
Genetic Programming with Tabu List for
Dynamic Flexible Job Shop Scheduling

Fangfang Zhang� ID fangfang.zhang@ecs.vuw.ac.nz
Centre for Data Science and Artificial Intelligence & School of Engineering and
Computer Science, Victoria University of Wellington,
PO Box 600, Wellington 6140, New Zealand

Mazhar Ansari Ardeh ID mazhar.ansari.ardeh@gmail.com
Wolt, Berlin, Germany

Yi Mei ID yi.mei@ecs.vuw.ac.nz
Centre for Data Science and Artificial Intelligence & School of Engineering and
Computer Science, Victoria University of Wellington,
PO Box 600, Wellington 6140, New Zealand

Mengjie Zhang ID mengjie.zhang@ecs.vuw.ac.nz
Centre for Data Science and Artificial Intelligence & School of Engineering and
Computer Science, Victoria University of Wellington,
PO Box 600, Wellington 6140, New Zealand

Abstract
Dynamic flexible job shop scheduling (DFJSS) is an important combinatorial optimisa-
tion problem, requiring simultaneous decision-making for machine assignment and
operation sequencing in dynamic environments. Genetic programming (GP), as a
hyper-heuristic approach, has been extensively employed for acquiring scheduling
heuristics for DFJSS. A drawback of GP for DFJSS is that GP has weak exploration
ability indicated by its quick diversity loss during the evolutionary process. This pa-
per proposes an effective GP algorithm with tabu lists to capture the information of
explored areas and guide GP to explore more unexplored areas to improve GP’s ex-
ploration ability for enhancing GP’s effectiveness. First, we use phenotypic character-
isation to represent the behaviour of tree-based GP individuals for DFJSS as vectors.
Then, we build tabu lists that contain phenotypic characterisations of explored indi-
viduals at the current generation and across generations, respectively. Finally, newly
generated offspring are compared with the individuals’ phenotypic characterisations
in the built tabu lists. If an individual is unseen in the tabu lists, it will be kept to form
the new population at the next generation. Otherwise, it will be discarded. We have
examined the proposed GP algorithm in nine different scenarios. The findings indicate
that the proposed algorithm outperforms the compared algorithms in the majority of
scenarios. The proposed algorithm can maintain a diverse and well-distributed popu-
lation during the evolutionary process of GP. Further analyses show that the proposed
algorithm does cover a large search area to find effective scheduling heuristics by fo-
cusing on unseen individuals.

Keywords
Genetic Programming, Tabu List, Exploration Ability, Scheduling Heuristics, Dynamic
Flexible Job Shop Scheduling.

©201X by the Massachusetts Institute of Technology Evolutionary Computation x(x): xxx-xxx

026
25

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/doi/10.1162/evco.a.26/2523400/evco.a.26.pdf by Victoria U
niversity of W

ellington user on 18 M
ay 2025

https://orcid.org/0000-0001-5516-3972
https://orcid.org/0000-0003-3431-2603
https://orcid.org/0000-0003-0682-1363
https://orcid.org/0000-0003-4463-9538


F. Zhang, M. Ardeh, Y. Mei, and M. Zhang

1 Introduction

Job shop scheduling is an important combinatorial optimisation problem which opti-
mises machine resources to process jobs that consist of a number of operations (Manne,
1960; Zhang et al., 2023a). In traditional job shop scheduling, all operations are allo-
cated to particular machines in advance, and we only need to make operation sequencing
decision to choose the next operation to be processed on idle machines (Hart and Sim,
2016; Gere Jr, 1966). Dynamic flexible job shop scheduling (DFJSS) is a variation of job
shop scheduling (Zhou et al., 2020; Xu et al., 2022; Destouet et al., 2023) with a num-
ber of valuable real world applications such as fog computing (Xu et al., 2023b) and
order picking in warehouse (D’Haen et al., 2023). For DFJSS, we are required to make
two decisions: firstly, determining the machine assignment to allocate operations to ma-
chines either upon the arrival of new jobs or when an operation is completed and its
subsequent operation becomes ready for processing, and secondly, deciding the oper-
ation sequencing when a machine becomes idle and there are operations waiting in its
queue.

Exact methods such as integer linear programming (Liu et al., 2021; Bülbül and
Kaminsky, 2013), can find optimal solutions for job shop scheduling. However, they
are normally only applicable to small scale and static problems due to their inefficiency.
Heuristic algorithms such as genetic algorithms (Davis, 2014; Biegel and Davern, 1990),
have been successfully used to tackle large scale job shop scheduling problems effi-
ciently. Nevertheless, their efficiency is compromised in dynamic scenarios, primarily
due to the inefficiency in rescheduling when confronted with dynamic events. Schedul-
ing heuristics like shortest processing time (SPT), have been widely used for job shop
scheduling by prioritising the candidate operations on machines (Kaban et al., 2012;
Canbolat and Gundogar, 2004). However, they are normally manually designed, a pro-
cess that is both time-consuming and reliant on expertise which may not always be
readily available. Genetic programming (GP), has been widely used to automatically
learn scheduling heuristics for DFJSS (Zhang et al., 2023b; Jaklinović et al., 2021; Zhu
et al., 2023). In particular, a routing rule is employed for machine assignment, and
concurrently, a sequencing rule is acquired for operation sequencing. As we know, as
an evolutionary computation algorithm, exploration ability is important for GP search
(Braune et al., 2022; Salama et al., 2022). From literature (Nicolau and Fenton, 2016;
Zhang et al., 2022d; Sitahong et al., 2022), and our preliminary results, we find that
there is an obvious exploration decrease with many seen individuals during the evolu-
tionary process of GP, which is more likely to limit its search/exploration ability. How-
ever, the study of interacting with population individuals to guide the exploration of
GP during the evolutionary process with tree-based representation in DFJSS is limited.

The fundamental concept behind tabu search involves engaging in local search
when confronted with a local optimum by permitting non-improving moves. The pre-
vention of cycling back to previously visited solutions is achieved through the utili-
sation of memories referred to as tabu lists (Prajapati et al., 2020). Inspired by tabu
search (Li and Gao, 2016), this paper aims to improve the exploration of GP by con-
trolling the search space with tabu lists, where the tabu list stores the information of
all the explored GP individuals during the GP search process. This paper encourages
GP to search more on unexplored areas that have not been seen in the tabu lists. If a
newly generated individual is not seen in the tabu list, it represents an unexplored area.
There are four research challenges for using tabu lists to guide the search of GP with
tree-based programs for DFJSS. First, how to represent the tree-based GP individuals
in DFJSS for building a tabu list? A proper way to represent the variable-length GP

2 Evolutionary Computation Volume x, Number x

026
25

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/doi/10.1162/evco.a.26/2523400/evco.a.26.pdf by Victoria U
niversity of W

ellington user on 18 M
ay 2025



F. Zhang, M. Ardeh, Y. Mei, and M. Zhang

individuals is critical for the success of using tabu list to memory visited individuals
to guide the GP search. Second, how to improve the computational efficiency of using
tabu list, especially when the size of the tabu list becomes larger and larger generation
by generation? Third, what is an effective way of guiding the search of GP with a tabu
list? Fourth, how will the search with tabu list affect the exploration of GP, and also its
performance of learning scheduling heuristics for DFJSS? It is not clear what is a good
pressure to guide GP to search more on unexplored areas according to the tabu list.

To tackle these challenges, first, we introduce to use phenotypic characterisation
(Hildebrandt and Branke, 2015) which is a vector to represent the behaviour of GP
individuals. These vectors of all individuals from previous generations are added to
the tabu list as a memory for representing explored areas/individuals of GP. Second,
we use Hash Table (Maier et al., 2019) to store key-value pairs for checking the tabu
list. The foundational concept of a hash table revolves around utilising a hash function
to determine an index within an array of buckets or slots, facilitating the retrieval of
the desired value. It is an efficient way to check whether an individual is explored or
not. Third, specialised crossover and mutation operators are designed to encourage GP
to explore unexplored areas by generating individuals which are not seen in the tabu
list. Fourth, we conduct parameter sensitivity analyses of the pressure level to explore
unexplored areas, thus investigating how the proposed algorithm affects the diversity
of population, and also the performance of GP to learn scheduling heuristics for DFJSS.

