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Abstract—Alzheimer’s disease (AD) is a progressive neurolog-
ical disorder and a major contributor to dementia cases across
the world. Timely and accurate diagnosis is crucial for effective
clinical management and therapeutic intervention. This paper
presents a genetic programming (GP) method with a multi-
tree representation designed to effectively integrate multimodal
neuroimaging data while preserving spatial information for AD
classification. Unlike existing GP approaches that focus on single-
modality data, our GP approach directly uses the images from
multiple imaging sources as inputs into the evolutionary process.
A new GP representation is designed to handle multimodal data
effectively, enabling feature extraction and classification. Exper-
iments on the commonly used public database of Alzheimer’s
disease neuroimaging initiative (ADNI) show that the proposed
method performs effectively in diagnosing AD. These findings
suggest that multi-tree GP has the potential to serve as a powerful
and interpretable tool for neuroimaging-based AD diagnosis,
offering a promising approach to improve AD detection and
clinical decision-making.

Index Terms—Genetic programming, image classification, neu-
roimaging, multimodal classification, medical diagnosis

I. INTRODUCTION

Alzheimer’s disease (AD) is one of the most common
progressive neurodegenerative disorders, gradually impairing
cognitive functions and ultimately leading to severe dementia
and death. In 2006, the worldwide number of Alzheimer’s
disease cases was estimated at 26.6 million, and this figure is
expected to reach 106.8 million by 2050 due to the growing
aging population [1]. Thus, accurate early detection of AD is
crucial for improving patient outcomes through timely clinical
intervention and effective monitoring of disease progression.
However, AD presents a prolonged asymptomatic preclinical
phase, during which individuals who appear cognitively nor-
mal may still have the disease [2]. This complexity makes the
diagnosis of AD a challenging task. Despite the difficulties,
findings from neuroimaging studies have provided valuable
insights, leading to pathological diagnoses that identify certain
brain features as highly indicative of AD, with moderate to
severe cortical atrophy often observed [3].

Neuroimaging techniques, including magnetic resonance
imaging (MRI) and positron emission tomography (PET)
[4], are commonly used for evaluating and diagnosing AD,
each offering unique advantages but with limitations. MRI
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is commonly used due to its high resolution, which allows
for a clear display of soft tissues in the brain, like the
subtle structures and abnormalities. However, it cannot provide
functional information related to metabolic activity. On the
other hand, PET is an essential imaging modality that provides
valuable insights into the metabolic processes associated with
AD. Despite its ability to capture functional changes, PET
suffers from lower resolution compared to MRI, which can
limit the precision of details. In general, the MRI and PET
provide complementary advantages in AD diagnosis.

With multiple data modalities, the AD classification still
faces several critical hurdles. One of the primary issues is the
limited availability of data. In terms of data availability, the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
[5], one of the most widely used datasets for AD research,
provides only approximately 300 patients who have both
MRI and PET imaging data. Besides, MRI and PET data
are all 3D images, consisting of millions of pixels, which
significantly increases computational complexity and cost, and
poses challenges for classification algorithms.

Traditional machine learning classification follows a two-
stage process: feature extraction from images, followed by
a classification algorithm using extracted features to make
predictions. Traditional machine learning algorithms, such as
the Support Vector Machine (SVM) [6], are widely employed
due to their effectiveness in handling multimodal medical
tasks. However, these classification algorithms face challenges
related to the curse of dimensionality and, as a result, they
normally do not directly utilize raw 3D images as input.
Instead, they rely on a predefined, fixed number of features ex-
tracted from specific brain regions using one domain-specific
technique, such as volume measurements for MRI and voxel
intensity values for PET [6]. Even deep learning models, which
rely on large training datasets to learn patterns, face significant
challenges, like computational costs, when handling high-
dimensional 3D medical imaging data. Thus, slice selection is
a commonly used method to improve efficiency [7]. Although
deep neural networks demonstrate strong performance in clas-
sification tasks, the low transparency due to their black-box
nature makes it challenging to interpret the decision-making
process, raising concerns about their reliability, particularly in
the medical field [8].

