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Abstract—The multi-objective dynamic flexible job shop
scheduling (MO-DFJSS) problem is crucial in modern manu-
facturing, impacting productivity and operational costs. Genetic
Programming (GP) has emerged as a prominent method for
MO-DFJSS due to its ability to evolve real-time responsible and
effective scheduling heuristics. However, existing GP approaches
often learn multiple heuristics for different regions of the Pareto
front, making their management and selection complicated in
real-world applications. This paper proposes a novel Pareto set
learning GP (PSLGP) framework that addresses this limitation
by learning a single, preference-conditioned heuristic that en-
compasses the entire Pareto front based on user preferences.
This simplifies scheduling and allows for real-time adaptation
to user-defined priorities. The framework employs a novel
preference-conditioned heuristic representation that incorporates
user preferences as additional inputs, enabling dynamic heuristic
adjustments. To efficiently evaluate fitness without increasing
training time, a surrogate model is used to estimate individual
performance across different preferences, and three new fitness
aggregation strategies are designed to ensure effective heuristic
alignment across the Pareto front. Experimental results demon-
strate that PSLGP significantly outperforms the state-of-the-
art multi-objective GP approach, particularly in less busy MO-
DFJSS environments, providing a more adaptable and efficient
solution for dynamic scheduling challenges. Further analyses of
preference influence, solution distribution, and heuristic structure
provide evidence that the proposed PSLGP effectively learns
preference-conditioned scheduling heuristics that align user pref-
erences with various regions of the Pareto front.

Index Terms—Job Shop Scheduling, Scheduling Heuristics,
Automatic Learning, Genetic Programming, Pareto Set Learning.

I. INTRODUCTION

ulti-objective dynamic flexible job shop scheduling
(MO-DFISS) [1ff is critical in modern manufacturing,
where the real-time optimization of job assignments and
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sequencing can greatly enhance operational efficiency, pro-
ductivity, and cost-effectiveness. In MO-DFIJSS, scheduling
decisions navigate multiple competing objectives—such as
minimizing flowtime and reducing tardiness—under variable
and unpredictable conditions [2]]. This complexity is further
exacerbated by the need to make real-time adjustments to
unforeseen new jobs’ arrival over time [3]].

Existing approaches to job shop scheduling are typically
divided into four categories: exact methods, meta-heuristics,
hand-crafted heuristics, and hyper-heuristics [4]. Exact meth-
ods, such as branch-and-bound [5] and dynamic programming
[6], aim for optimal solutions through exhaustive searches
but are often computationally expensive and impractical for
large or complex problems [7]], especially in dynamic multi-
objective contexts. Meta-heuristics, like genetic algorithms [8]],
particle swarm optimization [9], and ant colony optimization
[10], are popular for finding near-optimal solutions in rea-
sonable timeframes, but they may struggle with robustness
in highly dynamic environments [4]. Hand-crafted heuristics
provide quick, rule-based solutions, such as the dispatching
rules of shortest processing time [[11] and earliest due date
[12]. Although these heuristics are computationally efficient
and well-suited for real-time applications, they demand sig-
nificant domain knowledge and time for their design, and
they often lack the flexibility and adaptability needed for spe-
cific conditions or multi-objective requirements [13]. Hyper-
heuristics operate at a higher abstraction level, focusing on
selecting or generating heuristics rather than directly solving
the scheduling problem [14]. Reinforcement learning [|15[] and
genetic programming (GP) [16]] are two typical hyper-heuristic
approaches for DFJSS. While these methods are beneficial
in dynamic environments, the scheduling heuristics learned
through reinforcement learning often lack the interpretability
found in those developed using GP [[17]]. GP has emerged as
a prominent method for addressing DFJSS problems, primar-
ily due to its capacity to evolve effective and interpretable
scheduling heuristics [4].

Existing GP approaches for MO-DFISS integrate GP
with two types of popular multi-objective techniques: non-
dominated sorting (e.g., non-dominated sorting genetic al-
gorithm II (NSGA-II) [18] and strength Pareto evolutionary
algorithm 2 (SPEA2) [19]) and decomposition methods (e.g.,
decomposition-based multi-objective evolutionary algorithm
(MOEA/D) [20]). These integrations have led to the devel-
opment of NSGP-II [21]], SPGP2 [21]], and MOGP/D [22].
Among these, NSGP-II stands out as the leading state-of-
the-art method for MO-DFJSS. However, these approaches
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typically learn multiple heuristics that cover different regions
of the Pareto front. While this multi-heuristic strategy effec-
tively broadens the solution spectrum, it introduces practical
challenges. Managing several heuristics can increase com-
plexity, and selecting the appropriate heuristics for real-time
applications can hinder adaptability, especially in dynamic en-
vironments where preferences and priorities frequently change.
Instead, learning a single heuristic that incorporates prefer-
ences as additional inputs and can dynamically and rapidly
respond to real-time changes in preferences would be more
efficient and flexible. However, the challenge lies in how
effectively integrating preferences as additional inputs into
the heuristic and how to ensure that the learned heuristic can
generalize well across diverse preferences.

Motivated by these limitations and challenges, this paper
presents a novel Pareto set learning GP (PSLGP) framework
designed to tackle MO-DFIJSS problems. The primary goal
of PSLGP is to simplify the scheduling process by learning
a single preference-conditioned scheduling heuristic that can
dynamically adapt to various user-defined preferences in real-
time, thereby covering the entire Pareto front. This approach
contrasts with traditional methods by enabling one heuristic
to respond flexibly to changing preferences, making PSLGP
easier to manage and better suited to real-world demands.
Specifically, the contributions of this paper are as follows:

1) This paper proposes a novel heuristic representation,
the preference-conditioned scheduling heuristic, which
integrates user preferences as inputs to enable dynamic
adaptation to diverse user requirements. Additionally, this
paper proposes an innovative PSLGP framework designed
to learn a single preference-conditioned scheduling
heuristic for tackling the MO-DFIJSS problem, incorpo-
rating real-time user preferences as additional inputs.

2) To improve efficiency and minimize computational de-
mands, PSLGP employs a surrogate model for evaluation,
allowing for the estimation of individual performance
across multiple preferences without significantly increas-
ing training time.

3) This paper proposes three novel fitness aggregation strate-
gies for PSLGP to ensure the learned heuristic effectively
aligns with the Pareto front across a range of preferences.

4) Experimental results demonstrate that PSLGP surpasses
the state-of-the-art multi-objective GP approach signifi-
cantly, particularly in less busy environments.

5) Further analyses of preference influence, solution dis-
tribution, and heuristic structure confirm that PSLGP
can effectively learn preference-conditioned scheduling
heuristics that align with the Pareto front. This research
represents a new research direction in dynamic, multi-
objective scheduling, offering a more flexible, user-
centric, and computationally efficient solution to the MO-
DFISS problems.

II. BACKGROUND
A. Dynamic Flexible Job Shop Scheduling

DFJSS [3|] involves scheduling a set of jobs J =
{J1, J2, ..., J,,} that arrive over time on a shop floor equipped
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Fig. 1: The sequential decision-making process of a flexible JSS.

with a set of machines M = {M;, Ms,...,M,,}. Each
machine M), has a unique processing rate ;. Each job J;
has an arrival time r;, a weight p;, a due date d;, and a
sequence of operations [O; 1,0; 2, .., O;,,]. Each operation
O, of job J; has a workload 7; ;, an optional set of machines
M; ; € M on which it can be processed, and its processing
time t; ;, on machine M} is defined as t; ;r = m; ;/Vk-
Moreover, as machines are located at different geographic
sites, a transportation time T, x, is required to transfer a
job between machines My, and My,. During the scheduling
process, the following constraints need to be considered:

o Operation precedence: Operations must follow a prede-
fined sequence; operation O; ; can only start after the
completion of O; ;_; (if 7 > 1).

o Machine assignment: Each operation O;; must be as-
signed to exactly one machine from its set of optional
machines M, ;.

« Machine capacity: A machine M}, can only process one
operation at any given time.

« Non-preemption: Once an operation starts on a machine,
it must complete before the machine can switch to another
operation.

DFIJSS is a sequential decision-making problem [23]
wherein scheduling decisions must be made at multiple de-
cision points throughout the process to minimize the objec-
tives. [24]]. Fig. [T illustrates the sequential decision-making
process. DFJSS has two types of decision points: routing and
sequencing. As depicted in Fig. [T} at a routing decision point,
a decision is needed regarding which machine to select for
processing the ready operation. At a sequencing decision point,
a decision is required regarding which operation to choose as
the next task for an idle machine to process. At each decision
point ¢, the scheduling state is determined, with the present
state s; becoming active following the decision a;_; made
in the past state s;_1. Then, based on the present state s,
a decision a; is necessary to advance the scheduling process
to a future state s;y; until the entire scheduling process is
completed. The goal of MO-DFISS is to optimize certain
objectives, such as minimizing flow time and tardiness, while
adhering to constraints related to machine capacity, operation
precedence, and machine availability. This paper focuses on
four common objectives: minimizing max-flowtime (F'max),
max-tardiness (T'mazx), max-weighted-flowtime (W F'max),
and max-weighted-tardiness (WT'max). Their mathematical
formulations are presented below.