The goal of this paper is to develop an effective GP algorithm to learn scheduling
heuristics by improving the exploration of GP with tabu lists. The proposed algorithm
is expected to cover a wide range of explored areas to give more changes to find bet-
ter scheduling heuristics. In particular, this paper’s key contributions are outlined as
follows:

1. We have introduced to use phenotypic characterisation to represent the behaviour
of variable-length GP individuals on decision marking for DFJSS to build tabu
lists. The tabu list stores the explored areas/individuals by recording phenotypic
characterisations of all visited individuals from the perspective of GP’s phenotype
point of view. This paper provides a foundational study of incorporating tabu
list into GP algorithm with variable-length representation for DFJSS. This idea is
generic and applicable for other problems if proper phenotypic characterisations
can be designed according to the problems.

2. We have developed an effective GP algorithm for DFJSS with the built tabu list
to guide GP to search more on unexplored areas. Specifically, the search towards
unexplored areas is managed via newly generated individuals for the next gener-
ation. The proposed algorithm provides good insights on investigating the explo-
ration of GP.

3. We have shown that the proposed GP algorithm with tabu lists can learn highly
competitive scheduling heuristics for DFJSS. The effectiveness of the proposed al-
gorithm is reflected by well-distributed individuals in the search space, and good
preservation of population diversity. The corresponding analyses benefit to the
understanding of the process of GP to learn scheduling heuristics for DFJSS.

4. Further analysis and discussions show that the newly generated offspring of the
proposed algorithm contains more unseen individuals than seen individuals to
build the next generation. The results also show that it becomes harder and harder
to generate unseen individuals along with generations, which is consistent with

Evolutionary Computation Volume x, Number x 3

026
25

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/doi/10.1162/evco.a.26/2523400/evco.a.26.pdf by Victoria U
niversity of W

ellington user on 18 M
ay 2025



F. Zhang, M. Ardeh, Y. Mei, and M. Zhang

our intuition since more and more individuals have been explored. These findings
indicate that it is worth paying attention on unseen individuals, which suggests a
possible direction of improving the performance of the GP algorithm.

The subsequent sections of this paper are structured as follows: Section 2 provides
a review of the literature. Section 3 offers detailed explanations of the proposed algo-
rithm. The experimental design is outlined in Section 4. The findings and discussions
are presented in Section 5. Additional analyses are carried out in Section 6. Finally,
Section 7 serves as the conclusion for this paper.

2 Background

2.1 Dynamic Flexible Job Shop Scheduling

In DFJSS, a set of jobs J = J1, J2, ..., Jn needs to be processed on a set of machines
M = M1,M2, ...,Mm. Each job has a list of ordered operations, and the number of
operations is job-dependent. The completion of a job signifies the successful processing
of all its operations. In DFJSS, machine resources are flexible, allowing each operation
to be processed on multiple machines with different processing efficiency (Brucker and
Schlie, 1990). The candidate machines of an operation are operation-dependent, and
different operations may have different set of machines to process them. However,
each operation is assigned to a specific candidate machine, and its processing time is
contingent upon the machine handling the operation. Taking a practical example, an
aircraft manufacturing plant produces a variety of components (jobs) for jet engines.
Each component (job) must undergo a series of operations such as cutting, drilling,
grinding, heat treatment, and inspection. However, the plant has multiple machines
capable of performing the same operation. For example, Heat Treatment Oven X and
Oven Y can both handle heat treatment, but Oven X is more energy-efficient. This
paper concentrates on a dynamic event: the dynamic and stochastic arrival of new jobs
(Zhang et al., 2020c; Durasevic and Jakobovic, 2018). This choice is motivated by the
prevalence of this dynamic event in real-life scenarios. This suggests that information
about jobs remains unknown until their actual arrival on the shop floor. The primary
constraints of DFJSS are delineated as follows.

• A machine is capable of processing only one operation at a time.

• Each operation is restricted to being processed by only one of its candidate ma-
chines.

• Processing of an operation cannot commence until all its preceding operations
have been completed.

• The processing of an operation cannot be halted or paused until it reaches comple-
tion, once started.

This paper addresses three frequently employed objectives, enumerated as fol-
lows:

• Mean-flowtime: 1
n

∑n
j=1 (Cj − rj)

• Mean-tardiness:
∑n

j=1 Max{0,Cj−dj}
n

• Mean-weighted-tardiness: 1
n

∑n
j=1 wj ∗max{0, Cj − dj}

4 Evolutionary Computation Volume x, Number x

026
25

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/doi/10.1162/evco.a.26/2523400/evco.a.26.pdf by Victoria U
niversity of W

ellington user on 18 M
ay 2025



F. Zhang, M. Ardeh, Y. Mei, and M. Zhang

Population Initialisation

Each with one fitness

with Elitism, Reproduction
Crossover, Mutation

Evolution

Fitness Evaluation

gen<maxGen

Yes

No

Population 

Parent Selection

Best Scheduling Heuristic

Figure 1: The flowchart illustrating the process of GP to evolve scheduling heuristics
for DFJSS.

where rj denotes the release time of Jj , Cj represents the completion time of job Jj , dj
signifies the due date of Jj , wj reflects the weight (importance) assigned to job Jj , and
n represents the total number of jobs. Note that the release time is the ready time of
starting processing a job, which is the same as arrival time in this paper, i.e., a job will
be ready to be processed once it arrives. The completion time is the time gap between
finish time and release time. The due date is the time that a job should be finished.

2.2 Genetic Programming for DFJSS

Figure 1 depicts the flowchart representing GP for acquiring scheduling heuristics in
DFJSS, where the primary steps align with typical GP procedures. GP emulates the evo-
lutionary mechanism in nature to enhance offspring generation over successive genera-
tions, encompassing four key processes: initialisation, evaluation, parent selection, and
evolution (Langdon and Poli, 2013). GP commences with a set of randomly initialised
individuals. The effectiveness of each GP individual is assessed using DFJSS instances
(simulations) during the evaluation phase. If the stop criterion is not met, parent selec-
tion is carried out through genetic operators, i.e., elitism, reproduction, crossover, and
mutation to generate offspring for the subsequent generation. Conversely, if the stop
criterion is satisfied, the GP algorithm outputs the best-found scheduling heuristic for
the given DFJSS problem.

2.2.1 Representation

When it comes to acquiring scheduling heuristics for DFJSS, GP with a multi-tree repre-
sentation demonstrates its superiority by simultaneously evolving the routing rule for
machine assignment and the sequencing rule for operation sequencing (Zhang et al.,
2018, 2022c). Figure 2 illustrates a GP individual exemplifying both the routing rule
and the sequencing rule for DFJSS. These rules collaborate to produce schedules. The
routing rule gives precedence to machines using the criterion NIQ + WIQ * MWT. Here,
NIQ and WIQ represent the count of operations, and the needed time for a machine to
complete all operations in the queue of a machine, respectively. MWT indicates the
time required for a machine to finish the currently processing operation. Meanwhile,
the sequencing rule prioritises operations based on PT / W, where PT stands for the
needed processing time of each operation, and W reflects the priority of the operation.

Evolutionary Computation Volume x, Number x 5

026
25

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/doi/10.1162/evco.a.26/2523400/evco.a.26.pdf by Victoria U
niversity of W

ellington user on 18 M
ay 2025



F. Zhang, M. Ardeh, Y. Mei, and M. Zhang

*
WIQ MWT

NIQ WPT

/
+

Routing Rule Sequencing Rule

Figure 2: An example of a GP individual equipped with a routing rule and a sequencing
rule designed for DFJSS.

Table 1: An illustration of using the routing rule NIQ + WIQ * MWT for decision-
making at a decision point with three machines.

