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Abstract—Multi-objective dynamic flexible job shop scheduling
(MO-DFJSS) is increasingly recognized as a critical challenge in
manufacturing and production systems due to the dynamic and
complex nature of real-world scenarios. Traditional approaches
often fail to adequately address the dynamic and conflicting ob-
jectives inherent in these systems. Genetic Programming (GP) as
a hyper-heuristic method has shown promise in DFJSS; however,
the studies of GP for MO-DFJSS are still with limitations. The
current NSGP-II algorithm incorporates the Non-dominated Sort-
ing Algorithm II (NSGA-II) into GP. However, it does not utilize
the potential information contained in the Pareto fronts obtained
during evolutionary process to help population evolve. However, the
Pareto fronts generated in each generation may contain valuable
information that can help the population evolve more effectively.
For example, the distribution of non-dominated individuals evolves
over generations may help for finding promising solutions. This pa-
per proposes an elite individual guided dynamic space optimization
strategy with an archive. This strategy treats the non-dominated
individuals in each generation as elite individuals and saves them
in an archive, and then uses information about the distribution of
individuals in the archive to dynamically guide the GP search. This
allows the GP population of each generation to explore in a more
promising space to improve the performance. Meanwhile, to im-
prove the interpretability of the learned rules in the Pareto fronts,
we have also proposed a novel niching strategy to impact the tree
size of the learned scheduling rules during evolutionary process.
The results show that the proposed algorithm exhibits superior
performance in solving MO-DFJSS. The proposed algorithm learns
diverse and well distributed Pareto fronts, and also improves the
interpretability of the Pareto fronts generated. These features po-
sition our approach within emerging directions in computational
intelligence by introducing a behavior-driven niching mechanism
that enables self-adaptive diversity control and dynamic knowledge
retention in multi-objective evolutionary learning.

Index Terms—Dynamic flexible job-shop scheduling, genetic
programming, multi-objective, niching, archive.
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I. INTRODUCTION

JOB shop scheduling (JSS) is an important combinatorial
optimization problem that involves many real-world ap-

plication scenarios, such as order picking in warehouses [1],
manufacturing process design [2], grid/cloud management [3].
The main goal of JSS is to determine the order of processing jobs
by a set of machines effectively. Dynamic job shop scheduling
(DJSS) extends from JSS by incorporating dynamic events,
such as the arrival of jobs over time [4]. Dynamic flexible job
shop scheduling (DFJSS) [5] further considers the flexibility
of machine resources, i.e., each operation can be executed on
multiple machines. DFJSS faces two main decisions: machine
allocation for assigning each operaiton to a specific machine,
and operation sequencing for choosing the next operation to be
processed when a machine is idle [6].

In real industrial applications, scheduling problems often
involve the optimization of multiple conflicting objectives [7],
[8]. So, MO-DFJSS has attracted a lot of attention and many
researches have explored various methods to solve this problem.
Genetic Programming (GP) is an evolutionary algorithm that
automatically evolves computer programs, typically represented
as tree structures, by simulating the process of natural selec-
tion [9]. It applies genetic operators such as crossover, and
mutation to evolve a population of symbolic expressions that can
serve as candidate solutions. As a hyper-heuristic method, has
been widely used to automatically evolve scheduling heuristics
for solving DFJSS problem [10], [11], [12], [13] due to its
flexible representation and good performance. Compared with
traditional machine learning methods, GP has several distinctive
advantages for solving dynamic scheduling problems. First, GP
can automatically evolve effective dispatching rules without re-
quiring extensive domain knowledge. Second, the evolved rules
can efficiently make real-time decisions. Third, GP generates
interpretable heuristic rules in the form of symbolic expressions
(tree structures), which enhances transparency and facilitates
practical deployment. However, most of the research on GP
for DFJSS focuses on single objective [12], [14], [15], and its
application in solving MO-DFJSS needs to be further explored.
Therefore, it is valuable to investigate how GP can be further
improved to solve MO-DFJSS.

To the best of our knowledge, several GP related studies [16],
[17] have integrated well-konwn Pareto dominance-based meth-
ods [18], [19] and decomposition-based methods [20] into GP.
Among them, NSGP-II [16] demonstrated the best performance.
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However, each generation of NSGP-II evolves in the entire
heuristic space and fails to make more efficient use of the in-
formation of Pareto fronts collected from previous evolutionary
generations to guide the search. We note that the Pareto fronts
obtained in each generation may contain valuable information
about the direction and trend of the optimization. For example,
observing the distribution of the non-dominated individuals in
each generation can reveal trends in the optimization process.
Observing the distribution can also provide clues about which
regions are gradually improving and which regions need to be
further explored. By utilizing this information, it is expected
to guide the evolutionary process more intelligently and im-
prove the overall effectiveness and efficiency of our algorithm.
Therefore, we propose a method that dynamically adjusts the
search space based on the Pareto fronts information from each
generation. Meanwhile, in order to facilitate the calculation and
analysis of this information, we borrow phenotypic characteri-
zation (PC) [21] to represent the behavior of individuals in this
strategy, and calculate the information presented by observing
the behavioral distribution of the population.

The overall goal of this paper is to improve the effectiveness
of NSGP for MO-DFJSS. Meanwhile, this paper focuses on
improving the interpretability of learned scheduling heuristics
obtained in the Pareto fronts. The contributions of this paper are
as follows.