Fmax = max]_ (c; —73)

L]
e Tmaz = max} ; max(0,c; — d;)
e WFmax = max]’_,(p; - (¢; — 7))
L]

WTmaz = max], (p; - max(0,¢; — d;))

where c¢; represents the completion time of the job J;.
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For MO-DFISS, this paper investigates different combina-
tions of the above objectives to create various MO-DFJSS
scenarios, assessing the performance of the proposed method
across these diverse scenarios.

B. Pareto Set Learning

The concept of Pareto set learning is introduced by Lin
et al. in 2022 [25], [26], who apply it to multi-objective
combinatorial optimization problems like traveling salesman
problems, vehicle routing problems, and knapsack problems.
Their approach employs reinforcement learning to construct a
Pareto set by integrating multiple decision-maker preferences
in real-time. The framework features complex architectures
that include multiple attention layers, hundreds of dimensions
in hidden layers, and various neural network components.
They employ fully connected graph neural network, which
is effective for small-scale and static problems but entails
complex architectural design choices. It requires extensive
domain knowledge, frequent updates to the graph neural net-
works, and specific structural configurations during the learn-
ing process, which can restrict its flexibility in handling diverse
problem landscapes, particularly in large-scale and dynamic
contexts such as MO-DFJSS. Additionally, the reliance on
neural network methods raises concerns about interpretability
[17]; the complex nature of the model makes it difficult for
practitioners to understand the decision-making process behind
the generated Pareto set. This lack of interpretability can limit
the practical application of the method in scenarios where
insights into the decision-making process are crucial [17].

In contrast, GP-based approaches provide superior adapt-
ability and interpretability [[17]. The capability of GP to
simultaneously evolve both the structure and parameters of
solutions in a tree-based format enables flexible adjustments
across various scheduling contexts without being constrained
by predefined architectures [4]. This flexibility reduces the
reliance on extensive domain-specific structural design knowl-
edge while enhancing interpretability. Moreover, the tree-based
structure not only improves interpretability but also facilitates
the seamless embedding of preference information as part
of the inputs, enabling flexible and context-aware decision-
making. Additionally, GP inherently generates a population
of heuristics, diversifying the search process, mitigating local
optima, and enhancing adaptability in DFJSS environments
where preferences of objectives frequently shift. This adapt-
ability, combined with the capability to evolve heuristics that
directly encode preference information, distinguishes GP as a
uniquely effective approach for such problems. Furthermore,
GP is a dominant method in the DFJSS domain and its
superiority over reinforcement learning in this area has been
validated [27]]. These attributes make GP an ideal method
for Pareto set learning in MO-DFISS, enabling efficient and
interpretable heuristics tailored to real-time user preferences.
Consequently, this paper explores the use of GP for Pareto set
learning in the context of MO-DFIJSS.

C. Related Work

Existing multi-objective optimization methods for DFJSS
have primarily focused on learning a set of heuristics to iden-

tify a finite collection of Pareto solutions for approximating
the Pareto set [21]], [22]], [28[|-[33[]. These approaches typically
incorporate two popular multi-objective techniques: Pareto-
dominance-based and decomposition-based methods.

Specifically, in [21], [28], [29], GP is combined with two
well-known Pareto dominance-based multi-objective optimiza-
tion algorithms, NSGAII [34] and SPEA2 [35], to form NSGP-
II and SPGP2. These frameworks are designed to evolve
scheduling heuristics for addressing the MO-DFJSS prob-
lem. Experimental results indicate that NSGP-II outperforms
SPGP2 in terms of both hypervolume (HV) [36] and in-
verted generational distance (IGD) [37] values. Beyond Pareto
dominance-based methods, [22] introduced a multi-objective
GP method based on decomposition (MOGP/D), which merges
the advantages of MOEA/D [20] with GP to learn schedul-
ing heuristics for MO-DFJSS. Although MOGP/D exhibits
good diversity and consistency in the training and testing of
the learned Pareto front of scheduling heuristics, it achieves
slightly worse HV and IGD performance compared to NSGP-
II. Subsequent studies have expanded on NSGP-II. For in-
stance, [38|] investigated the impact of terminal settings on
NSGP-II in the context of solving MO-DFISS. In [39], a
surrogate technique was integrated into GP, showing that
surrogate-assisted methods can speed up the evolutionary
process and improve the quality of the learned scheduling
heuristics. A novel NSGP-II approach that merges surrogate
techniques with brood recombination was introduced in [40],
resulting in high-quality scheduling heuristics compared to
the original NSGP-II within the same training time. Fur-
thermore, semantic techniques are applied to NSGP-II for
MO-DFIJSS, demonstrating effective scheduling performance
[33]. Additional research has also focused on interpretability
[41] and multitasking aspects [42] within MO-DFJSS. While
these methods are effective in generating diverse solutions,
they exhibit limitations. The reliance on multiple heuristics
can complicate the decision-making process for users, as
selecting the most appropriate heuristic for a specific scenario
requires significant expertise and understanding of the problem
landscape. This complexity can hinder real-time adaptability,
particularly in dynamic environments where job priorities and
conditions frequently shift.

A few attempts have been made to integrate preference
information into GP for multi-objective job shop scheduling
[43]]. The study in [43]] proposed an interactive GP with a deci-
sion support system capable of incorporating preferences into
the solution process, aiming to efficiently evolve a scheduling
heuristic that aligns with the decision-maker’s expectations.
However, this method might not be practical, as decision-
makers might lack the time to assist in the training process, or
they might not be part of the same team as the developers. This
limitation underscores the need for more autonomous methods
that effectively incorporate user preferences without requiring
active input during the training phase. In this work, we aim
to address this limitation by proposing a novel multi-objective
GP framework that learns a single preference-conditioned
heuristic, capable of efficiently mapping all valid trade-off
preferences to the Pareto set for MO-DFJSS in real-time.
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Fig. 2: The overall flowchart of the proposed method.

Algorithm 1: PSLGP Algorithm

Input: Population size N, Number of generations G, Set of
preferences A = {1, A2, ..., A\c'}, Set of problem instances
={h,I,..1Ig}

Output: Best individual (Preference-conditioned heuristic) indpest

1 Initialize pop of N individuals ; // (Section )
2 Initialize main preference Ay qin < A1 indpest <— null;
3 for g < 1to G do

4 Fitness evaluation FitnessEvaluation(pop, I, Amain, A)
(Algorithm ; // (Section )
5 Select parents from pop using multi-criteria selection ;
// (Section )
6 Generate offspring popneq using brood recombination and

preselection and pop <— poppew ; // (Section )
7 indpest < getBest(pop);
Rotate main preference: Apain <~ Ag €A //

[rs)
9 end

o return indpe st

(Section

—

III. THE NEW METHOD
A. Overall Framework

Fig. illustrates the overall flowchart of the proposed
preference-guided Pareto set learning GP (PSLGP) method
and Algorithm [I] shows the pseudo-code of the PSLGP al-
gorithm. Population initialization, fitness evaluation, selec-
tion, breeding (crossover and mutation), and instance rotation
are the main processes of GP for DFISS, whereas special
designs are developed for population initialization, fitness
evaluation, and selection. In addition, the brood recombination
and preselection, as well as the main preference rotation are
newly proposed. Overall, there are six differences between the
proposed PSLGP and classical GP methods:

1) Population initialization: PSLGP initializes and main-
tains a population of individuals using newly developed
representations that incorporate preference information
(Section [I1I-B));

2) Fitness evaluation: PSLGP develops a preference-based
fitness evaluation method to assess the fitness of each
individual across multiple preferences (Section [lII-C));

3) Multi-criteria selection: PSLGP designs a multi-criteria
comparison strategy to select good individuals as parents
(Section [III-D);

4) Brood recombination and preselection: PSLGP proposes
to adopt brood recombination and preselection to select
potential good individuals as offspring for further evolu-
tion (Section [[II-E);

5) Preference rotation: PSLGP proposes to rotate the prefer-
ence at each new generation, thus enhancing the individ-

uals’ generalization ability to diverse preference settings
(Section [ITI-F);

6) Output: PSLGP ultimately outputs a single best indi-
vidual, representing a preference-conditioned scheduling
heuristic, rather than a Pareto front of scheduling heuris-
tics. This preference-conditioned scheduling heuristic can
estimate the Pareto front or provide a single scheduling
heuristic based on real-time preference information.

B. Individual Representation

This paper introduces a novel preference-conditioned
scheduling heuristic, which serves as the representation of in-
dividuals within the population. An illustrative example of the
preference-conditioned scheduling heuristic for MO-DFJSS
is presented in Fig. 3] Each heuristic comprises two trees,
representing the routing and sequencing rules, respectively.
These tree structures are constructed through random sampling
from terminals, functions, and preferences. A key innovation
of this paper lies in the integration of preferences as integral
components of the tree construction process. Unlike classical
scheduling heuristics for DFJSS, where preferences are not
explicitly considered, our approach incorporates preferences as
dynamic elements that can be determined by decision-makers
in real-time. This flexibility enables the preference-conditioned
scheduling heuristic to adapt to varying preference settings.
As depicted in Fig. |3] given a set of preferences (i.e., A\ =
(wi,1,w2,1), A2 = (w2, w22), and A3 = (wy 3, w23)) on
two objectives, the preference-conditioned scheduling heuristic
has the capability to generate multiple scheduling heuristics
(i.e., h1(-), ha(-), and h3(-)), each potentially representing a
point on the Pareto front (i.e., P;, P, and Ps). Thus, rather
than aiming to produce a single schedule, the preference-
conditioned scheduling heuristic is designed to approximate
the entire Pareto front. Furthermore, it can achieve this ap-
proximation in real time by directly incorporating preference
information.