Decision Candidate Features Priority Selected
Situation Machines (NIQ WIQ MWT) Values Machine

1
M1 100 200 3 700
M2 30 100 5 530 M2

M3 4 50 100 5004

2.2.2 Scheduling Heuristics for Machine Assignment and Operation Sequencing
Scheduling heuristics work as priority functions to prioritise operations or machines,
which are functionally easy to understand. There are two categories of decision points,
namely, “routing decision points” and “sequencing decision points”. Routing decision
points correspond to cases when a new job arrives and its first operation is ready for
processing, or when an operation is completed and its succeeding operation becomes
ready for processing. The sequencing decision points correspond to the time when a
machine becomes idle, and its queue is not empty. To illustrate the routing decision
process, Table 1 provides an example of calculating the machine priority values of ma-
chines for assigning a ready operation. In this example, three machines (M1, M2, and
M3) can process the ready operation. The priority values for these machines are com-
puted using the routing rule from Figure 2 and the values of the relevant features. The
calculated priority values for M1, M2, and M3 are 700, 530, and 5004, respectively. Con-
sequently, the machine with the highest priority (indicated by the smallest value and
underlined) is selected to allocate the operation, which in this case is M2.

2.3 Related Work

Exploration plays a crucial role in the success of GP algorithms, as it helps explore a
broader search space and can help the discovery of more effective solutions (Vanneschi
et al., 2014). To the best of our knowledge, the studies of GP with tabu list is limited.
This section discusses some related studies on GP diversity which are related to the
exploration ability of GP algorithms. Maintaining a proper diversity level of the GP
population can help with its exploration ability (Kelly et al., 2019).

2.3.1 Diversity in GP
Unlike traditional evolutionary algorithms with vector based representations, it is not
straightforward to measure the diversity of GP with tree-based representation. Re-
searchers have proposed various diversity measures to quantify the differences among
individuals in a GP population (Burke et al., 2004; Jackson, 2010; Burke et al., 2002).
Common diversity measures include genetic diversity, phenotypic diversity, and be-
havioural diversity. These metrics help GP practitioners understand and track the level

6 Evolutionary Computation Volume x, Number x

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/doi/10.1162/evco.a.26/2523400/evco.a.26.pdf by Victoria U
niversity of W

ellington user on 18 M
ay 2025



F. Zhang, M. Ardeh, Y. Mei, and M. Zhang

of diversity in the GP populations. To enhance the diversity of GP, researchers have
developed a variety of techniques. These include diversity maintenance strategies,
such as crowding (Galván and Schoenauer, 2019), speciation (Juárez-Smith et al., 2019),
and fitness sharing (Burke et al., 2004), which encourage the survival of diverse indi-
viduals during the evolutionary process. Additionally, methods like niching (De Ar-
ruda Pereira et al., 2014) and island models (Ono et al., 2019) involve maintaining pop-
ulation to promote diversity.

2.3.2 GP Diversity for Job Shop Scheduling
Normally, the GP diversity for job shop scheduling is measured by considering the
differences of GP individuals in decision marking. The idea of using phenotypic char-
acterisations to represent the behaviour of GP individuals was first proposed in (Hilde-
brandt and Branke, 2015) for dynamic job shop scheduling. Simply speaking, the phe-
notypic characterisation is a vector to reflect the behaviour of a GP individual by look-
ing at the ranks of chosen operations at multiple sequencing decision points. This
idea was further extended to measure the behaviour of GP individuals for DFJSS by
constructing phenotypic characterisations with machine assignment and operation se-
quencing decisions simultaneously (Zhang et al., 2021b,c, 2022a).

Existing related studies mainly focus on how to select parents to improve the pop-
ulation diversity of GP for job shop scheduling. For example, an archive was devel-
oped to save promising individuals from different generations, and individuals in the
archive were given probabilities to be parents to generate individuals in the later gen-
erations (Xu et al., 2021). GP individuals were grouped based on their phenotypic
characterisations, and the parents from different groups (different behaviour) were en-
couraged to generate offspring with crossover for the next generation (Xu et al., 2022).
The performance of GP individuals in different cases was also utilised to choose parents
for genetic operators in (Xu et al., 2022, 2023a,b).

Although these studies show an increase of population diversity during the evo-
lutionary process, the diversity information are only used as a metric to show the effect
of the proposed algorithms rather than guiding the exploration of GP for DFJSS. In
addition, generally speaking, increasing the population size can potentially improve
the exploration effectiveness of GP, since the population may cover more search areas.
However, this is also related to the search space of a problem. If the search space of a
problem is small, increasing population size will not help much. In addition, based on
our preliminary investigations, a big issue of GP for DFJSS is that the population diver-
sity reduces dramatically at the very early stage of GP. This is the research problem we
focus in this paper. To the best of our knowledge, the studies of improving the effec-
tiveness of GP by guiding the GP exploration to unseen search space for DFJSS are rare.
In addition, most studies of improving GP’s exploration capabilities such as improved
parent selection methods for generating offspring, or increasing the mutation rate, were
designed to improve the exploration ability of GP at a current generation, ignoring the
explored individuals in all previous generations (i.e., the whole evolutionary process).

3 Proposed GP Algorithm with Tabu List for DFJSS

3.1 Framework of the Proposed GP Algorithm with Tabu List

Figure 3 illustrates the flowchart depicting the proposed GP algorithm. The proposed
algorithm starts with population initialisation. We introduce the use of phenotypic
characterisations (PC) (Hildebrandt and Branke, 2015) of GP individuals to build tabu
lists. The PC of a GP individual is represented as a vector containing the ranks of ex-

Evolutionary Computation Volume x, Number x 7

026
25

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/doi/10.1162/evco.a.26/2523400/evco.a.26.pdf by Victoria U
niversity of W

ellington user on 18 M
ay 2025



F. Zhang, M. Ardeh, Y. Mei, and M. Zhang

Randomly initialise a population 
of scheduling heuristics

Fitness Evaluation

Stop?Yes

No

Return the best 
scheduling 
heuristic

PC_new in 
short_TabuList?

Parent Selection

Set newPop = {},
Set short_TabuList = { }

Calculate the phenotypic characterisations 
(PC) of all individuals PCs

If generating a new offspring 
with elitism or reproduction

Add the offspring to 
newPop

Calculate the PC of the newly 
generated individual(s): PC_new

If generating a new offspring  
with crossover or mutation 

PC_new in 
long_TabuList?

For each PC_i in PCs, 
PC_i in long_TabuList?

Add PC_i to long_TabuList

Set long_TabuList = { }

newPop < popsize?

No

Add PC_new to short_TabuList

Yes

No

No

Yes

No
within tries? Yes

Yes

Figure 3: The flowchart of the proposed GP algorithm with tabu list.

amined machines and operations. This vector serves as a representation of the individ-
ual’s decision-making behavior in response to a set of routing and sequencing decision
situations. Each dimension of the PC aligns with the rank of the foremost-prioritised
machine or operation determined by the examined routing or sequencing rule, as dic-
tated by corresponding reference rules. We use long TabuList to memorise all explored
areas by recording the PCs of all seen individuals across generations so far, while we
use short TabuList to memorise the explored area at the current generation.

The proposed GP algorithm with tabu list to enhance the exploration ability is
conducted by examining the newly generated individuals via crossover and muta-
tion. The steps of updating short TabuList and long TabuList are highlighted with
pink background. Other main steps are highlighted with grey background, and im-
portant steps are highlighted in blue. For each offspring generated with crossover
and mutation, we will calculate the PC of this individual PC new. If PC new is not
seen in short TabuList, then we will further check if PC new is also not seen by
long TabuList. If PC new does not exist in long TabuList either, the corresponding
individual is considered as an unexplored area to be added to the next generation. In

8 Evolutionary Computation Volume x, Number x

026
25

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/doi/10.1162/evco.a.26/2523400/evco.a.26.pdf by Victoria U
niversity of W

ellington user on 18 M
ay 2025



F. Zhang, M. Ardeh, Y. Mei, and M. Zhang

Table 2: An illustration of computing the phenotypic characterisation with two deci-
sion scenarios, each involving three candidate machines, for a routing rule.

