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A B S T R A C T

Distributed production and reconfigurable manufacturing have become increasingly prevalent in globalized and 
customized manufacturing environments. In distributed production systems with dynamic events, deep rein-
forcement learning (DRL) has shown promise in achieving real-time and near-optimal scheduling due to its 
learning and generalization capabilities. However, two key challenges arise in solving the distributed reconfi-
guration scheduling problem using DRL: coordinating scheduling and reconfiguration processes, and managing 
reconfiguration decisions across heterogeneous workshops. To address these challenges, this study integrates 
multi-agent reinforcement learning (MARL) and DRL, forming a multi-agent DRL (MADRL) framework to enable 
real-time scheduling and dynamic coordination in distributed reconfigurable flowshops with dynamic job ar-
rivals. The system architecture of intelligent scheduling and reconfiguration is proposed by designing training 
and execution processes for both DRL-based scheduling and MARL-based reconfiguration agents. In addition, 
intelligent reconfiguration and scheduling systems are modeled by designing novel rewards, action spaces, and 
state representations. A reconfiguration judgment mechanism is introduced to reduce unnecessary reconfigu-
rations, ensuring effective coordination between scheduling and reconfiguration processes. Furthermore, the 
cooperative MARL paradigm is employed to train reconfiguration agents across heterogeneous workshops, 
enabling collaborative decision-making guided by a global joint reward. Extensive training and comparison 
experiments on 140 test instances demonstrate that the proposed MADRL algorithms significantly outperform 
four widely used DRL algorithms and three efficient meta-heuristics in terms of learning efficiency and solution 
quality. This study contributes to real-time and cooperative scheduling in distributed and reconfigurable 
manufacturing systems.

1. Introduction

Distributed manufacturing is frequently adopted by large-scale 
companies to produce products in different regions within the context 
of economic globalization [1]. Through distributed manufacturing, 
companies can expand the market scale, use local resources, and reduce 
the delivery cost. For example, as shown in Fig. 1, the Tesla company 
established manufacturing bases in different regions, such as the United 
States, China, Germany, etc. Considering the workshop resources in 
different regions, the global orders should be properly scheduled.

To provide effective scheduling schemes under distributed 

manufacturing, researchers investigated the distributed workshop 
scheduling problem. This problem involves efficiently assigning jobs to 
workshops and sequencing jobs within each workshop. Given the 
ubiquitous nature of distributed manufacturing across various in-
dustries, this scheduling problem has been investigated by considering 
various workshop types, including the distributed flowshop [2–4], 
distributed hybrid flowshop [5–7], distributed job shop [8–10], and 
distributed assembly flowshop [11]. In addition, some production 
characteristics have also been considered, such as preventive mainte-
nance [12,13], energy efficiency [14], lot-streaming [15], and setup 
times [16].
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In real production environments, orders arrive dynamically. More-
over, in customized manufacturing, distinct orders frequently necessi-
tate the use of various production line types. For instance, different Tesla 
models require specific production lines. This underscores the need for 
distributed workshops to possess dynamic reconfiguration capabilities. 
However, real-time scheduling in the context of dynamic job arrivals 
and workshop reconfigurations under distributed manufacturing has not 
been fully addressed.

In considering dynamic job arrivals, scheduling plans should un-
dergo frequent optimization to appropriately schedule jobs and deter-
mine the types of production lines. However, traditional meta-heuristics 
encounter challenges in solving dynamic scheduling problems due to 
their time-consuming nature [17–19]. Recent studies indicate deep 
reinforcement learning (DRL) holds promise for achieving real-time 
scheduling [20–22]. DRL can learn scheduling heuristics using limited 
training data and provide stable scheduling results [23,24].

DRL has been applied to solve various scheduling problems of a 
single workshop and distributed workshops. For a single workshop, DRL 
has been utilized to address the flowshop scheduling problem (FSP) [25,
26], job shop scheduling problem (JSP) [27–30], and assembly work-
shop scheduling problem [31]. For distributed workshops, DRL has been 
applied to the distributed flowshop scheduling problem [32,33] and the 
distributed job shop scheduling problem [34]. More recently, DRL was 
also applied to schedule reconfigurable workshops [35,36]. Many 
Markov decision models and DRL algorithms have been proposed or 
adapted to solve workshop scheduling problems. However, very few 
studies have explored the dynamic reconfiguration of distributed 
workshops using DRL. For distributed reconfigurable workshops, pro-
duction scheduling and workshop reconfiguration among multiple 
workshops are interdependent, making the problem more challenging to 
solve.

Two challenges arise when using DRL to solve the dynamic distrib-
uted reconfigurable workshop scheduling problem. They are how to 
coordinate the dynamic scheduling and reconfiguration for each work-
shop and among all workshops. Thus, further studies are required to 
solve the dynamic cooperative scheduling of distributed reconfigurable 
workshops.

Multi-agent reinforcement learning (MARL) has demonstrated good 
performance in solving cooperative scheduling problems involving 
multiple machines or resources, such as the JSP with multiple equip-
ment [20,37], JSP with limited robots [38], and the maintenance and 
scheduling problem [39]. Cooperative MARL can train and coordinate 
agents to achieve collective goals [40]. Under the MARL architecture, a 
group of agents can work cooperatively and coordinate their actions to 
optimize system performance, making it a suitable approach to solving 
concurrent scheduling and reconfiguration problems. Inspired by the 
advantage of MARL, we applied MARL to train agents of distributed 
workshops to make cooperative scheduling decisions.

MARL algorithms can be categorized into three types based on their 

training and execution models: centralized training and execution 
(CTE), decentralized training and execution (DTE), and centralized 
training and decentralized execution (CTDE) [41,42]. CTE methods as-
sume that both training and execution have access to a central shared 
state, enabling better performance compared to DTE. However, they 
suffer from poor scalability due to exponentially growing action and 
observation spaces with the number of agents [42] and increased 
communication overhead for maintaining a central node [43]. DTE 
methods rely solely on local agent information, making them easier to 
implement. However, they struggle with non-stationarity caused by 
concurrent agent training, leading to unstable learning, poor conver-
gence [41], and less accurate models [43] due to limited observability. 
CTDE methods use centralized information during training but execute 
decentralized by using each agent’s local information. By combining the 
benefits of centralized training and decentralized execution, CTDE 
methods are more scalable than CTE methods, do not require commu-
nication during execution, and can perform well. CTDE methods are the 
most commonly used method [42]. Thus, the CTDE paradigm is adopted 
in this paper.

The schematic of MARL is illustrated in Fig. 2, where multiple agents 
select individual actions, forming a joint action [41]. This joint action 
updates the environment state, and agents receive local observations 
and a joint reward for the decision. Because a joint action is required, all 
agents should make decisions together.

Since a joint action is required, scheduling distributed workshops 
may not be suitable for MARL. Fig. 3 presents Gantt charts in distributed 
manufacturing with three factories. Each factory is assumed to have a 
reconfigurable permutation flowshop, meaning the job sequence re-
mains identical across all machines. Therefore, only the first machine, 
M1, requires an agent to make scheduling or reconfiguration decisions. 
In Fig. 3 (A), for the scheduling decisions, under the independent deci-
sion mode, factory f3 receives a reward after its action fully executes, 
accurately reflecting the action’s impact. However, MARL requires a 
joint action, forcing f3 to make a new decision when f2 begins pro-
cessing the next job, even if f3’s previous action is still executing. This 
misalignment leads to inaccurate reward feedback for f3, making MARL 
less suitable for frequent scheduling decisions with short processing 
times. Considering that literature [33] effectively used DRL to solve the 
distributed permutation flowshop scheduling problem, we also use DRL 
to make scheduling decisions.

For reconfiguration decisions, each factory reconfigures after pro-
cessing several jobs. Fig. 3 (B) compares execution durations of a 
reconfiguration action for factory f3 under independent and joint deci-
sion modes. Since reconfiguration actions take longer to execute, forcing 
factory f3 to decide earlier than its expected decision point has a rela-
tively smaller impact, and the reward can still reasonably reflect action 
effectiveness. Given the cooperative nature of distributed workshops, 
MARL can be explored for the collaborative reconfiguration of multiple 
workshops, and this study investigates its potential performance im-
provements. Thus, this paper uses DRL and MARL to train scheduling 
and reconfiguration systems, respectively.