C. Fitness Evaluation

To effectively evaluate preference-conditioned scheduling
heuristics across a range of preferences while aiming to
approximate the Pareto front, fitness evaluation involves four
main stages: 1) Individual evaluation with the main pref-
erence; 2) Non-dominated ranking; 3) Individual estimation
across preferences; and 4) Fitness calculation. It should be
noted that the main preference here refers to individuals with
this preference undergoing accurate evaluation on the DFJSS
training instance(s), while evaluations for other preferences are
estimated using a surrogate model. Algorithm [2] provides the
overall pseudo-code.

In the initial stage, each individual’s performance is evalu-
ated on the MO-DFJSS instance(s) using the main preference
Amain, Which determines the primary focus of the optimization
direction at each generation. In the second stage, a non-
dominated ranking is conducted to assign a rank rank; to each
individual ind; based on their performance under the main
preference. To reduce the excessive time costs of evaluating
individuals’ performance across all other preferences, the third
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Fig. 3: An example of the preference-conditioned scheduling heuristic for MO-DFJSS. The heuristic takes a DFJSS instance as its input. The
decision-makers assign their preferences (which can be seen as another type of input) on different objectives to the heuristic. The heuristic
directly generates approximate Pareto solutions with different trade-offs via fast-forward inference. The generated solutions P;, P>, and Ps
are different optimal trade-offs between the two objectives. The ideal preference-conditioned scheduling heuristic is expected to generate
solutions for all possible optimal trade-offs on the Pareto front and not generate a poor solution.

Algorithm 2: Fitness Evaluation

Input: Population pop, Set of preferences A, Main preference
Amain € A, Problem instance
Output: Ranks {ranki}y;olp‘, Fitness values {fiti}il;ofl,
Preference diversity values {predivsi}izolp l, Weighted

sum objective values {wsums; } lf: v !

1 Function FitnessEvaluation (pop, I, Amain, A):
2 for ¢ + 1 to |pop| do
3 | Pimain < CalculateObjectives(ind;, I, Amain);
4 end
5 {rank:i}i-p:of‘ — NonDominatedRank({Piymam}Lp:olpl);
6 for i < 1 to |pop| do
7 P; {Pi,main};
8 for A; € A\ {\nain} do
9 estP; ; < KNNModel(ind;, I, \j) (Algorithm ;
10 P, +— P;U {EStPi’j};
11 end
12 end
13 for i < 1 to |pop| do
CalculateHV(FP;)
14 fit; + { or CalculateIGD(P;) ;
or CalculateGD(F;)
15 prediv; < PreDiversity(A, P;) (Algorithm ;
16 wsum; < WeightedSum(A, P;);
17 end

18 return {ranki}‘iiof", {fiti}y:f", {predivi}ﬁof‘, {wsumi}y’:ofl

Algorithm 3: KNNModel(ind;, I, A\;)

Input: Individual ind;, Problem instance I, Target preference \j,
Population tuples with main preference (individual, objective
vector, main preference) popiypie =
{(indlv Pl,mainv )\main)7 ceey (indN7 PN,mairu >\main)}

Output: Estimated objective vector estObjs; ; for individual ind;

with preference \;

1 Function KNNModel (ind;, I, Aj):

2 PC;(A;) « CalculatePC(ind;, I, \;);

3 T «— 0;

4 for (indy, Py main, Amain) € POPtuple 4O

5 PCj (Amain) < CalculatePC(indk, I, Amain);

6

7

8

9

d; £(Aj) < IPC;(Aj) — PCxk(Amain)ll;
T+ TU di,k(/\j)§

end

k' < argmingep Ny T

10 estP; j < Py mains

1 return estP; ;

stage utilizes a K-nearest neighbor (KNN) surrogate model
[39]] to estimate performance under other preferences. KNN
surrogate models are commonly used in DFJSS as efficient
fitness estimators. The process involves: first, for each indi-

vidual ind;, we calculate a set of phenotypic characterizations
(PC) pc; that describe the individual’s behavior across various
preferences. Each PC represents a vector of values, where each
value signifies the rank assigned to the candidate machine
or operation by the reference rule, indicating the highest
priority at a given decision point by the individual ind;. This
paper utilizes the sequencing rule and the routing rule from
the best individual evolved at each generation as the refer-
ence sequencing and routing rules, respectively. To process a
DFISS instance, which typically involves thousands of deci-
sion points, we adopt a computational efficiency strategy by
focusing on 20 sequencing decision points and an equivalent
number of routing decision points [40]]. Consequently, the PC
of a scheduling heuristic comprises 40 values. Specifically,
an unseen instance I is used to generate all decisions in-
volving 7 candidate machines/operations. The decisions are
then shuffled, and 20 sequencing decision points along with
20 routing decision points are randomly selected. The PC is
effective in representing the phenotype/behavior of individuals
within the DFJSS domain [44]], serving as a reliable measure
for quantifying behavioral differences among individuals.

Next, we determine the most similar individual ind; in
the population using the Euclidean distance between each PC
under different preferences, defined as:

di,k(Aj) = IPC;(A;) — PCx(Amain)| (D

where \,qin denotes the main preference. A smaller distance
d; x(A\) indicates higher similarity. The true performance of
individual indj under the main preference is then used as
an estimate for individual ind; under the specific preference
A;j. This KNN surrogate model, therefore, provides an effi-
cient approximation of each individual’s performance across
multiple preferences without exhaustive evaluations, which
is shown in Algorithm [3] The final stage aggregates each
individual’s estimated performance across multiple preferences
into a single fitness value fit;. This paper proposes three
strategies for this aggregation, based on widely-used multi-
objective indicators: HV [36]], IGD [37]], and generational
distance (GD) [45]. For an individual ind; with performance
values P, = {P; ; }‘]ﬂl across preferences A (Ajqin € M), the
three aggregation methods are shown as follows.

1) HV-based aggregation: Calculates the hypervolume HV;
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covered by the individual with respect to a reference point
r, representing the volume dominated by the individual’s

objectives:
HYV; = Volume({P; ;} | ) @

where r is given as the worst objective in the current
population. This approach differs from the traditional HV
calculation, as this paper calculates the HV not only for
individuals on the Pareto front but also for all individuals
in the population.

2) 1GD-based aggregation: Uses the average distance be-
tween the individual’s solutions and a reference Pareto
front PF*, defined as:

1

IGD; = B

Y min|[P; | ©)
zEPF*
where PF'* is given as the Pareto front obtained in the
current population.

3) GD-based aggregation: Computes the mean distance be-
tween the individual’s solutions and the closest point on
the reference Pareto front:

Ly
GD; = Wélg% |Pi; — | 4)

The resulting aggregated fitness fit; € {HV;,IGD;,GD;}
serves to represent the overall performance of the individual
ind; across multiple preferences, providing a basis for select-
ing individuals that are robust across a diverse preference set.

The above aggregation strategy utilizes commonly used
multi-objective evaluation metrics. However, certain perfor-
mance values under specific preferences might not lie on the
Pareto front and are therefore overlooked during evaluation.
This limitation is particularly evident in metrics like HV and
IGD, which primarily focus on individuals on the Pareto front.
Such performance values, while not Pareto-optimal across the
entire set, can still impact the effectiveness of the preference-
conditioned scheduling heuristic. To capture these influences,
we introduce an additional metric: the weighted-sum value
wsum,;. Weighted-sum value wsum,; represents an aggregated
performance measure based on the weighted sum of normal-
ized objectives across multiple preferences, calculated as:

wsum; = Z Zwb’j . Pzngr;n 5)
i b
where wy, ; denotes the weight under the preference \; as-
signed to each objective b, and F}}" is the normalised objec-
tive value for individual ¢ under preference ); and objective
b. This paper adopts the manual rule normalization method
[22], which is normally used in the MO-DFJSS domain. This
metric captures the trade-offs across multiple preferences and
provides a holistic measure of the heuristic’s performance.

In addition, using preferences as additional inputs might not
always guarantee that evolved individuals can inherently pos-
sess these preferences within their tree structures. Moreover,
ensuring that individuals with these preferences in their tree
structures exhibit distinct behaviors in response to different
preference settings can be challenging. To enhance the impact
of preferences on the learned preference-conditioned schedul-
ing heuristics, we propose the preference diversity prediv;

Algorithm 4: Preference Diversity Calculation

Input: Individual ind;, A DFJSS instance I, Preference set A
Output: Preference diversity prediv;

1 Function PreDiversity (ind;, I, A):

2 D, — @,

3 foreach \; € A do

4 PC;(A;) <~ CalculatePC (ind;, A;,I);

5 D, (—CI)-L'UPC-L'(AJ');

6

7

8

end
prediv; < averageDistance (®;);
return prediv;

metric. Preference diversity prediv; reflects the heuristic’s
adaptability by measuring the percentage of unique behaviors
it exhibits across various preferences. It is defined as:

number of unique behaviours across A

prediv; = A 6)

The usage of preference diversity prediv; aims to address two
key aspects: firstly, to enhance the influence of preferences on
each scheduling heuristic, and secondly, to increase population
diversity, thereby encouraging individuals with diverse com-
binations of preferences to coexist within the population.