1) We propose an elite individual guided dynamic space
optimization strategy designed to enhance the quality of
scheduling heuristics. The strategy uses an elite archive to
store the elite individuals, i.e., the non-dominated individ-
uals at each generation and proposes a reward and pun-
ishment strategy to update the archive, then dynamically
guide the search of NSGP according to the distribution
of the elite individuals in the archive. Specifically, this
method can dynamically narrow the search space by ana-
lyzing the distribution of the individuals within the archive
and offers a search method that focuses more on promising
areas to effectively exploring complex multi-objective
search space. The results show that this strategy is effective
in improving the quality of Pareto fronts and maintaining
the diversity of the population.

2) We propose a novel niching strategy based on PC and
group selection. The strategy performs niching based on
the behavior of the individuals and then influences the
interpretability of the Pareto fronts by selecting the in-
dividuals with the smallest tree size among those that
have survived from the group selection phase. The results
show that this strategy has a positive impact on controlling
the rule size of Pareto fronts and also helps to improve
the diversity of the population. In addition, the strategy
effectively controls rule size, contributing to a more in-
terpretable solutions, which is valuable in the context of
optimization using GP.

3) The experimental results demonstrate that our proposed al-
gorithm outperforms existing methods in terms of schedul-
ing heuristic quality and algorithmic efficiency. The com-
parative analysis reveals that our approach can find more
robust and well-distributed scheduling rules, underscoring

its potential to influence future research directions in the
application of GP to complex scheduling problems.

The remainder of this paper is structured as follows: Section II
provides the background. Section III details the proposed algo-
rithm. Section IV outlines the experimental design. Section V
presents the results and analysis. Further discussion is described
in Section VI, followed by conclusions in Section VII.

II. BACKGROUND

A. Multi-Objective Dynamic Flexible Job Shop Scheduling

In JSS, a set of jobs J = {J1, J2, . . . , Jn} needs to be pro-
cessed by a set of machines M = {M1,M2, . . . ,Mn}. Each
job Ji is represented by its arrival time ri, due date di, weight
wi, and a sequence of operations [Oi,1, Oi,2, . . . , Oi,pi

] that
must be processed one by one [10]. Each operation Oi,j can
be performed on several machines (i.e., flexible machine re-
sources) [22]. The processing time of operationOi,j on machine
Mk is ti,j,k = πi,j/γk, where γk is the processing speed of the
machine and πi,j is the workload of the machine. This paper
focuses on one dynamic event, the dynamic random arrival of a
new job [4], [23], [24], since this is the most common dynamic
event in life [16]. Until the new job actually arrives on the shop
floor, its information is unknown. The main constraints of the
JSS problems are as follows:

1) An operation cannot start until its preceding operations
have been completed.

2) Each machine can process only one job at a time.
3) Each operation can be processed by only one of its optional

machines.
4) Scheduling is non-preemptive, meaning that once an op-

eration’s processing starts, it must be completed without
interruption.

In multi-objective scheduling problems, it needs to optimize
multiple conflicting objectives simultaneously. In this paper, we
consider seven scheduling objectives [25] for MO-DFJSS: max-
flowtime (Fmax), mean-flowtime (Fmean), max-weighted-
flowtime (WFmax), mean-weighted-flowtime (WFmean),
max-tardiness (Tmax), max-weighted-tardiness (WTmax)
and mean-weighted-tardiness (WTmean). The selected objec-
tive functions are designed to reflect both system-centric and
customer-centric performance measures. Flowtime-based met-
rics, such as max-flowtime and mean-flowtime, quantify system
utilization and responsiveness, while tardiness-based metrics,
such as max-tardiness and mean-weighted-tardiness, emphasize
delivery reliability. Including both weighted and unweighted
versions ensures that job priorities are also considered. These
objectives have been validated and adopted in numerous pre-
vious works on dynamic job shop scheduling [10], [11], [12],
[13], [14], [15], forming a solid basis for evaluating algorithm
performance under realistic multi-objective conditions. The def-
initions of these objectives are as follows:

1) Fmax = maxn
i=1{Ci − ri}

2) Fmean = 1
n

∑n
i=1{Ci − ri}

3) WFmax = maxn
i=1{wi(Ci − ri)}

4) WFmean = 1
n

∑n
i=1{wi(Ci − ri)}

5) Tmax = maxn
i=1{Ti}
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Fig. 1. An example of one individual program for DFJSS.

6) WTmax = maxn
i=1{wiTi}

7) WTmean = 1
n

∑n
i=1{wiTi}

where Ci is the completion time of the job Ji, wi is the weight
of the job Ji, and Ti = max{Ci − di, 0} is the tardiness of the
job Ji.

All objectives are formulated as minimization objectives,
as smaller values of flowtime and tardiness related objectives
indicate better scheduling performance.

B. Individual Program Representation

In DFJSS, the decision-making process consists of two core
tasks: machine allocation and operation sequencing. The routing
rule and sequencing rule have shown effectiveness in generating
scheduling rules [6]. In order to explore and learn these two rules
simultaneously, the use of a multi-tree representation of GP has
been shown to be an effective strategy [26]. Therefore, we use
the representation of GP with two trees to express routing and
sequencing rules respectively in this paper.

Specifically, Fig. 1 gives an example of an individual in GP
to represent the routing and sequencing rule for DFJSS [27].
In particular, the routing rule prioritizes machines based on
“WIQ+PT-NIQ”, where NIQ represents the number of oper-
ations in the queue, WIQ is the workload in the queue of a
machine, and PT denotes the processing time of an operation
on a specified machine. The sequencing rule assigns a priority
value to each ready operation according to “PT/W”, where W is
the weight of an operation.