Genetic Programming (GP) is an evolutionary algorithm
that can automatically evolve image descriptors with a flexi-
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ble variable length representation [9]. This flexibility allows
GP to explore complex solution spaces more effectively by
dynamically adjusting the evolved programs’ structure and
complexity to fit different data sources’ characteristics better.
Besides, the tree-based representation of GP offers a high
level of understandability [10]. Compared with deep learning
methods, GP demonstrates a strong capability to learn from
small datasets, and the solution of GP is much easier to
analyze and comprehend the underlying decision-making pro-
cess, making it particularly suitable for medical applications
[11]. Different from standard GP, which evolves a single tree
in an individual, multi-tree GP uses multiple trees within
an individual to capture various aspects of information to
solve the Melanoma classification problem [12]. This approach
allows for a more comprehensive representation by enabling
each tree to focus on distinct features or modalities, making
it particularly well-suited for tasks that require the fusion
of multiple data sources. Moreover, the GP algorithm can
evolve both end-to-end models [13] or take advantage of
traditional machine learning classifiers [10], which combine
the strengths of evolutionary search with established machine
learning techniques, leading to improved performance.

While GP has demonstrated its potential in single-modality
image classification, the current literature using GP to solve
the problem of multimodal medical image classification re-
mains relatively unexplored. The complexity of integrating
multiple imaging modalities and the need for high accuracy
and transparency present unique challenges that require further
investigation. Therefore, it is essential to explore the potential
of GP on this task and develop GP-based approaches that
can enhance classification performance and provide greater
transparency to support AD diagnosis.

This paper aims to develop a multi-tree GP-based method
for AD classification using multimodal neuroimaging data,
mainly MRI and PET. Unlike current GP methods for process-
ing multimodal data [14], which use pre-extracted features as
input, our method directly works on raw images. Additionally,
the proposed method effectively integrates complementary
structural and functional information by employing a multi-
tree representation, where different trees process specific brain
slices for one modality within a single individual. This design
ensures that crucial modality-specific patterns are preserved.
Furthermore, the method captures critical information from
both the entire image and small regions by automatically
evolving feature extraction within GP, rather than relying
on predefined handcrafted feature engineering. By fusing the
extracted features from each modality, the proposed approach
aims to utilize complementary information from both modal-
ities to improve classification accuracy and generalization
performance for AD diagnosis. The overall goals consist of
the following specific objectives:

e Propose a new GP method to directly and simultaneously
evolve multimodal representations for AD classification
by effectively integrating MRI and PET data.

o Evaluate the effectiveness of multimodal data by com-
paring the performance of multiple modalities against a

single modality to demonstrate the advantages of multi-
modal images.

« Identify important feature descriptors that can help AD
classification by capturing relevant characteristics from
regions or whole images within the GP program structure.

The remainder of the paper is organized as follows. Section
IT discusses the background and related work, while Section
IIT describes the proposed new methodology. In Section IV, the
experiment settings are discussed. The results of the proposed
GP algorithm on the AD datasets are presented in Section V.
Finally, Section VI concludes the paper and highlights some
future directions.

II. BACKGROUND AND RELATED WORK
A. AD Diagnosis and Multimodal Image Classification

AD is a progressive neurodegenerative disorder that grad-
ually impairs cognitive function. To assess the severity of
cognitive decline, clinicians commonly rely on various cog-
nitive tests, such as the Clinical Dementia Rating (CDR) and
the Mini-Mental State Examination (MMSE). However, brain
changes may occur before the first clinical signs of AD appear.
As a result, neuroimaging has emerged as a highly promising
tool for early diagnosis and monitoring AD.

Multimodal image classification, as defined in this paper,
involves classifying different classes, such as cognitively nor-
mal (CN) and AD subjects, by integrating multiple types of
imaging data, such as MRI and PET, to enhance diagnostic
accuracy. Single-modality neuroimaging data typically provide
only partial information about brain abnormalities, which may
theoretically limit classification performance.