Algorithm [4] shows the pseudo-code of calculating the pref-
erence diversity of each individual. The input of this algorithm
includes the population of individuals pop, a DFJSS instance I,
and a set of preferences A. The DFJSS instance I is randomly
generated and different from all the instances in the training
set. The preference set A includes C' pairs of preferences. The
first pair remains consistent with the preference considered in
the current generation, while the remaining k = C'—1 pairs are
generated by uniformly sampling from the interval [0, 1]. For
example, when dealing with two objectives, the preferences for
the remaining k pairs are determined using \; = (w1 ;, wa,;),
where wy; < i/(k—1) and we; < (k—1—14)/(k —1).
The uniform generation of preferences minimizes potential
bias. The rationale for employing this strategy in preference
generation is twofold. Firstly, it facilitates the calculation of
individuals’ behavior within the current generation, which is
instrumental in niche management (to be discussed later).
Secondly, it ensures a uniform distribution of preferences,
mitigating any potential biases.

As illustrated in Algorithm the CalculatePC function
computes the PC [46]], [47]] for each individual (ind;) under
each preference (A\; € A) based on the same DFJSS instance
(I) (line ). Subsequently, a set of preference-based PCs (®;)
is obtained for each individual (ind;) in the population (line
E]). Traditionally, each individual is associated with a single PC
used solely for measuring differences from others. However,
this paper introduces a novel strategy where each individual is
linked to multiple PCs, reflecting diverse preferences. In this
revised context, the PC serves a dual purpose: it quantifies dis-
similarities between an individual and its peers while also mea-
suring the individual’s preference diversity. After obtaining the
PCs (®,), the algorithm calculates the average distance (dis;)
between each pair of PCs in ®; and normalizes it to derive
the preference diversity (prediv;) for each individual (ind;)
(line [7). Fig. [4] provides a clearer example of calculating the
preference diversity for an individual. By leveraging multiple
PCs, we gain deeper insights into how individual behaviors
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Individual ind;

(2]

! Routing rule  Sequencing r

Ay = (Wi, wa1) —
2= (Wi2,W2) — |

C preferences

Ac = Wi Wac) —

Average distance between each pair of PC: dis;

ADFJSS | Extract 1
Routing and sequencing decision situations A

Fig. 4: An example of calculating the preference diversity.
vary in response to different preferences, thereby enriching

the assessment of preference diversity within the evolutionary
process.

Preference
diversity: prediv; = dis;

D. Multi-Criteria Selection

The multi-criteria selection strategy selects individuals as
parents through a multi-stage comparison process. This strat-
egy applies four criteria: rank, fit € {HV,IGD,GD},
wsum, and prediv. The first criterion, rank, is prioritized
because it reflects an individual’s performance under the
main preference. If individuals share the same rank, the
second criterion, fit € {HV,IGD,GD}, is used to capture
performance across multiple preferences. If fit is also equal,
the third criterion, wsum, is applied. This considers aggre-
gated performance across preferences and addresses potential
information loss when indicators (e.g., HV and IGD) consider
only non-dominated solutions, thus ignoring the influence of
certain solutions. Finally, if individuals have the same rank,
fit, and wsum, the fourth criterion, prediv, is used to select
the individual with higher preference diversity, indicating a
better potential for broad applicability across preferences.

E. Brood Recombination And Preselection

The proposed method introduces a novel strategy that rotates
not only the instance but also the main preference for each new
generation. This creates a dynamic shift in the search space,
increasing the complexity of evolving effective heuristics. To
adapt to this challenge, we apply brood recombination [48]]
to produce a large pool of candidate individuals for the next
generation—specifically, generating five times the population
size of candidate individuals. A preselection process then
selects a subset of individuals equal to the population size
from this pool, based on estimated fitness calculated with the
KNN surrogate model and the individuals’ PCs under the main
preference, as described in Section [[II-C]

Specifically, candidate individuals are initially sorted based
on their rank rank and aggregated fitness fit. Then, the
preselection process adopts a niching strategy [49], dividing
individuals into distinct niches and penalizing those with
similar behaviors but poorer performance within each niche.
The PC (PC;(Amain)) in ¥, which uses the main preference
of the current generation, is applied to measure the similarity
between individuals. Each niche has a radius § = 0, so
individuals with identical PC;(\;) values are grouped into
the same niche. Further, the capacity s of each niche is set
to 1, meaning only one individual is maintained per niche.
These settings, 6 = 0 and x = 1, are typical in DFJSS for
a niche configuration [47]. The final population is obtained
from the sorted candidate pool, ensuring diversity preservation
by focusing on top-performing, non-duplicated individuals

in terms of phenotype/behavior. Importantly, the candidates’
behaviors are evaluated according to the main preference of
the upcoming generation, rather than the current one.
Overall, brood recombination generates a large pool of
candidates, enriching the search process with a broad set
of potential heuristics. The KNN surrogate model efficiently
estimates fitness, enabling rapid preselection without costly
evaluations. During preselection, duplicates in phenotype are
eliminated, ensuring that chosen offspring are phenotypically
diverse. This approach increases the likelihood of generating
a wide range of solutions, a key factor in multi-objective
optimization where maintaining diversity along the Pareto
front is as crucial as achieving convergence. Additionally, by
evaluating candidates based on the main preference of the
next generation instead of the current generation, the method
facilitates a smooth transition and minimizes fluctuations in
the rotation of the main preference. This adaptive strategy
keeps the algorithm aligned with evolving objectives and pref-
erences, enhancing long-term performance and adaptability.

F. Main Preference Rotation

The main preference rotation strategy introduces a new main
preference at each generation, enhancing the generalization
of the preference-conditioned heuristic across diverse prefer-
ences. Unlike static methods that evaluate based on a single
main preference throughout generations, this rotation exposes
the heuristic to different main preferences over time. As a re-
sult, the heuristic becomes more adaptable, learning to perform
well across a wide range of preferences. In PSLGP, the main
preference plays a central role in evaluating an individual’s
true performance efficiently, while other preferences provide
estimated evaluations for broader comparison. By rotating the
main preference, we ensure that each preference receives a true
performance evaluation rather than relying solely on surrogate-
based estimates, which, although efficient, can not accurately
capture the true performance through real evaluation. This
rotation enhances the robustness of the heuristic, as it learns
to optimize not only for specific instances but also to meet
varying objectives across preferences. Ultimately, the main
preference rotation fosters a more adaptable and widely appli-
cable heuristic that can better handle the dynamic and diverse
requirements in MO-DFJSS.

IV. EXPERIMENT DESIGN
A. Datasets

This paper utilizes the simulation model [22] to generate
datasets. This model simulates a job shop environment where
5,000 jobs are processed by 10 heterogeneous machines.
Each machine’s processing rate is randomly set within the
range [10, 15]. The transportation time between machines and
between each machine and the entry/exit point is sampled from
a uniform discrete distribution between 7 and 100. During
scheduling, jobs arrive over time according to a Poisson
process. Each job consists of a randomly generated number of
operations, between 2 and 10, drawn from a uniform discrete
distribution. Jobs vary in importance, with 20%, 60%, and
20% of jobs assigned weights of 1, 2, and 4, respectively.
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TABLE I: The scenarios.

Scenarios Objective 1 Objective 2 Utilization
1 max-flowtime max-weighted-tardiness 0.70
2 max-flowtime max-weighted-tardiness 0.75
3 max-flowtime max-weighted-tardiness 0.80
4 max-flowtime max-weighted-tardiness 0.85
5 max-flowtime max-weighted-tardiness 0.90
6 max-weighted-flowtime max-tardiness 0.70
7 max-weighted-flowtime max-tardiness 0.75
8 max-weighted-flowtime max-tardiness 0.80
9 max-weighted-flowtime max-tardiness 0.85
10 max-weighted-flowtime max-tardiness 0.90

The workload for each operation is randomly assigned from a
uniform discrete distribution in the range [100,1000]. A due
date factor of 1.5 is applied, meaning each job’s due date is
set at 1.5 times its total processing time from its arrival.

Utilization levels are critical for modeling different DFJSS
scenarios, as higher utilization corresponds to a busier job shop
environment. In this study, we examine five utilization levels:
0.70, 0.75, 0.80, 0.85, and 0.90, creating diverse MO-DFJSS
scenarios across varying job shop intensities. The specific
scenarios are detailed in Table |} To ensure data accuracy, the
initial 1,000 jobs are used as warm-up jobs to stabilize the
system and simulate realistic job shop conditions over time.
Following the warm-up, data collection begins for the next
5,000 jobs, with the simulation ending after processing 6,000
jobs. To enhance the generalization of the evolved scheduling
heuristics, a single replication of the simulation is used, while
random seeds are varied for each GP generation, producing
diverse instances within each scenario [50]. This approach
helps ensure robust heuristic performance across different
DFISS scenarios.

B. Comparison Design

As this paper presents a novel research area within both
GP and MO-DFIJSS: the development of a single preference-
conditioned heuristic capable of efficiently mapping all valid
trade-off preferences to the Pareto set for MO-DFIJSS in real-
time, there is a lack of existing literature. To evaluate the
proposed method, we compare it against the current state-
of-the-art multi-objective approach on MO-DFJSS, NSGP-II,
focusing on performance metrics including HV, IGD, and GD.
To ensure a fair comparison with NSGP-II, which directly
evolves a set of non-dominated heuristics, we first generate
a set of 200 preferences using the Das & Dennis method
[51]. This approach ensures a relatively uniform distribution
of weight vectors, which is essential for obtaining a diverse
and well-represented Pareto front. PSLGP is then executed for
each preference, producing a corresponding heuristic for that
specific preference. This resulted in a set of derived heuristics,
each tailored to a different preference direction. The solutions
generated by this set of derived heuristics are then used to
calculate the HV, IGD, and GD metrics, enabling a direct
comparison with the non-dominated set produced by NSGP-II.
The methods compared are as follows:
1) NSGP-II: The leading multi-objective GP for MO-DFISS
[21].