Decision Situation Ranking by the reference rule, i.e., WIQ Ranking by a routing rule PCi

1 (M1) 1 3
1 (M2) 3 2 2
1 (M3) 2 1

2 (M1) 2 2
2 (M2) 1 3 3
2 (M3) 3 1

PCi represents the ith dimension of phenotypic characterisation.

2 3 3 1 3 3 2 1

Routing PC Sequencing PC

Figure 4: An illustration of the phenotypic characterisation of a GP individual for
DFJSS with routing PC and sequencing PC represented as an 8-dimensional vector de-
rived with four routing decision situations and four sequencing decision situations.

addition, PC new will be added to short TabuList to record explored individuals at
the present generation. If the newly generated offspring are seen, the current parents
can be used to generate new offspring for a check again with a limited number of times
represented by tries. Note that after finishing the new population generation, we start
to use update long TabuList with PCs of the parent population. For any PC i that does
not appear in long TabuList, we will add it into long TabuList. Since elitism and re-
production aim to keep good individuals to the next generation directly to keep a good
trend of the algorithm improvement, the corresponding individuals will not checked
with long TabuList or short TabuList. The details of such design are shown in the
following subsections.

3.2 Tabu List

3.2.1 Building a Tabu List

A tabu list contains PCs of GP individuals. With two examined decision situations,
Table 2 provides an illustration of the process of computing a routing rule’s pheno-
typic characterisation. PCi denotes the ith dimension of phenotypic characterisation,
reflecting the rule’s behaviour in decision situation i. We initially give ranks for can-
didate machines by the reference routing rule “least work in the queue” represented
as WIQ. The routing rule selects M3 in the first decision situation, resulting in PC1

being the rank of M3 by WIQ, which is 2. Similarly, PC2 is 3. A sequencing rule can
obtain its phenotypic characterisation in a similar manner. In this paper, we use SPT
which represents shortest processing time as the reference sequencing rule. Given that
our GP algorithm with a multi-tree representation (as depicted in Figure 2) to concur-
rently evolve the routing rule and the sequencing rule for DFJSS, we concatenate the
phenotypic characterisations of both rules into the phenotypic characterisation of a GP
individual. An illustration of the phenotypic characterisation for a GP individual in
DFJSS represented as an 8-dimensional vector (comprising routing PC and sequencing
PC), is depicted in Figure 4.

Evolutionary Computation Volume x, Number x 9

026
25

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/doi/10.1162/evco.a.26/2523400/evco.a.26.pdf by Victoria U
niversity of W

ellington user on 18 M
ay 2025



F. Zhang, M. Ardeh, Y. Mei, and M. Zhang

3.2.2 Search Efficiency with Tabu List
As discussed before, short TabuList keeps the unique PCs of the individuals at the
current generation, where the maximal size of short TabuList is popsize, i.e., the
population size. long TabuList saves the unique PCs of the individuals across all
previous generations, where its maximal size of popsize*numGenerations, where
numGenerations is the number of generations already gone through. For a newly
generated individual, the PC of the individual will be compared with all PCs in
short TabuList and long TabuList, and the maximal number of distance calculations
among PCs is about popsize*(numGenerations+1). Along with generations, this com-
putational cost becomes higher and higher due to the increase of PCs in the tabu lists.
An efficient searching mechanism is needed when checking whether a GP individual
is seen or not. There are two designs for this purpose.

• Using hashing techniques for short TabuList and long TabuList: The search effi-
ciency of a data structure refers to the speed with which the structure can locate a
particular element or information within it. This paper proposes to use a hash ta-
ble to construct short TabuList and long TabuList. With a properly implemented
hash function, hash tables enable direct access to elements based on their keys.
This direct mapping allows for quick search operations, making hash tables suit-
able for fast retrieval of data.

• Searching short TabuList first, and then looking for long TabuList if needed. If
an individual has been seen in short TabuList, we can stop the search and no need
to check long TabuList anymore.

To add an individual to the list, in our approach, first the phenotypic representa-
tion of each GP tree is calculated, and then the phenotypic representation is hashed into
32-bit integer and then stored into the tabu list. So, to store a tree, only 32 bits of mem-
ory is needed. Accordingly, considering our GP setup of 100 generations of evolution
with a population size of 500 individuals, at most (100−1)×500 individuals are gener-
ated before the final generation. So, in the worst case scenario, (100− 1)× 500× 2× 32
bits of memory are needed to store the whole tabu list, i.e., note that each GP individual
has two trees in this paper. This is equivalent to 387 megabytes (i.e., (100-1) * 500 * 2
* 32 / (8 * 1024)) of memory, which is easily accessible in modern computing devices.
Additionally, during the evolutionary process, our proposed method searches the tabu
list frequently to check if new individuals are inside the list or not. For this, the new
individuals are hashed first, and then the hashed value is looked up in a hash table that
stores the tabued items with a time complexity of O(1). So, in essence, searching the
tabu list can be performed very efficiently during the evolutionary process and will not
impose any challenges.

3.3 Generating Unseen Individuals

How to generate unseen individuals is an important step for using the built tabu lists.
Figure 5 shows an example of generating offspring for the next generation via crossover
with two parents. For traditional crossover, one subtree is randomly selected for each
parent highlighted by the dotted circle. The selected subtrees are swapped to generate
two offspring. We can see that Offspring1 and Offspring2 are originated from Parent1
and Parent2, respectively. In other words, Offspring1 will be close to Parent1, and
Offspring2 performs close to Parent2 (Zhang et al., 2022b). With multi-tree represen-
tation, there are two types of rules in a GP individual, as shown in Figure 2, and we

10 Evolutionary Computation Volume x, Number x

026
25

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/doi/10.1162/evco.a.26/2523400/evco.a.26.pdf by Victoria U
niversity of W

ellington user on 18 M
ay 2025



F. Zhang, M. Ardeh, Y. Mei, and M. Zhang

 Parent1  Parent2  Offspring1  Offspring2

Crossover

Figure 5: An example of generating offspring for the next generation via crossover with
two parents, each parent having one tree.

only choose one type of tree to perform crossover every time, either the routing rule
or the sequencing rule, and keep the other rule unchanged (Zhang et al., 2018). This
paper only keeps unseen offspring when both Offspring1 and Offspring2 are unseen
simultaneously. More discussions on this design are provided in Section 6.3. For mu-
tation, after choosing one parent, one of the two trees as shown in Figure 2 will be
selected, and a newly created subtree will be used to replace a randomly chosen sub-
tree of the selected tree. If the newly generated offspring by crossover and mutation is
not unseen in short TabuList and long TabuList, it will be kept to form the next gen-
eration. For crossover and mutation, the proposed algorithm tries to generate unseen
individuals within a limited number of tries which controls the pressure to find un-
seen individuals. It is noted that the crossover and mutation operators do not generate
unseen offspring directly, but the proposed algorithm only keeps unseen offspring into
the next generation by filtering out the seen offspring via built tabu list.

3.4 Summary

The proposed algorithm suggests searching unexplored areas via looking for unseen
individuals to learn scheduling heuristics for DFJSS within a limited effort represented
by tries. The new population for the next generation contains seen individuals and
unseen individuals. The seen individuals in the new population are from elitism and
reproduction, and the kept newly generated seen individuals due to the failure to get
unseen individuals after the limited of tries. We expect the proposed algorithm to
have a relatively high ratio of unseen individuals than seen individuals for a good
exploration ability. In addition, the proposed algorithm is expected to search in a broad
search space to find effective scheduling heuristics, which will increase the population
diversity.

4 Experiment Design

4.1 Simulation Model

Referring to established DFJSS instances (Tay and Ho, 2008; Nguyen et al., 2018) and
adhering to the configurations in (Zhang et al., 2021b), the instances employed in this
paper assume the processing of 5000 jobs using 10 machines. New jobs continuously
enter the system in accordance with a Poisson process having a rate of λ. The number
of operations for a job and the number of accessible machines for each operation is
within a range of 1 and 10. An operation’s processing time is determined through a
range from 1 to 99 uniformly. A job’s due date is related to its processing time, i.e., 1.5
* processing time. 20%, 60%, and 20% of the jobs are with weight values of 1, 2, and
4 to indicate their importance, respectively (Hildebrandt and Branke, 2015). Following
the work in (Nguyen et al., 2017), we use a unique training instance at each generation
which is implemented by changing a new random seed for the simulation to improve
the generalisation of learned scheduling heuristics.

