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Abstract—Genetic programming (GP) has been widely applied
to evolve scheduling heuristics for dynamic flexible job shop
scheduling (DFJSS). However, the evaluation of GP individuals
is computationally expensive, especially in large scale DFJSS
scenarios. A k-nearest neighbor (KNN) based surrogate has been
successfully used to reduce individual evaluation time for GP
by predicting the fitness of an individual with the most similar
sample in KNN. Particularly, the phenotypes of GP individuals
have been utilised to generate samples for KNN-based surrogates
with a precondition that the fitness of individuals with the same
phenotype is the same or similar. However, their real fitness may
differ greatly due to different input decision situations for fitness
calculations in DFJSS. Thus, only considering phenotypes of GP
individuals to extract samples could decrease the accuracy of
KNN surrogates. This paper proposes a KNN-based surrogate
assisted GP algorithm by considering both the phenotype and
genotype of GP individuals to generate samples. Specifically,
a genotypic characterisation based on terminal frequency is
designed to measure the similarity of individual genotypes. The
results show that with the same training time, the proposed algo-
rithm can converge fast and achieve better scheduling heuristics
than the state-of-the-art algorithms in most examined scenarios.
With the same number of generations, the proposed algorithm
can obtain comparable performance but only needs about one
third training time of baseline GP. The effectiveness of the
proposed algorithm is also verified from different aspects, e.g.,
relation between genotype correlation and fitness difference of
individuals, and population diversity.

Impact Statement—Genetic programming is a widely used
approach for learning scheduling heuristics in scheduling prob-
lems. However, the training process is often time-consuming
due to extensive workshop simulations. Although phenotype-
based surrogate models have been proposed to estimate the
quality of heuristics and reduce training time, the samples
used in these models may lack representativeness, leading to
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reduced prediction accuracy. This paper proposes a surrogate
sample selection method that considers both the phenotype and
genotype of scheduling heuristics. By applying this method,
the training time can be reduced by approximately 30–35%,
enabling industrial decision-makers to obtain effective scheduling
solutions more efficiently and enhance production performance.
Furthermore, the method is generic and applicable to a wide
range of problems.

Index Terms—Dynamic Flexible Job Shop Scheduling, Surro-
gate Samples, Genetic Programming, Genotype and Phenotype.

I. Introduction

D ynamic flexible job shop scheduling (DFJSS) [1] is
an important combinatorial optimisation problem, which

aims to solve challenging and practical scheduling tasks, such
as resource allocation in grid computing [2] and operation
processing in manufacturing [3]. In DFJSS, some jobs need
to be effectively processed by several machines in dynamic
situations. Compared to traditional job shop scheduling (JSS)
[4], DFJSS is more complex due to interactions among multi-
ple decision-making processes in dynamic environments, such
as the arrival of new jobs [5]. Two decisions need be made
simultaneously: machine assignment, which assigns a ready
operation to a machine, and operation sequencing, which
selects the next operation for an idle machine.

DFJSS is an NP-hard problem [6]. Exact optimisation
approaches [7], [8] and Approximate solution optimisation
approaches [9], [10], perform poorly in DFJSS since they
are not able to handle dynamic events efficiently. Scheduling
heuristics [11], e.g., dispatching rules [12], [13], utilise priority
functions to rank machines or operations at decision points
to generate solutions for DFJSS efficiently. Specifically, in
DFJSS, a scheduling heuristic comprises a sequencing rule
to determine the order of operations for an idle machine
and a routing rule to assign operations to different machines.
However, the design of scheduling heuristics normally needs
domain expertise, prior experience, and an expensive trial
and error process. Moreover, manually designed scheduling
heuristics are often effective only in specific scenarios. GP [14]
has been widely used for automatic generation of scheduling
heuristics in DFJSS [15]. However, the evaluations of GP
individuals for DFJSS are normally based on simulations,
which are time-consuming, especially in large scale scenarios.

Surrogate models [16] have been extensively applied to
reduce computation cost in evolutionary algorithms including
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GP in DFJSS [17]. Unlike general evolutionary algorithms
with vector-based representation, GP has a tree-based repre-
sentation which makes it not straightforward to build surro-
gates. There are two commonly used surrogates in JSS. One
is simulation simplification based, where the surrogate is built
by a simplified simulation with a smaller number of jobs
and machines than the original simulation. The other is K-
nearest neighbour (KNN) based surrogates with phenotypic
characterisation (PC), where KNN is used to find the most
similar sample in the surrogate by calculating the difference
of PCs. In this paper, we choose KNN as the surrogate
model due to three reasons. Firstly, KNN-based surrogate
is easy to build. Secondly, KNN is more efficient than the
simplified simulation, and the prediction of fitness is less time-
consuming. Lastly, the sample in the KNN-based surrogate is
based purely on phenotype, and we found only considering
phenotype in the KNN-based surrogate has limitations for
fitness prediction. This is the main reason for choosing KNN,
and we aim to investigate whether further combining genotype
information can help improve the surrogate accuracy. In KNN-
based surrogate, each GP individual’s PC is a vector of ranks
of machines and operations in fixed decision scenarios, which
connects closely to its behaviour for decision making. Thus,
individuals with the same PC tend to have same or similar
fitness. The surrogate samples consist of PCs and correspond-
ing fitness obtained by real evaluations of GP individuals. For
predicting the fitness of one individual, KNN will find the
most similar sample based on PC, and this sample’s fitness
will be the estimated fitness of the GP individual.

The samples are critical for the success of KNN-based
surrogates assisted GP in DFJSS. Intuitively, the samples of
KNN-based surrogates that can cover diverse GP individual
behaviours will have a better accuracy to predict fitness for
individuals. Zhu et al. [18] proposed to group GP individuals
based on unique PCs, and then selected the smallest individual
in each group for real evaluations as samples to build a
surrogate. Then, this surrogate will be used to estimate fitness
of the remaining individuals in the current generation. In
this way, the training time can be significantly reduced by
decreasing the number of truly evaluated individuals. However,
it relies on the assumption that individuals with the same
phenotype exhibit similar fitness. Our observations, however,
indicate that individuals with identical phenotypes may still
have notably different fitness values. This discrepancy arises
because the decision scenarios used to obtain PCs are often
fewer and distinct from the scenarios used in simulations for
actual fitness evaluations. Consequently, a single individual
may not effectively represent with the same PC, potentially
impacting surrogate accuracy. Additionally, using a large num-
ber of decision scenarios to calculate PCs for GP individuals
in KNN surrogates is impractical, as it would considerably
reduce KNN surrogate efficiency due to the computationally
expensive distance calculations required for high-dimensional
PC vectors. Therefore, exploring a more advanced, sample-
aware surrogate-assisted GP approach for DFJSS is a promis-
ing direction for future work.

Similar to species in the natural environment, the individuals
of nature-inspired GP have both its phenotypes and genotypes

[19], [20]. The phenotype of a GP individual normally con-
nects closely its behaviour, e.g., indicated by PC in DFJSS
[21], [22]. The genotype of a GP individual normally refers
to its structure including original genetic materials [23]. If the
phenotype and genotype of two individuals are similar, their
fitness have more potential to be closer. Thus, we consider
adding the genotype factor to select more comprehensive
surrogate sample.

The goal of this article is to improve upon the efficiency and
effectiveness of the GP algorithm for automatically evolving
scheduling heuristics in DFJSS by developing an effective
surrogate sample selection strategy. The proposed algorithm is
expected to both evolve promising scheduling heuristics and
reduce the training time of GP for DFJSS. Specifically, the
contributions of this paper are:

1) We have proposed a new effective surrogate-assisted GP
algorithm. Specifically, instead of utilising phenotype
information of GP individuals only [18], we have de-
veloped a novel sample selection strategy for building
KNN-based surrogates in DFJSS by considering both
the phenotypes and genotypes of GP individuals. The
results show that the proposed strategy can distinguish
representative samples better to improve the surrogate
accuracy. This is the first time to design a surrogate
strategy that considers both the phenotype and genotype
of a GP individual, and we have confirmed that using
both phenotype and genotype is helpful for distinguish-
ing GP individuals with flexible representation.