To overcome this limitation, several machine learning meth-
ods have been proposed using multimodal neuroimaging to
improve classification accuracy. Zhang et al. [6] used an SVM
classifier combined with volumetric features extracted from
MRI and PET, demonstrating improved performance compared
to single-modality models. However, approaches of this kind
rely on pre-extracted features rather than directly using raw
images, which may limit their flexibility in capturing complex
and diverse patterns in multimodal imaging data. Deep learn-
ing methods that use images as input have also been widely
applied in multimodal neuroimaging. Liu et al. [15] proposed
a convolutional neural network architecture that automatically
learns features from MRI and PET images, outperforming
traditional hand-crafted feature-based methods. However, most
of these methods are prone to overfitting, exhibiting high
training accuracy but significantly lower accuracy on the
testing set due to limited data availability.

B. GP for Image Classification

Genetic Programming (GP) has achieved notable success in
image classification due to its ability to automatically evolve
feature representations. Bi et al. [16] proposed a GP-based
algorithm named FLGP to evolve solutions using global fea-
ture extraction methods and local feature extraction methods
to extract features for image classification. This approach
uses images as input and demonstrated improved performance
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compared to methods relying solely on hand-crafted features,
demonstrating GP’s potential to adaptively learn discriminative
representations. However, FLGP is limited to single-modality
data and lacks the mechanisms required for processing and
fusing different data modalities, making it less effective for
multimodal classification tasks theoretically.

Extending GP from single-modality image classification to
multimodal classification presents several challenges. First,
the heterogeneity of data sources requires the GP model to
effectively process and handle distinct information from each
modality. Additionally, successful multimodal classification
involves preserving the unique characteristics of each modality
during the fusion process to fully use their complementary
strengths. However, existing GP methods struggle to achieve
that. For example, Ain et al. [14] designed a two-stage GP
approach for multimodal datasets to diagnose skin cancers.
While this method integrates multiple modalities, it relies on
pre-extracted LBP image descriptors as input to the GP model,
limiting its flexibility to operate directly on raw image data and
to discover complex, modality-specific feature representations
automatically.

For AD classification, Tang et al. [17] developed a GP-
based method using data from the ADNI database. However,
this method processes only a single modality and uses pre-
extracted features as input to perform the regression task
rather than directly integrating multimodal information for
classification.

To summarize, existing GP-based approaches have demon-
strated success in single-modality image classification tasks
but face limitations in fully utilizing raw multimodal imaging
data and efficiently extracting complementary features across
modalities for AD classification. To address these challenges,
this study proposes a new GP-based method designed specif-
ically for multimodal AD image classification.

III. THE PROPOSED METHOD

This section describes the proposed Multimodal Multi-Tree
Genetic Programming (MMTGP) method, whose structure is
illustrated in Fig. 1. The MMTGP framework consists of
two main components: data preparation and multimodality
GP evolution. In the data preparation phase, the raw 3D
neuroimaging data undergoes preprocessing to convert it into
standardized 3D image data, removing irrelevant information.
To reduce computational complexity, we perform slice selec-
tion to extract key 2D slices from the 3D data. These selected
slices represent the same regions of the brain across modalities,
ensuring consistency when integrating information from the
two sources. In the multimodality GP evolution phase, each
tree in the MMTGP structure evolves from a single slice of
the corresponding modality. With an input image, a GP tree
can generate a set of features by employing global and/or local
feature extraction operators to either the whole image or spe-
cific regions identified by the region selection function. These
extracted features are then combined into a single feature
vector as output. The outputs of the trees from each modality
are then combined to perform multimodal feature fusion. The
fused feature representations are subsequently passed to a
SVM classifier for final classification. This integrated process
ensures effective feature extraction, fusion, and classification
for accurate Alzheimer’s disease diagnosis.

A. Data Preprocessing and Slice Selection

MRI and PET images provide complementary information
that is essential for detecting AD and its various stages.
MRI primarily captures structural details, while PET pro-
vides functional insights, making both modalities critical for
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comprehensive automated diagnosis. However, differences in
acquisition parameters, slice counts, and slice sizes between
MRI and PET scans necessitate standardized preprocessing to
ensure the integration.