Evolutionary Computation Volume x, Number x 11

026
25

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/doi/10.1162/evco.a.26/2523400/evco.a.26.pdf by Victoria U
niversity of W

ellington user on 18 M
ay 2025



F. Zhang, M. Ardeh, Y. Mei, and M. Zhang

The utilisation level (p) plays a crucial role in simulating diverse DFJSS scenarios
(Nguyen et al., 2015). It represents a machine’s proportion time to be occupied, a factor
adjusted with the parameter λ for simulating the Poisson process. The computation of
the utilisation level is outlined in Equation (1), where µ denotes the average processing
time of the machines, and PM represents the probability of a job being processed on
a machine. For instance, if each job consists of two operations, PM would be 2/10. A
higher utilisation level typically results in a more active and occupied job shop.

λ = µ ∗ PM/p (1)

For assessing the performance of algorithms in a stable state, the initial 1000 jobs
are designated for a warm-up purpose and excluded from calculating the objective
values. The result collection in this study focuses on the subsequent 5000 jobs. The
simulation concludes upon the completion of the 6000th job.

For the training process, following the suggestion in (Hildebrandt et al., 2010), to
improve the generalisation ability of learning rules and improve training efficiency,
we generate one problem instance for every generation to evaluate the quality of GP
individuals. The training instance is changed/rotated across different generations by
using different random seed for the simulation. For the test, we apply the learned
rules on 50 unseen instances, and report the average objective value of the 50 unseen
instances as the test performance for each pair of rules. As we can see, a set of problem
instances is used to train the routing rule and the sequencing rule, and the learned pair
of the routing rule and the sequencing rule is used to test on unseen instances. The
routing rule and the sequencing rule are tailored for a class of problem instances. Note
that in traditional machine learning, normally the training instances have the same data
distributions with the test instances, which is also the case in this paper. The learned
models of the training is not expected to perform well on test with different problem
distributions. However, it is possible to learn scheduling rules from training instances,
and adapt them to test instances with different distributions from training instances.
We will explore this more with adaptation techniques in our future work.

4.2 Comparison Design

We examine three distinct objectives: mean-flowtime (referred to as Fmean), mean-
tardiness (referred to as Tmean), and mean-weighted-tardiness (referred to as WT-
mean). Additionally, we consider three utilisation levels, i.e., 0.75, 0.85, and 0.95 to
generate various DFJSS scenarios (Zhang et al., 2019, 2021a). The proposed algorithm is
examined in nine scenarios, and each scenario is represented by <objective, utilisation
level> such as <Fmean, 0.75>. Note that the nine scenarios are independent, the pair of
the routing rule and the sequencing rule is trained on problem instances with different
objectives and utilisation levels in different scenarios. The GP algorithm is used as the
baseline algorithm. To verify the effectiveness of the proposed GP with tabu list, named
tabuGP, tabuGP is compared with GP. In addition, GP and tabuGP is also compared
with manually designed rules that are popularly used for scenarios. Specifically, for all
scenarios, we use WIQ to allocate an operation to a machine with smallest workload.
For scenarios with objective mean-flowtime, we use shortest processing time (PT) as
the sequencing rule. For scenarios with objective mean-tardiness and mean-weighted-
tardiness, we use ATC rule, i.e., apparent tardiness cost, and WATC rule, i.e., weighted
apparent tardiness cost, as the sequencing rule, respectively (Chen and Matis, 2013).

12 Evolutionary Computation Volume x, Number x

026
25

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/doi/10.1162/evco.a.26/2523400/evco.a.26.pdf by Victoria U
niversity of W

ellington user on 18 M
ay 2025



F. Zhang, M. Ardeh, Y. Mei, and M. Zhang

Table 3: The terminal set.
Type Notation Description

machine-related NIQ The number of operations in the queue of a machine
WIQ Work in the queue of a machine, i.e., the needed time to process all operations
MWT Machine waiting time, i.e., needed time to finish the currently processing operation

PT Processing time of an operation on a specified machine

job-related NPT Median processing time (estimated) for the next operation of a current operation
OWT The waiting time of an operation in the queue of a machine
WKR Median amount of work (estimated) remaining for a job
NOR The number of operations remaining for a job

W Weight of a job
TIS Time of a job in system

Table 4: The parameter settings for evolving scheduling heuristics with GP.
Parameter Value

Size of Population 500
The count of elite individuals 10
Method for parent selection Tournament selection with size 5

Rate of Reproduction/Crossover/Mutation 5%/80%/15%
Initialising population method ramped-half-and-half

Minimum / maximum of initial depth 2 / 6
Maximal depth of individuals 8

Selection rate of terminal / non-terminal 10% / 90%
The maximal number of generations 100

4.3 Parameter Settings

The terminals of GP are derived from the features of the job shop, as outlined in (Zhang
et al., 2021c), which can be found in Table 3. This paper uses the same terminal set for
learning both the routing rule and the sequencing rules (Zhang et al., 2021b, 2020a,b,
2022e). We have {+, -, *, /, max, min} as function set, and each function in the set
has two arguments. The division function “/” is implemented as a protected division,
yielding one if divided by zero. The function max and min containing two arguments,
produce the maximum and minimum of the provided values, respectively. The rest of
parameter settings for GP, as recommended in (Koza and Poli, 2005), are presented in
Table 4.

In line with the recommendation in (Zhang et al., 2021c), we select 20 routing de-
cisions and 20 sequencing decisions during an extensive simulation to obtain GP indi-
viduals’ phenotypic characterisations. Consequently, the dimension of an individual’s
phenotypic characterisation is set to 40. The decision situations remain constant for cal-
culating the phenotypic characterisations of all individuals. It’s important to note that
the number of examined decisions’ operations and machines is with a fixed number
which is 7 in this paper to ensure comparability of phenotypic characterisations among
GP individuals.

5 Results and Discussions

We employ Friedman’s test and the Wilcoxon rank-sum test, both with a significance
level of 0.05, to assess the performance of algorithms across 30 independent runs. The
“Average Rank” derived from Friedman’s test provides an average rating for the algo-
rithm across all scenarios. In the subsequent results, symbols such as “↑”, “↓”, and “≈”
signify statistical significance, indicating that the corresponding result is significantly

Evolutionary Computation Volume x, Number x 13

026
25

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/doi/10.1162/evco.a.26/2523400/evco.a.26.pdf by Victoria U
niversity of W

ellington user on 18 M
ay 2025



F. Zhang, M. Ardeh, Y. Mei, and M. Zhang

Table
5:The

m
ean

(standard
deviation)offitness

obtained
on

training
instance

of
ta
bu

G
P

w
ith

differentnum
bers

oftries
to

find
unseen

offspring
for

the
nextgeneration

according
to

30
independentruns

in
nine

scenarios.
Scenario

TabuG
P5

TabuG
P10

TabuG
P15

TabuG
P20

TabuG
P25

TabuG
P30

TabuG
P35

TabuG
P40

TabuG
P45

tabuG
P50

<
Fm

ean,0.75>
339.40(1.32)

339.42(1.49)
338.84(1.61)

338.76(1.43)
338.27(0.83)

338.52(1.06)
338.60(1.17)

338.97(1.67)
339.07(1.52)

338.84(1.32)
<

Fm
ean,0.85>

392.80(3.86)
392.14(2.38)

392.54(3.06)
392.57(2.89)

391.41(1.88)
391.66(2.29)

392.11(2.18)
391.57(1.38)

390.97(1.13)
392.63(3.41)

<
Fm

ean,0.95>
571.01(10.69)

568.38(7.02)
569.59(10.38)

568.59(6.71)
568.56(6.90)

567.49(5.58)
567.50(6.70)

566.09(6.67)
567.89(5.90)