2) We have designed an effective way to represent the
genotype characterisation of a GP individual by con-
sidering the frequency of features. The results show
that the proposed novel way of representing genotype
of variable-length GP programs can successfully further
distinguish GP individuals with the same phenotype. In
addition, The idea of designing genotype characterisa-
tion is generic, and is possible to be applied to other
combinatorial optimisation problems.

3) The advantage of our proposed algorithm over the other
algorithms on unseen test scenarios demonstrates the
effectiveness and efficiency of the designed sample
selection strategy used in GP, the potential to achieve
smaller rules, and the ability to maintain a proper popu-
lation diversity. In addition, these analyses have shown
how the phenotype and genotype change along with
generations, which provides a better understanding of
GP Individuals and an available guidance for designing
genotype and phenotype related strategies.

II. Background

A. Dynamic Flexible Job Shop Scheduling

The goal of DFJSS is to optimise the allocation of machine
resources in a job shop. In DFJSS, there are m machines
M = {M1,M2, ...,Mm} that are required to process n
jobs J = {J1, J2, ..., Jn}. Every job has a sequence of
operations Oj = {Oj1, Oj2, ..., Ojlj} that must be performed
in a certain order. Each operation Oji can be handled on
several machines M(Oji) ⊆ π(Oji). Machine assignment and
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operation sequencing are required to be made concurrently
under dynamic situations. This paper focuses on a common
dynamic event, i.e., new job arrival. The information regarding
a new job remains unknown until it is delivered to the shop
floor. In this paper, we aim to minimise two commonly used
objectives, respectively, which are actually the fitness of GP
individuals. A smaller fitness indicates a better individual.
Their calculations are demonstrated as follows.

Mean-flowtime (Fmean):

1

n

n∑
j=1

(Cj − rj) (1)

Mean-weighted-tardiness (WTmean):

1

n

n∑
j=1

max{0, Cj − dj} · wj (2)

where:
• n denotes the number of jobs.
• rj represents the release time of Jj .
• Cj is the completion time of a job Jj .
• dj represents the due date of Jj .
• wj is the weight of Jj .
The mathematical model of the DFJSS problem is shown

as follows:
min Fmean,WTmean (3)

The principal constraints in DFJSS are formulated as fol-
lows:

1. Precedence Constraint: An operation Oji cannot start
until its preceding operation Oj(i−1) is completed.

Sji ≥ Cj(i−1), ∀j, i > 1 (4)

where Sji is the start time of Oji and Cj(i−1) is the
completion time of Oj(i−1).

2. Exclusive Assignment Constraint: Each operation Oji

must be assigned to only one machine Mk from the set of
candidate machines.

xjik ∈ {0, 1},
∑

k∈M(Oji)

xjik = 1, ∀j, i (5)

where xjik = 1 if operation Oji is assigned to machine Mk;
otherwise, xjik = 0.

3. Non-overlapping Constraint: A machine Mk can only
process one operation at a time.

Sji ≥ Cpq or Spq ≥ Cji, ∀(j, i) ̸= (p, q), ∀k (6)

where Sji and Cji represent the start and completion times
of Oji, and Spq and Cpq represent the start and completion
times of Opq if both are assigned to machine Mk.

4. Non-interruptible Constraint: Once an operation Oji

starts on a machine Mk, it cannot be interrupted until its
completion.

Cji = Sji + pji, ∀j, i (7)

where pji is the processing time of operation Oji.
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Fig. 1. The flowchart of GP.
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Fig. 2. An example of a GP individual with multi-tree representation for
DFJSS.

B. Genetic Programming for DFJSS

GP has been successfully used to learn scheduling heuristics
for JSS problems as a hyper-heuristic approach [24]–[29]. The
success of GP is attributed to four main reasons. First, the
flexible representation of GP can denote various scheduling
heuristics for JSS. Different genotypes can represent schedul-
ing heuristics with the same behavior, which provides a
more diverse set of genetic materials to evolve promising
scheduling heuristics. Second, the structures of heuristics (i.e.,
the optimal structure is normally unknown) are not required to
be predefined. Third, GP programs [30]–[32] can be served as
priority functions to rank machines or operations efficiently
in DFJSS. Finally, the tree based scheduling heuristics tend
to be easier to be interpreted, which is important for actual
production scheduling.

Fig. 1 shows the flowchart of GP [33]. The main compo-
nents in GP are initialisation, evaluation, parent selection and
evolution. GP starts with a population of randomly generated
individuals, whose goodness is measured by individual evalu-
ation. While the stopping condition is not reached, offspring
are generated with selected parents via parent selection by the
genetic operators (i.e., crossover, mutation and reproduction)
to form a new population. Otherwise, GP algorithm will output
the best scheduling heuristic so far.

1) Representation: This paper applies multi-tree representa-
tion to learn scheduling heuristics for DFJSS [33]. Specifically,
each GP individual consists of two trees, as shown in Fig. 2
(i.e., one is a routing rule, and the other is a sequencing rule).
The fitness of an individual is determined by the cooperation
between these two rules. The routing rule represents a priority
function of PT * (NIQ - NOR), where PT refers to the process-
ing time required to operate on the specified machine, NIQ is
the number of operations in the queue, and NOR denotes the
number of operations remaining for a job. The sequencing rule
is defined as NIQ / NPT, with NPT representing the processing
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TABLE I
An example of the decision making of the routing rule PT * (NIQ -

NOR) at a routing decision point with three machines.

Machine
Number (PT

Feature
NIQ NOR)

Priority
Value

Chosen
Machine

M1 100 40 25 1500
M2 200 65 40 5000 M3

M3 150 30 25 750

time of the subsequent operation.
2) Decision Marking: Assume a job can be handled by three

candidate machines (i.e., M1, M2 and M3) in Table I. Given
the feature values of three machines, the priority values of M1,
M2 and M3 are 1500, 5000 and 750, respectively. According
to the priority function values, M3 will process the job (i.e.,
a smaller function value represents a higher priority in this
paper). Similarly, the sequencing rule will choose the operation
with the highest priority for processing on an idle machine.

III. Related Work

A. Surrogate-Assisted GP for Job Shop Scheduling

Surrogate-assisted evolutionary algorithm has been widely
studied to deal with expensive fitness evaluations [34]–[37]
in the past decades. The fundamental idea of surrogates is
to design a simple model to predict the fitness of individuals
instead of using the expensive real evaluations.

a) Building Surrogates to Predict the Fitness of Indi-
viduals: We group the existing surrogate-assisted GP in job
shop scheduling into two categories. One is to predict the
fitness of individuals by finding the most similar sample
in the KNN-based surrogate model [38]. The other is to
develop a simplified simulation model (i.e., the simulation
situation with few machines and jobs) as a surrogate model
to predict the fitness of individuals [17], [39], [40]. KNN-
based surrogate models are more efficient than the surrogate
models via simplified simulation since there are only simple
calculations with the samples in KNN-based surrogate models.

b) Usages of Surrogates: There are two commonly used
ways. First, most existing studies [39], [41], [42] focus on
using surrogates as a preselection technique to hasten the con-
vergence of GP by cheaply evaluating more individuals, and
only the selected individuals will move to the next generation
and get their real fitness. This way focuses on the effectiveness
improvement with offspring preselection, and actually does
not shorten the training time. Second, surrogates are used to
directly reduce GP’s training time in job shop scheduling [18],
[40]. Various surrogates with different accuracy were designed
and used at different generations to reduce the training time
without sacrificing the performance of GP algorithm [40]. A
KNN-based sample aware algorithm was studied in [18] to not
only reduce the training time but also improve the effectiveness
of learned scheduling heuristics. However, [18] considers
the phenotype of GP individuals only for choosing samples
for KNN-based surrogates which may limit its performance
since GP individuals with the same phenotype can have quite
different fitness.