C. Related Work

1) Archive for scheduling problem: The archive is a com-
monly used technique in genetic algorithms, often employed
to store non-dominated solutions found during the evolutionary
process. Based on MOEA/D, an archive was used to save non-
dominated individuals in each subpopulation. Then, computa-
tional resources were efficiently allocated by analyzing the con-
tribution of each subpopulation for archive, thereby enhancing
the performance of the algorithm [28]. A two-archive strategy
that maintains both convergence-oriented and diversity-oriented
archives was proposed to balance convergence and diversity
simultaneously in constrained multi-objective optimization [29].
A two-stage multi-objective GP approach with archive was
introduced to solve the uncertain capacitated arc routing prob-
lem [30]. It utilized an external archive to store potentially
effective individuals that may have been lost during evolution
and reuses them to produce offspring. Similarly, a study that used
an archive to retain good individuals during the evolutionary pro-
cess, involving these individuals in generating new populations

was proposed for solving the DFJSS [31]. An archive-based co-
evolutionary GP approach that leveraged an archive population
to improve the quality of fitness evaluation was proposed for
workflow scheduling [32]. Its core idea is also to use the archive
to store high-quality individuals found in the population and to
continually update the archive using sub-populations to improve
its quality. However, the above studies still just use the archive to
store quality individuals, without further analyzing the potential
information about the individuals stored within the archive, to
guide the search for performance improvement of algorithms.

2) Studies for multi-objective scheduling problem: A Q-
Learning-based NSGA-II algorithm was introduced in [33] that
daptively selects appropriate neighborhood structures for local
search by learning from historical search experience for solving
MO-DFJSS with multiple dynamic events and limited trans-
portation resources. Two well-known multi-objective optimiza-
tion frameworks, the NSGA-II [18] and SPEA2 [19] were com-
bined with GP in [16] to address MO-DFJSS, named NSGP-II
and SPGP2. Additionally, the multi-objective algorithm based
on decomposition was integrated into GP and named MOGP/D
in [17]. Among NSGP-II, SPGP2, and MOGP/D, NSGP-II
demonstrates superior performance. Furthermore, Semantic Ge-
netic Programming was incorporated into GP to enhance the
algorithm’s performance [10]. An algorithm that integrated the
surrogate technique and brood recombination technique was
proposed in [34]. The influence of terminal settings on NSGP-II
for solving MO-DFJSS was studied in [35]. There are several
other studies focused on topics such as the interpretability [36]
or multitask in MO-DFJSS [37].

Overall, it is evident that the application of GP in researching
MO-DFJSS is still relatively limited. The study of this field is
currently in its infancy, with much space for exploration and
improvement. Most of the existing studies focus on specific
aspects or combinations of techniques, but there is a lack of
comprehensive and in-depth research that fully exploits the
potential of GP in solving MO-DFJSS. Our study aims to fill this
gap by proposing a novel approach that addresses the existing
limitations. By introducing innovative strategies and techniques,
we strive to enhance the performance and effectiveness of GP
in dealing with MO-DFJSS, thereby making a significant con-
tribution to the advancement of this research area and providing
more efficient solutions for real-world multi-objective schedul-
ing problems in dynamic flexible job shop environments.

III. NICHING GP WITH ELITE ARCHIVE

A. Overall Framework

Fig. 2 illustrates the overall framework of the proposed algo-
rithm. The process begins with the initialisation of a population.
Then the population is evaluated, followed by a non-dominated
sorting based on their performance in simulations. If the stopping
criteria is met, the Pareto fronts are output; if not, the population
proceeds through the evolutionary process. During this process,
the elite archive must first be updated with the latest population
evaluation information. Details of the update method of the elite
archive will be given in Section III-B. After that, the population
performs niching process according to the proposed niching
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Fig. 2. The flowchart of the proposed algorithm.

strategy and the detail will be described in Section III-C. Then,
the population generates offspring based on the elite individual
guided dynamic space optimization strategy and the details will
be discussed in Section III-D.

B. Elite Archive Strategy

In this paper, we treat the non-dominated individuals as elite
individuals. So the external elite archive is used to store the
non-dominated individuals, i.e., the rank of individuals is equal
to 0, after the completion of each generation of non-dominated
sorting. Specifically, at the end of each generation, the elite
individuals are added to the archive if it is not a duplicate of
any individual in the archive. The criterion for determining if
two individuals are duplicates are to check whether the PCs of
the two individuals are same. The PC of an individual is a vector
constituted the rank of machines or operations, reflecting its
decision-making behavior across various scenarios. When two
individuals have similar PC, their behavior and effectiveness are
likely to be alike [34]. Table I provides an illustrative example
of calculating the PC for an individual. For the first decision
situation, machines are ranked first by the reference routing rule
WIQ (i.e., least work in the queue). Then the routing rule is
also used to rank the three machines, with M3 having the first
priority. Finally, set the value of PC1 as the rank of M3 ranked
by WIQ (i.e., 3). Similarly, PC2 is 1 and PC3 is 3. The PC
of sequencing rule can be derived in the same way. Finally, the
routing and sequencing rules’ PCs are combined to form the
individual’s PC. An example of this combined PC, represented
as a 6-D vector (with three routing and three sequencing decision
situations), is shown in Fig. 3.