In this study, the MRI and PET data from the ADNI
database are preprocessed using the Statistical Parametric
Mapping (SPM12) toolbox [18], which are shown in Fig. 2.
The skull stripping is performed on all 3D MRI and PET scans
to remove the skull and other non-brain tissues, resulting in
brain-only scans with reduced noise and irrelevant information.
Following this, the scans are affine-transformed to the MNI152
space [19], a universal brain atlas template, to eliminate
spatial discrepancies between subjects, minimizing variations
in orientation, translations, and rotations. Co-registration is
performed using the MRI scans as a reference to align the
two modalities accurately due to the high resolution of MRI
images. During co-registration, each PET scan is aligned slice
by slice to match the MRI reference, ensuring consistent
spatial orientation, image size, and voxel dimensions for ac-
curate anatomical correspondence between the two modalities.
After these preprocessing steps, both MRI and PET scans are
standardized to the same size, 91 x 109 x 91.

Processing the entire 3D brain scan is computationally
intensive and time-consuming, making it hard for AD clas-
sification. To address these challenges, key slice selection is
used as an efficient method. Entropy values, computed using
the gray level co-occurrence matrix, are employed to extract
texture features that represent the most informative regions of
the image, particularly slices impacted by atrophy. By counting
the occurrences of the slice with the highest entropy, we
identified and included three slice indices, i.e., Slice 37, 38,
and 39. Based on this, three significant slices(index 37, 38, 39)
from MRI, and three from PET (index 37, 38, 39) for each
subject are selected. In total, our dataset has 840 2D images
from 140 subjects, which are then used as input for GP.

B. Program Representation and Evaluation

This study employs a multi-tree GP representation to ad-
dress the complexity of multimodal data. This representation’s
overall structure and workings are illustrated in Fig. 1, provid-
ing a clear visual explanation of the multi-tree approach. In
this approach, each individual in the GP population consists
of six trees: three trees for MRI and the remaining three trees
for PET. Using different trees for each modality allows the
model to capture and maintain modality-specific features and
characteristics. Specifically, six trees are employed, with three
dedicated to extracting features from slices 37, 38, and 39 of
the MRI and three for the corresponding slices of the PET

When doing the multimodal feature fusion, there are three
steps. Firstly, the output feature vectors from all three trees
assigned to a single modality are concatenated to form a
comprehensive representation of the information learned from
that modality. Then, normalization is performed to the feature
vectors from each modality to ensure that features from
different modalities are on a comparable scale. This operation
is performed separately for each modality before concate-

TABLE I
FUNCTION SET OF MMTGP

Function type Functions

Region Detection RegionR, RegionS
G_DIF, G_HIST, G_SIFT, G_HOG, G_uLBP,
L_DIF, L_HIST, L_SIFT, L_HOG, L_uLBP

FeaCon2v, FeaCon3v

Feature Extraction

Feature Combination

nation to preserve modality-specific patterns. After that, we
concatenate the two normalized modality features into one
feature vector. This feature vector contains information from
both modalities and is then fed into a linear SVM to do
classification. Given the relatively small and balanced dataset
with a roughly similar number of subjects in each class, the
cross-validation classification accuracy on the training set is
used as training fitness to fully use the limited data.

During the test phase, the best individual with the highest
fitness during training transforms the images from both the
training and test sets into feature vectors. These feature vectors
are then normalized using the min-max normalization method,
in which the test set normalization is performed based on
the parameters derived from the training set. Subsequently,
the normalized training set is used to train a linear SVM
classifier, which is then evaluated on the normalized test set.
The test data remains independent of the training process, and
the entire process is repeated 5 times, which is the 5-fold
cross-validation. The average results across the five folds are
reported as the performance of the algorithms.

C. Function Set and Terminal Set

The function set of MMTGP includes region selection func-
tions, feature extraction functions, and feature combination
functions, as shown in Table 1. For region selection, two key
functions are used: RegionR and RegionS, which are designed
to select rectangular or square regions from the input image.
Both functions take five parameters as input: /mage, X, and Y,
Length, Width. The input image is denoted by Image, while
X and Y specify the coordinates of upper-left corner of the
selected region. Once the starting point is determined, the area
of a rectangle is specified by Length and Width, representing
the width and height of the rectangular region. When using
RegionS to select a square region, the values of Length are
used as the length and width, which are equal for a square
region.