TABLE II
An example of the calculation of the phenotypic characterisation

of a routing rule across three decision scenarios and each involving
three candidate machines.

Decision
Situation

Rank Obtained by
Reference Rule

Rank Obtained by
a Routing Rule PCi

1(M1) 2 1
1(M2) 1 3 2
1(M3) 3 2

2(M1) 2 3
2(M2) 3 1 3
2(M3) 1 2

3(M1) 2 3
3(M2) 3 2 1
3(M3) 1 1

B. Fitness Prediction with KNN in GP

This paper chooses the efficient KNN-based surrogate as
a baseline. The basic information of using KNN to estimate
fitness of GP individuals is shown below.

a) Phenotypic Characterisation: Tree-based GP individ-
uals can be efficiently represented as vectors through the use
of PC for the construction of KNN-based surrogates. The
PC of a GP individual is a numeric vector that contains
the rankings of machines and operations in various routing
and sequencing decision scenarios, representing the decision
behaviour of a pair of scheduling rules. Specifically, an ex-
amined routing or sequencing rule selects the highest-priority
machine or operation, and each dimension of the PC represents
the corresponding rank of the selected machine or operation
according to a fixed reference rule (i.e., a manual rule). Table II
illustrates the calculation of a routing rule’s PC using three
decision scenarios, each consisting of three machines. For
example, in the first scenario, M1 is assigned the highest
priority according to the examined routing rule. Then, the
rank of M1 based on the reference rule (i.e., 2) is set as the
PC value in the first scenario. Similarly, the PC values for
other scenarios can be determined in the same way. Finally,
PC of the examined routing rule is [2, 3, 1]. The PC for a
sequencing rule can be determined similarly, but based on
sequencing decision scenarios. In this way, each individual can
obtain a PC to reflect its behaviours for decision marking. Note
that 20 routing decision situations and 20 sequencing decision
situations are involved to construct a PC as a 40-dimensional
numerical vector. The decision situations are fixed to calculate
the PCs of all individuals. More details can be found in [42].

b) Fitness Prediction: The KNN-based surrogate samples
are actually from individuals in the previous generation. One
sample consists of a PC vector and a fitness value of an
individual. Individuals with close PC vectors show similar
decision behaviour, which leads to comparable fitness. Fig. 3
illustrates how the KNN-based surrogate works. When using
this surrogate to predict the fitness of a new individual
ind whose PC is [3, 1, 3, 2, 1, 1, 4, 2], first, we calculate the
Euclidean distances between ind’s PC and all samples’ PCs
in the surrogate, and then the KNN algorithm is applied to find
the most similar sample based on the distances. It’s obvious
that the distance between ind and sample2 is the smallest (i.e.,
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Fig. 3. An illustration of using KNN-based surrogate with PC for fitness
prediction for GP individuals.

1), thus, sample2 is the sample most similar to ind in the
surrogate. Finally, the fitness of the most similar sample (i.e.,
413.51) will be the estimated fitness of ind.

C. Sample Selection in KNN-based Surrogate

From the descriptions in Section III-B, it is evident that
samples play a crucial role in KNN-based surrogate models.
These samples are expected to represent diverse behaviours
within the population to ensure accurate fitness estimation.
However, research on KNN-based surrogate sample for DFJSS
remains in its early stages, and selecting appropriate samples
to construct the surrogate model is non-trivial. The origi-
nal KNN-based surrogate simply selects all individuals from
the previous generation as samples, without considering the
characteristics of GP individuals [41]. In terms of improving
sample selection, Zhang et al. [42] proposed incorporating
more samples across generations. However, their method only
focuses on the quantity of samples, without considering their
quality. To address this, Zhu et al. [18] proposed grouping
GP individuals based on unique PCs, then selecting one
representative individual (typically the smallest) from each
group for real evaluation. A surrogate model is then built using
these selected samples to estimate the fitness of the remaining
individuals in the current generation. This significantly reduces
training time by reducing the number of individuals for real
evaluation. However, this method relies on the assumption
that individuals with the same phenotype share similar fitness,
which may not always hold.

According to our observations, there are still some individ-
uals with the same phenotype but have quite different fitness
values, since the decision situations for obtaining the PC are
different from the decision situations in the simulation for real
fitness evaluations. Thus, an individual cannot represent all
individuals in one group, which can affect the accuracy of the
surrogate. Note that it is not practical to use a large number
of decision situations to get PCs of GP individuals for KNN
surrogates, as this will significantly reduce the efficiency of
KNN surrogates due to the expensive distance calculations
with high dimensional PC vectors. In addition, it is nontrivial
to select representative decision situations for generating PCs.
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Fig. 4. Flowchart of the proposed algorithm.

A more advanced sample-aware surrogate-assisted GP for
DFJSS is worth investigating. To this end, this paper aims to
select more representative samples for surrogate-assisted GP
in DFJSS. This will be the first time to select samples by
considering both the phenotype and genotype of individuals.

IV. Proposed Phenotype and Genotype Based Sample
Aware Surrogate-Assisted GP

A. Framework of the Proposed Algorithm

Fig. 4 shows the flowchart of the proposed surrogate-
assisted GP algorithm. The core strategy for selecting sur-
rogate samples by considering the phenotype and genotype
of GP individuals of the proposed algorithm is highlighted
in green. The key training time reduction mechanism is
highlighted in blue, which is to only evaluate some selected
individuals instead of all individuals as samples to build
surrogates and estimate the remaining individuals’ fitness
in the current generation. In the beginning, at initialisation
stage, a population is randomly generated, and we evaluate
all individuals at the evaluation stage and use them to build
surrogate. Then, a new population will be bred by genetic
operators with selected parents during evolution stage. If the
stop condition is not achieved, the algorithm will move to the
next generation, and the main steps of the evaluation of the
newly generated population are as follows.

• First, the built surrogate in the previous generation will
estimate the fitness of all the newly generated individuals,
and some top individuals topIndividuals according to
their estimated fitness will be recorded.

• Second, the PCs of all newly generated individuals are
calculated, and the individuals with the same PC will be
placed in one group. If a group contains any individuals
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Fig. 5. An example of the work procedure of the proposed phenotype and genotype aware sample selection strategy.

in the topIndividuals set, we define this group as a
promising group. Thus, we name the groups as promising
groups and other groups.

• Third, we use different strategies to select individu-
als/samples from promising groups and other groups for
real evaluation. For promising groups, we select sam-
ples based on proposed phenotype and genotype based
sample selection strategy with niching techniques from
each group. For other groups, we will directly select the
smallest individual from each group.

• Finally, these selected individuals/samples from promis-
ing groups and other groups will be truly evaluated, and
then their information will be used to built a new sur-
rogate to predict the remaining unevaluated individuals’
fitness in the current generation.

While the stopping condition is reached, this algorithm will
output the best scheduling heuristic learned so far.

Note that we use real evaluations for all individuals for the
initialised population (the first generation) to get a good start
point. We can also see that there are two built surrogates for
different purposes, which is highlighted in grey. First, the built
surrogate in the previous generation is used to estimate the
fitness of all newly generated individuals to determine whether
the individual’s PC group is promising or not. Second, the built
surrogate in the current generation will be used to estimate the
fitness of the remaining individuals in the current generation
for the following evolution process such as parent selection.

B. Phenotype and Genotype Aware Sample Selection Strategy

Fig. 5 shows an example of the work procedure of the
proposed phenotype and genotype aware sample selection
strategy with nine newly generated individuals. The nine
individuals are classified into four groups (i.e., PCa, PCb,
PCc and PCd) according to their PCs. The individuals in the

same group have the same PC. In other words, they have the
same phenotype.