As previously noted, PC is a vector used to indicate the
behavior of an individual. Following the guidance in [6], this
paper randomly selects 20 routing decision situations and 20

Algorithm 1: Updating Process of the Archive.
Input: The current population pop, the external elite
archive

Output: The updated archive
for ind ∈ archive do

if ind.rank �= 0 then
ind.counter ++;
if ind.counter ≥ 3 then

Remove the ind from the archive;
end if

else
ind.counter −−;

end if
end for
for ind ∈ pop do

if ind.rank = 0 then
Set duplicate = false;
for ind′ ∈ archive do

Calculate distance between ind and ind′;
if distance = 0 then
duplicate = true;
break;

end if
end for
if duplicate = false then

Add ind to the archive;
end if

end if
end for
return archive;

TABLE I
AN EXAMPLE OF CALCULATING THE PHENOTYPIC CHARACTERISATION OF

A ROUTING RULE

Fig. 3. Example of the phenotypic characterization of a GP individual which
is a 6-D vector.

sequencing decision situations, each with 7 candidates (ma-
chines or operations). Consequently, the PC of an individual
is represented as a 40-D vector. Based on the PC, we use the
equation (1) to calculate the distance between two PCs, i.e., p1
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Fig. 4. Specific process of the niching strategy based on PC and group selection.

and p2:

dis(p1,p2) =
40∑

i=1

dp1i,p2i
(1)

where dp1i,p2i
= 1 if p1i = p2i, and dp1i,p2i

= 0, otherwise. In
the following, we refer to the PCs distance between two individu-
als as the distance between two individuals. If the distance of two
individuals is 0, we treat the two individuals to be duplicate, and
will not add the individual into the archive. During the evolution,
there will be individuals that perform better in one or two specific
instances and worse in the rest of the instances occur in GP
where seed rotation is applied, and we define such individuals
as mutant individuals. To ensure the elitism of the individuals
that are stored within the archive and promptly remove mutant
individuals, we propose a reward and punishment strategy for
updating the archive. Each individual, upon being added to the
archive, is assigned a private counter, which records this times it
was punished. After each evaluation, the rank of each individual
is checked. If the rank is greater than 0, the counter is added
1; if the value of the counter exceeds 3, remove the individual
from the archive; if not, subtract 1 from the counter. The specific
archive updating process is shown in Algorithm 1.

C. Niching Strategy Based on PC and Group Selection

The process of the niching strategy is showed in Fig. 4,
operates as follows: Firstly, individuals in the population are
grouped based on their PCs, with individuals having the same
PC forming one group. Each group then chose an individual
through probability-weighted selection. Individuals whose rank
match the selected individual’s rank are retained. To ensure
that high-quality individuals have higher probabilities of be-
ing selected and thus provide superior genes for the breed-
ing process, the probability-weighted selection assigns greater
weights to individuals with smaller rank. The specific algorithm
is illustrated in Algorithm 2. Finally, the size of an individual
directly impacts the interpretability of the scheduling heuristic.
The more nodes there are, the less interpretable the individual
becomes. Therefore, it is crucial to control the size of individuals
during evolutionary process to ensure Pareto fronts have higher
interpretability. Hence, in the final step, we select the individual
with the smallest tree size among the retained individuals to
represent each group.

Algorithm 2: Probability-Weighted Selection.
Input: The selected group group
Output: The representative individual
selectedIndividual
double totalWeight = 0;
for ind ∈ group do
totalWeight = totalWeight+ 1/(ind.rank + 1);

end for
Get a randomV alue between [0, totalWeight);
double p = 0;
for ind ∈ group do
p = p+ 1/(ind.rank + 1);
if randomV alue ≤ p then
selectedIndividual = ind;
break;

end if
end for
return selectedIndividual;

D. Elite Individual Guided Dynamic Space Optimization
Strategy

In GP, the conventional approach often searches the entire
heuristic space for optimal solutions. This approach can some-
times lead to inefficiencies and fail to find high-quality solu-
tions. Therefore, we propose a novel strategy that concentrates
the search space around the elite individuals found (i.e, the
individuals within archive), thus improving the effectiveness
of the evolutionary process. The specific process of the elite
individual guided dynamic space optimization strategy is shown
in Fig. 5. The core idea is to refine the search space dynamically
according to the PCs distance between the individuals in the
elite archive and newly generated offspring. Specifically, when
an offspring indo is generated, we first calculate the distance
between it and all the individuals in the archive, and get the
minDistance. Then check if the minDistance satisfies 0 <
minDistance < α. For the first 5 [38] generations, α = 40,
i.e., the maximum PCs distance is taken. Then, in order to
adaptively and dynamically adjust the search space according
to the latest archive information for each generation, the value
of α is calculated from the information provided by the archive.
Specifically, we compute the distance between each individual
in the archive and the others to get a list of distances, and

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on November 17,2025 at 03:59:07 UTC from IEEE Xplore.  Restrictions apply. 



6 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE

Fig. 5. Specific process of elite individual guided dynamic space optimization
strategy.

then sorted the list from smallest to largest. Finally, α takes
its median. The median is chosen because it provides a robust
central tendency measure, minimizing the influence of outliers
or extreme values in the distribution of distances. This ensures
that the self-adaptive distance reflects the typical distribution
of the archive, maintaining a balanced search space that is
neither overly restricted nor too expansive. By dynamically
recalculating α as the median at each generation, the search
process can adapt to the evolving characteristics of the archive
while preserving stability against noisy or skewed data. In the
following, we call the distance obtained by archive calculation
for each generation the self-adaptive distance.

The reason for not using self-adaptive distance to control the
generation of offspring at the first 5 generations is to prevent
rapid convergence of the population. During the early stages of
the evolutionary process, where most individuals are randomly
generated, the population is highly diverse. In this case, a few
non-dominated individuals are likely to dominate most others
in most cases [39]. This means that the information provided
by individuals in the archive has a greater degree of randomness
built into it and is not yet reliable enough. Therefore, we propose
to set α = 40 in the first 5 generations, and then set α to the
self-adaptive distance after 5 generations, i.e., the stage that most
individuals in the archive are good enough and can specialize in
different situations.

Meanwhile, in order to avoid too fast convergence of offspring
under the guidance of this strategy, which leads to a decline in
the diversity of the population. It is also necessary to compare
the similarity between the newly generated individual and the
previously generated offspring. An individual will be added
to the offspring only if the minimum distance between the

current individual and the generated offspring is greater than
zero [10].