568.01(7.24)
<

T
m

ean,0.75>
12.64(0.94)

12.52(0.38)
12.52(0.36)

12.51(0.26)
12.57(0.68)

12.48(0.35)
12.48(0.31)

12.57(0.78)
12.52(0.55)

12.72(0.82)
<

T
m

ean,0.85>
40.81(0.85)

40.94(1.22)
40.78(0.90)

41.07(1.46)
40.61(0.80)

40.60(0.70)
41.08(1.94)

40.44(0.78)
41.01(1.71)

40.64(0.96)
<

T
m

ean,0.95>
190.69(6.80)

189.43(5.36)
187.64(4.66)

189.50(5.29)
188.69(7.00)

188.06(5.23)
188.73(5.95)

188.91(5.08)
187.81(4.52)

185.95(3.49)
<

W
T

m
ean,0.75>

25.45(1.61)
25.30(1.01)

25.29(0.64)
25.25(0.79)

25.13(0.50)
25.28(1.05)

25.06(0.52)
25.51(1.38)

25.25(1.16)
25.44(1.60)

<
W

T
m

ean,0.85>
79.00(5.77)

78.82(5.21)
77.08(1.86)

77.43(3.24)
76.57(1.75)

76.83(2.50)
77.78(3.80)

77.32(1.81)
77.40(3.96)

78.55(5.57)
<

W
T

m
ean,0.95>

313.91(7.80)
315.03(9.65)

317.73(10.23)
314.28(6.73)

315.00(8.99)
314.27(10.54)

313.33(6.84)
311.83(5.18)

314.21(9.48)
316.62(11.00)

A
verage

R
ank

5.97
5.92

5.68
5.91

5.1
5.11

5.47
5.14

5.33
5.37

14 Evolutionary Computation Volume x, Number x

026
25

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/doi/10.1162/evco.a.26/2523400/evco.a.26.pdf by Victoria U
niversity of W

ellington user on 18 M
ay 2025



F. Zhang, M. Ardeh, Y. Mei, and M. Zhang

Table 6: The mean (standard deviation) of test objective values of manually rules, GP
and tabuGP over 30 independent runs in nine scenarios.

Scenarios Manually Rules GP tabuGP

<Fmean, 0.75> 436.46 336.40(1.84)(↑) 335.40(0.73)(↑)(↑)
<Fmean, 0.85> 502.30 386.56(3.92)(↑) 384.64(1.64)(↑)(↑)
<Fmean, 0.95> 763.85 557.32(9.89)(↑) 552.98(6.26)(↑)(≈)
<Tmean, 0.75> 56.31 13.46(0.75)(↑) 13.30(0.65)(↑)(≈)
<Tmean, 0.85> 103.96 40.31(1.79)(↑) 39.31(0.72)(↑)(↑)
<Tmean, 0.95> 311.71 176.49(4.49)(↑) 178.11(5.38)(↑)(≈)
<WTmean, 0.75> 121.52 26.89(0.77)(↑) 26.48(0.39)(↑)(↑)
<WTmean, 0.85> 221.45 75.63(3.09(↑) 74.58(1.56)(↑)(↑)
<WTmean, 0.95> 613.94 298.25(14.32)(↑) 294.66(8.26)(↑)(≈)

better than, worse than, or similar to its counterpart. This paper focuses on minimisa-
tion problems, where a smaller value denotes better performance.

5.1 Sensitivity Analyses of Parameter tries for tabuGP

As introduced in Section 3, the parameter tries reflects the efforts to find different off-
spring. Compared with a smaller value of tries, a larger tries suggests a high probabil-
ity to get unique offspring to explore unseen areas during the evolutionary process of
GP. However, a larger tries value may also indicate a possible long time to find unseen
offspring. It is not clear which is a good value for tries of tabuGP in DFJSS.

To investigate a good value for tries, this subsection does parameter sensitivity
analyses for tries. Specifically, this paper gives tries 10 values from 5 to 50 with a step
of 5. For a tries value of 5, this indicates that the proposed algorithm will try 5 times to
generate unseen offspring with the same pair of parents. Table 5 shows the fitness rep-
resented by the mean and standard deviation obtained on training instance of tabuGP
with different numbers of tries according to 30 independent runs in nine scenarios.
The algorithm tabuGPi represents the algorithm tabuGP with i tries. From the average
rank, we can see that tabuGP with a tries of 25 achieves the best performance with the
smallest rank of 5.1 on the training instances. The performance of tabuGP with smaller
tries than 25 (ranked as 5.97, 5.92, 5.68, and 5.91) is worse than the ones with a larger
tries than 25 (ranked as 5.11, 5.47, 5.14, 5.33 and 5.37). The observed pattern is con-
sistent with our intuition that a smaller tries value does not achieve enough unseen
individuals. With a large tries, it might be still not possible to find unseen individuals
and ends up with keeping seen individuals, which is not helpful to further improve
the performance of the tabuGP algorithm. Overall, we can see that tries with 25 is a
good starting point to use. Thus, this paper chooses to use tries of 25 for further exper-
iment studies, and the corresponding proposed algorithm is represented by tabuGP for
simplicity in the later contents.

5.2 Quality of Evolved Scheduling Heuristics

5.2.1 Statistical Test
In nine scenarios, Table 6 shows manually rules, GP and tabuGP’ test objective values
represented by the mean and standard deviation according to 30 independent runs.
Clearly, the learned scheduling rules by GP and tabuGP are significantly better than
manually designed rules in all scenarios. The results also shows that tabuGP is sig-
nificantly better than GP in 5 out of 9 scenarios, and tabuGP achieves comparable
performance with GP in other scenarios. In addition, the mean values and standard

Evolutionary Computation Volume x, Number x 15

026
25

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/doi/10.1162/evco.a.26/2523400/evco.a.26.pdf by Victoria U
niversity of W

ellington user on 18 M
ay 2025



F. Zhang, M. Ardeh, Y. Mei, and M. Zhang

<WTmean, 0.75> <WTmean, 0.85> <WTmean, 0.95>

<Tmean, 0.75> <Tmean, 0.85> <Tmean, 0.95>

<Fmean, 0.75> <Fmean, 0.85> <Fmean, 0.95>

550

560

570

170
175
180
185
190
195

300

320

340

384

388

392

396

38
40
42
44

76
80
84

334

336

338

340

13

14

15

16

26

27

28

29

Algorithm

A
ve

ra
ge

 O
bj

ec
tiv

e 
V

al
ue

s 
on

 T
es

t I
ns

ta
nc

es

GP tabuGP

Figure 6: Violin plots of the objective values on test instances of GP and tabuGP based
on 30 independent runs in nine scenarios.

deviations of tabuGP are smaller than GP in 8 out of 9 scenarios, which are highlighted
in bold. This verifies the effectiveness of the proposed tabuGP algorithm. This also
indicates that the proposed strategy of using tabu lists to help explore unseen areas of
GP is effective in learning scheduling heuristics for DFJSS.

5.2.2 Violin Plots for the Learned Best Scheduling Heuristics
To delve deeper into the objectives achieved by the algorithms, Figure 6 shows the vi-
olin plot of the average objective values on test instances of GP and tabuGP in nine
scenarios according to 30 independent runs. In terms of the value distributions, it is
evident that the proposed tabuGP algorithm demonstrates its superiority by yielding
smaller objective values across the majority of examined scenarios. More importantly,
the violin plots of tabuGP are flatter than GP with smaller standard deviations. This
shows the good stability of the proposed tabuGP to learn effective scheduling heuris-
tics.

5.2.3 Curves of Average Objective Values of Learned Scheduling Heuristics on
Test Instances

Figure 7 shows the changes of GP and tabuGP’ average objective values on test in-
stances generation by generation in nine scenarios according to 30 independent runs.
The results suggest that tabuGP has the capability to surpass GP in learning scheduling
heuristics from the initial stages and sustain this advantage throughout the entire evo-
lutionary process. This further verifies the effectiveness of the proposed tabuGP with
developed tabu lists by guiding the search to unexplored areas of GP.