2) PSLGP-G (Ours): The proposed preference-conditioned
multi-objective GP method, primarily evaluated using GD
as the performance criterion.

TABLE 1I: The GP terminal and function set for DFJSS.

Notation Description
NIQ Number of operations in the queue
WIQ Work in the queue
MWT Waiting time of the machine = t"- MRT"
PT Processing time of the operation
NPT Median processing time for the next operation
OWT Waiting time of the operation = t - ORT"
WKR Work remaining
NOR Number of operations remaining
DD Relative due date = DD™- t
SL Slack
w Job weight
TIS Time in system = t - releaseTime"
TRANT | Transportation time
Function | +, —, X, /, max, min

* t: current time; MRT: machine ready time; ORT: operation
ready time; DD: due date; releaseTime: release time.

TABLE III: The parameter settings for PSLGP and NSGP-II.

Parameter Value
Population size 1000
Number of generations 50

Method for initializing population | Ramped-half-and-half

Initial minimum/maximum depth | 2/6
Elitism 10
Maximal depth 8
Crossover rate 0.80
Mutation rate 0.15
Reproduction rate 0.05
Terminal/non-terminal selection rate | 10% / 90%

Parent selection Tournament selection with 7

3) PSLGP-I (Ours): The proposed preference-conditioned
multi-objective GP method, primarily evaluated using
IGD as the performance criterion.

4) PSLGP-H (Ours): The proposed preference-conditioned
multi-objective GP method, primarily evaluated using HV
as the performance criterion.

C. Parameter Setting

In the experiments, the terminal set and function set used to
create individuals are detailed in Table |lI| [3]]. The terminal set
includes features associated with machines (e.g., NIQ, WIQ,
and MWT), operations (e.g., PT, NPT, and OWT), jobs (e.g.,
WKR, NOR, W, TIS, rDD, and SL), and transportation (e.g.,
TRANT). The function set consists of arithmetic operators
that operate on two arguments. The division operator “/” is
protected, returning 1 when the divisor is zero. The mazx
and min functions also take two arguments, returning the
maximum and minimum values, respectively. The parameter
configurations for PSLGP and the comparison method are
presented in Table [ITI] [33]).

V. EXPERIMENTAL RESULTS
A. Test Performance

Tables and present the results of four multi-
objective optimization methods, NSGP-II, PSLGP-G, PSLGP-
I, and PSLGP-H, across ten DFJSS scenarios, with each table
focusing on a different metric: HV, IGD, and GD, respectively.
Wilcoxon tests [52] are performed to statistically compare the
proposed methods (PSLGP-G, PSLGP-I, PSLGP-H) against
the baseline (NSGP-II), with significance marked as: 1 for
significantly better, | for worse, and = for no significant
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TABLE IV: The test HV performance of the proposed methods and TABLE V: The test IGD performance of the proposed methods and

the comparison method across ten DFJSS scenarios.

the comparison method across ten DFJSS scenarios.

9T T NSGP-II PSLGP-G PSLGP-I PSLGP-H S0 T NSGP-II PSLGP-G PSLGP-1 PSLGP-H
T [0.810(0.048) | 0.792(0.069)(=) | 0.834(0.067)(1) | 0.820(0.068)(=) T [0.159(0.033) | 0.155(0.051)(=) | 0.129(0.046)(T) | 0.136(0.041)(T)
2| 0.956(0.010) | 0.947(0.024)(=) | 0.958(0.012)(=) | 0.959(0.015)(=) 2| 0.031(0.007) | 0.035(0.019)(=) | 0.024(0.008)(1) | 0.023(0.007)(1)
3| 0.858(0.036) | 0.836(0.060)(=) | 0.852(0.038)(=) | 0.849(0.056)(=) 3 10.089(0.017) | 0.100(0.040)(=) | 0.091(0.019)(=) | 0.091(0.033)(=)
4 [0.922(0.021) | 0.864(0.069)()) | 0.895(0.060)(=) | 0.915(0.026)(=) 4 [0.063(0.016) | 0.098(0.069)()) | 0.073(0.051)(=) | 0.061(0.017)(=)
5 10.960(0.012) | 0.919(0.048)(1) | 0.931(0.031)(}) | 0.936(0.023)(1) 5 | 0.029(0.008) | 0.049(0.045)() | 0.036(0.026)(=) | 0.031(0.020)(=)
6 |0.911(0.023) | 0.927(0.018)(1) | 0.919(0.030)(=) | 0.934(0.026)(1) 6 | 0.062(0.012) | 0.047(0.011)(1) | 0.053(0.018)(1) | 0.044(0.016)(1)
7 10.942(0.013) | 0.936(0.023)(=) | 0.952(0.017)(1) | 0.942(0.036)(=) 7 1 0.035(0.007) | 0.036(0.015)(=) | 0.027(0.009)(1) | 0.035(0.039)(1)
8 | 0.920(0.015) | 0.917(0.044)(=) | 0.920(0.031)(=) | 0.916(0.029)(=) 8 | 0.057(0.007) | 0.066(0.023)(=) | 0.054(0.014)(=) | 0.059(0.014)(=)
9 | 0.789(0.041) | 0.762(0.105)(=) | 0.815(0.076)(1) | 0.823(0.044)(1) 9 |0.109(0.031) | 0.126(0.077)(=) | 0.086(0.048)(1) | 0.082(0.027)(1)
10 | 0.942(0.014) | 0.896(0.049)()) | 0.912(0.033)(]) | 0.916(0.022)(}) 10 | 0.031(0.009) | 0.058(0.045)(1) | 0.042(0.027)(}) | 0.040(0.014)(\)
widll - 11613 3512 21612 widll - 11613 S ST

T 26 28 8 28 T 27 30 3 25

difference. Additionally, Friedman tests [53|] are conducted to
rank the overall performance of these methods.

In terms of HV performance (as shown in Table [[V),
PSLGP-I consistently outperforms the other methods, achiev-
ing the highest rank (1.8), which underscores its effectiveness,
particularly in scenarios that do not push utilization to extreme
levels (0.90 utilization level). PSLGP-G generally matches
NSGP-II’s performance with a rank of 2.8 and demonstrates
significantly better results in low-utilization scenarios. How-
ever, it underperforms in high-utilization scenarios, where its
performance declines significantly. Similarly, PSLGP-H shares
a comparable overall rank of 2.8 and follows the same trend:
excelling in low-utilization scenarios but showing weaker
results under higher utilization conditions. For example, in
scenario <WFmax-Tmax, 0.70>, both PSLGP-G and PSLGP-
H outperform NSGP-II, achieving significantly higher HV
scores (1), while PSLGP-I shows comparable results (=). In
scenario <WFmax-Tmax, 0.75>, PSLGP-I again demonstrates
superior HV performance (1), confirming its effectiveness
in handling WFmax-Tmax scenarios. In scenario <WFmax-
Tmax, 0.85>, both PSLGP-I and PSLGP-H outperform NSGP-
IT (1), indicating their ability to handle challenging conditions
better than the baseline. However, in the most extreme sce-
nario, <WFmax-Tmax, 0.90>, all proposed methods perform
worse than NSGP-II ({), highlighting NSGP-II’s resilience
under high workload conditions. Overall, PSLGP-I emerges
as the most consistent and generally best-performing method,
delivering significant improvements over NSGP-II in various
scenarios. While PSLGP-G and PSLGP-H also offer competi-
tive performance, they are less consistent and underperform
in certain high-utilization cases. NSGP-II remains a strong
baseline, particularly in scenarios with high utilization, where
it maintains solid performance.

In terms of IGD performance (as shown in Table @,
PSLGP-I consistently outperforms NSGP-II in multiple sce-
narios, achieving the highest rank (1.8), particularly excelling
in <WFmax-Tmax> conditions, making it the best performer
overall. PSLGP-H also performs well with a rank of 2.5,
similar to PSLGP-I, but with a slightly lower ranking. PSLGP-
G, with a rank of 3.0, generally matches NSGP-II's perfor-
mance in many scenarios but falters in high-utilization settings,

1S: Scenario; 1: <Fmax-WTmax, 0.70>; 2: <Fmax-WTmax, 0.75>; 3:
<Fmax-WTmax, 0.80>; 4: <Fmax-WTmax, 0.85>; 5: <Fmax-WTmax, 0.90>;
6: <WFmax-Tmax, 0.70>; 7: <WFmax-Tmax, 0.75>; 8: <WFmax-Tmax,
0.80>; 9: <WFmax-Tmax, 0.85>; 10: <WFmax-Tmax, 0.90>; wlidll: win |
draw | loss; r: average rank

TABLE VI: The test GD performance of the proposed methods and
the comparison method across ten DFJSS scenarios.