IV. EXPERIMENT DESIGN

A. Simulation Model

In reference to widely used DFJSS instances [16], [40], [41],
the scenario involves processing 5000 jobs across ten machines.
Jobs arrive according to a Poisson process with a rate of λ.
Each job consists of a random number of operations, uniformly
distributed between 1 and 10. Each operation is assigned to
a random number of candidate machines, also uniformly dis-
tributed between 1 and 10. Processing times are drawn from
a uniform discrete distribution ranging from 1 to 99. The due
date for each job is set to 1.5 times its processing time. Job
importance (weights) follows the distribution: 1 (20%), 2 (60%),
and 4 (20%) [21]. Each training instance is generated uniquely
by assigning a new random seed for the DFJSS simulation [42].
A utilization-level parameter p is employed to simulate job-
shop scenarios with varying characteristics [43]. This parameter
represents the proportion of time a machine is expected to be
busy, adjusted by λ in the Poisson process. It is calculated using
equation (2), where μ denotes the average processing time and
PM is the probability of a machine being visited by a job. For
instance, PM is 2/10 if each job has two operations. A higher
value of the utilization level indicates a busier job shop.

λ = μ ∗ PM/p. (2)

The initial 1000 jobs are designated as warm-up jobs and are
excluded from the objective calculations to establish steady-
state performance. Fitness values are calculated based on the
subsequent 5000 jobs. The simulation ends upon the completion
of the 6000th job.

B. Design of Comparisons

In this study, we conduct three sets of comparison experiments
to evaluate the performance of our proposed algorithm. In the
following part, the algorithm that uses niching strategy is named
NSGP-II-N, the algorithm that uses self-adaptive phenotypic
characterization similarity strategy is named NSGP-II-A, and
the algorithm that uses both strategies is named NSGP-II-NA.
Six pairs of conflicting objectives (Fmax and WTmax, Tmax
and WFmax, Fmean and WTmean, Fmax and Fmean, Fmax
and WFmean, and Fmean and WFmean) [10], [16] are formed
as multi-objective scenarios along with the utilization level (i.e.,
0.85 and 0.95) to verify the effectiveness of the algorithms.

1) Comparison of the overall performance: In order to evalu-
ate the overall performance of the proposed algorithm on
solving MO-DFJSS, NSGP-II and NSGP-II-N are com-
pared with NSGP-II-NA.

2) Comparison with manual rules: To further demonstrate
the effectiveness of the proposed algorithm, NSGP-II-NA
is compared with eight commonly used, manually de-
signed scheduling rules based on four sequencing and two
routing heuristics [44].
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TABLE II
THE GP TERMINAL AND FUNCTION SET FOR DFJSS

TABLE III
THE PARAMETER SETTINGS OF GP

3) Performance of the elite individual guided dynamic space
optimization strategy: To demonstrate the effectiveness
of the proposed elite individual guided dynamic space
optimization strategy in improving the effectiveness of
the algorithm, we compare the experimental results of
NSGP-II-N and NSGP-II-NA.

4) Performance of the niching strategy: The second set of ex-
periments aims to validate the effectiveness of the niching
strategy in controlling rule size of Pareto fronts. So, we
compute the average run size of Pareto fronts obtained by
NSGP-II-A and NSGP-NA to verify the effectiveness of
the strategy.

C. Parameter Settings

In the experiments, the terminal and function sets of GP are
shown in Table II. The terminal set consists of the features related
to machines (e.g., NIQ, WIQ, and MWT), operations (e.g., PT,
NPT, and OWT), jobs (e.g., WKR, NOR, W, and TIS). In the
function set, the arithmetic operators take two arguments. The
“/” operator is protected and returns 1 if divided by zero. The
functions “max” and “min” take two arguments and return the
maximum and minimum of their arguments, respectively [45].
The GP parameter settings are shown in Table III [10].

V. RESULTS AND DISCUSSION

For every scenario, we conduct 30 independent runs and apply
Friedman’s test and Wilcoxon ranksum test with a significance
level of 0.05 to determine statistical significance. The evaluation

metrics used include hypervolume (HV) [46] and inverted gener-
ational distance (IGD) [47]. A higher HV value and a lower IGD
value signify better performance. Since the actual Pareto fronts
are not available for our problem, we construct an approximation
by combining the best solutions from all algorithms, which we
then use it to compute the IGD.

A. Quality of Learned Scheduling Heuristics

Table IV presents the mean and standard deviation of HV and
IGD values and Friedman’s test result for both training and test
instances. The symbols “↑ “, “↓ ”, and “≈” indicate that the
two algorithms being compared are statistically better, worse or
similar. An algorithm is compared with all algorithms at its left
one by one. “Win, Draw, Lose” is the number of scenarios that
the proposed algorithm is better, similar, or worse than NSGP-
II [37].

According to Table IV, the overall results show that NGSP-
II-NA outperforms NSGP-II and NSGP-II-N, exhibiting higher
HV values and lower IGD values. This means that NSGP-II-
NA is capable of producing better Pareto fronts and offering
more diverse solutions in most scenarios. From the compar-
ison results of NSGP-II and NSGP-II-N, it can be seen that
in terms of HV and IGD values, the performance of the two
is similar. However, according to the results of Friedman’s
test, NSGP-II-N outperforms NSGP-II in eight out of twelve
scenarios, which suggests that the niching strategy can have a
positive impact on the performance of the algorithm. In addition,
the results of Friedman’s test and Wilcoxon ranksum test of
NSGP-II-NA are both better than NSGP-II-N. This demon-
strates the the superiority of the elite individual guided dynamic
space optimization strategy in enhancing the performance of the
algorithm.