5.3 Training versus Test

Figure 8 shows the scatter plots of the objective values on test instances and fitness on
training instances of the best individuals for GP and tabuGP according to 30 indepen-
dent runs in nine scenarios. First, we can see that there is a high correlation between the
training performance and test performance obtained by GP and tabuGP. This indicates
a good generalisation ability of the evolved scheduling heuristics by GP algorithms.
Second, the results show that the scatter points of tabuGP distribute more at the left

16 Evolutionary Computation Volume x, Number x

026
25

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/doi/10.1162/evco.a.26/2523400/evco.a.26.pdf by Victoria U
niversity of W

ellington user on 18 M
ay 2025



F. Zhang, M. Ardeh, Y. Mei, and M. Zhang

<WTmean, 0.75> <WTmean, 0.85> <WTmean, 0.95>

<Tmean, 0.75> <Tmean, 0.85> <Tmean, 0.95>

<Fmean, 0.75> <Fmean, 0.85> <Fmean, 0.95>

25 50 75 100 25 50 75 100 25 50 75 100

25 50 75 100 25 50 75 100 25 50 75 100

25 50 75 100 25 50 75 100 25 50 75 100

560
570
580
590

180
190
200

300
320
340
360

384
388
392
396

40.0
42.5
45.0
47.5

80

90

100

336
337
338
339
340

14
15
16

28
30
32
34

Generation

A
ve

ra
ge

 O
bj

ec
tiv

e 
V

al
ue

s 
on

 T
es

t I
ns

ta
nc

es

GP tabuGP

Figure 7: Curves of the average objective values of GP and tabuGP on test instances
derived from 30 independent runs across nine scenarios.

bottom corners, which shows the effectiveness of the proposed tabuGP algorithm to
get smaller objective values.

<WTmean, 0.75> <WTmean, 0.85> <WTmean, 0.95>

<Tmean, 0.75> <Tmean, 0.85> <Tmean, 0.95>

<Fmean, 0.75> <Fmean, 0.85> <Fmean, 0.95>

24 25 26 27 75 80 85 90 320 340 360

12 13 14 15 40 42 44 46 48 180 190 200

337338339340341342343 390 395 400 405 560 570 580 590

550

560

570

170
175
180
185
190
195

300

320

340

384

388

392

396

38

40

42

44

76

80

84

334

336

338

340

13

14

15

16

26

27

28

29

Fitness on Training Instances

O
bj

ec
tiv

e 
V

al
ue

 o
n 

Te
st

 In
st

an
ce

s

GP tabuGP

Figure 8: Scatter plots of the objective values on test instances and fitness on training
instances of the best learned individuals for GP and tabuGP according to 30 indepen-
dent runs in nine scenarios.

5.4 Diversity of Algorithms

We use entropy to measure the diversity of GP population for DFJSS by using phe-
notypic characterisations of GP individuals. The entropy is calculated as entropy =

−
∑

c∈C
|c|

|individuals| log(
|c|

|individuals| ), where C is the set of clusters obtained by the DB-

Evolutionary Computation Volume x, Number x 17

026
25

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/doi/10.1162/evco.a.26/2523400/evco.a.26.pdf by Victoria U
niversity of W

ellington user on 18 M
ay 2025



F. Zhang, M. Ardeh, Y. Mei, and M. Zhang

0 50 100

2.5
5.0

<Fmean, 0.75>

0 50 100

2.5
5.0

<Fmean, 0.85>

0 50 100

2.5

5.0
<Fmean, 0.95>

0 50 100

2.5
5.0

<Tmean, 0.75>

0 50 100

2.5
5.0

<Tmean, 0.85>

0 50 100

2.5

5.0
<Tmean, 0.95>

0 50 100

2.5

5.0
<WTmean, 0.75>

0 50 100

2.5

5.0
<WTmean, 0.85>

0 50 100

2.5

5.0
<WTmean, 0.95>

Generation

En
tr

op
y

GP
tabuGP25
tabuGP50

tabuGP5
tabuGP30

tabuGP10
tabuGP35

tabuGP15
tabuGP40

tabuGP20
tabuGP45

Figure 9: Curves of diversity represented as entropy values of GP and tabuGP with
different numbers of tries over generations according to 30 independent runs in nine
scenarios.

Scan clustering algorithm (Ester et al., 1996; Ardeh et al., 2021) with the phenotypic dis-
tance measure (Hildebrandt and Branke, 2015) and a cluster radius of zero. A greater
entropy value signifies increased diversity within the population.

Figure 9 shows the curves of diversity represented as entropy values of GP and
tabuGP with different numbers of tries over generations based on 30 independent runs
in nine scenarios. The figure shows that GP loses its population diversity quickly and
stays at a low diversity after about generation 5. This may limit the search effectiveness
of GP, which is a drawback of traditional GP on DFJSS. Overall, as the number of tries
increases, the diversities of the corresponding tabuGP algorithms are improved. For
example, the diversity of tabuGP10 is clearly larger than tabuGP5, and the diversity of
tabuGP15 is obviously larger than tabuGP10 in most scenarios. We also observe that if
the tries value is larger than 25, a further increase of the tries value can increase the
algorithm diversity, however, the increment is marginal. This indicates a tries value of
25 is a good starting point. This finding is consistent with our observation in Section
5.1.

5.5 Training Time

For GP in DFJSS, the most time-consuming part is the fitness evaluations of individu-
als. Thus, O(time) = evals * O(eval) = evals * ops * O(ds) = evals * ops * O((M + 100) *
rulesize) = evals * ops * O(rulesize), where evals, ops, and ds are the number of eval-
uations, operations, and decision situations, respectively. M (i.e., 10 in this paper) is
the number of machines, and 100 is the maximal number of operations in a queue of a
machine (the simulation will terminate if the queue size exceeds 100). Each operation
will have routing decisions to be allocated to a machine, and sequencing decisions to
be selected for processing next. rulesize is the number of nodes of a GP individual.

Table 7 shows the mean and standard deviation of the training time of GP and
tabuGP according to 30 independent runs in nine scenarios. The results indicate that
while tabuGP shows a slight increase in time compared to GP, the difference is minimal.
In other words, using the built tabu list and searching with the tabu list are efficient,

18 Evolutionary Computation Volume x, Number x

026
25

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/doi/10.1162/evco.a.26/2523400/evco.a.26.pdf by Victoria U
niversity of W

ellington user on 18 M
ay 2025



F. Zhang, M. Ardeh, Y. Mei, and M. Zhang

Table 7: The mean (standard deviation) of training time of GP and tabuGP over 30
independent runs in nine scenarios.

Scenarios GP tabuGP

<Fmean, 0.75> 115(21) 132(28)
<Fmean, 0.85> 120(20) 136(25)
<Fmean, 0.95> 119(14) 147(24)
<Tmean, 0.75> 100(19) 113(23)
<Tmean, 0.85> 113(22) 141(27)
<Tmean, 0.95> 118(17) 156(26)
<WTmean, 0.75> 110(28) 129(22)
<WTmean, 0.85> 108(20) 152(37)
<WTmean, 0.95> 126(26) 163(28)

10 0 10

0

5

<Generation 0>

0 10

0

5

<Generation 20>

0 20
5

0

5

<Generation 40>

0 20

0

5

<Generation 60>

0 10 20

0

5

10
<Generation 80>

0 20
5

0

5

<Generation 100>

GP tabuGP

Figure 10: Distribution visualisations for the population individuals of GP and tabuGP
according to the phenotypic characterisations with principal component analysis (PCA)
at generation 0, 20, 40, 60, 80, and 100.

and do not bring extra computational cost. This shows the efficiency of the proposed
tabuGP algorithm, and the efficiency the way of implementing tabu list as introduced
in Section 3.2.