This paper aims to address the dynamic distributed reconfigurable 
flowshop scheduling problem (DRFSP) by considering dynamic coop-
eration between scheduling and reconfiguration among distributed 
workshops, through integrating the MARL and DRL approaches, referred 
to as MADRL. MARL is employed to train workshop agents to make 
cooperative reconfiguration decisions to select proper production line 
types, while DRL is used to train the scheduling agent to select suitable 
jobs for each workshop. Markov decision models were designed for the 
reconfiguration system and the scheduling system, respectively. 
Furthermore, a coordination mechanism was designed to coordinate the 
scheduling and reconfiguration processes. Extensive experiments 
showed the superior learning efficiency and solution quality of the 
proposed MADRL algorithms over DRL and metaheuristic methods. The 
main contributions are as follows. 

Fig. 1. Tesla establishes distributed manufacturing workshops in 
different regions.
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1) We proposed a novel architectural framework for real-time sched-
uling and reconfiguration in dynamic DRFSP by integrating MARL 
and DRL. The training and decision-making processes were designed 
to accommodate the characteristics of distributed manufacturing and 
reconfigurable production. Specifically, the DRL-based scheduling 
agent leveraged data from multiple workshops to enhance general-
ization, while MARL-based reconfiguration agents enabled collabo-
rative reconfiguration based on global production information. 
Extensive experimental results demonstrated that our MADRL 
approach significantly outperformed popular single-agent DRL 
methods and efficient metaheuristics across diverse problem 
instances.

2) We formulated the distributed scheduling and reconfiguration 
problems as Markov decision processes, with DRL governing sched-
uling and MARL handling reconfiguration. For both scheduling and 
reconfiguration systems, problem-specific reward functions, action 
spaces, and state representations were designed. The reward func-
tions were directly aligned with optimization objectives, capturing 
the impact of action execution on the overall production process. The 
state representations effectively incorporated both static and dy-
namic system information while remaining independent of the 
number of jobs and machines, ensuring scalability to different 
problem sizes. The action design, based on well-known and problem- 
specific dispatching rules, enabled the system to efficiently prioritize 
job sequencing and production line selection under various sce-
narios. The experimental results demonstrated a strong correlation 
between reward optimization and objective value improvement, 
validating the effectiveness and learning efficiency of our approach.

3) We introduced a novel coordination mechanism to synchronize 
scheduling and reconfiguration processes in distributed and recon-
figurable manufacturing systems. Considering the scalability and 

credit assignment problems [44], we adopted the popular centralized 
training and decentralized execution paradigm, enabling reconfigu-
ration agents across heterogeneous workshops to make cooperative 
decisions in a partially observable environment. Additionally, we 
proposed four MADRL algorithms for jointly optimizing scheduling 
and reconfiguration policies. Comparative experiments confirmed 
that our MADRL algorithms significantly outperformed widely used 
single-agent DRL approaches without coordination, achieving supe-
rior solution quality and decision-making stability.

The rest of this paper is organized as follows: Section 2 reviews some 
related literature on the DRL-based workshop scheduling problem. 
Section 3 provides the system architecture and mathematical formula-
tion. Sections 4 and 5 establish the Markov decision models for the 
reconfiguration and scheduling systems. Section 6 provides MARL al-
gorithms. Section 7 illustrates training and comparison experiments. 
Section 8 concludes this paper.

2. Related work

With DRL advancing swiftly and demonstrating high performance in 
real-time scheduling tasks, it has been increasingly applied to tackle 
several workshop scheduling problems, considering diverse production 
characteristics. One of the extensively researched workshop scheduling 
problems employing DRL is the JSP. Li et al. [30] studied the dynamic 
flexible JSP considering AGV transportation using a hybrid deep Q 
network (DQN) algorithm. Liu and Huang [27] addressed dynamic JSP 
with random job arrivals and machine breakdowns, utilizing graph 
neural network (GNN) and proximal policy optimization (PPO) algo-
rithms. Wang et al. [38] employed the MARL algorithm to tackle JSP 
with resource pre-emption, training job agents to make cooperation 

Fig. 2. Schematic of multi-agent reinforcement learning [41].

Fig. 3. Illustration of action execution duration under independent and joint decision-making modes in multiple factories/workshops: A) scheduling decisions, B) 
reconfiguration decisions.
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decisions concerning available robots. Zhang et al. [45] investigated 
flexible JSP using DRL with multi-agent graphs. Oh et al. [46] investi-
gated the flexible JSP using a distributional DRL algorithm. Chen et al. 
[47] used disjunctive graph embedding and DRL to solve the JSP. Xu 
et al. [48] combined genetic programming and DRL to solve the dynamic 
JSP, where DRL actions were evolved through Niching genetic 
programming.

Within DRL-based FSP research, Li et al. [49] explored large-scale 
flexible FSP using the double DQN algorithm. Yang and Xu [21] 
addressed reconfigurable FSP by concurrently considering dynamic 
scheduling and reconfiguration, leveraging an actor-critic algorithm. 
Zhang et al. [39] employed MARL to address the multi-stage hybrid FSP 
with machine deterioration, demonstrating its effectiveness in solving 
the joint decision problem.

For the distributed workshop scheduling problem, Ren et al. [50] 
investigated the DPFSP using the NASH Q-learning algorithm. Huang 
et al. [34] solved the distributed JSP using GNN and PPO algorithms to 
make hierarchical decisions. Yang et al. [51] used a variant of the DQN 
algorithm to solve the distributed workshop scheduling problems with 
reconfiguration, but the cooperation among heterogeneous workshops is 
overlooked. Most studies adopted the single-agent reinforcement 
learning (SARL) approach for joint decisions. However, for complex 
manufacturing systems with multiple coupled decisions, it is challenging 
for SARL to offer system-level optimization decisions [39].

For the MARL-based workshop scheduling problem, Li et al. [52] 
used a multi-agent PPO algorithm to solve the JSP considering limited 
automated guided vehicles (AGVs). Three kinds of agents were modelled 
for job filtering, job selection, and AGV selection. Li et al. [35] studied 
the reconfigurable shop scheduling problem with batch processing and 
worker cooperation using MARL. They modelled two kinds of agents. 
The high-level job sorting agent assigns jobs to virtual manufacturing 
cells, and the low-level agent selects a job to use the equipment and 
workers. Gui et al. [53] studied collaborative scheduling by considering 
warehouse, buffer, machines, and AGV in a manufacturing system using 
MARL algorithms. Zhang et al. [39] used the counterfactual MARL al-
gorithm to solve the production scheduling and maintenance problem. 
However, no research has used MARL to solve the dynamic DRFSP.

The literature review illustrates extensive DRL and MARL 

application in addressing diverse workshop scheduling challenges 
marked by varying production attributes. Commonly used DRL meth-
odologies include the DQN algorithm, the PPO algorithm, and their 
variations. DRL-based and MARL-based scheduling literature set the 
foundation for modeling and algorithmic frameworks in our dynamic 
DRFSP investigation. However, solving dynamic DRFSP presents 
heightened complexities due to simultaneous scheduling and reconfi-
guration cooperation across multiple workshops. Since MARL aids 
cooperative decision-making training, this study integrates DRL and 
MARL to enable real-time scheduling solutions for the dynamic DRFSP.

3. System framework and mathematical formulation

3.1. Architecture framework for RL-based DRFSP

The studied problem is the dynamic DRFSP considering new job 
arrivals. There are F reconfigurable workshops distributed in different 
regions. Each workshop contains a reconfigurable flow line, which can 
be reconfigured to X production line types by rearranging and replacing 
different machines and resources. Each workshop calls the scheduling or 
reconfiguration agent to select the next candidate job for production or 
the next production line type to be reconfigured. When reconfigured, a 
workshop requires a setup time tsetup to adjust its production line. Each 
production line features permutation characteristics, ensuring consis-
tent job sequences across all machines. Thus, only the first machine 
within a workshop calls the scheduling/reconfiguration agent to make 
decisions.