Based on the results presented in Table IV, it is evident
that NSGP-II-N performs similarly to NSGP-II in enhancing
algorithmic performance. Therefore, when plotting the violin
plots to analyze the distribution of solutions, we focused solely
on comparing NSGP-II and NSGP-II-NA. Fig. 6 is a violin plot
of the HV values of NSGP-II and NSGP-II-NA for the last
generation of Pareto fronts during the test process in twelve
scenarios. Fig. 6 shows that the values of HV of Pareto fronts
obtained by NSGP-II-NA are overall larger than that of NSGP-II
for different scenarios as compared to NSGP-II. This indicates
that NSGP-II-NA has bigger HV as compared to NSGP-II. Fig. 7
is a violin plot of the IGD values of NSGP-II and NSGP-II-NA
during the test process in twelve scenarios. As can be seen
from Fig. 7, the overall IGD values distribution of NSGP-II-NA
are smaller than that of NSGP-II, i.e., the solution found by
NSGP-II-NA is of higher quality. Consequently, NSGP-II-NA
outperforms NSGP-II both from the perspective of the volume of
the non-dominated portion space found and from the perspective
of the quality of the solutions, reflecting the superior effec-
tiveness of NSGP-II-NA, validating its robustness in various
scheduling scenarios.

Furthermore, to provide a more intuitive and interpretable
evaluation, we compare NSGP-II-NA with eight commonly used
manually designed scheduling rules which are constructed from
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TABLE IV
THE MEAN (STANDARD DEVIATION) OF THE HV AND IGD AND FRIEDMAN’S TEST RESULT ON TRAINING INSTANCE AND TEST INSTANCE OF NSGP-II, NSGP-II-N

AND NSGP-II-NA BASED ON 30 INDEPENDENT RUNS IN TWELVE MULTI-OBJECTIVE SCENARIOS WHICH ARE REPRESENTED BY THE OBJECTIVE AND

UTILISATION LEVEL

combinations of sequencing and routing rules that are selected
based on their good performance as shown in [48].

The sequencing heuristics include:
� First-In-First-Out – prioritizing jobs that arrived earliest

(FIFO),
� Most Operation Number Remaining – selecting jobs

with the most remaining operations (MOPNR),
� Least Work Remaining – favoring jobs with the smallest

remaining processing workload (LWKR), and
� Most Work Remaining – choosing jobs with the largest

remaining workload (MWKR).
The routing heuristics include:
� Shortest Processing Time – assigning jobs to machines

with the least processing time (SPT), and
� Earliest End Time – assigning jobs to machines that can

complete the job the earliest (EET).
The “←” in Table V indicates that the current value is the

same as the value in the previous column in the same row. As

can be seen from Table V, the algorithm proposed in this paper
outperforms all manual rule combinations in all scenarios. This
further validates the effectiveness and generalisation capability
of the evolved scheduling rules produced by NSGP-II-NA.

B. Quality of Learned Scheduling Heuristics in the
Evolutionary Process

Figs. 8 and 9 show the violin plots of the HV and IGD values of
NSGP-II and NSGP-II-NA during the training process in twelve
multi-objective scenarios. Throughout the evolutionary process,
NSGP-II-NA consistently demonstrates superior effectiveness
compared to NSGP-II. In terms of HV, NSGP-II-NA achieves
higher values, indicating that it effectively finds a diverse set of
high-quality solutions across most scenarios. This advantage is
evident from the early generations and persists through to the
later generations. Similarly, IGD values reveal that NSGP-II-NA
consistently finds solutions closer to the approximated true
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Fig. 6. Violin plots of HV values of the 12 multi-objective test scenarios for
NSGP-II and NSGP-II-NA.

Fig. 7. Violin plots of IGD values of the 12 multi-objective test scenarios for
NSGP-II and NSGP-II-NA.

Pareto fronts compared to NSGP-II. Analyzing the effectiveness
changes from the early to later generations during evolution ver-
ifies the effectiveness of NSGP-II-NA in learning high-quality
scheduling heuristics. This analysis highlights NSGP-II-NA’s
capability to develop superior scheduling heuristics throughout
the evolutionary process.

C. Learned Pareto Fronts

Fig. 10 shows the learned Pareto fronts with the medium HV
value of NSGP-II and NSGP-II-NA in twelve multi-objective

Fig. 8. The violin plots of the HV values of NSGP-II and NSGP-II-NA on
the training instances at generations 0, 10, 20, 30, 40, and 50, in twelve multi-
objective scenarios.

scenarios. We can see that the Pareto fronts found by NSGP-II are
dominated by the ones found by NSGP-II-NA in all scenarios,
i.e., NSGP-II-NA can always find better Pareto fronts. This
shows the effectiveness of NSGP-II-NA in learning better Pareto
fronts.

D. Rule Size

To validate the effectiveness of the niching strategy in en-
hancing the interpretability of the Pareto fronts obtained by the
proposed algorithm, we conduct a comparison between the rule
sizes of the Pareto fronts achieved by NSGP-II-A and NSGP-II-
NA. The only difference between NSGP-II-A and NSGP-II-NA
is whether the niching strategy is used. Fig. 11 shows a scatter-
plot of the average rule size of the Pareto fronts plotted against its
corresponding average fitness values during each run of the 12
multi-objective scenarios during test process. It can be seen that
in most of the scenarios, the rule sizes obtained by NSGP-II-NA
are smaller than those obtained by NSGP-II-A for similar fitness
values, and in only a few scenarios (i.e., <Fmean-WTmean,
0.85>, <Fmax-Fmean, 0.85> and <Fmax-WFmean, 0.85>),
there is no significant difference in the rule sizes obtained by
NSGP-II-NA and NSGP-II-A. Therefore, it can be concluded
that the niching strategy plays a positive role in improving the
interpretability of Pareto fronts obtained by NSGP-II-NA.