For feature extraction, the MMTGP uses five feature ex-
traction methods, enabling it to extract diverse features. The
five methods are DIF [20], HIST [21], SIFT [22], HOG [23],
and uLBP [12]. For global feature extraction, which operates
on the whole image, the following feature extraction functions
are used: G_DIF, G_HIST, G_SIFT, G_HOG, and G_uLBP.
For the G_DIF, 20 features are extracted by computing the
mean and standard deviation of pixel intensities. The G_HIST
function computes intensity histograms, providing statistical
information about pixel intensity distributions across the im-
age. The G_SIFT function extracts 128 SIFT features based
on gradient magnitude and orientation, providing a robust
representation of shape-related characteristics in brain images.
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The G_HOG function extracts features that describe shapes
by analyzing gradient distributions. The G_uLBP function
extracts 59 uniform LBP features, which capture texture
information—an essential property for brain images, partic-
ularly in MRI. For local feature extraction, which focuses on
selected regions of interest, five functions are used: L_DIF,
L_HIST, L_SIFT, L_HOG, and L_ulLBP. These local feature
extraction functions operate similarly to the global functions
but are restricted to selected regions within the image as input,
allowing MMTGP to evolve more detailed representations that
capture both global information and localized information on
MRI and PET images. Thus, the MMTGP structure effec-
tively captures information within each modality, enhancing
MMTGP’s ability to use multimodal information to do AD
classification.

Feature combination functions aim to concatenate feature
vectors extracted by various internal feature extraction nodes
of GP trees. Within the MMTGP, two functions are utilized:
FeaCon2v and FeaCon3v, which accept two or three feature
vectors as inputs, respectively. It is worth mentioning that a
feature combination function can function as a child node
beneath another combination function, which operates as the
root node of the tree. This flexibility allows GP trees to dynam-
ically construct complex feature representations. As a result,
MMTGP can effectively adapt to varying levels of modality
complexity by utilizing trees with flexible depths, allowing the
construction of feature representations with varying numbers
of features. This flexibility ensures that the model can capture
both simple and complex patterns, making it well-suited for
representing different data modalities. As mentioned earlier,
the parameters required for feature extraction methods must
be properly defined. In the MMTGP approach, the Terminals
include the parameters Image, X, Y, Length, and Width, which
are essential for specifying the input image and the selected
region from which features are extracted. The Image parameter
represents a two-dimensional grayscale MRI or PET image
within each tree. The X and Y parameters define the starting
point of the selected region, with their values constrained to
the range [0, width of the input image — 20] and [0, height
of the input image — 20], respectively. This constraint ensures
that the extracted region remains within the image boundaries
while also reducing the influence of black areas that do not
contain brain tissue. The Length and Width parameters deter-
mine the size of the selected regions, with their values ranging
from 20 to 50, allowing the extracted region to vary between
20 x 20 and 50 x 50 pixels. This flexibility ensures that the
MMTGP can adaptively extract meaningful local features from
different regions of the image, enhancing the effectiveness
of multimodal feature representation for classification. If X
+ Length exceeds the image width, or if ¥ + Width exceeds
the image height, the region is automatically clipped to the
image boundaries.

D. Crossover and Mutation

In the proposed MMTGP, individuals are selected as par-
ents for the new population generation using the tournament

selection method, which chooses the individual with the high-
est fitness out of the randomly selected individual subset.
Then, the crossover and mutation operations are applied to
evolve individuals over generations. The same-index crossover
operation is performed between pairs of parent individuals,
exchanging subtrees across the six trees to generate new
offspring. Specifically, for each pair of individuals selected
for crossover, the operator is applied separately to each of
their six trees and has the same index to maintain consistency
within each modality within the same brain slice. Besides, the
mutation is applied to each tree with a predefined probability.
The mutation operator modifies each tree by introducing
random changes, enabling diversity in multiple modalities.
Similar to crossover, the mutation is applied independently
to all six trees.