These groups are divided into promising PC groups and
other PC groups based on the quality of contained individuals.
If a group contains any individual in the top individuals set
topIndivduals, this group is considered as a promising group.
In the example shown in Fig. 5, the top individuals (i.e.,
ind1, ind2, ind4) are highlighted in grey, PCa and PCd are
promising groups since they contain top individuals ind1 and
ind4, ind2, respectively. PCb and PCc belong to other groups.

1) Genotype Aware Sample Selection Strategy for Promis-
ing Groups: Niching techniques [43] have been widely used to
address multi-objective [44] and multi-modal [45] optimisation
problems. These techniques divide the population into multiple
niches, with each niche expected to contain similar individuals.
This paper applies niching to separate individuals within the
same promising group based on genotype for sample selec-
tion. The technique involves two parameters: capacity, which
determines the number of individuals per niche, and radius,
which controls niche coverage. Here, the capacity is set to
infinity, and the radius is determined by genotype correlations,
is explained in the next subsection.

An example of the proposed genotype based sample se-
lection strategy with niching to further split individuals in
promising groups into niches, is shown in the upper right
corner of Fig. 5. In group PCa, two niches are generated based
on the genotypic similarity, and the genotypes of individuals
in one niche are similar. The smallest rule in each niche
(i.e., ind1, ind7) will be selected as a sample. As for PCd,
there is only one niche existing, which indicates the genotypes
of ind2 and ind6 are similar, and the ind2 with a smaller
size will be selected as a sample. The surrogate will assign
identical fitness to individuals within the same niche, which
helps increase population diversity. In this paper, tournament
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Algorithm 1: Proposed genotype aware sample selection strategy for
promising groups

Input : Newly generated individuals ind1, ind2, ... , indpopsize
top individuals topIndividuals

Output: Representative samples for building surrogate samples
1: Initialise samples = ∅;
2: for i = 1 to popsize do
3: Get PC for individual indi;
4: inNiche(indi)=false;
5: end
6: PC ← Promising PC groups;
7: indpc ← Individuals in each promising PC group;
8: for i = 1 to |PC| do
9: Sort individuals in PCi based on rule sizes, smallest to largest;

10: for j = 1 to |indpci | do
11: if inNiche(indpcij ) == true then
12: continue;
13: else
14: Creat a new niche {indpcij };
15: Set inNiche(indpcij ) = true;
16: Add ind

pci
j to samples;

17: Calculate genotypic characterisation (GC) for individual
ind

pci
j (see Section IV-C);

18: end
19: for k = 1 to |indpci | do
20: if inNiche(ind

pcj
k ) == true then

21: continue;
22: else
23: Calculate GC for individual indpcjk ;
24: Calculate correlation c of ind

pci
j and ind

pci
k ;

25: if c ≥ gct then
26: Set inNiche(indpcik ) = true;
27: Add ind

pci
k to the niche {indpcij };

28: end
29: end
30: end
31: end
32: end
33: return samples

selection is employed as the parent selection method, choos-
ing the individual with the best fitness among a group of
candidates. Since the surrogate assigns identical fitness to
individuals within the same niche, more candidates in the
tournament selection process may have the same fitness. This
can promote a more diverse parent selection process since
multiple candidates can have the same fitness, i.e., indicating
the same chance to be selected, thereby enhancing the diversity
of the generated population. Note that niching is applied only
to promising PC groups, ensuring that only individuals within
the same high-quality groups share identical fitness. This
approach maintains population diversity while simultaneously
facilitating the selection of high-quality parents.

Algorithm 1 shows the proposed genotype aware sample
selection strategy for promising groups. In each generation,
we first calculate the PC values of all individuals (line 3).
Second, we group the individuals by PCs, and the individuals
with the same PC will be grouped together (line 6). Third, we
design a genotype based sample selection strategy to subdivide
individuals in the same phenotype group (lines 8-32). For
each promising PC group, all individuals will be sorted based
on their rule sizes (the number of tree nodes) from smallest
to largest (line 9). After that, the first individual with the
smallest rule size will be moved into one niche as the centre,

then the genotype correlation between the centre and other
individuals is calculated in order (line 24). If the genotype
correlation value is larger than the threshold gct, genotypes of
these two individuals are similar, and the newcomer individual
will be added to the niche (lines 25-28). After calculating the
correlation coefficients between all individuals and the niche
centre point, the remaining individual with the smallest rule
size outside the niche will be considered as a new centre to
start a new niche. The algorithm will keep cycling until all
individuals are inside one niche.

In this way, each PC group is divided into one or multiple
niches, then the centres of each niche are selected as the sur-
rogate samples for real evaluations. Since we sort individuals
based on rule size before applying the proposed genotype
based sample selection strategy in each PC group, according
to Algorithm 1, the centre individual of each niche will be the
smallest individual in that niche.

2) Sample Selection for Other Groups: Since the individ-
uals in other groups are less effective than the individuals in
promising groups, which have less potential to be parent in the
subsequent stage (i.e., parent selection), further splitting them
to select samples will not improve the algorithm’s performance
too much. Instead, it will increase the computational cost.
Thus, we simply choose to evaluate the smallest individual
in other groups to keep the algorithm efficient, which is
illustrated in the lower right corner of Fig. 5. For example,
ind5 in PCb group will be selected. There is a special case
(i.e., PCc) in which there is only one individual in the PC
group, thus, we will evaluate it directly to form a sample.

C. Genotypic Characterisation and Genotype Correlation of
Individuals

As we mentioned earlier, individuals in the same PC group
may have different real fitness since the PC values are gener-
ated with a small fixed number of decision situations, which
does not necessarily represent all decision situations in a real
DFJSS simulation for calculating real fitness. Thus, we design
a genotypic characterisation (GC) to measure the similarity of
individuals with the same PC to further distinguish individuals
from the perspective of their genotypes.

This paper proposes to design the GC according to the
frequency of individual terminals since terminals are crucial to
the quality of evolved individuals and individuals with close
performance tend to use similar terminals [24]. Moreover, it
has been demonstrated that terminal information is useful to
guide initialisation and search in GP [46], [47]. Thus, designed
genotype has potential to further divide individuals with same
PC. As described earlier, each GP individual is made up of
two trees. For each tree, we record the occurrence of each
terminal and then divide it by the total occurrence to get the
frequency for each terminal. Table III presents an example of
the terminal frequency calculation of an individual consisting
of three terminals (MWT, W and PT). MWT refers to a
machine’s waiting time. W and PT are the weight of a job and
the processing time of an operation on a designated machine.
For example, the frequency of MWT in the routing rule is
calculated by 10/(10+2+6) = 0.56. Similarly, the frequency

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAI.2025.3562161

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on May 19,2025 at 01:08:17 UTC from IEEE Xplore.  Restrictions apply. 



8

TABLE III
An example of the terminal frequency calculation of an individual

consisting of three terminals (MWT, W and PT).

Rule Terminal Occurrence Relative Frequency

MWT 10 0.56
Routing W 2 0.11

PT 6 0.33

MWT 0 0
Sequencing W 2 0.20

PT 8 0.80

0.56 0.11 0.33 0.00 0.20 0.80

Routing GC Sequencing GC

Fig. 6. Example of designed genotypic characterisation of an individual.

of other terminals can be obtained. Finally, the GC is shown
in Fig. 6. In this way, GC of each rule is a vector, where
each dimension value equals to the frequency of a terminal.
The order of terminals is fixed for GC to make it comparable
among individuals. Routing GC and sequencing GC constitute
the whole GC of a GP individual.

After calculating the GCs of individuals, we use Spearman
correlation coefficient [48] to measure the genotypic similarity
between two individuals. A high correlation coefficient indi-
cates these two individuals have similar genotype.