E. Population Diversity

This paper uses Entropy to measure the diversity of indi-
viduals of GP in DFJSS [49]. The entropy is calculated as
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Fig. 9. The violin plots of the IGD values of NSGP-II and NSGP-II-NA on
the training instances at generations 0, 10, 20, 30, 40, and 50, in twelve multi-
objective scenarios.

Fig. 10. The learned Pareto fronts of NSGP-II and NSGP-II-NA in twelve
multi-objective scenarios.

entropy = −∑
c∈C(|c|/|inds|) log(|c|/|inds|), where C repre-

sents the set of clusters derived from the DBScan clustering
algorithm. A higher entropy value signifies greater diversity
among individuals for a given task.

Fig. 11. The average rule size of the Pareto fronts of NSGP-II-A and NSGP-
II-NA on the test instances at generations 0, 10, 20, 30, 40, and 50, in twelve
multi-objective scenarios for each run.

In order to verify the effectiveness of each of our pro-
posed strategies in enhancing population diversity separately,
we compared and analyzed four algorithms, NSGP-II, NSGP-
II-A, NSGP-II-N and NSGP-II-NA. Fig. 12 shows the curves
of entropy values of NSGP-II, NSGP-II-A, NSGP-II-N, and
NSGP-II-NA over 30 independent runs in twelve multi-objective
scenarios. The results show that NSGP-II-NA has the largest
diversity, followed by NSGP-A and NSGP-II-N, and NSGP-II
has the relatively smallest diversity. All of them, except basic
compared NSGP-II, are effective in maintaining population
diversity throughout the evolutionary process. NSGP-II-A only
uses the elite individual guided dynamic space optimization
strategy described above, in order to avoid generating offspring
individuals that are too similar, we require that the PCs of
individuals in the offspring are different from each other. The
result shows that it’s a powerful way to improve population
diversity. Meanwhile, NSGP-II-N only uses the niching strategy,
we group individuals based on their PCs, and only one of the
individuals in each group will be selected as a representative to
participate in the breeding process. By observing the diversity
curve of NSGP-II-N, it can be proved that NSGP-II-N is effective
in maintaining population diversity throughout the evolutionary
process. Finally, the diversity curve of NSGP-II-NA shows that
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Fig. 12. The curves of entropy values of NSGP-II, NSGP-II-A, NSGP-II-N,
and NSGP-II-NA over 30 independent runs in twelve multi-objective scenarios.

the combination of the two strategies makes the population
diversity reach a better level.

VI. FURTHER ANALYSIS

A. Number of Non-Dominated Individuals

Fig. 13 illustrates the curves depicting the average number
of non-dominated individuals of NSGP-II and NSGP-II-NA
across 30 independent runs in twelve multi-objective scenarios.
The results demonstrate that both NSGP-II and NSGP-II-NA
can progressively learn an increasing number of nondominated
solutions over successive generations. This trend underscores
the efficiency of employing multi-objective GP for deriving
scheduling heuristics in MO-DFJSS.

Notably, NSGP-II-NA produces fewer non-dominated solu-
tions compared to NSGP-II. However, considering the effective-
ness of NSGP-II-NA, if an algorithm with fewer non-dominated
individuals achieves a significantly better HV, it suggests that
the algorithm is effectively capturing the most critical trade-offs.
While this approach may lead to reduced diversity in the solution
set, it also reflects a focus on high-quality solutions that align
with specific problem priorities.

B. Population Size After Niching Process

In order to analyze the trend of population size after the nich-
ing process, we calculate and analyze the average population size
of each generation after the niching process in the NSGP-II-NA
algorithm. Fig. 14 shows the average size of the population at
each generation in NSGP-II and after the niching process the av-
erage size of the population at each generation in NSGP-II-NA.

Fig. 13. The curves of the average number of non-dominated individuals of
NSGP-II and NSGP-II-NA along with generations over 30 independent runs in
twelve multi-objective scenarios.

Fig. 14. The average size of population after the niching process of NSGP-II-
NA along with generations over 30 independent runs in twelve multi-objective
scenarios. The red points represent the peak points of the population size of
NSGP-II-NA.
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Fig. 15. The average self-adaptive distance of NSGP-II-NA afterhgenerations
over 30 independent runs in twelve multi-objective scenarios.

It can be seen that at the beginning of evolution in NSGP-II-NA,
the average size of the population gradually increases, i.e., the
number of individuals with similar behavior gradually decreases.
When the average size of the population approximates the peak
of the average size, the population size stabilizes around that
value, which indicates that the population is maintained in a
stable state with high diversity. These observations highlight the
effectiveness of NSGP-II-NA in the evolutionary search process,
ensuring thorough exploration of the search space and improv-
ing the likelihood of finding optimal solutions by maintaining
population diversity and avoiding premature convergence.