Fig. 4 illustrates the framework for intelligent decision-making in 
distributed reconfigurable workshops, leveraging MARL and DRL. When 
a job is finished in the first machine of a workshop, a scheduling or 
reconfiguration decision is required. Based on the current production 
status, the scheduling and reconfiguration coordination mechanism 
determines whether to make scheduling or reconfiguration decisions. 
When making decisions, the scheduling or reconfiguration agent re-
ceives the current states, outputs an action, selects a candidate job or 
production line type, and receives a reward for this step. The states, 
actions, and rewards are stored as transitions for agent training. The 
scheduling and reconfiguration agents are trained by DRL and MARL, 

Fig. 4. A comprehensive framework for the dynamic DRFSP using MARL and DRL.
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respectively.
Fig. 5 depicts the scheduling and reconfiguration processes for 

distributed workshops. In workshop f, the scheduling agent selects a job 
for processing, while the reconfiguration agent chooses a production 
line for reconfiguration. Utilizing a MARL approach, the reconfiguration 
system combines the F reconfiguration actions into a joint action A. 
Following the execution of the joint action, a joint reward R is generated 
for the concurrent decision, as shown in Fig. 2. The scheduling and 
reconfiguration processes finish when all jobs in the system are sched-
uled and processed.

3.2. Mathematical formulation

Dynamic job arrivals are considered in the DRFSP. Randomly 
arriving jobs have varying due dates. If a job exceeds its deadline, a 
tardiness penalty is incurred. The optimization goal is to minimize the 
overall tardiness cost in the system, see Eq. (1). Based on the notations in 
Table 1, the problem formulation is as follows. 

Minimize :
∑n

j=1

{
αj ×max(0,Cj − dj)} (1) 

Subject to: 

Cj = Cmj,∀j = 1, 2, ..., n (2) 

dj= [CP(1 − TF −
RDD

2
),CP(1 − TF+

RDD
2

)],j = 1,2, ..., n (3) 

CP =
1
m
×
∑n

j=1

∑m

i=1
tij (4) 

C1j − t1j ≥ ATj,∀j = 1, 2, ..., n (5) 

Cij − tij ≥ max
{
C(i− 1)j,Ci(j− 1)

}
, i = 2,3, ...,m, j = 1,2, ..., n (6) 

C0j = 0,Ci0 = 0 (7) 

Eqs. (2) and (3) define the completion time and due date of a job. 
Based on literature [54], the due date dj follows a uniform distribution 

and is determined by Eq. (4), with TF and RDD set at 0.5 [54]. Eq. (5)
ensures that a job can only be processed (on the first machine) after its 
arrival. Eq. (6) ensures a job can be processed on a machine after the job 
is finished on the previous machine and the receiving machine is ready. 
Eq. (7) defines the initial completion time of a job and a machine.

4. Reconfiguration system modeling

This section constructs the MARL-based model for the reconfigura-
tion system. A coordination mechanism for scheduling and reconfigu-
ration is developed. Additionally, detailed designs for the joint reward, 
reconfiguration actions, local observations, and global states are 
provided.

4.1. Coordination mechanism between scheduling and reconfiguration

The coordination mechanism determines when to trigger the 
scheduling or reconfiguration agent to take action. The reconfiguration 
agent will be activated under one of the following three conditions: 

1) If no jobs are left in the current buffer BFk’, this implies the current 
production line k’ must reconfigure to other types to continue pro-
cessing jobs.

Fig. 5. Reconfigurable production processes utilizing DRL and MARL agents for distributed workshops.

Table 1 
The definition of notations.

Notations Definitions

Indexes j, i, k, f Job, machine, production line, workshop
n, m, X, F The quantity of jobs, machines, production lines, and 

workshops
f’, k’ The current workshop, production line

Variables BFk, BFk’ The buffer of production lines k, and k’
tij, Cij The processing and completion times of job j on machine i
tc Current production simulation time
dj Due date of job j
αj, ψ j Unit and current unit tardiness cost of job j
CP Assessing the time taken to complete all jobs

Constant TF Tardiness factor
RDD Relative due date
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2) The jobs in BFk’ are within their deadlines, and the current unit 
tardiness cost ψkʹ is below the Pth percentile of the whole set Ψ, as 
shown in Eqs. (8) and (9). This condition implies that the current 
production line’s urgency is lower compared to other lines. 

ψkʹ =
1
nkʹ

∑nḱ

j=1
ψ j, kʹ = 1,2, ...,X (8) 

Ψ = {ψ1,ψ2, ...,ψX} (9) 

3) Upon processing another job (njud), if ψkʹ is below the Pth percentile 
of Ψ, where njud is computed as njud=max{nprc, n/(X*nrcf_X)}. Here, 
nrcf_X represents the minimum reconfiguration times. After tuning, 
the values of nprc, nrcf_X, and P were set to 3, 3, and 70, respectively. 
This criterion lowers the frequency of reconfiguration decisions, 
allowing a reconfiguration decision to be made only after processing 
nprc jobs.

4.2. Joint reward of reconfiguration agents

Reconfiguration agents aim to minimize the cumulative tardiness 
cost incrementally at each decision step. As depicted in Fig. 6, the cur-
rent decision step’s tardiness cost originates from the buffer (BF), work- 
in-progress (WIP), and finished jobs (FNS). Therefore, the joint recon-
figuration reward R during [tS, tS’] is formulated as follows. 

R = −
1

tSʹ − tS
(TPBF +TPWIP +TPFNS) (10) 

TPBF =
∑X

k=1

∑nk

j=1
αjzjŚ

[
tSʹ − max

(
tS, dj

)]
(11) 

TPWIP =
∑F

f=1

∑

j∈WIPf

αjzjŚ

[
tSʹ́ − max

(
tS, dj

)]
(12) 

zjŚ =

{
1, dj < tSʹ

0, else (13) 

tSʹ́ =

{
Cj, ifjobjisfinishedattSʹ

tSʹ , else (14) 

TPFNS =
∑F

f=1

∑

j∈FNSf

αjzjC
[
Cj − max

(
tS, dj

)]
(15) 

zjC =

{
1, dj < Cj
0, else (16) 

Where TPBF, TPWIP, and TPFNS represent the additional tardiness 
penalty from BF, WIP, and FNS, respectively; nk indicates the number of 
jobs in BFk; zjC and zjS’ indicate whether job j reached the due date times 
Cj and tS’, respectively; and tS’’ denotes the actual end time of job j during 
[tS, tS’].

4.3. Reconfiguration action representation

Reconfiguration actions determine the subsequent production line 
type to be reconfigured by a workshop. By analyzing decision objectives 
and optimization actions, as depicted in Fig. 7, eleven actions (A1-A11) 
are designed from various perspectives to minimize the overall increase 
in tardiness cost. 

1) Choose the line having the highest total ψ j. This criterion prior-
itizes the line generating the most significant tardiness penalty 
per unit time. 

A1 = argmaxk

(
∑nk

j=1
ψ j

)

, ∀k 

2) Choose the line with the highest average ψ j. This action com-
plements A1 by favoring lines with fewer jobs but higher unit 
tardiness penalties. 

A2 = argmaxk

(
1
nk

∑nk

j=1
ψ j

)

, ∀k 

3) Choose the line with the most jobs beyond their deadlines. 

Fig. 6. Schematic diagram of the joint reward design for reconfiguration agents.
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A3 = argmaxk

(
∑

j∈BFk

zjSʹ

)

, ∀k 

4) Choose the line with the most jobs in its buffer. This action is 
particularly beneficial when no jobs are overdue. 

A4 = argmaxk(nk), ∀k 

5) Choose the line having the lowest average safe time. 