D. Summary

The proposed algorithm considers both the phenotype and
genotype of individuals to distinguish individuals for sample
selection to build surrogates. Specifically, genotype based
sample selection strategy is used within the individuals with
the same phenotype. The selected surrogate samples have a
wider spread in both the phenotypic and genotypic space,
which is expected to lead to a more accurate estimation of
individual fitness.

This design has two main advantages. One is that proposed
algorithm considers both phenotype and genotype, which can
make the selected samples more representative. The other is
making the centre of each niche to be the smallest rule as a
reference for GC calculations or sample selections can bring
three benefits. Firstly, small rules have the potential to be more
interpretable and preferable in practical situations. Secondly,
small rules might have better generalisation ability to avoid
overfitting issues. Thirdly, small rules tend to take less time
for priority calculations, which can make decisions efficiently.

V. Experiment Design

A. Simulation Model

Simulation is an effective technique to study complex dy-
namic JSS problems [49]. Referring to widely used DFJSS
simulations [50], [51], the simulation model assumes that 10
machines are required to process 5000 jobs. The jobs in this
study involve a varying number of operations and the number

of available machines for a particular operation, which are
randomly distributed between 1 and 10 following a uniform
distribution. The importance of jobs is determined by their
respective weight. Three different weights are assigned for
jobs: 20% receive a weight of 1, 60% receive a weight of
2, and the remaining 20% are allocated a weight of 4. In
addition, the processing time for each operation is generated
from a uniform discrete distribution with values ranging from
1 to 99. A job’s due date is determined to be 1.5 times its
processing time. New jobs will arrive at the job shop over time
following a Poisson process with the rate λ. Utilisation level
(p) is a crucial factor in simulating job shop scenarios [52],
which represents the fraction of time a machine is expected
to be occupied. This factor is directly related to how busy the
job shop is. It can be calculated as follows.

λ = µ ∗ PM/p (8)

where λ defines the expected utilisation rate of a machine in a
Poisson process. µ represents the average processing time of
machines, and PM represents the likelihood of a job entering
a machine. To obtain the steady-state performance, the initial
1000 jobs are regarded as warm-up jobs and omitted from
the objective calculation. Data collection will begin from the
subsequent 5000 jobs. The simulation will terminate upon
completion of the 6000th job.

During the training stage, all algorithms will change the
training instance in each generation to enhance the gener-
alisation capabilities of the evolved scheduling rules [31],
[53]. To verify the robustness of proposed algorithm, during
the test stage, the best scheduling rule obtained from the
training process is applied to 50 previously unseen DFJSS
test instances, and the test performance is evaluated based on
the mean objective value across the entire test set.

B. Design of Comparisons

Three utilisation levels (i.e., 0.75, 0.85, 0.95), along with
two commonly used objectives, i.e., mean-flowtime (Fmean)
and mean-weighted-tardiness (WTmean) are used to form six
scenarios. The examined scenarios are named as <objective,
utilisation level> such as <WTmean, 0.85>.

This paper compares the proposed algorithm with the state-
of-the-art algorithms on sample aware surrogate-assisted GP
for JSS. In addition, our proposed algorithm is also compared
with manually designed rules that are popularly used for
scenarios. It is important to note that due to the dynamic and
large-scale nature, the common exact methods and heuristic
methods cannot be directly used for solving dynamic and/or
large-scale job shop scheduling problems. The details are
shown as follows.

1) Manual Rules: For all scenarios, we use WIQ to allocate
an operation to a machine with smallest workload. For
scenarios with objective mean-flowtime, we use shortest
processing time (SPT) as the sequencing rule. For sce-
narios with objective mean-weighted-tardiness, we use
WATC rule, i.e., weighted apparent tardiness cost, as the
sequencing rule [54].
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TABLE IV
The terminal set.

Notation Description

MWT A machine’s waiting time
WIQ Current work in the queue
NIQ The number of operations in the queue
NPT Median processing time for the next operation
OWT The waiting time of an operation

PT Processing time of an operation on a specified machine
WKR Median amount of work remaining for a job
NOR The number of operations remaining for a job
TIS Time in system
W Weight of a job

2) GP: The GP algorithm with multi-tree representation
[33] is selected as a baseline algorithm to learn two rules
simultaneously for DFJSS for comparison.

3) SGP Ran: SGP Ran simply selects samples randomly
from the population is included for comparison to show
the importance of sample aware surrogate building.

4) SGP PC [18]: The state-of-the-art surrogate-assisted GP
algorithm with sample selection strategy is also included
for comparison, where only the smallest rule in each
PC group will be truly evaluated to form samples for
surrogates.

5) SGP PCGC: Our proposed algorithm that considers the
phenotype represented by phenotypic characterisation
and genotype represented by genotypic characterisation
of GP individuals for sample selection in surrogate.

For algorithms SGP Ran, SGP PC and SGP PCGC, the
individuals have either estimated fitness or real fitness. This
is because only a subset of individuals are evaluated with
expensive simulations, and used for extracting samples to build
surrogates to estimate the fitness of remaining individuals in
the current generation. During the evolution process, the real
fitness and the estimated fitness are treated equally for parent
selection. However, individuals with true fitness values better
reflect the quality of learned scheduling heuristics compared
to those with estimated fitness. Thus, we choose the best
individual with real evaluation in each generation as the best
learned scheduling heuristic for record. In addition, for a fair
comparison, the number of selected samples in SGP Ran is
equal to the number of unique PC.

C. Parameter Settings

Each GP individual consists of terminals and functions. The
terminals can be regarded as the features of the job shop,
which are related to machines (i.e., MWT, WIQ and NIQ),
operations (i.e., NPT, OWT and PT) and jobs (i.e., WKR,
NOR, TIS and W). The details are shown in Table IV. The
function set is set to {+, −, ∗, protected /, max, min}. The
protected “/” returns one if divided by zero. The min and
max functions return the minimum and maximum of their
arguments, respectively. The other parameter settings of GP
as suggested in [32], [55], are shown in Table V. The top
individuals ratio “30%” and genotype correlation threshold gct
(i.e., 0.7) control the number of samples/individuals in niches

TABLE V
The parameter settings in GP.

Parameter Value

The number of generations 100
Population size 500
Parent selection Tournament selection

with size 5
The number of elites for each subpopulation 10

Initial minimum / maximum depth 2 / 6
Maximal depth of programs 8

Crossover / Mutation / Reproduction rate 80% / 15% / 5%
Terminal / non-terminal selection rate 10% / 90%

Method for initialising population ramped-half-and-half

The genotype correlation threshold gct 0.7
The top individual ratio 30%
*The fixed training time 150

∗ : for experiments with the fixed training time (in minutes) only

and the number of PC groups for niching, respectively, more
details can be found in supplementary materials.

VI. Results and Discussions

We conducted a series of experiments in different scenarios
to investigate the efficiency (i.e., training time) and effective-
ness (i.e., objective values on test instances) of our proposed
algorithm. 30 independent runs have been conducted to verify
the performance and robustness of the proposed algorithm.
The Friedman’s test and Wilcoxon rank-sum test with a
significance level of 0.05 are used to verify the effectiveness
of the proposed algorithm. The algorithm’s ranking across
all examined scenarios, as determined by Friedman’s test, is
reflected in the “Average Rank”. According to the Wilcoxon
rank-sum test, the following results show that “↑”, “↓”, “≈”
indicate an algorithm is significantly better than, worse than,
or similar to the compared algorithm before it.