IV. EXPERIMENT DESIGN
A. Dataset

We use the ADNI database [5] for our experimentation. The
dataset used in this study includes both males and females with
a follow-up during the last 18 months with an age range of 55
to 90 years. In this paper, ADNI subjects with both MRI and
PET baseline data are included. Some subjects are removed for
some reason, like low quality. Our dataset has a total of 140
subjects, including 67 AD patients and 73 cognitively normal
subjects.

The MRI and PET images in the ADNI database have
already undergone several standardized preprocessing steps
to ensure consistency and reliability across different imag-
ing sites and equipment. Specifically, MRI images have
been processed through a series of corrections by ADNI,
including Gradwarp, B1 non-uniformity correction, and N3
bias field correction. Similarly, PET images have been sub-
jected to preprocessing steps such as co-registration, aver-
aging, standardization, and uniform resolution adjustments.
Further details regarding these procedures can be found
on the ADNI website (https://adni.loni.usc.edu/data-samples/
adni-data/neuroimaging/). These preprocessing corrections
vary depending on the imaging manufacturer and the specific
system’s RF coil configurations.

Following the preprocessing stage in the proposed method,
the acquired 3D images are prepared for further analysis. As
a result, each image has a spatial resolution of 91 x 109 x
91 with a voxel size of 2 mm x 2 mm x 2 mm. Given the
high dimensionality of 3D medical images, a slice selection
method is employed to extract the most informative slices,
thereby reducing computational complexity while retaining
critical diagnostic information. The dataset consists of three
selected slices from MRI and three from PET for each subject,
resulting in 840 images. The selected images have a resolution
of 109 x 91 pixels, and all pixel values are normalized to the
range [0, 1].

There are three extracted datasets used in this study:
Datasetyg;, Datasetppr, and Datasetyg; ppr. The number of
images of these datasets is summarized in Table II. Each
dataset contains data from 140 subjects, with the same 112
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TABLE I
SUMMARY OF THE EXTRACTED DATASETS FOR TRAINING AND TEST

Dataset Total Images Training Set Test Set
Datasetyrr 420 336 84
Datasetpgr 420 336 84

DatasetMRI_pET 840 672 168

TABLE III
PARAMETER SETTINGS OF THE GP METHOD.

Parameter Value Parameter Value
Generations 50 Crossover Rate 0.80
Population Size 100 Mutation Rate 0.19
Initial Population Ramped Half-and-half Elitism 0.01
Tree Minimum Depth 2 Tournament Size 7
Tree Maximum Depth 4 Max Depth 7

subjects used for training and the same 28 subjects for testing.
For example, when the random seed is fixed, if a subject has
three MRI slices included in the training set of Datasetygy,
then the corresponding three PET slices for the same subject
are included in the training set of Datasetpgr. Furthermore,
all six slices (three from MRI and three from PET) for that
subject are included in the training set of Datasetyg; per. This
consistent subject-wise partitioning ensures proper alignment
and comparability across the multimodal datasets.

B. GP Settings

The parameter settings of the proposed multi-tree GP
method are listed in Table III. The evolutionary process
continues iterating until a predefined termination criterion is
satisfied. The process concludes either when the maximum
limit of 50 generations is reached or when an individual
achieves 100% classification accuracy.

In the experiments, 5-fold cross-validation is used for eval-
uation. The evolved GP individual consists of six trees, and
the best individual with the highest training accuracy is used
to classify the test data. This process is repeated five times in
a single run, and the average training fitness and test accuracy
are recorded. Each GP method is executed 30 times with
different random seeds, producing 30 training fitness and test
accuracy values for analysis.

To validate the effectiveness of MMTGP, we compare it
with FLGP, a state-of-the-art GP-based image classification
method [23]. FLGP employs a single-tree representation for
automatic feature engineering, extracting features that are then
classified using SVM. In this study, FLGP is implemented with
the same function set, terminal set, parameter settings, and
evaluation process as MMTGP to ensure a fair comparison.