S0 ] NSGP-II PSLGP-G PSLGP-1 PSLGP-H
T [0.169(0.054) | 0.121(0.039)(P) | 0.111(0.045)(P) | 0.118(0.036)(D)
2| 0.037(0.011) | 0.029(0.018)(1) | 0.019(0.009)(1) | 0.017(0.008)(1)
31 0.091(0.032) | 0.050(0.034)(1) | 0.043(0.026)(1) | 0.052(0.035)(1)
4 | 0.065(0.015) | 0.053(0.060)(1) | 0.041(0.046)(1) | 0.029(0.011)(})
5 | 0.042(0.015) | 0.033(0.042)(1) | 0.026(0.025)(1) | 0.021(0.018)(})
6 | 0.056(0.035) | 0.032(0.009)(1) | 0.037(0.017)(1) | 0.028(0.012)(1)
7 1 0.041(0.028) | 0.021(0.011)(1) | 0.017(0.010)(1) | 0.024(0.035)(1)
8 | 0.059(0.037) | 0.029(0.016)(1) | 0.033(0.010)(1) | 0.032(0.013)(1)
9 | 0.085(0.028) | 0.047(0.036)(1) | 0.041(0.019)(1) | 0.045(0.032)(1)
10 | 0.0320.015) | 0.031(0.033)(1) | 0.022(0.018)(1) | 0.017(0.010)(1)
widll N 101010 101010 101010

T 36 24 19 21

leading to significant underperformance. For example, in sce-
nario <Fmax-WTmax, 0.75>, both PSLGP-I and PSLGP-H
significantly outperform NSGP-II, with IGD values of 0.024
and 0.023, respectively, while PSLGP-G has slightly worse
results but without a significant difference (=). In scenario
<WFmax-Tmax, 0.70>, PSLGP-G, PSLGP-I, and PSLGP-
H all outperform NSGP-II (1), demonstrating significantly
better IGD values. However, in the high-utilization scenario
<WFmax-Tmax, 0.90>, all three proposed methods, PSLGP-
G, PSLGP-I, and PSLGP-H, perform worse than NSGP-II ({),
indicating NSGP-II’s robustness in extreme high-utilization
conditions. Overall, PSLGP-I is the clear winner, achieving
the best IGD performance in 5 scenarios, effectively reduc-
ing IGD across a wide range of conditions. PSLGP-H is a
strong competitor, performing similarly to PSLGP-I in many
scenarios but with a slight disadvantage in the overall ranking.
PSLGP-G performs comparably in lower-utilization scenarios
but struggles significantly in high-utilization environments,
where it tends to underperform.

In terms of GD performance (as shown in Table [VI),
PSLGP-I is the strongest performer overall, with an average
rank of 1.9, demonstrating consistent improvements in con-
vergence across all scenarios. It consistently achieves lower
GD values than NSGP-II, confirming its ability to approximate
the Pareto front more closely. PSLGP-H also shows significant
improvements in GD across all scenarios, with an average rank
of 2.1, making it a strong competitor to PSLGP-1. PSLGP-G,
with an average rank of 2.4, performs well across all scenarios,
consistently outperforming NSGP-II in terms of GD, though
it is not the top performer. Overall, PSLGP-I emerges as
the best method, consistently delivering lower GD values
than both NSGP-II and the other proposed methods across
all scenarios. Its effectiveness in achieving close convergence
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Fig. 5: The box plots of the HV performance of the proposed methods compared to the baseline methods across 5 DFJSS scenarios.
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Fig. 6: The box plots of the IGD performance of the proposed methods compared to the baseline methods across 5 DFJSS scenarios.
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Fig. 7: The box plots of the GD performance of the proposed methods compared to the baseline methods across 5 DFJSS scenarios.

to the Pareto front at various utilization levels highlights its
superior performance. All three proposed methods, PSLGP-
G, PSLGP-I, and PSLGP-H, consistently outperform NSGP-II
across every scenario. The unanimous wins (10-0-0) for each
of the proposed methods indicate their significant advantages
in reducing GD, regardless of the scenario.

While one might intuitively expect PSLGP-H to excel in
HV, PSLGP-I in IGD, and PSLGP-G in GD, our empirical
results show that PSLGP-I consistently achieves the best
performance across all three metrics. This can be attributed
to the proposed multi-criteria selection strategy and the nature
of IGD. The multi-criteria selection strategy first ranks in-
dividuals based on their non-dominated rank according to the
main preference. If multiple individuals share the same rank, a
secondary comparison is conducted using HV, IGD, or GD. As
a result, by the end of training, the best preference-conditioned
individual is primarily selected based on its rank rather than
a specific metric. Additionally, IGD measures the average
distance from points in the Pareto front approximation to the
(estimated) true Pareto front, inherently promoting both con-
vergence and diversity. Since strong convergence and diversity
benefit HV and GD as well, optimizing IGD leads to superior
performance across all three metrics. In contrast, PSLGP-H,
which focuses solely on HV, may generate solutions that cover
a large volume but fail to converge to the true Pareto front,
resulting in suboptimal IGD and GD. Similarly, PSLGP-G,
which optimizes GD directly, may prioritize convergence at
the expense of diversity, leading to lower HV.

To present intuitive and clearer results, we visualize the box
plots of HV, IGD, and GD from 30 runs of the four methods
across 5 out of these 10 scenarios, as shown in Figs. E], @ and
[7l respectively. The results align with the previous analysis.
The box plots reveal the variability of HV, IGD, and GD values
within each method, where PSLGP-G, PSLGP-I, and PSLGP-

H, generally exhibit taller distributions, indicating greater vari-
ability in their solutions. In contrast, NSGP-II shows shorter
distributions, suggesting more consistent performance. This
may be because NSGP-II learns different heuristics to cover
the Pareto front, while the proposed methods focus on a single
heuristic and further consider multiple preferences to achieve
coverage of the Pareto front.

In summary, the comparative analysis of the four multi-
objective optimization methods, NSGP-II, PSLGP-G, PSLGP-
I, and PSLGP-H, across ten DFJSS scenarios reveals distinct
performance trends regarding HV, IGD, and GD metrics.
PSLGP-I stands out as the overall top performer, consistently
attaining the highest ranks and demonstrating superior effec-
tiveness across HV, IGD, and GD metrics, especially under
low-utilization conditions. While PSLGP-H performs com-
petitively, especially in low-utilization scenarios, its overall
ranking slightly lags behind that of PSLGP-I. PSLGP-G shows
strong performance in many instances but struggles signif-
icantly in high-utilization conditions, resulting in underper-
formance compared to NSGP-II. Despite the strengths of the
proposed methods, particularly PSLGP-I, NSGP-II remains a
robust baseline, especially in high-utilization scenarios, where
it demonstrates resilience and strong HV and IGD perfor-
mance. However, it shows the weakest GD performance among
all methods across both high and low-utilization scenarios.
Overall, this analysis highlights the effectiveness of PSLGP-
I in low-utilization MO-DFJSS scenarios and emphasizes the
importance of selecting the most suitable method based on the
utilization conditions of the MO-DFJSS problem.

B. Ablation Study

This section conducts an ablation study to analyze the
contribution of main components (i.e., multi-criteria selection,

Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on May 18,2025 at 08:46:30 UTC from IEEE Xplore. Restrictions apply.

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2025.3568375

JOURNAL OF IKTEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

TABLE VII: The test HV performance of the proposed method and TABLE IX: The test GD performance of the proposed method and

its variants across ten DFJS

S scenarios.

SO PSLGP-I PSLGP-Ib PSLGP-Im

T | 0.962(0.018) | 0.937(0.02D)(J) | 0.939(0.022)()
2| 0.9590.012) | 0.937(0.020)(}) | 0.932(0.022)()
3| 0.909(0.026) | 0.860(0.056)(1) | 0.821(0.065)(()
4 | 0.9130.059) | 0.889(0.041)(]) | 0.873(0.036)())
5 | 0.874(0.055) | 0.858(0.032)(1) | 0.834(0.030)()
6 | 0.937(0.026) | 0.917(0.027)(}) | 0.862(0.130)(()
7 | 0.950(0.015) | 0.910(0.059)(}) | 0.913(0.083)()
8 | 0.964(0.017) | 0.942(0.026)(}) | 0.927(0.055)()
9 | 0.960(0.014) | 0.944(0.021)(}) | 0.900(0.068)()
10 | 0.955(0.017) | 0.952(0.016)(=) | 0.921(0.036)(})

widll - 0IT19 00110
T 12 24 24

TABLE VIII: The test IGD performance of the proposed method and

its variants across ten DFJS

S scenarios.

its variants across ten DFJSS scenarios.