A. Quality of the Learned Scheduling Heuristics with the
Same Training Time

When using the training time as the stopping criterion,
the number of generations of different algorithms vary since
they have different evaluation cost at each generation. We
cannot compare the performance among them with the learned
scheduling heuristics in the same generation [17]. Borrowing
the idea in [17], the computational budget is divided equally
into 60 groups, the training time of each group is 2.5 minutes
(150/60). The beginning point of kth group is 2.5 ∗ k, such
as 5 minutes, 10 minutes and so on. The population in the
generation closest to the beginning point of each group will
be used to represent the performance of the algorithms during
the evolutionary process.

a) The Quality of the Learned Best Scheduling Heuris-
tics: Table VI shows the objective values of GP, SGP Ran,
SGP PC and SGP PCGC with the same training time and
Manual Rules in six scenarios. Clearly, the scheduling rules
learned by GP based algorithms are significantly better than
manually designed rules in all scenarios. This indicates the
effectiveness of learning scheduling heuristics by GP based
algorithms. Overall, the results show that the phenotype
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TABLE VI
The mean (standard deviation) of objective values on test instances of GP, SGP Ran, SGP PC and SGP PCGC with the same training time

(in minutes) and Manual Rules according to 30 independent runs in six scenarios.

Scenarios Manual Rules GP SGP Ran SGP PC SGP PCGC

<Fmean, 0.75> 436.46 336.57(1.61)(↑) 335.52(1.0)(↑)(↑) 335.37(0.71)(↑)(↑)(≈) 335.09(0.55)(↑)(↑)(≈)(≈)
<Fmean, 0.85> 502.30 385.47(2.29)(↑) 385.82(3.00)(↑)(≈) 384.10(0.98)(↑)(↑)(↑) 383.62(0.79)(↑)(↑)(↑)(↑)
<Fmean, 0.95> 763.85 554.93(7.55)(↑) 552.58(3.85)(↑)(≈) 549.11(3.32)(↑)(↑)(↑) 547.81(1.67)(↑)(↑)(↑)(↑)

<WTmean, 0.75> 121.32 27.24(1.41)(↑) 27.03(0.92)(↑)(≈) 26.97(1.75)(↑)(↑)(≈) 26.63(1.05)(↑)(↑)(↑)(≈)
<WTmean, 0.85> 220.09 75.61(2.41)(↑) 75.91(2.39)(↑)(≈) 74.46(1.93)(↑)(↑)(↑) 74.24(1.63)(↑)(↑)(↑)(≈)
<WTmean, 0.95> 572.37 297.94(11.53)(↑) 300.39(12.00)(↑)(≈) 291.84(5.11)(↑)(↑)(↑) 292.59(8.10)(↑)(↑)(↑)(≈)

Win / Draw / Lose 6 / 0 / 0 6 / 0 / 0 5 / 1 / 0 2 / 4 / 0 N/A
Average Rank 5 3.17 2.86 2.12 1.85

<WTmean, 0.75> <WTmean, 0.85> <WTmean, 0.95>

<Fmean, 0.75> <Fmean, 0.85> <Fmean, 0.95>
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Fig. 7. The violin plots of the average objective values on test instances
of GP, SGP Ran, SGP PC and SGP PCGC with the same training time (in
minutes) according to 30 independent runs in six scenarios.

and genotype based sample aware SGP PCGC performs the
best with the smallest average rank value of 1.85 among
all involved algorithms. We can also see that SGP PCGC
achieves the best mean objective values in five out of six
scenarios (i.e., <Fmean, 0.75>, <Fmean, 0.85>, <Fmean,
0.95>, <WTmean, 0.75> and <WTmean, 0.85>).

It is interesting that SGP Ran obtains comparable per-
formance with GP in 5 out of 6 scenarios, and achieve
significantly better performance in one scenario. However, we
know that the samples for building surrogates in SGP Ran
are randomly selected, and the fitness estimation might not be
accurate. A reason for this phenomenon is that with the same
training time, the number of generations of SGP Ran is much
larger than GP, which makes up the performance of SGP Ran.
In addition, the results show that SGP PC and SGP PCGC
win baseline GP in all scenarios, and significantly outper-
form than SGP Ran in most of scenarios. This verifies the
effectiveness of sample aware KNN-based surrogates. More
importantly, compared with SGP PC, SGP PCGC achieves
smaller mean objective values and standard deviation values
in five out of six scenarios, and obtains significantly better
performance in two out of six scenarios. This verifies the
effectiveness of the proposed phenotype and genotype based
sample aware surrogate-assisted GP in DFJSS.

Fig. 7 shows the violin plots of the objective values on test
instances of GP, SGP Ran, SGP PC and SGP PCGC with
the same training time in six scenarios. SGP PCGC shows
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Fig. 8. The curves of average objective values according to 30 independent
runs on test instances of GP, SGP Ran, SGP PC and SGP PCGC with the
same training time (in minutes) in six different scenarios.

its superiority with lower distributions of objective values
in five out of six scenarios (i.e., <Fmean, 0.75>, <Fmean,
0.85>, <Fmean, 0.95>, <WTmean, 0.75> and <WTmean,
0.85>). In addition, SGP PCGC shows the smallest distribu-
tion spread, indicating higher stability and lower variance in
objective values compared to other algorithms. Overall, the
results demonstrate that proposed sample selection strategy in
SGP PCGC can distinguish representative samples to build
surrogate with high accuracy.

b) The Curves of the Average Objective Values on Test
Instances: Fig. 8 shows the curves of average objective values
on test instances of GP, SGP Ran, SGP PC and SGP PCGC
with the same training time in six different scenarios based
on 30 independent runs. The results show that SGP PCGC
can obtain better scheduling heuristics than other algorithms
from the early stage during the evolutionary process in four
out of six scenarios (i.e., <Fmean, 0.85>, <Fmean, 0.95>,
<WTmean, 0.75> and <WTmean, 0.85>). This is attributed
to the surrogate model built using the new sample selection
strategy, which effectively identifies promising individuals and
maintains population diversity. In addition, we can see that
SGP PCGC can sustain the advantage into the late evolu-
tionary processes to achieve competitive performance. The
effectiveness of the proposed phenotype and genotype based
sample aware surrogate-assisted GP is further verified.

In general, we can observe that proposed algorithm
SGP PCGC can improve the quality of evolved scheduling
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TABLE VII
The mean (standard deviation) of objective values on test instances
of GP, SGP Ran, SGP PC and SGP PCGC with the same number of

generations according to 30 independent runs in six scenarios.

Scenarios GP SGP Ran SGP PC SGP PCGC

<Fmean, 0.75> 336.94(1.72) 337.93(1.71)(↓) 336.33(1.60)(≈) 336.72(1.78)(≈)
<Fmean, 0.85> 385.62(2.74) 389.43(5.05)(↓) 386.13(3.68)(≈) 386.88(3.63)(≈)
<Fmean, 0.95> 554.55(8.05) 566.01(11.91)(↓) 555.13(6.76)(≈) 553.59(7.37)(≈)

<WTmean, 0.75> 27.22(1.46) 29.40(2.71)(↓) 27.69(1.90)(≈) 27.97(2.04)(≈)
<WTmean, 0.85> 75.51(2.03) 80.49(6.67)(↓) 77.86(5.57)(≈) 77.24(4.27)(≈)
<WTmean, 0.95> 296.91(10.74) 314.46(18.17)(↓) 298.93(9.33)(≈) 297.53(8.91)(≈)

TABLE VIII
The mean (standard deviation) of the training time (in minutes) of
GP, SGP PC and SGP PCGC according to 30 independent runs in six

scenarios.

Scenarios GP SGP PC SGP PCGC

<Fmean, 0.75> 121(19) 43(10) (↑) 41(11)(↑)(≈)
<Fmean, 0.85> 127(24) 39(10)(↑) 37(6)(↑)(≈)
<Fmean, 0.95> 137(20) 39(8)(↑) 41(10)(↑)(≈)

<WTmean, 0.75> 127(19) 46(11)(↑) 46(11)(↑)(≈)
<WTmean, 0.85> 130(20) 40(8)(↑) 46(12)(↑)(≈)
<WTmean, 0.95> 131(19) 45(8)(↑) 45(8)(↑)(≈)

heuristics and achieve better scheduling heuristics faster than
its counterparts in most scenarios with the same training time.