A5 = argmink

(
1
nk

∑nk

j=1
STj

)

, ∀k 

The safe time (STj) for job j is computed as follows. 

STj = dj −
∑m

i=1
tij − tc (17) 

6) Choose the line with the earliest average due date. 

A6 = argmink

(
1
nk

∑nk

j=1
dj

)

, ∀k 

7) Choose the line having the shortest average processing time. 

A7 = argmink

(
1
nk

∑nk

j=1

∑m

i=1
tij

)

, ∀k 

8) Choose the line having the highest average processing time. 

A8 = argmaxk

(
1
nk

∑nk

j=1

∑m

i=1
tij

)

, ∀k 

9) Choose the line having the longest processing time. 

A9 = argmaxk

(
∑nk

j=1

∑m

i=1
tij

)

, ∀k 

10) Choose the line having the lowest average bottleneck process 
time. This action is advantageous in specific scenarios, as 
bottleneck processing time directly impacts machine utilization 
and completion time. 

A10 = argmink

[
1
nk

∑nk

j=1
max

i

(
tij
)
]

, ∀i, k 

11) Choose not to reconfigure, potentially reducing unnecessary 
reconfigurations.

4.4. Local observation and global state

4.4.1. Local observation
Under the MARL paradigm of centralized training and decentralized 

execution, each reconfiguration agent only receives its local observation 
when making decisions. In selecting the next production line type, the 
key consideration revolves around the buffer information. Thus, local 
observation is designed by extracting critical features and characteristics 
of the current buffer BFk’. 

1) ft1 = nkʹ, job count of BFk’.
2) ft2 =

{
ψ j
}
,∀j ∈ BFkʹ, the current unit tardiness cost of BFk’.

3) ft3 =
{

αj
}
,∀j ∈ BFkʹ, the unit tardiness cost of BFk’.

4) ft4 =
{
STj
}
,∀j ∈ BFkʹ, the safe time (STj) of BFk’.

5) ft5 =
{
dj
}
,∀j ∈ BFkʹ, the due date of BFk’.

6) ft5 =
{
ATj
}
,∀j ∈ BFkʹ, the arrival time (ATj) of BFk’.

7) ft7 =
{∑m

i=1 tij
}
,∀j ∈ BFkʹ, the total processing time of BFk’.

8) ft8 =
{
ujfʹ

ʹ},∀j ∈ BFkʹ, job utilization rate estimation in workshop f’.

The ujf’
’ is calculated as follows, with WTijf’’ representing the total 

waiting time of machine i for job j in workshop f’. 

uʹ
jfʹ = 1 −

(
∑m

i=2
WTʹ

ijfʹ

/
∑m

i=1
tij

)

, j ∈ BFkʹ (18) 

As ft2 through ft8 are arrays, each feature is represented by four 
statistical measures (max, min, mean, and dev). For ft2, both zero and 
nonzero value counts are included. Consequently, the dimension of the 
reconfiguration agent’s local observation is 31 (1+7*4+2).

4.4.2. Global state representation
The global state can be used for the credit assignment of the joint 

reward. By considering the information of all buffers (BF1, BF2, …, BFk, 
…, BFX), nine global state features (Ft1, Ft2, …, Ft9) are designed. 

Fig. 7. Schematic diagram of reconfiguration action design.
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1) Ft1 = {n1,n2, ...,nk, ...,nX}, buffer job counts.

2) Ft2 =
{∑n1

j=1 ψ j,
∑n2

j=1 ψ j, ...,
∑nk

j=1 ψ j, ...,
∑nX

j=1 ψ j

}
, the total ψ j of each 

buffer.

3) Ft3 =

{
1
n1

∑n1
j=1 ψ j,

1
n2

∑n2
j=1 ψ j, ..., 1

nk

∑nk
j=1 ψ j, ..., 1

nX

∑nX
j=1 ψ j

}

, the 

average ψ j of each buffer.

4) Ft4 =

{
1
n1

∑n1
j=1 zjSʹ , 1

n2

∑n2
j=1 zjSʹ , ..., 1

nk

∑nk
j=1 zjSʹ , ..., 1

nX

∑nX
j=1 zjSʹ

}

, the 

number of overdue jobs in each buffer.

5) Ft5 =

{
1
n1

∑n1
j=1 STj,

1
n2

∑n2
j=1 STj, ...,

1
nk

∑nk
j=1 STj, ...,

1
nX

∑nX
j=1 STj

}

, the 

average safe time of jobs in each buffer.

6) Ft6 =

{
1
n1

∑n1
j=1 dj,

1
n2

∑n2
j=1 dj,...,

1
nk

∑nk
j=1 dj,...,

1
nX

∑nX
j=1 dj

}

, the average 

due date of jobs in each buffer.

7) Ft7 =

{
1
n1

∑n1
j=1
∑m

i=1 tij, 1
n2

∑n2
j=1
∑m

i=1 tij, ..., 1
nk

∑nk
j=1
∑m

i=1 tij, ...,

1
nX

∑nX
j=1
∑m

i=1 tij
}

, the average total process time of each buffer.

8) Ft8 =
{∑n1

j=1
∑m

i=1 tij,
∑n2

j=1
∑m

i=1 tij,...,
∑nk

j=1
∑m

i=1 tij,...,
∑nX

j=1
∑m

i=1 tij
}

, 

the total processing time of jobs in each buffer.

9) Ft9 =

{
1
n1

∑n1
j=1 maxi

(
tij
)
, 1

n2

∑n2
j=1 maxi

(
tij
)
, ..., 1

nk

∑nk
j=1 maxi

(
tij
)
, ...,

1
nX

∑nX
j=1 maxi

(
tij
)
}

, the average bottleneck process time of each 

buffer.

Since the nine global states are arrays, four statistical features are 
also used to reflect the array features. Thus, the total dimension for the 
global state is 36.

5. Scheduling system modelling

In this section, we outline the rewards, actions, and state represen-
tations for the scheduling system. The scheduling agent generates an 
action based on the current state. Upon executing the action, a reward is 
returned to evaluate its performance.

5.1. Reward of the scheduling agent

For workshop f’, the scheduling agent chooses a job from its current 
buffer BFk’. To minimize the overall tardiness cost, each scheduling ac-
tion should minimize the tardiness cost increase resulting from its cur-
rent production line type. As shown in Fig. 8, the scheduling reward at 
the current decision step originates from both the buffer and WIP. 
Hence, the scheduling reward r during the time step [ts, ts’] is formulated 
as follows. 

r = −
1

tś − ts

(
tpBFḱ

+ tpWIPFḱ

)
(19) 

tpBFḱ
=
∑

j∈BFḱ

zjś αj
[
tś − max

(
ts, dj

)]
(20) 

tpWIPFḱ
=
∑

f∈Fḱ

∑

j∈WIPf

zjś αj
[
tsʹ́ − max

(
ts, dj

)]
(21) 

zjś =

{
1, dj < tś
0, else (22) 

tsʹ́ =

{
Cj, jobjisfinishedattś

tś , else (23) 

Where tpBFḱ  and tpWIPFḱ  denote the recently generated tardiness cost 
of BFk’ and all WIP belonging to k’ during [ts, ts’]. The zjs’ denotes if job j 

is overdue at time ts’, and ts’’ denotes the actual end time of a job for 
calculating the increased tardiness cost compared with the end time ts’.

5.2. Scheduling action representation

For workshop f’, the scheduling action chooses a candidate job from 
the corresponding buffer BFk’. To reduce the total tardiness cost of this 
buffer, we designed eight scheduling actions (a1-a8) by considering some 
problem-specific and famous priority dispatching guidelines, as shown 
in Fig. 9. 

1) a1 = argmaxj
(
ψ j
)
, j ∈ BFkʹ

2) a2 = argmaxj
(
αj
)
, j ∈ BFkʹ

3) a3 = argminj
(
STj
)
, j ∈ BFkʹ

The a1 and a2 select a job from the perspective of the tardiness cost. 
The a3 selects the job that is tight by considering the due date and 
total processing time.