SO PSLGP-I PSLGP-Ib PSLGP-Im
T | 0.013(0.010) | 0.0300.013)J) | 0.022(0.01 D)
2| 0.013(0.009) | 0.028(0.011)(}) | 0.018(0.012)(=)
3] 0.0250.019) | 0.056(0.029)(1) | 0.021(0.017)(=)
4 | 0.03000.045) | 0.057(0.070)(1) | 0.029(0.014)(()
S| 0.034(0.046) | 0.046(0.030)(]) | 0.033(0.018)(})
6 | 0.030(0.019) | 0.046(0.025)(1) | 0.069(0.104)()
7 | 0.016(0.010) | 0.047(0.045)(1) | 0.032(0.069)()
8 | 0.014(0.012) | 0.0310.024)(}) | 0.048(0.062)()
9 | 0.013(0.007) | 0.020(0.009)(()) | 0.038(0.056)(})
10 | 0.0190.016) | 0.034(0.022)(1) | 0.040(0.027)(})
widll - 0010 01218
T T4 28 3

PSLGP-I achieves the lowest (best) IGD values in nearly all

SO PSLGP-I PSLGP-Ib PSLGP-Im
T | 0.022(0.010) | 0.037(0.013)(1) | 0.036(0.018))
2| 0.023(0.005) | 0.037(0.013)(1) | 0.044(0.019)(])
3| 0.078(0.015) | 0.088(0.035)(=) | 0.093(0.041)(=)
4 | 0.067(0.051) | 0.076(0.036)(1) | 0.076(0.024)(})
5 | 0.078(0.050) | 0.082(0.023)(1) | 0.093(0.020)(})
6 | 0.047(0.014) | 0.0590.017)(l) | 0.101(0.122)(})
7 | 0.033(0.006) | 0.059(0.051)(1) | 0.055(0.076)())
8 | 0.02000.012) | 0.035(0.021)(}) | 0.053(0.052)()
9 | 0.025(0.007) | 0.034(0.013)(1) | 0.072(0.063)(})
10 | 0.02500.012) | 0.027(0.010)(}) | 0.0520.032)()
widll - e 0ITI9
T 3 27 2.0

as well as brood recombination and preselection) to the
algorithm’s overall performance. By systematically removing
or modifying each component, we observe its impact on key
performance metrics. For the ablation variants, PSLGP-Im
represents PSLGP-I with the multi-criteria selection process
removed, using instead the non-dominated rank and crowded
distance selection similar to NSGP-II. PSLGP-Ib removes the
brood recombination and preselection process, relying solely
on the same population size of generated offspring. Tables
[VII} [VII} and IX] present the results of the proposed PSLGP-
I method and its variants across ten DFJSS scenarios, with
each table focusing on a different metric: HV, IGD, and GD,
respectively. Also, Wilcoxon tests [52]] and Friedman tests [53]]
are performed to statistically compare and rank these methods.

In terms of HV performance (as shown in Table ,
in each scenario, PSLGP-I consistently achieves the highest
(best) HV values compared to both PSLGP-Ib and PSLGP-
Im. The HV values for PSLGP-Ib are lower than PSLGP-I in
all other scenarios, indicating that the removal of the brood
recombination and preselection strategy weakens the method’s
ability to achieve high performance across diverse DFJSS
problems. This suggests that brood recombination and pres-
election strategy enhances the search space exploration and
improves the overall scheduling efficiency of the algorithm.
PSLGP-I also outperforms PSLGP-Im in all 10 scenarios,
indicating that the multi-criteria selection strategy plays a
crucial role in enhancing the algorithm’s robustness. The win-
draw-loss record further supports the dominance of PSLGP-I,
with PSLGP-Ib losing in 9 cases and PSLGP-Im in all the
10 cases. In addition, both PSLGP-Ib and PSLGP-Im have an
average rank of 2.4, while PSLGP-I ranks highest with 1.2,
indicating its consistent top performance.

In terms of IGD performance (as shown in Table [VIII),

scenarios, indicating superior performance over both PSLGP-
Ib and PSLGP-Im. When comparing PSLGP-I to PSLGP-Ib,
in 9 out of 10 scenarios, PSLGP-Ib exhibits higher (worse)
IGD values compared to PSLGP-I. These results suggest
that the absence of the brood recombination and preselection
strategy reduces PSLGP-Ib’s ability to generate solutions close
to the optimal front, emphasising the role of this strategy
in improving solution quality and diversity. In comparison
with PSLGP-Im, PSLGP-I outperforms PSLGP-Im in 9 out
of 10 scenarios. PSLGP-Im generally has the highest IGD
values among the three methods. This implies that without
multi-criteria selection, the algorithm might struggle to balance
objectives effectively, resulting in less optimal solutions. The
win-draw-loss records confirm PSLGP-I's dominance, with
both PSLGP-Ib and PSLGP-Im losing in 9 scenarios each. The
average ranks also highlight PSLGP-I’s consistent superiority
(rank of 1.3), while PSLGP-Im performs slightly better than
PSLGP-Ib overall (ranks of 2.0 and 2.7, respectively), although
both perform significantly worse than PSLGP-I.

In terms of GD performance (as shown in Table ,
PSLGP-I achieves the lowest (best) GD values in all scenarios,
showing that it consistently produces solutions closer to the
true Pareto front compared to its two variants. When com-
paring PSLGP-I to PSLGP-Ib, in all 10 scenarios, PSLGP-Ib
has higher (worse) GD values than PSLGP-I. These results
suggest that the brood recombination and preselection strategy
substantially improves solution quality by enhancing diversity
and exploration in the search process. PSLGP-Im also shows
higher GD values compared to PSLGP-I in all but two scenar-
ios (scenarios 2 and 3, where it matches PSLGP-I). Although
PSLGP-Im generally performs better than PSLGP-Ib, it still
lacks the precision of PSLGP-I, particularly in scenarios (e.g.,
scenarios 6 and 8). This indicates that multi-criteria selection
helps PSLGP-I refine its solutions by maintaining a balanced
search across objectives. The win-draw-loss record further
underscores PSLGP-I’s dominance, as it outperforms PSLGP-
Ib in all scenarios and PSLGP-Im in 8 out of 10 scenarios.
The average rank supports this, with PSLGP-I achieving the
best overall ranking (1.4), followed by PSLGP-Im (1.8) and
PSLGP-Ib (2.8).

Overall, this ablation study highlights the contributions
of both brood recombination and preselection, as well as
multi-criteria selection strategies in improving the HV, IGD,
and GD performance of PSLGP-I. Removing either of these
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Fig. 8: The solution distribution of the learned heuristic from a single
run under varying preferences for scenarios <Fmax-WTmax, 0.80>
and <WFmax-Tmax, 0.85>.
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elements reduces performance, with the absence of multi-
criteria selection (PSLGP-Im) often having the most significant
impact. These results show that both strategies contribute to
PSLGP-I's effectiveness in generating high-quality solutions
for DFJSS, with multi-criteria selection particularly crucial for
maintaining a well-balanced and diverse solution set.

VI. FURTHER ANALYSIS
A. Solution Distribution under Different Preferences

This section measures and analyzes the consistency of how
preferences are mapped to solutions. Specifically, we aim to
verify whether the learned preference-conditioned heuristic
can effectively map different preferences to distinct regions of
the solution space. To achieve this, we divide the 200 sampled
preferences (A1, Ag, ..., A200) into five groups, each contain-
ing 40 preferences. Specifically, the preferences in group ¢ are
represented as (Ago.(i—1)41, M0-(i—1)+2; - - - » Mo-;). We then
visualize the corresponding test objectives for each group. Fig.
gives an example of the solution distribution of the learned
heuristic from a single run under varying preferences for the
scenarios <Fmax-WTmax, 0.80> and <WFmax-Tmax, 0.85>.

Since the learned heuristic is expected to cover the Pareto
front based on preferences, and different preferences should
map to specific regions, the ideal distribution would exhibit
the following characteristics: (1) Data points of the same
color (group) should be clustered together in a relatively
small region; (2) Data points of different colors (groups)
should occupy distinct regions with minimal overlap; (3)
The clusters of different colors should be relatively close
to each other, indicating a continuous relationship between
the variables. Based on these criteria, as seen in Fig. E], the
left subfigure shows somewhat scattered clusters with some
overlap between different colors. There is moderate separation,
though overlap persists, and the clusters are relatively close to
each other, suggesting a continuous relationship. In the right
subfigure, the clusters are more tightly grouped, with minimal
overlap. The separation between clusters is more pronounced,
and they remain close, maintaining a continuous relationship.
Additionally, the shapes of the clusters differ between the two
subfigures. The left subfigure features more circular clusters,
indicating a uniform distribution, while the right subfigure
shows elongated clusters, suggesting a directional relation-
ship—an expected shape.

Overall, while both subfigures display clustering and prox-
imity, the right subfigure demonstrates a more desirable dis-
tribution. It better aligns with the criteria of intra-cluster
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Fig. 9: The solution distribution of the learned multiple heuristics
from a single run under varying preferences for scenarios <Fmax-
WTmax, 0.80> and <WFmax-Tmax, 0.85>.

* heuristic 1 heuristic 2 heuristic 3

similarity, inter-cluster separation, and overall proximity, sug-
gesting that the data points are more clearly grouped and
exhibit a more coherent relationship between the variables.
The unexpected result in the left subfigure is primarily due
to our proposed multi-criteria selection strategy. A detailed
analysis of this result is provided in the Supplementary File.

B. Solution Distribution by Different Heuristics

When learning a preference-conditioned heuristic designed
to cover the entire Pareto front by accounting for varying
preferences (or directions), the heuristic needs to exhibit strong
solution-generation capability across different directions. That
is, the heuristic is expected to generate effective solutions in
different directions, reflecting varying preferences. However,
the effectiveness and solution-generation ability of a heuristic
can vary considerably depending on its underlying structure.
Analyzing the distribution of solutions generated by different
heuristics offers valuable insights into their performance and
potential biases. Different from subsection which fo-
cuses on analyzing the influence of different preferences on
the solution regions produced by the best-learned heuristic, this
subsection examines the solution regions generated by the top
five heuristics.