B. Quality of the Learned Scheduling Heuristics with the
Same Number of Generations and Training Efficiency

Compared with GP, only a subset of individuals of
SGP Ran, SGP PC and SGP PCGC are evaluated with ex-
pensive simulations in each generation. It is interesting to
know how these algorithms perform with the same number
of generations.

1) Quality of Learned Scheduling Heuristics with the Same
Number of Generations: Table VII shows the objective values
of GP, SGP Ran, SGP PC and SGP PCGC with the same
number of generations in six scenarios. The results show that
there is no significant statistical difference in performance
among GP, SGP PC and SGP PCGC. However, SGP Ran
performs significantly worse than its counterparts in all scenar-
ios due to inaccurate estimations induced by random sample
selection for building surrogates. This shows that the effec-
tiveness of sample aware KNN-based surrogate models. In
addition, compared with SGP PC, SGP PCGC achieves better
mean objective values in half of the examined scenarios (i.e.,
<Fmean, 0.95>, <WTmean, 0.85> and <WTmean, 0.95>).

2) Training Efficiency: An algorithm’s efficiency is reflected
in its training time. For GP in DFJSS, the most time-
consuming part is the fitness evaluations of individuals. Thus,
O(time) = evals∗O(eval) = evals∗ops∗O(ds) = evals∗ops∗
O((M + 100) ∗ rulesize) = evals ∗ ops ∗ O(rulesize), where
evals, ops, and ds are the number of evaluations, operations,
and decision situations, respectively. M (i.e., 10 in this paper)
is the number of machines, and 100 is the maximal number
of operations in a queue of a machine (the simulation will
terminate if the queue size exceeds 100). Each operation
will have routing decisions to be allocated to a machine,
and sequencing decisions to be selected for processing next.
rulesize is the number of nodes of a GP individual.
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Fig. 9. The curves of the number of individuals with real evaluations of GP,
SGP PC and SGP PCGC during the training process over 30 independent
runs in six DFJSS scenarios.

Since SGP Ran performs worse than other algorithms,
this section only chooses GP, SGP PC and SGP PCGC for
investigations on training efficiency. Table VIII shows the
training time (in minutes) of GP, SGP PC and SGP PCGC in
six scenarios. Both algorithms, SGP PC and SGP PCGC, sig-
nificantly reduce the training time required, to approximately
1/3 of that required by GP across all scenarios. The training
time of SGP PCGC is similar with SGP PC, which indicates
that the further sample selection based on the genotype of GP
individuals does not affect the efficiency of SGP PCGC.

The key factor in determining the training efficiency of GP
algorithms is the number of individuals with real evaluations.
Fewer number of evaluated individuals leads to shorter training
time. To further investigate the efficiency of SGP PCGC,
Fig. 9 shows the curves of the number of evaluated individuals
of GP, SGP PC, and SGP PCGC. The curves of baseline GP
are always a line at 500 which equals the population size,
since there is no surrogate mechanism to reduce the efficiency
of individual evaluations. We can observe that the number
of evaluated individuals of SGP PC and SGP PCGC reduces
rapidly in the first 15 generations, i.e., from 400 to 200 and
then maintain at around 200. In addition, there is no significant
statistical difference between SGP PC and SGP PCGC, which
indicates their training time are similar. This conclusion is
consistent with the finding in Table VIII.

Overall, it can be observed that with the same number of
generations, the proposed algorithm can obtain competitive
performance with a much short time, i.e., around 1/3 of the
time needed for GP. This shows the efficiency and effective-
ness of the proposed SGP PCGC.

C. The Number of Extra Evaluated Individuals of SGP PCGC

We will conduct the results obtained with the same training
time for more analyses in this section. SGP PCGC selects
more representative individuals in each PC group for real
evaluations to build KNN-based surrogates, while, the number
of selected individuals for real evaluations of SGP PC equals
to the number of PC groups. This section will analyses
the number of extra evaluated individuals by SGP PCGC
compared with the mechanism of SGP PC. Specifically, we
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Fig. 10. The curves of the number of extra evaluated individuals by
SGP PCGC compared with the mechanism of SGP PC during the training
process over 30 independent runs in six DFJSS scenarios.

define that the number of extra evaluated individuals by
SGP PCGC equals the subtraction of the number of real
evaluated individuals and the number of PC groups.

Fig. 10 shows the curves of the number of extra evaluated
individuals by SGP PCGC during the training process in six
scenarios. Note that for convenience, we still use generations
as x-axis, and the number of generations can slightly differ
among different algorithms or scenarios. The results show
that the number of extra evaluated individuals is larger in the
early stages of evolutionary process of SGP PCGC than the
ones in the later evolution stages in all scenarios. Along with
generations, the number of extra individual evaluations has
dropped from around 30 to a few. The reason is that genotypes
of individuals become more similar along with generations,
and there are fewer individuals selected to be samples for
KNN-based surrogate. This indicates that the proposed pheno-
type and genotype based sample aware surrogate-assisted GP
has a big/small influence in the early/later stage during the
evolutionary process.

D. Genotype Correlation and Fitness Gap of GP Individuals

This section analyses the relation between genotype corre-
lation and fitness difference for individuals with the same PC
during the evolutionary process. We choose the smallest rule
in each PC group as the base individual, and the calculations
of genotype correlation and fitness difference are between
individuals and the base individual within the same PC group.

Fig. 11 shows the plots of genotype correlation and fitness
difference in the scenario <Fmean, 0.85> in one run across
several generations (i.e., generations 1, 5, 10, 30, 100 and 200).

The black line represents the fitting curve of the data, show-
ing the overall trend between genotype correlation and fitness
differences in different generations. It is clear that individuals
with the same PC could have different fitness. This observation
shows that among the individuals with the same PC, it is
necessary to further select individuals/samples to build KNN-
based surrogates which is the main focus of SGP PCGC. In
the early stages (i.e., Generation 1 and 5), from the black
fitting curve, we can find the lower the genotype correlation,
the bigger differences between the fitness values, which shows
the effectiveness of designed genotype. Observing the density
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Fig. 11. Genotype correlation and the difference of fitness in the scenario
<Fmean, 0.85> of one GP run.

plots above each subgraph, the results show that the genotype
correlations of individuals with the same PC increase along
with the evolutionary process. The most frequent phenotype
correlation at generation 1 is about 0, 0.2 at generation 5, 0.4
at generation 10, and 0.8 at generation 30, 100 and 200. This
indicates that the genotypes of individuals with the same PC
have become more similar during the evolutionary process.
This is because individuals tend to use similar terminals along
with the evolution. In addition, the density plots on the right
side of each subplot illustrate that the fitness differences
between individuals with the same PC is getting smaller along
with generations. Compared with the plots in the early stages,
we can find the consistent pattern, the higher the genotype
correlation, the less different fitness values. Overall, the results
show that designed genotype can distinguish individuals with
different fitness in the same PC group.

E. Fitness Difference in the Same and Different Niches

For each PC group, the proposed algorithm SGP PCGC
aims to group individuals with similar genotypes in one
niche. The differences in fitness between individuals occu-
pying the same niche are expected to be smaller than the
fitness differences of individuals between different niches.
This paper defines the fitness difference among one niche
as the average fitness difference of all individuals with the
smallest individuals in each same niche of each PC group. The
fitness difference among different niches is the average fitness
difference among the centre individuals from each niche by
taking the centre individual of the first niche as the base for
calculations in each PC group.

Fig. 12 shows the curves of mean fitness difference
between individuals in the same and the different niche(s)
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TABLE IX
The mean (standard deviation) of the sizes evolved the best rule of GP, SGP Ran, SGP PC and SGP PCGC with the same training time

according to 30 independent runs in six scenarios.