1) a4 = argminj
(
dj
)
, j ∈ BFkʹ, corresponding to the earliest due date 

dispatching rule.
2) a5 = argminj

(
ATj
)
, j ∈ BFkʹ, corresponding to the first-come-first- 

out dispatching rule.
3) a6 = argminj

( ∑m
i=1 tij

)
, j ∈ BFkʹ, corresponding to the shortest total 

processing time dispatching rule.
4) a7 = argmaxj

( ∑m
i=1 tij

)
, j ∈ BFkʹ, corresponding to the longest total 

processing time dispatching rule.
5) a8 = argmaxj

(
ujfʹ

ʹ), j ∈ BFkʹ, select the job that most closely aligns 
with the workshop’s current production level by considering the 
machine utilization.

5.3. Scheduling state representation

Recall that the scheduling agent picks a candidate job from the 
corresponding buffer BFk’. The scheduling state features need to mirror 
the data of BFk’. Consequently, the state feature design for the 

Fig. 8. Schematic diagram of scheduling reward design.
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scheduling agent is the same as the design of local observations for 
reconfiguration agents. While the state representation remains consis-
tent, state values differ due to varying trigger times.

6. Multi-agent reinforcement learning algorithms

Recall that the reconfiguration and scheduling systems were solved 
by MARL and DRL approaches, respectively. For the DRL approach, the 
DQN algorithm [55] and PPO algorithm [56] were adopted to train the 
scheduling agents, since the two DRL algorithms have shown good 
performance and achieved state-of-the-art (SOTA) on some scheduling 
problems [28,57]. For the MARL approach, the value-decomposition 
networks (VDN) algorithm [58] and the counterfactual multi-agent 
reinforcement learning (COMA) algorithm [59], were adapted to train 
the reconfiguration agents. The two MARL algorithms are value-based 
and policy-based, respectively. By integrating two MARL algorithms 
with two DRL algorithms, we provided four MADRL algorithms, i.e., 
VDN_DQN, COMA_DQN, VDN_PPO, and COMA_PPO, to solve the 

DRFSP.

6.1. Value-decomposition networks

The VDN algorithm employs a paradigm of centralized training and 
decentralized execution to facilitate cooperative decision-making. As a 
value-based MARL approach, its core idea, as outlined in [58], is to 
decompose the total state-action value Qtot(τ, A) into individual 
state-action values for each agent. Fig. 10 illustrates the architecture of 
the VDN algorithm.

As depicted in Fig. 10, the total state-action value Qtot(τ, A) for the 
system is the sum of the individual state-action values Qf(τf, Af) for all 
agents, as shown below. 

Qtot(τ,A) =
∑

f
Qf
(
τf ,Af

)
(24) 

Where Af and τf are the action and action-observation history of 
agent f, respectively. The A and τ are the joint action and joint action- 

Fig. 9. Schematic diagram of scheduling action design.

Fig. 10. Schematic diagram of the VDN algorithm.
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observation history of all agents.
For agent f, the local observation Ot

f passes through a multi-layer 
perceptron (MLP), gated recurrent unit (GRU), and MLP to obtain the 
state-action value Qf(τf, .). Based on Qf(τf, .), an action Af is chosen for 
agent f. All selected actions make a joint action A={A1, A2, …, AF}, 
which will be executed in the production system.

Throughout centralized training, a joint reward R is provided for the 
executed joint action. Given the VDN algorithm’s two network sets, 
namely the online network Q(⋅; ζ) and the target network Q(⋅; ζ-), the 
temporal difference (TD) error between these networks serves to adjust 
the parameters of the online network. The loss function L(ζ) is computed 
as follows. 

L(ζ) = E(τ,A,R,τʹ)
[
(R + γV(τʹ; ζ− ) − Q(τ;A; ζ))2] (25) 

V(τʹ; ζ− ) = max
Aʹ

Q(τʹ,Aʹ; ζ− ) (26) 

Where A’ and τ’ are the joint action and joint action-observation 
history of the next state.

6.2. Counterfactual multi-agent reinforcement learning

As a policy gradient-based MARL algorithm, the COMA algorithm 
[59] employs a centralized critic and decentralized actor paradigm, 
where the critic is used during learning, and the actor makes cooperative 
decisions. Fig. 11 illustrates the execution phase, where each actor re-
ceives a local observation Of and decides Uf based on this observation 
and hidden information hf. The collective actions of all agents constitute 
a joint action u. Following its execution, the environment yields a joint 
reward R. In the learning phase, the critic network utilizes the local 
observations of all agents, the global state, joint action, and joint reward 
to compute gradients.

To address the credit assignment of the total reward, the COMA al-
gorithm uses a counterfactual baseline, i.e., replacing the action of an 
agent with a default action to obtain the advantage of the chosen action. 
The gradient g for an actor is calculated as follows. 

g = Eπ

[
∑

f

∇θlogπf ( uf
⃒
⃒τf)Af (s, u)

]

(27) 

Where Af(s, u) denotes the advantage of agent f’s action under joint 
action u and global state s,πf(uf|τf) denotes the probability of selecting 
action u under the local observationτf for agent f. The advantage value of 
agent f is calculated by using the total state-action value subtracting a 
baseline b(s,u-f), as shown below. 

Af (s, u) = Q(s, u) − b
(
s, u− f) (28) 

When computing the baseline b(s,u-f), the action of agent f is 
substituted with alternative actions to represent the advantage of the 
selected action. Consequently, the advantage function is expressed as 
follows. 

Af (s, u) = Q(s, u) −
∑

uʹf
πf ( uʹf ⃒⃒τf)Q

(
s,
(
u− f , uʹf)) (29) 

Where u’f denotes a possible action of agent f, πf(u’f|τf) denotes the 
probability of selecting the action u’f under action-observation historyτf, 
u-f denotes the joint action marginalizes out the action of agent f, i.e., uf.

The critic uses the temporal difference error to update network pa-
rameters. Similar to the VDN algorithm, two sets of networks, i.e., the 
online and target networks, are used for the critic. The optimization 
function is as follows. 

Lt(θc) =
(
y(λ) − fc(⋅t , θc)

)2 (30) 

Where y(λ) denotes the target state value, λ is a constant, and f c(⋅t+n,

θc) denotes the state value estimated by the online network with 
parameter θc.

The y(λ) can be calculated by the l-step return G(l)
t using bootstrapped 

values estimated by the target network fc(⋅, θ̂
c
). 

y(λ) = (1 − λ)
∑∞

l=1
λl− 1G(l)

t (31) 

Fig. 11. The architecture of the COMA algorithm under the paradigm of centralized critic and decentralized actor.
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G(n)
t =

∑l

x=1
γx− 1rt+x + γlf c(⋅t+l, θ̂

c
) (32) 

7. Training and comparison experiments

In this section, the scheduling and reconfiguration decision systems 
are trained utilizing four MADRL algorithms. Subsequently, a compari-
son is drawn between the adapted MADRL algorithms and four widely- 
used DRL algorithms, along with three classical meta-heuristics. The 
four baseline DRL algorithms—DQN [60], double DQN (DbDQN) [61], 
dueling DQN (DlDQN) [62], and PPO [63]—were widely used to solve 
workshop scheduling problems [29,34,64]. The three meta-heuristics 
comprise the iterated greedy algorithm (IG) [21], genetic algorithm 
(GA) [21], and artificial bee colony algorithm (ABC). Those DRL and 
meta-heuristic algorithms have been used as baselines for various 
scheduling problems recently [29,34,65]. All baseline algorithms were 
carefully adapted to solve the studied DRFSP, considering its specific 
problem characteristics.

7.1. Experimental design and parameter tuning

To ensure the agents are trained and the learning performance is 
fairly tested, two distinct sets of datasets, namely the training and test 
datasets, were created. As depicted in Fig. 12, the training dataset 
comprising 80 instances was utilized for model training and to assess 
learning efficiency across training epochs. Subsequently, upon comple-
tion of the training phase, the trained models were applied to address the 
test dataset consisting of 140 instances unseen in the training stage.