V. RESULTS AND DISCUSSIONS
A. Overall Results

The results of the experiments are presented in Table IV. For
clarity, the best-performing method for each evaluation metric
is highlighted in bold. The classification results of MMTGP
and other methods over the 30 runs on the investigated dataset
are shown with the maximum accuracy, and the mean and
standard deviation. FLGPyg; refers to the FLGP model trained
on Datasetyg;, with similar naming conventions applied to

TABLE IV
PERFORMANCE COMPARISON OF DIFFERENT METHODS.
Training Test
Method Max Mean+Std Max Mean+Std
FLGPyr1 81.07 78754092 () 66.68 61.244+2.73 ()
FLGPpgr 88.81 87.1841.03 () 77.38 72.1942.94 ({)
FLGPyRri_per  79.34  77.59+0.80 (1) 71.78  66.19+2.22 (})
MTGPyRy 9393  91.60£131 (}) 75.00 67.98+3.49 (})
MTGPpgT 99.29 97.73+0.76 (1) 85.72 76.12+4.32 ({)
MMTGP 98.75 96.9440.95 88.57 79.31+4.64
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Fig. 3. Convergence curves of FLGP based methods, MTGP based methods,
and MMTGP over the 30 runs on three datasets.

other models trained on their respective datasets. Specifically,
the MMTGP is trained and evaluated on the Datasetyg; per. To
assess the statistical significance of performance differences,
the Wilcoxon rank-sum test with a 95% significance interval is
applied. The symbols “1” and “|” in Table IV indicate whether
MMTGP achieves significantly better or worse performance
than the compared method, specifically, a “1” denotes that
MMTGP outperforms the compared method with statistical
significance. Besides, the convergence curves using average
training performance over the 30 runs for all methods are
shown in Fig. 3.

The first three rows in Table IV present the classification
results of FLGP on the three datasets. For example, the
FLGPypg; is trained and tested on Datasetyr;. Compared with
FLGP based methods, the performance of MMTGP across all
datasets is statistically better on both the training and test sets.
Within the FLGP-based methods, it is theoretically expected
that FLGPwmRr1_per would outperform FLGPyg; and FLGPpgr
due to the availability of multimodal data. However, the results
indicate otherwise, with FLGPwmg1 per achieving the lowest
training and test accuracy among them. This performance gap
highlights the limitations of FLGP in effectively handling mul-
timodal data, as it struggles to fully exploit the complementary
information from different slices and modalities. This is not
surprising as FLGP was designed to only use one tree in an
individual, which assumes every image is from the same slice
index from a single modality.

The MTGP based methods shown in Table IV demonstrate
the effectiveness of using multiple trees in each individual
to learn from specific slices from each modality. MTGPyg;
and MTGPpgr significantly outperform their FLGPyg; and
FLGPpgr in training and test accuracy, confirming that us-
ing multiple trees enables better representation. The multi-
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Fig. 4. An example program evolved by MMTGP on Datasetyr;_per-

tree structure allows the model to explore diverse feature
spaces while focusing on specific slices, enabling it to more
effectively capture intricate patterns from corresponding brain
regions.

Notably, MTGPpgr achieves a near-optimal training accu-
racy of 99.29%, highlighting the significant advantage of using
multiple trees in GP to extract detailed functional features
from PET data. When comparing MTGP based methods to
MMTGP, MTGP trained on PET shows statistically better
performance on training sets. However, MMTGP achieves sta-
tistically better performance on the test set, indicating that its
multimodal design provides better generalization by effectively
fusing complementary structural (MRI) and functional (PET)
information. This result highlights the robustness and practical
advantage of MMTGP in leveraging multimodal information
for AD classification, outperforming single modality methods.

Demonstrated by Fig. 3, MTGPpgr and MMTGP achieve
the highest positions in the plot, indicating their superior learn-
ing capabilities compared to the other methods. MTGPpgr ex-
cels due to its ability to capture detailed functional information
from PET, while MMTGP effectively fuses complementary
structural and functional information, enabling it to generalize
well and maintain strong performance on both the training and
test sets. Interestingly, in both plots, the curves involving PET
data consistently achieve the highest positions. This suggests
that when multimodal data is not available, or when cost and
resource constraints are critical, PET may be a more effective
and practical option for AD classification.