Scenarios GP SGP Ran SGP PC SGP PCGC

<Fmean, 0.75> 85.67(17.07) 92.80(23.72)(≈) 85.33(22.01)(≈)(≈) 90.67(27.17)(≈)(≈)(≈)
<Fmean, 0.85> 85.20(19.07) 100.27(26.91)(↓) 96.00(22.47)(≈)(≈) 87.53(21.99)(≈)(≈)(≈)
<Fmean, 0.95> 87.47(20.01) 104.80(26.47)(↓) 92.80(21.70)(≈)(≈) 98.60(21.85)(↓)(≈)(≈)
<WTmean, 0.75> 92.80(24.65) 103.67(21.83)(↓) 89.93(25.72)(≈)(↑) 87.6(22.63)(≈)(↑)(≈)
<WTmean, 0.85> 95.13(21.32) 105.33(19.29)(≈) 80.73(21.46)(↑)(↑) 90.67(19.50)(↑)(↑)(≈)
<WTmean, 0.95> 94.67(20.38) 108.13(24.19)(↓) 84.27(19.02)(≈)(↑) 88.80(20.26)(≈)(↑)(≈)
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Fig. 12. The fitness difference between individuals in the same and different
niche(s) of SGP PCGC in the scenario <Fmean, 0.85> of 30 runs.

of SGP PCGC in the scenario <Fmean, 0.85>. According
to our proposed algorithm, individuals with similar genotype
will be moved in the same niche, whereas individuals with
different genotypes will be in different niches. It is clear
that the fitness differences in the same niches are always
smaller than those in different niches. In addition, the fitness
difference among same niche becomes smaller and smaller
along with evolutionary process. This shows the effectiveness
of SGP PCGC to put individuals with similar fitness into the
same group/niche, which also demonstrates the effectiveness
of designed genotype to distinguish GP individuals.

VII. Further Analyses

A. Sizes of the best Learned Scheduling Heuristics

This section will investigate the impact of our proposed
algorithm on the sizes of the evolved best rules in the
experiments with the same generations and training time,
respectively.

a) Sizes of Learned Scheduling Heuristics with the Same
Training Time: Table IX shows the sizes of evolved the best
rule of GP, SGP Ran, SGP PC and SGP PCGC with the same
training time. The results show that SGP Ran learns larger
rules than GP. On the contrary, SGP PC and SGP PCGC can
achieve similar rule sizes with GP but with better performance
as shown in Section VI-A and VI-B. This shows the effective-
ness of choosing the smallest individual as samples in the
individual group with the same PC of SGP PC for rule size

TABLE X
The mean (standard deviation) of the sizes of evolved the best rule

of GP, SGP PC and SGP PCGC with the same number of
generations according to 30 independent runs in six scenarios.

Scenarios GP SGP PC SGP PCGC

<Fmean, 0.75> 79.53(23.39) 76.13(27.73)(≈) 69.73(22.17)(≈)(≈)
<Fmean, 0.85> 79.33(21.31) 73.40(20.04)(≈) 78.40(27.45)(≈)(≈)
<Fmean, 0.95> 91.33(21.16) 82.33(22.85)(↑) 81.13(26.43)(↑)(≈)
<WTmean, 0.75> 92.27(26.77) 82.67(20.04)(≈) 74.33(23.73)(↑)(≈)
<WTmean, 0.85> 94.53(18.93) 70.33(23.12)(↑) 82.60(29.26)(↑)(≈)
<WTmean, 0.95> 92.27(23.25) 71.00(22.26)(↑) 79.87(15.42)(≈)(≈)

control. This can also verify the effectiveness of taking the
smallest rule in the individual group with the same PC as
the base to calculate the genotype correlation. Compared with
SGP PC, SGP PCGC does not significantly increase the rule
size in all examined scenarios.

b) Sizes of Learned Scheduling Heuristics with the Same
Number of Generations: Section VI-B shows that SGP PC
and SGP PCGC obtain comparable performance with the
baseline GP but with lower computational cost. It is interesting
to observe the difference in sizes of evolved rules with GP,
SGP PC and SGP PCGC. Note that since SGP Ran performs
much worse than other algorithms, we do not include it
here. Table X shows the sizes of evolved the best rule of
GP, SGP PC and SGP PCGC with the same number of
generations. SGP PC and SGP PCGC can obtain significantly
smaller rules than GP in half of the examined scenarios,
which means SGP PC and SGP PCGC can achieve similar
performance with GP by using much smaller rules. The rule
sizes of SGP PC and SGP PCGC do not significantly differ.

B. Population Diversity

Diversity is an important criterion for tracking the popu-
lation status during the evolutionary process. Throughout the
GP literature, diversity is consistently emphasised as crucial
for avoiding premature convergence to local optima [23], [56],
[57]. This paper uses entropy to measure population diversity,
which is calculated as

entropy = −
∑
cϵC

(
|c|

|inds|
)log(

|c|
|inds|

) (9)

where C is the set of clusters obtained using the DBScan
clustering algorithm [58] with the phenotypic distance measure
and a cluster radius of 0. A larger entropy means a higher
diversity of the population.
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Fig. 13. The curves of phenotypic diversity values in every generation of
GP, SGP Ran, SGP PC and SGP PCGC according to 30 independent runs
in six scenarios.

Since the number of generations may differ among different
algorithms or scenarios if using a fixed training time as the
stopping criterion, we use the results with the same number of
generations as the stopping criterion to analyse the population
diversity. Fig. 13 shows the curves of diversity values in every
generation of GP, SGP Ran, SGP PC and SGP PCGC. We
find that the diversity of all algorithms reduces along with
the generations and decreases rapidly in around the first 10
generations. This phenomenon is commonly observed in GP
[59]. After around generation 10, SGP PC and SGP PCGC
have a higher diversity value than GP and SGP Ran in all sce-
narios. Since tournament selection is the primary mechanism
for controlling selection pressure in GP, it implies that more di-
verse individuals are selected to produce offspring in SGP PC
and SGP PCGC. This also means that promising and diverse
individuals are well recognised and kept in the population.
On the contrary, SGP Ran loses population diversity quickly,
and gets worse diversity than baseline GP. The reason is that
the samples for building surrogates of SGP Ran are randomly
selected, and the KNN-based surrogate with randomly selected
individuals are not representative and cannot keep diverse
individuals in the population.

VIII. Conclusions

The goal of this article was to develop an effective sample
selection strategy to select representative samples for KNN-
based surrogate-assisted GP to evolve promising scheduling
heuristics in DFJSS efficiently. To achieve this goal, we
proposed an effective phenotype and genotype based sample
selection strategy with niching technique.

The results showed that with the same training time, the
proposed SGP PCGC can obtain better performance while
converging faster than the other algorithms in most scenarios.
With the same number of generations, the proposed algorithm
SGP PCGC can achieve comparable scheduling heuristics in
all the examined scenarios with only about one third training
time of the baseline GP algorithm. The effectiveness of the
proposed algorithm is also verified by the analyses of the
number of extra evaluated individuals by SGP PCGC, the
relation of genotype correlation and fitness difference during

the evolutionary process, and population diversity along with
generations. In terms of rule size, with the same training time,
SGP PCGC can obtain better performance without increasing
the rule size. With the same number of generations, compared
with baseline GP, SGP PCGC can achieve comparable perfor-
mance but with smaller rules. In addition, parameter sensitivity
analyses were also carried out to investigate the robustness of
the proposed algorithms.

There are several interesting directions that could be ex-
plored in the future. We plan to extend the proposed algorithm
to other dynamic combinatorial optimisation problems such as
cloud scheduling and online packing. In addition, the proposed
genotype of individuals becomes more similar along with the
generations, which leads to more effect in the early stage
than the later stage. We’ll further investigate more advanced
strategies to select representative individuals for surrogate
building during in the whole evolutionary process.
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