The training and test datasets were created by integrating various 
production configurations, referencing benchmark generations of 
distributed workshop scheduling problems [11]. The determination of 
production configuration and parameter settings for instances, as illus-
trated in Tables 2 and 3, was guided by relevant literature on distributed 
workshop scheduling [11,66] and DRL-based scheduling problems [18]. 
Given the consistent number of distributed factories/workshops over an 
extended period, the quantity of distributed workshops remained fixed, 
with three workshops involved in this study.

Table 4 provides the parameter settings for algorithms, drawing in-
sights from pertinent DRL-based scheduling literature [17,18,67]. For 
the scheduling agent trained with the DQN or PPO algorithm, learning 
occurred before a reconfiguration operation. In contrast, for the recon-
figuration agent trained with a MARL algorithm, the learning process 
took place at the episode’s conclusion. The simulation of an instance is 

regarded as an episode. During each learning iteration, the off-policy 
algorithm VDN randomly selected a mini-batch of transitions from 
memory, while the on-policy MARL algorithm COMA utilized the tran-
sitions from the current episode to update network parameters.

Based on the tuning outcomes from various DRL-based scheduling 
literature [33,67], the learning rate notably impacts learning perfor-
mance. In this study, we examined the learning rate at three different 
levels for each algorithm, detailed in Table 5. The tuning experiment 
was carried out for 1000 epochs. Fig. 13 shows that the tuning curves 
vary notably across the three learning rate levels. Among these levels, 

Fig. 12. Usage of the training and test datasets.

Table 2 
Production configurations for the training and test datasets.

Number of 
jobs (n)

Number of 
machines 
(m)

Number of 
production line 
types (X)

Total number 
of instances

Training 
dataset

{50, 80, 120, 
150, 200}

{5, 8, 10, 
15}

{4, 6, 8, 10} 5*4*4=80

Test 
dataset

{50, 80, 100, 
120, 150, 
180, 200}

{5, 8, 10, 12, 
15}

{4, 6, 8, 10} 7*5*4=140

Table 3 
Parameter settings for a training or test instance.

Parameter Value

The proportion of initial jobs (pinit) 5 %
Arriving duration E(1/10)
Processing time tij U[100, 200]
Setup time of reconfiguration tsetup U[200, 400]
Unit tardiness cost αj U[0, 2]

Table 4 
Parameter settings for algorithms.

Value-based Policy-based

​ DQN VDN PPO COMA
Hidden layers 2 2 2 2
Neurons within each hidden layer 100 64 100 64
Discount factor (γ) 0.98 0.98 0.98 /
Memory size 1000 300 / /
Batch size 32 32 / /
Interval for parameter updates 200 200 / /
Repeated updating times (B) / / 5 /
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lv2 exhibited superior learning performance and was consequently 
selected for all four MADRL algorithms.

7.2. Training processes

The distributed scheduling and reconfiguration system underwent 
training with the four MADRL algorithms for 10000 epochs, utilizing the 
optimal learning rates and other appropriate parameter configurations. 
Throughout each epoch, 5 training instances were chosen at random to 
train scheduling and reconfiguration agents. Upon completion of each 
epoch, the trained agents were evaluated across all validation instances. 
Fig. 14 illustrates the training curves for the four MADRL algorithms.

As depicted in Fig. 14, the objective value exhibited a decreasing 
trend across all algorithms during training, suggesting the efficacy of all 

MADRL algorithms in facilitating effective learning. The robust learning 
performance of these algorithms further validates the feasibility of 
employing MARL and DRL in addressing concurrent scheduling and 
reconfiguration challenges within distributed workshops. Additionally, 
it verifies the soundness of the system design for cooperative scheduling 
in distributed reconfigurable workshops.

To better illustrate the learning outcomes of the scheduling and 
reconfiguration agents, we present their average episode rewards in 
Figs. 15 and 16, respectively. The subplots in both figures exhibit a 
consistent upward trend during training, suggesting that the agents have 
successfully acquired improved policies. It’s worth noting that the 
reward curves display some fluctuations, likely attributed to the explo-
ration characteristics inherent in the RL approach and the complexities 
of the studied problem, in contrast to FSP and JSP.

7.3. Comparison experiment

To evaluate the performance of MADRL approaches in addressing the 
dynamic DRFSP, we compared the four MADRL algorithms with four 
popular DRL algorithms and three classical meta-heuristics. The seven 
baseline algorithms were frequently used to solve [20,68] or as bench-
marks [65] in many workshop scheduling problems. For each algorithm, 
the test dataset was repeatedly calculated three times.

7.3.1. System adaptation and parameter settings for baseline algorithms
For the four DRL baselines, switching from multi-agent to single- 

Table 5 
Learning rate settings for the tuning experiment.

Factor level (lv)

1 2 3

MARL VDN ​ 0.00003 0.0001 0.0003
COMA Actor 0.00003 0.0001 0.0003

Critic 0.0002 0.0005 0.0015
DRL DQN ​ 0.00003 0.0001 0.0003

PPO Actor 0.00003 0.0001 0.0003
Critic 0.0001 0.0003 0.001

Fig. 13. The tuning curves of learning rates tested at three levels for the four MADRL algorithms.
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agent, the system design of the reconfiguration system should be 
adapted accordingly. For the reconfiguration system, all distributed 
workshops use the same reconfiguration agent to make decisions inde-
pendently. Therefore, instead of utilizing the joint reward, we design the 
individual reconfiguration reward R as follows. 

R = −
1

tSʹ − tS

(
TPBF +TPWIPfʹ +TPFNSfʹ

)
(33) 

Where TPWIPfʹ and TPFNSfʹ denote the added tardiness costs of WIP and 
finished jobs in the current workshop f’, within the current decision step 
[tS, tS’].

For the four DRL baselines, we trained and validated the scheduling 
and reconfiguration agents using the same training and validation 
datasets. The learning rates for DQN, DbDQN, and DlDQN algorithms 
are set to 0.0005. For the PPO algorithm, the learning rates for the critic 
and actor are 0.0005 and 0.0002, respectively. The training curves 
depicted in Fig. 17 demonstrate effective learning across all four DRL 

baselines. Notably, the PPO algorithm exhibited the most optimal 
learning performance, as indicated by its smoother learning curve with 
fewer fluctuations.

The parameter settings for meta-heuristics are displayed in Table 6. 
The comparison experiment was conducted on a computer equipped 
with an Intel(R) Core(TM) i7-12700F processor.

7.3.2. Performance comparisons
All algorithms are compared on the same set of test instances. The 

performance metric, relative percentage deviation (RPD), is calculated 
as follows. 

RPD =
objalg − objbest

objbest
× 100% (34) 

Here, objalg represents the objective value obtained by an algorithm, 
while objbest stands for the best objective value across all compared 
algorithms.

Fig. 14. Training curves showing average total tardiness cost for the four MADRL algorithms.

Fig. 15. The average episode rewards of scheduling agents for the four MADRL algorithms.

S. Yang et al.                                                                                                                                                                                                                                    Swarm and Evolutionary Computation 98 (2025) 102122 

13 



Fig. 18 presents the average RPDs obtained by all 11 algorithms. The 
results displayed in Fig. 18 indicate a significant performance advantage 
of MADRL algorithms over both DRL algorithms and meta-heuristics. 
This underscores the efficacy of integrating MARL and DRL in 

addressing the distributed scheduling and reconfiguration problem. By 
properly designing the coordination mechanism between distributed 
workshops and the joint reward for reconfiguration agents, the MARL 
algorithms can further generate better solutions than those of DRL 
algorithms.

Among the four MADRL algorithms, the COMA_DQN algorithm 
achieves the highest performance, with the COMA_PPO algorithm 
following closely. This indicates the effectiveness of the COMA algo-
rithm in addressing distributed reconfiguration problems. As COMA is 
an on-policy algorithm, this finding suggests that, for the distributed 
reconfiguration problem under study, learning from data generated in 
the current episode is more effective than using replayed data sampled 
from historical memory. Moreover, the four DRL algorithms outperform 
the three meta-heuristics clearly, which is in line with some current 
scheduling studies [29,34,65].