B. Program Analysis

The example individual program with six trees evolved by
MMTGP is shown in Fig. 4, which achieves 99.12% accuracy
on the training set and 100% accuracy on the test set with a

total of 1117 features from six trees. To further evaluate the
contribution of each modality, the features extracted by the
MMTGP are tested using a linear SVM classifier. The modal-
ity 1 features are extracted from the MRI data, which achieves
a test accuracy of 82.14%, while the features extracted from
modality 2, the PET data, achieves a test accuracy of 96.43%.
When the features from both modalities are combined, the
test accuracy reached 100%, demonstrating the effectiveness
of the proposed multi-tree structure in fusing complementary
information from both modalities for optimal classification
performance.

The example individual with six trees emphasizes both local
and global feature diversity across the two modalities. Among
the five local feature extraction methods, SIFT is the most
frequently used, followed by HIST, with uLBP appearing
once, while the remaining two methods are not utilized.
For global feature extraction, HOG dominates, while SIFT
is notably absent. This distribution indicates that different
feature extraction methods are prioritized based on the type
of information needed from the input data.

A significant observation is the difference in feature reliance
between the two modalities. For the MRI modality, the model
mainly depends on HIST and HOG, suggesting that MRI
data primarily provides structural information, such as textures
and gradients. This is exactly the kind of information that
the MRI provides. On the other hand, PET relies heavily on
SIFT, indicating that keypoint-based features, which capture
localized functional changes, are more informative in PET
scans. This distinction highlights the complementary nature
of the two modalities: MRI focuses on capturing anatomical
structures, while PET contributes functional details through
localized keypoints. The ability to selectively extract modality-
specific features underscores the importance of a multimodal
approach, as it allows the model to combine structural and
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functional information effectively for improved classification
performance.

Moreover, different slices in different modalities present
varying levels of complexity, and not all slices require both
global and local feature extractions. From Fig. 4, Tree 2, Tree
4, and Tree 6 use only local feature extraction operators.
Even when the same type of feature extraction operator is
applied, variations can be observed. For instance, Tree 2 uses
two HIST operators to extract features from two regions,
while Tree 4 uses two SIFT operators for the same purpose,
highlighting how different slices may require distinct types
of local features to capture relevant information. Additionally,
the two subtrees on the sides of Tree 6 are exactly the same.
After removing the duplicated subtree, the training accuracy
decreases to 96.44% but the test accuracy remained 100%
accuracy. Besides, the features extracted from modality 2, the
PET data, achieve a test accuracy of 100%. This indicates that
the presence of redundancy requires further consideration for
future improvements.

VI. CONCLUSIONS

This paper presents a new MMTGP approach for mul-
timodal image classification, focusing on Alzheimer’s Dis-
ease diagnosis using MRI and PET data. Using a multi-
tree structure, MMTGP effectively captures complementary
information from structural and functional modalities, signif-
icantly improving classification accuracy compared to single-
modality models and traditional GP approaches. The results
demonstrate that using multiple trees allows for diverse and
robust feature extraction, enabling the model to explore intra-
modality patterns and combinations.

The experimental results highlight that integrating modality-
specific features plays a crucial role in enhancing performance,
with MRI features primarily relying on texture and structural
information (HIST and HOG), while PET data benefits from
keypoint-based descriptors (SIFT). The ability to selectively
extract and combine these features demonstrates the advantage
of multimodal learning. Notably, MMTGP outperforms single-
modality FLGP and MTGP on multimodal datasets, reinforc-
ing the effectiveness of explicit multimodal feature fusion.

Although the multi-tree program structure improves feature
representation, the gap between training and test accuracy,
and the same feature extraction on the same region in some
cases suggests the need for additional measures to mitigate
the redundancy. Future research could investigate pruning
strategies to reduce redundancy and improve the model’s
generalization.
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