Fig.[9]illustrates the solution distribution of multiple learned
heuristics from a single run under varying preferences for the
scenarios <Fmax-WTmax, 0.80> and <WFmax-Tmax, 0.85>.
In the solution distribution for scenario <Fmax-WTmax, 0.80>
(left subfigure), the clusters corresponding to heuristic 0 (in
red) and heuristic 3 (in orange) appear relatively close, with
some potential overlap. This suggests that these two heuristics
may be generating similar solutions. Conversely, the solutions
produced by heuristics 0, 1, and 2 seem more distinct from
each other, indicating that these heuristics are focusing on dif-
ferent regions and producing more diverse solutions. Heuristic
4, however, only covers a very small region, demonstrating
poor solution-generation ability. In scenario <WFmax-Tmax,
0.85> (right subfigure), the red and green clusters are more
spread out, indicating that heuristics 0 and 2 are generating a
wider range of solutions. This suggests these heuristics are
better at producing distinct solutions under this preference
setting, offering strong solution-generation capabilities across
different preferences. The green and red clusters’ wider spread
across preferences indicates that their corresponding heuristics
generate solutions with greater diversity, effectively covering
a broader range of preferences. Conversely, the more compact
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Fig. 10: An example of the sequencing rule from a learned preference-
conditioned heuristic from scenario <WFmax-Tmax, 0.85>.

orange, blue, and purple clusters suggest that their heuristics
generate more similar solutions, exhibiting limited coverage.

Overall, this analysis demonstrates that the proposed PSLGP
method can learn preference-conditioned heuristics that are
capable of generating a diverse range of solutions across the
Pareto front. However, this outcome is not always guaranteed,
as some learned heuristics may focus on only a subregion of
the Pareto front. Future work should address this limitation to
improve the generation ability of these heuristics.

C. Structure Analysis

This paper presents a novel representation of preference-
conditioned scheduling heuristics, incorporating two additional
parameters, W1 (w;) and W2 (ws), which capture preference-
related inputs. This section examines the influence of these
parameters on the learned preference-conditioned heuristic.
Figs. [I0] and [TT] illustrate examples of a sequencing rule and a
routing rule derived from a preference-conditioned scheduling
heuristic generated by the proposed PSLGP-1.

The given sequencing rule (as shown in Fig. [I0) can be
converted to the following mathematical equation:

(PT + min (PT — WKR, TRANT - PT) )
—2WIL |- W
So = ( ) 0

TIS — TIS
+ Py - (S1 — (NIQ — min (SL, NIQ) - WKR))
where:
_ (NIQ — PT - MWT) - max (min (WIQ, WKR) , min (NOR, WKR))
N WKR/PT

S1

®)
Since TIS — TIS = 0 and this paper uses a protected division
operator (/), PT+”““(PTT;SVZ KT]IQS’TRANT'PT) in the first part of the
expression will always evaluate to 1 and can therefore be
ignored. Given that W1 + W2 = 1, we analyze how these
parameters affect the behavior of the equation. In terms of the
influence of W1, W1 appears twice in the first term as 2 - W1.
This essentially doubles the influence of W1 in the subtraction
part. A higher W1 increases the weight of the negative influence
in the first part of the expression, especially when it multiplies
W. This reduces the value of the term, emphasizing solutions
that avoid configurations where W1 is too large. When it is
about the effect of Wi on the overall expression, since W1
is subtracted, a larger W1 will drive the first part of the
equation more negatively, pushing the solution to minimize W,
which could represent waiting time or a cost factor. Therefore,
increasing W1 means the equation will prioritize reducing the

penalty associated with this waiting time. In terms of the in-
fluence of W2, w2 appears in the second part of the expression,
multiplying the more complex part involving NIQ (number
in the queue) and other variables like PT (processing time),
MWT (machine waiting time), and WKR (work remaining).
A higher W2 increases the impact of the term involving the
product of queue-related variables, effectively focusing more
on optimizing the number in the queue and minimizing its
associated penalties. When it is about the effect of W2 on the
overall expression, since W2 scales the second term, a larger
W2 pushes the solution toward minimizing the impact of NIQ
and related variables, possibly at the expense of the penalties
from the first part of the equation (controlled by Wi1). As
W1 + W2 = 1, increasing one decreases the other, creating
a trade-off between their respective influences. A higher Wi
means prioritizing reducing penalties related to the work w,
while a higher W2 focuses on minimizing penalties associated
with queue management and processing times (NIQ, PT, MWT).
The optimal balance between W1 and W2 depends on the
specific scenario’s needs for balancing multiple objectives —
whether minimizing work/resource penalties or queue-related
delays is more critical.

In summary, in this sequencing rule, W1 controls penalties
related to resource/work time, while W2 controls penalties
related to queue and processing time variables. A higher w1
will focus on reducing resource-related delays or costs, while
a higher w2 prioritizes queue and process optimization. The
balance between these factors is crucial to achieving the best
trade-off between objectives when considering, depending on
the preferences.

The given routing rule (as shown in Fig.[TT) is a nested Max
expression with several arithmetic operations involving vari-
ables like W IQ (work in the queue), TRANT (transportation
time), W1, W2, etc. The full function is:

Ro = max (R1, WIQ + Maxs + W - TRANT) )
where:
Max; + (WIQ + DD — (PT — OWT)) — Maxa,
M\ WIQ 4 DD — W1 - TRANT ’
R1 = max

(MaX3 — (WIQ — W2 — W1 - TRANT) )
max

MaX4
(10)
1D

12)

Max; = max (WIQ — Pone - TRANT, W - TRANT)
Maxs = max (NIQ + OWT, SL)

MWT - PT

max(PT,NOR) {13

Maxs = max ( , WIQ — WZ)

TIS
Max, = max (NIQ C(MWT = MWT), - — W1 ~TRANT) (14)

T ANT W5 as)
TRANT + W2

Maxs = max (W pr, ¥ TRANT )
Given that w1 + W2 = 1, we can analyze the influence
of Wi and W2 on the rule. Both parameters directly affect
terms involving TRANT (transportation time). In terms of the
influence of W1, W1 appears in subtractions involving TRANT,
such as WIQ — W1 - TRANT and WIQ + DD — W1 - TRANT.
A higher W1 increases the negative impact of transfer time,

reducing the overall value of the expression. This makes W1

Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on May 18,2025 at 08:46:30 UTC from IEEE Xplore. Restrictions apply.

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2025.3568375

JOURNAL OF IKTEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

:

Fig. 11: An example of the routing rule from a learned preference-conditioned heuristic from scenario <WFmax-Tmax, 0.85>.

emphasize solutions that minimize transfer time delays. Also,
in the Maxo function, W1 influences both branches of this Max
function by appearing in terms like W1 - TRANT. A higher w1
amplifies the negative influence of transfer time, focusing more
on minimizing transfer delays. In terms of the influence of
W2, W2 appears in terms like WIQ — W2, which subtracts from
work-in-queue (WIQ). A higher w2 reduces WIQ more strongly,
emphasizing solutions where less time is spent waiting in the
queue. Since W1 4+ W2 = 1, increasing W1 decreases W2,
and vice versa. This trade-off affects the balance between
minimizing transfer time (controlled by W1) and minimizing
queue time (controlled by w2).

In conclusion, W1 and W2 determine the trade-off between
minimizing transfer delays and reducing queue times. A higher
W1 prioritizes reducing transportation time (TRANT). A higher
w2 focuses on minimizing time spent in the queue (WIQ).
The optimal balance between W1 and W2 depends on the
specific problem context, but increasing one always reduces
the influence of the other due to the constraint Wi + w2 =1,
which will influence the rule’s ability to handle multiple
objectives with different preferences and finally influence the
solution location in the Pareto front.

VII. CONCLUSIONS

This paper presents a novel Pareto set learning GP frame-
work, designed to learn a single, preference-conditioned
scheduling heuristic for MO-DFJSS problems. Unlike con-
ventional methods that require multiple heuristics to cover
the Pareto front, this framework effectively adapts to various
user preferences within a single heuristic, allowing real-time
customization and responsiveness to changing operational con-
ditions. A core innovation of this framework is the preference-
conditioned scheduling heuristic representation, which incor-
porates user preferences as additional inputs, offering a flexible
and user-centric approach not seen in traditional heuristics.
To maintain efficiency and avoid extended training times, this
work introduces a KNN surrogate model for fitness estimation
and preselection after brood recombination, allowing it to
approximate individual performance across different prefer-
ences. Additionally, three novel fitness aggregation strategies
are proposed to enhance the heuristic’s adaptability, ensur-
ing it aligns with diverse preferences. Experimental results
demonstrate that the Pareto set learning GP framework signif-
icantly outperforms the baseline multi-objective GP approach,
particularly in less busy MO-DFJSS problems, although it
faces performance constraints in high-load scenarios. An in-

depth analysis of preference impact, solution distribution, and
heuristic structure reveals the framework’s strength in learn-
ing effective preference-conditioned heuristics that align well
with user-specified regions of the Pareto front. Nonetheless,
challenges remain in achieving consistent alignment across all
conditions, especially under high system loads.

Future research could focus on enhancing the robustness of
the learned heuristics to ensure that they consistently match
diverse preferences and offer comprehensive Pareto front cov-
erage. This could include exploring advanced fitness aggrega-
tion techniques, integrating adaptive mechanisms to fine-tune
performance in high-load scenarios, and examining hybrid
methods that combine preference-conditioned heuristics with
other optimization approaches. These advancements would
further expand the framework’s applicability to a broader range
of industrial scheduling challenges.
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