To further evaluate the performance of all compared algorithms 

Fig. 16. The average episode rewards of reconfiguration agents for the four MADRL algorithms.

Fig. 17. Training curves of the four DRL baselines.

Table 6 
Parameter settings for meta-heuristics.

For all Rescheduling points 5
Evolutionary generations 100

IG Number of destruction jobs 5
GA Population size 30

Crossover rate 0.8
Mutation rate 0.1

ABC Population size 30
Number of food sources 5
Maximum limit 10
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across various problem scales, we depicted the average RPDs on nine 
representative test instances in Fig. 19. Additionally, interaction plots 
between algorithms and problem scales are presented in Fig. 20. From 
the two figures, we can know that although the algorithm performances 
differ on different production scales, the MADRL algorithms generally 
outperform both DRL and meta-heuristics.

Table 7 presents the specific objective values of all compared algo-
rithms. As presented in Table 7, the COMA_DQN algorithm obtains the 
best results under most production configurations. On average, the 
COMA_DQN algorithm outperforms the three DQN baselines, i.e., DQN, 
DbDQN, DlDQN, and PPO algorithms, for 94.2 %, 94.1 %, 93.5 %, and 
94.6 %, respectively. In addition, the COMA_DQN algorithm signifi-
cantly outperforms the three meta-heuristics, validating the 

effectiveness of integrating the MARL and DRL approaches to solve the 
distributed and reconfigurable scheduling problem.

7.3.3. Computation efficiency of RL approaches
To verify whether the MADRL and DRL approaches can provide real- 

time scheduling after training, the CPU time for computing a test 
instance was recorded. Fig. 21 illustrates the computing times of the four 
MADRL algorithms and four DRL algorithms under different production 
configurations. The maximum computing time for an instance with 200 
jobs is less than 0.30 s. For a single job, the average simulation and 
decision time is less than 1.5 ms, facilitating real-time scheduling.

Fig. 21 shows that as the number of jobs and machines increases, the 
computing time also rises. This may be attributed to the sequential 

Fig. 18. Comparisons between the four MADRL algorithms and seven baseline algorithms, including four popular DRL algorithms and three effective meta-heuristics.

Fig. 19. Average RPDs of the compared algorithms on nine selected instances.
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processing of each job on every machine, resulting in higher simulation 
time demands with more jobs or machines. Conversely, when the pro-
duction lines increase, there is a noticeable decrease in computing time 
for most algorithms depicted in Fig. 21. This phenomenon can be 
attributed to the reduced number of jobs per production line type when 
more production line types are available. Consequently, as the 

scheduling state encompasses features of jobs associated with the cur-
rent production line type, the computation time required for calculating 
scheduling states decreases with fewer jobs.

Fig. 20. Interaction plots between algorithms and production configurations on the test instances.

Table 7 
The specific average RPDs of all algorithms on the test instances. The best results are bolded.

MADRL DRL Meta-heuristics

VDN_DQN COMA_DQN VDN_PPO COMA_PPO DQN DbDQN DlDQN PPO IG GA ABC

n 50 2.39 0.03 1.44 0.48 3.25 3.07 3.38 3.72 5.51 5.99 4.81
80 0.86 0.09 1.67 0.33 3.11 3.15 3.13 3.53 4.6 4.76 4.64
100 0.99 0.25 0.59 0.40 3.66 3.53 2.96 3.66 4.84 4.92 4.65
120 1.25 0.17 0.92 0.22 3.37 3.20 3.02 3.61 3.63 4.03 3.71
150 0.48 0.32 0.35 0.13 3.79 4.03 3.39 3.91 3.93 4.19 4.02
180 1.60 0.38 1.42 0.22 3.27 3.02 2.61 3.41 2.83 3.18 2.97
200 1.53 0.18 1.29 0.39 3.54 3.64 3.10 4.18 3.79 3.79 3.58

m 5 1.51 0.36 1.31 0.42 3.58 3.38 2.82 3.67 3.95 4.07 3.76
8 1.27 0.19 1.02 0.38 3.26 3.23 3.16 3.82 3.94 4.28 3.71
10 1.08 0.14 1.15 0.25 3.31 3.41 3.05 3.52 3.94 4.15 3.89
12 1.41 0.15 1.04 0.32 3.63 3.64 3.24 3.97 4.36 4.71 4.35
15 1.22 0.18 0.96 0.18 3.36 3.22 3.15 3.6 4.61 4.83 4.56

X 4 0.65 0.24 0.19 0.39 3.72 3.54 2.83 3.77 5.84 6.15 5.61
6 1.61 0.27 1.86 0.33 4.87 4.81 3.94 5.17 4.75 4.94 4.64
8 1.02 0.21 0.97 0.21 2.63 2.66 2.97 3.07 3.27 3.45 3.16
10 1.92 0.08 1.37 0.31 2.49 2.49 2.60 2.86 2.78 3.10 2.81

Ave ​ 1.30 0.20 1.10 0.31 3.43 3.38 3.08 3.72 4.16 4.41 4.05

Fig. 21. The average computing time of the RL-based algorithms under different production configurations.
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8. Conclusions

This study investigates the dynamic DRFSP with new job arrivals 
through the integration of MARL and DRL methodologies. The objective 
is to facilitate real-time decision-making for scheduling and reconfigu-
ration in distributed reconfigurable workshops. To address the chal-
lenges associated with the simultaneous optimization of scheduling and 
reconfiguration, as well as coordination among reconfigurable work-
shops, we formulate the distributed reconfiguration and scheduling 
problem as MARL-based and DRL-based Markov decision processes, 
respectively. A reconfiguration mechanism is devised to appropriately 
coordinate the scheduling and reconfiguration processes. Additionally, a 
training paradigm involving centralized training and decentralized 
execution is introduced to train and coordinate the reconfiguration 
agents across distributed workshops. Experimental findings from 
training and test experiments showed the superiority of MADRL algo-
rithms over popular DRL algorithms and efficient meta-heuristic algo-
rithms across a wide range of test instances. This underscores the 
efficacy of amalgamating MARL and DRL methodologies in addressing 
the challenges posed by distributed and reconfigurable scheduling.

A limitation of this work is that it currently can cope with a small 
number of jobs, such as 60-200 jobs. For large-scale problems with over 
5000 jobs, the proposed MADRL algorithms may not be able to scale. We 
will further investigate scaling and more efficient techniques, such as 
genetic programming [24], in the future to cope with large problems. 
Moreover, future work could focus on developing more efficient deci-
sion models, including enhanced reward functions, state representa-
tions, and action spaces. Additionally, further investigation into other 
coordination approaches, such as agent communication and hierarchical 
coordination mechanisms, will be valuable.
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[41] S.V. Albrecht, F. Christianos, L. Schäfer, Multi-Agent Reinforcement Learning: 
Foundations and Modern Approaches, MIT Press, 2024.

[42] Amato, C. 2024. An introduction to centralized training for decentralized execution 
in cooperative multi-agent reinforcement learning. arXiv preprint arXiv: 
2409.03052.

[43] A. Kopic, E. Perenda, H. Gacanin, A collaborative multi-agent deep reinforcement 
learning-based wireless power allocation with centralized training and 
decentralized execution, IEEE Trans. Commun. 72 (2024) 7006–7016.

[44] J. Wang, Z. Ren, T. Liu, Y. Yu, C. Zhang, QPLEX: duplex dueling multi-agent Q- 
learning, in: International Conference on Learning Representations, Publishing, 
2021.

[45] J. Zhang, Z. He, W. Chan, C. Chow, DeepMAG: deep reinforcement learning with 
multi-agent graphs for flexible job shop scheduling, Knowl. Based Syst. 259 (2023) 
110083.

[46] S.H. Oh, Y.I. Cho, J.H. Woo, Distributional reinforcement learning with the 
independent learners for flexible job shop scheduling problem with high 
variability, J. Comput. Des. Eng. 9 (2022) 1157–1174.