C. Self-Adaptive Distance

In order to analyze the trend of the size of the constrained
search space during the dynamically guided search by the elite
individual guided dynamic space optimization strategy. And
the self-adaptive distance can reflect the size of the range to
some extent, we computed the average self-adaptive distance
obtained in NSGP-II-NA. Fig. 15 shows the average distance
per generation after 5 generations, calculated from the individual
information in the archive over 30 independent runs in twelve
multi-objective scenarios. By examining the data presented in
Fig. 15, we can see the similarity distance obtained from the
information of individuals within the archive is high at the
beginning stage of evolutionary process, indicating significant
population diversity. As generations progress, the similarity
distance decreases and stabilizes, suggesting that the algorithm
has adapted dynamically to the search space and allow the
algorithm can search in a smaller space. Combined with the good

TABLE VI
MEAN(STANDARD DEVIATION) OF TRAINING TIME (IN MINUTES) OF NSGP-II

AND NSGP-II-NA ACCORDING TO 30 INDEPENDENT RUNS OF TWELVE

SCENARIOS

performance demonstrated in the experimental results of NSGP-
II-NA, this implies the switch from a fixed to a median-based
α allows the search to focus more around the more valuable
regions presented in the archive, improving the efficiency of
finding optimal solutions. The consistent pattern across various
fitness metrics demonstrates the strategy’s robustness and its
ability to balance exploration and exploitation. The decreasing
similarity distance after the initial generations indicates effective
convergence towards high-quality solutions while maintaining
sufficient diversity to avoid premature convergence. So, we
can conclude that the elite individual guided dynamic space
optimization strategy in NSGP-II-NA effectively enhances the
evolutionary search process.

D. Training Time

Table VI shows the mean and standard deviation of training
time (in minutes) of NSGP-II and NSGP-II-NA in twelve sce-
narios over 30 independent runs. The results indicate no signifi-
cant differences between them. This suggests that the proposed
NSGP-II-NA enhances the effectiveness of learning scheduling
heuristics without incurring additional computational costs. In
other words, NSGP-II-NA achieves better performance in a
similar time, confirming its efficiency.

E. Semantic Analysis of Evolved Policies

Figs. 16 and 17 show the tree structures of one of the best pair
of routing rule and the sequencing rule from a scheduling heuris-
tic obtained by NSGP-II-NA in<Fmax-Fmean, 0.95> scenario.

The routing rule is a combination of five terminals (WKR,
MWT, NIQ, PT, and WIQ), where WKR is the most frequently
used terminal (used 4 times). It is followed by MWT, which is
used 2 times. NIQ, PT, and WIQ are used only once. The routing
rule (Fig. 16) can be simplified to R0, as shown in equation (3).

R0 = S1 ∗ S2 + S3 (3)

where

S1 = WKR/(WKR+MWT +WIQ) (4)

S2 = max {MWT,WKR} (5)
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Fig. 16. Example of the best learned routing rule for<Fmax-Fmean, 0.95> by
NSGP-II-NA in scenario 7.

Fig. 17. Example of the best learned sequencing rule for <Fmax-Fmean,
0.95> by NSGP-II-NA in scenario 7.

if S2 = WKR then
if S3 = WKR then
R0 = WKR ∗ (1 + S1)

else
R0 = S1 ∗WKR+NIQ+ PT

end if
else

if S3 = WKR then
R0 = S1 ∗MWT +WKR

else
R0 = S1 ∗MWT +NIQ+ PT

end if
end if

S3 = min {WKR,NIQ+ PT} (6)

To make it clearer,R0 can be converted to the following IF-ELSE
format rule set.

From the four decision expressions for R0 deduced above,
we can see that WKR is involved in decision making in three
out of the four expressions. It is easy to see that S1 ≤ 1 from
equation (4). Therefore, in two of the three expressions WKR

is the key variable in the decision. Also NIQ and PT play an
important decision-making role in two of these expressions.

The sequencing rule is a combination of eight terminals
(WKR, TIS, WIQ, MWT, NOR, W, OWT, and NIQ). MWT
is the most frequently used terminal, which is used 6 times. It is
followed by WKR, W and NIQ, which are used 3 times. WIQ
and OWT are used 2 times. TIS and NOR are used only once.
The frequency of terminal usage shows that for sequencing rule,
MWT plays an important role.

These observations align well with practical expectations in
MO-DFJSS. For instance, MWT is a direct indicator of machine
utilization and system congestion, which are crucial for effi-
cient scheduling. Similarly, WKR reflects the workload balance
across jobs, making it vital for effective decision-making. The
frequent use of NIQ and PT further supports this reasoning, as
the number of operations in a queue and the processing time
are essential for estimating the load and adjusting schedules
dynamically. Collectively, these insights demonstrate that the
identified rules incorporate key scheduling factors, making them
both intuitive and practically relevant.

VII. CONCLUSION

In this paper, we introduced a novel approach to enhancing the
performance of GP in MO-DFJSS by integrating an elite archive
and a niching strategy. Our extensive experiments on multiple
MO-DFJSS scenarios validated the superiority of NSGP-II-NA
over existing approaches, particularly in terms of HV and IGD
metrics. Our algorithm, NSGP-II-NA, demonstrated significant
improvements in both the diversity and quality of the generated
Pareto fronts by leveraging non-dominated individuals to guide
the evolutionary search dynamically. The elite archive allowed
us to effectively preserve and utilize high quality solutions
from previous generations, leading to better convergence and
robustness across different scenarios.

The niching strategy based on the behavior of individuals
and group selection not only controlled the size of the evolved
scheduling rules but also improved the interpretability of the
resulting Pareto fronts. This balance between solution quality
and rule simplicity is crucial for practical applications where
the clarity of scheduling heuristics is essential.

The proposed NSGP-II-NA algorithm sets a strong foundation
for future work in the field of evolutionary scheduling. The
integration of dynamic search guidance and niching strategies
offers promising directions for enhancing the efficiency and ef-
fectiveness of GP in solving complex, real-world multiobjective
scheduling problems.

Future research will focus on further optimising the nich-
ing strategy and exploring additional dynamic events within
the job shop environment to expand the applicability of this
approach.
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