figure 6(b) shows the order rule, which includes six terminals (SET, RWT, OIQ,
CTQ, W, and WKR), and this order rule primarily relies on the assisting time of
a ship operation on a specified tugboat (SET) and the current total time of the
remaining ship operations in the tugboat queue (CTQ). Analysis reveals distinct
priorities at each scheduling stage: W and NRS are more crucial in stage D1,
while SET and CTQ are prioritized in stage D2.

5 Conclusions

This paper aims to use MTGP-DTsp to generate effective scheduling rules for
DTug-sp, with the objective of exceeding the effectiveness of manually designed
scheduling rules. We propose a modular framework that integrates GP to opti-
mize DTug-sp. Specifically, this framework addresses the limitations of con-
ventional mathematical models and heuristic algorithms, which are often time-
consuming and energy-intensive when handling large-scale scheduling tasks. By
employing GP, our approach is able to automatically learn and develop robust
scheduling rules that adapt to complex and dynamic scenarios, thereby reducing
computational overhead and improving scalability. Experimental results prove
that GP can not only learn more effective rules but also generate solutions that
consistently outperform manual scheduling in terms of operational effectiveness.
This advancement highlights GP’s potential as a powerful tool for automat-
ing rule generation in complex scheduling environments, ultimately enhancing
decision-making in real-world port scheduling.

In the future, we plan to apply MTGP-DTsp to solve multi-objective DTug-
sp related to environmental sustainability, energy consumption, and company
operational efficiency. It is possible that many features will have varying impor-
tance or relevance for DTug-sp in a multi-objective context. Therefore, we aim
to explore GP through feature selection to identify more promising features for
scheduling tasks.
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