[47] R. Chen, W. Li, H. Yang, A deep reinforcement learning framework based on an 
attention mechanism and disjunctive graph embedding for the job-shop scheduling 
problem, IEEE Trans. Ind. Inform. 19 (2023) 1322–1331.

[48] M. Xu, Y. Mei, F. Zhang, M. Zhang, Niching genetic programming to learn actions 
for deep reinforcement learning in dynamic flexible scheduling, IEEE Trans. Evol. 
Comput. (2024) 1. -1.

[49] L.K. Li, X.J. Fu, H.L. Zhen, M.X. Yuan, J. Wang, J.W. Lu, X.L. Tong, J. Zeng, 
D. Schnieders, Bilevel learning for large-scale flexible flow shop scheduling, 
Comput. Ind. Eng. 168 (2022) 108140.

[50] J.F. Ren, C.M. Ye, Y. Li, A new solution to distributed permutation flow shop 
scheduling problem based on NASH Q-Learning, Adv. Prod. Eng. Manage. 16 
(2021) 269–284.

[51] S. Yang, J. Wang, Z. Xu, Learning to schedule dynamic distributed reconfigurable 
workshops using expected deep Q-network, Adv. Eng. Inf. 59 (2024) 102307.

[52] Y. Li, X. Li, L. Gao, Real-time scheduling for production-logistics collaborative 
environment using multi-agent deep reinforcement learning, Adv. Eng. Inf. 65 
(2025) 103216.

[53] Y. Gui, Z. Zhang, D. Tang, H. Zhu, Y. Zhang, Collaborative dynamic scheduling in a 
self-organizing manufacturing system using multi-agent reinforcement learning, 
Adv. Eng. Inf. 62 (2024) 102646.

[54] H. Kazemi, M.M. Mazdeh, M. Rostami, The two stage assembly flow-shop 
scheduling problem with batching and delivery, Eng. Appl. Artif. Intell. 63 (2017) 
98–107.

[55] V. Mnih, K. Kavukcuoglu, D. Silver, A.A. Rusu, J. Veness, M.G. Bellemare, 
A. Graves, M. Riedmiller, A.K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, 
A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, D. Hassabis, 
Human-level control through deep reinforcement learning, Nature 518 (2015) 
529–533.

[56] Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. 2017. Proximal 
policy optimization algorithms. arXiv preprint arXiv:1707.06347.

[57] E. Yuan, S. Cheng, L. Wang, S. Song, F. Wu, Solving job shop scheduling problems 
via deep reinforcement learning, Appl. Soft Comput. 143 (2023) 110436.

[58] P. Sunehag, G. Lever, A. Gruslys, W.M. Czarnecki, V. Zambaldi, M. Jaderberg, 
M. Lanctot, N. Sonnerat, J.Z. Leibo, K. Tuyls, T. Graepel, Acm, Value- 
decomposition networks for cooperative multi-agent learning based on team 
reward, in: 17th International Conference on Autonomous Agents and Multi Agent 
Systems, Stockholm, SWEDEN, (AAMAS). Publishing, 2018, pp. 2085–2087.

[59] J. Foerster, G. Farquhar, T. Afouras, N. Nardelli, S. Whiteson, Counterfactual multi- 
agent policy gradients, in: Proceedings of the AAAI Conference on Artificial 
Intelligence, Publishing, 2018.

[60] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., & 
Riedmiller, M. 2013. Playing atari with deep reinforcement learning. arXiv preprint 
arXiv:1312.5602.

[61] H. Van Hasselt, A. Guez, D. Silver, Deep reinforcement learning with double q- 
learning, in: Proceedings of the AAAI Conference on Artificial Intelligence, 
Publishing, 2016.

[62] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, N. Freitas, Dueling network 
architectures for deep reinforcement learning, in: Int. Conf. Mach. Learn., ICML. 
Publishing, 2016, pp. 1995–2003.

[63] Heess, N., TB, D., Sriram, S., Lemmon, J., Merel, J., Wayne, G., Tassa, Y., Erez, T., 
Wang, Z., & Eslami, S. 2017. Emergence of locomotion behaviours in rich 
environments. arXiv preprint arXiv:1707.02286.

[64] J. Chen, H. Zhang, W. Ma, G. Xu, Real-time scheduling for two-stage assembly 
flowshop with dynamic job arrivals by deep reinforcement learning, Adv. Eng. Inf. 
62 (2024) 102632.

[65] X. Wang, Y. Laili, L. Zhang, Y. Liu, Hybrid task scheduling in cloud manufacturing 
with sparse-reward deep reinforcement learning, IEEE Trans. Autom. Sci. Eng. 22 
(2025) 1878–1892.

[66] B. Zhang, C. Lu, L.L. Meng, Y.Y. Han, H.Y. Sang, X.C. Jiang, Reconfigurable 
distributed flowshop group scheduling with a nested variable neighborhood 
descent algorithm, Expert Syst. Appl. 217 (2023) 119548.

[67] I.B. Park, J. Huh, J. Kim, J. Park, A reinforcement learning approach to robust 
scheduling of semiconductor manufacturing facilities, IEEE Trans. Autom. Sci. Eng. 
17 (2020) 1420–1431.

[68] M. Wang, J. Zhang, P. Zhang, L. Cui, G. Zhang, Independent double DQN-based 
multi-agent reinforcement learning approach for online two-stage hybrid flow shop 
scheduling with batch machines, J. Manuf. Syst. 65 (2022) 694–708.

S. Yang et al.                                                                                                                                                                                                                                    Swarm and Evolutionary Computation 98 (2025) 102122 

18 

http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0028
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0028
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0028
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0029
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0029
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0030
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0030
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0030
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0031
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0031
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0031
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0032
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0032
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0032
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0033
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0033
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0033
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0034
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0034
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0034
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0035
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0035
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0035
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0036
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0036
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0036
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0037
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0037
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0037
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0038
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0038
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0038
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0039
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0039
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0039
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0041
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0041
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0043
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0043
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0043
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0044
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0044
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0044
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0045
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0045
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0045
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0046
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0046
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0046
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0047
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0047
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0047
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0048
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0048
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0048
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0049
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0049
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0049
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0050
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0050
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0050
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0051
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0051
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0052
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0052
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0052
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0053
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0053
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0053
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0054
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0054
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0054
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0055
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0055
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0055
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0055
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0055
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0057
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0057
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0058
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0058
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0058
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0058
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0058
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0059
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0059
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0059
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0061
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0061
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0061
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0062
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0062
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0062
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0064
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0064
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0064
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0065
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0065
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0065
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0066
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0066
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0066
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0067
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0067
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0067
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0068
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0068
http://refhub.elsevier.com/S2210-6502(25)00280-9/sbref0068

	Dynamic cooperative scheduling toward distributed and reconfigurable manufacturing via multi-agent deep reinforcement learning
	1 Introduction
	2 Related work
	3 System framework and mathematical formulation
	3.1 Architecture framework for RL-based DRFSP
	3.2 Mathematical formulation

	4 Reconfiguration system modeling
	4.1 Coordination mechanism between scheduling and reconfiguration
	4.2 Joint reward of reconfiguration agents
	4.3 Reconfiguration action representation
	4.4 Local observation and global state
	4.4.1 Local observation
	4.4.2 Global state representation


	5 Scheduling system modelling
	5.1 Reward of the scheduling agent
	5.2 Scheduling action representation
	5.3 Scheduling state representation

	6 Multi-agent reinforcement learning algorithms
	6.1 Value-decomposition networks
	6.2 Counterfactual multi-agent reinforcement learning

	7 Training and comparison experiments
	7.1 Experimental design and parameter tuning
	7.2 Training processes
	7.3 Comparison experiment
	7.3.1 System adaptation and parameter settings for baseline algorithms
	7.3.2 Performance comparisons
	7.3.3 Computation efficiency of RL approaches


	8 Conclusions
	Funding
	Declaration of generative AI and AI-assisted technologies in the writing process
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References