6 Further Analysis

6.1 Distributions of Explored Areas

As mentioned earlier, the proposed tabuGP tries to explore more unseen areas dur-
ing the evolutionary process. This indicates that the individuals of tabuGP are more
likely to cover a larger area than GP. This section uses the behaviour of individuals
in the population which is represented by phenotypic characterisation to show the ex-
ploration areas of GP and tabuGP. Figure 10 shows the distribution visualisations of
population individuals of GP and tabuGP according to the phenotypic characterisa-
tions with principal component analysis (PCA) at generation 0, 20, 40, 60, 80, and 100.
We can see that at the first generation, the behaviour of all the initialised individuals
of GP and tabuGP are the same. Along with generations, it is clear that the explored
areas by tabuGP are larger than GP. At the later stage of the evolutionary process, the

Evolutionary Computation Volume x, Number x 19

026
25

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/doi/10.1162/evco.a.26/2523400/evco.a.26.pdf by Victoria U
niversity of W

ellington user on 18 M
ay 2025



F. Zhang, M. Ardeh, Y. Mei, and M. Zhang

0 50 100
0.0
0.2
0.4
0.6
0.8
1.0

<Fmean, 0.75>

0 50 100
0.0
0.2
0.4
0.6
0.8
1.0

<Fmean, 0.85>

0 50 100
0.0
0.2
0.4
0.6
0.8
1.0

<Fmean, 0.95>

0 50 100
0.0
0.2
0.4
0.6
0.8
1.0

<Tmean, 0.75>

0 50 100
0.0
0.2
0.4
0.6
0.8
1.0

<Tmean, 0.85>

0 50 100
0.0
0.2
0.4
0.6
0.8
1.0

<Tmean, 0.95>

0 50 100
0.0
0.2
0.4
0.6
0.8
1.0

<WTmean, 0.75>

0 50 100
0.0
0.2
0.4
0.6
0.8
1.0

<WTmean, 0.85>

0 50 100
0.0
0.2
0.4
0.6
0.8
1.0

<WTmean, 0.95>

Generation

Th
e 

Pr
op

or
ti

on
s 

of
 In

di
vi

du
al

s

GP-CrossoverSeen
GP-CrossoverUnseen

tabuGP-CrossoverSeen
tabuGP-CrossoverUnseen

Figure 11: Curves of the proportions of seen individuals and unseen individuals gener-
ated by crossover of GP and tabuGP along with generations in nine different scenarios,
where GP-CrossoverSeen and GP-CrossoverUnseen represents the seen and unseen in-
dividuals found by GP, and tabuGP-CrossoverSeen and tabuGP-CrossoverUnseen rep-
resents the seen and unseen individuals obtained by tabuGP.

explored areas of tabuGP are still larger than GP, but we can also see most individuals
of tabuGP are converged to some areas, i.e., more likely to be the promising areas. This
indicated that the proposed tabuGP has a good exploration and exploitation ability.

6.2 The Number of Seen and Unseen Individuals

This section investigates the number of individuals which are seen and unseen in the
population. Specifically, the individuals generated by crossover and mutation are ex-
amined.

6.2.1 Individuals Generated by Crossover
Figure 11 shows the curves of proportions of seen and unseen individuals found by
GP and obtained by tabuGP via crossover in nine scenarios along with generations ac-
cording to 30 independent runs. We use GP-CrossoverSeen and GP-CrossoverUnseen
to represent the seen and unseen individuals found by GP, and tabuGP-CrossoverSeen
and tabuGP-CrossoverUnseen to represent the seen and unseen individuals obtained
by tabuGP. Comparing with GP-CrossoverSeen and GP-CrossoverUnseen, the results
show that the number of unseen individuals (i.e., less than 0.1) is smaller than the num-
ber of seen individuals (i.e., larger than 0.9). This means that most of the generated off-
spring by crossover of GP have been seen in the previous generations or at the current
generation. For tabuGP, compared with GP-CrossoverSeen, the number of seen indi-
viduals represented by tabuGP-CrossoverSeen is smaller. In addition, the number of
unseen individuals of tabuGP represented by tabuGP-CrossoverUnseen is larger than
the number of unseen individuals of GP which is represented by GP-CrossoverUnseen.
This is the reason why tabuGP can achieve better performance than GP.

For the number of unseen individuals of tabuGP represented by tabuGP-
CrossoverUnseen, and the number of seen individuals of tabuGP represented by
tabuGP-CrossoverSeen, the results show that the number of unseen individuals is

20 Evolutionary Computation Volume x, Number x

026
25

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/doi/10.1162/evco.a.26/2523400/evco.a.26.pdf by Victoria U
niversity of W

ellington user on 18 M
ay 2025



F. Zhang, M. Ardeh, Y. Mei, and M. Zhang

larger than the number of seen individuals in most scenarios, i.e., <Fmean, 0.75>,
<Fmean, 0.85>, <Tmean, 0.75>, <Tmean, 0.85> and <WTmean, 0.75>. However,
the number of unseen individuals is larger than the number of seen individuals at the
early stages, but vice in verse in the later stages of the evolutionary process of tabuGP
in three scenarios, i.e., <Fmean, 0.95>, <WTmean, 0.85> and <WTmean, 0.95>. There
is no big difference between the number of unseen and seen individuals of tabuGP in
scenario <Tmean, 0.95>.

In terms of the trends of curves, Figure 11 shows the number of seen (unseen) in-
dividuals of GP generated by crossover increases (decreases) along with generations to
a steady state. In addition, there are no obvious pattern changes in the number of seen
and unseen individuals for GP. However, it is clear that the number of seen (unseen) in-
dividuals of tabuGP increases (decreases) along with generations in all scenarios. The
changes in proportions of offspring generated by crossover rely on the utilisation lev-
els. We can see that the curves of tabuGP in the scenarios with the same utilisation
level are similar, e.g., in <Fmean, 0.75>, <Tmean, 0.75> and <WTmean, 0.75>, and
the number of unseen individuals has slightly decrease trends while the number of
seen individuals has increase trends. This is clearer in scenarios with utilisation level
of 0.85, i.e., <Fmean, 0.85>, <Tmean, 0.85> and <WTmean, 0.85>, where the number
of seen individuals is equal or larger than the number of unseen at the later stage of
the evolutionary process of tabuGP. In the scenarios with utilisation levels of 0.95, the
number of seen individuals quickly becomes larger than the number of unseen indi-
viduals in scenario <Fmean, 0.95> and <WTmean, 0.95>. It seems that it becomes
more difficult to generate unseen individuals when the DFJSS scenarios become harder
to address, i.e., with higher utilisation levels. A possible reason is that the individuals
needed for complex DFJSS problems have a higher requirement design on particular
extreme cases that are more likely to be similar.

6.2.2 Individuals Generated by Mutation

Figure 12 shows the proportions of seen and unseen individuals generated by mutation
according to 30 independent runs. For GP, the number of unseen individuals (smaller
than 0.2) obtained by mutation is much smaller than the seen individuals (larger than
0.8). On the contrary, the number of unseen individuals (about 0.8) by mutation of
tabuGP is much larger than the seen individuals (about or larger than 0.2) in all scenar-
ios. These findings of unseen and seen individuals by mutation are consistent with the
observations by crossover.

In terms of unseen and seen individuals obtained by tabuGP, the patterns of curves
are also utilisation level dependent. With the increase of utilisation level, although the
number of unseen individuals is larger than seen individuals, there is a clear reduction
of the number of unseen individuals and an increase of the number of seen individu-
als in the population of tabuGP. This observation is consistent with the findings from
crossover, which indicates it is difficult to generate unseen individuals for busier job
shops with larger utilisation levels.

6.3 Alternative Way to Keep Offspring

The key idea of this paper is to increase the search ability of GP for DFJSS by guiding
the search to explore more unexplored areas with tabu list. This idea is implemented
by controlling the newly generated offspring via crossover and mutation. When gen-
erating two offspring by crossover with tabu list, after we generate Offspring1 and
Offspring2 from two parents, this paper keeps the two generated individuals originate

Evolutionary Computation Volume x, Number x 21

026
25

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/doi/10.1162/evco.a.26/2523400/evco.a.26.pdf by Victoria U
niversity of W

ellington user on 18 M
ay 2025



F. Zhang, M. Ardeh, Y. Mei, and M. Zhang

0 50 100
0.2
0.4
0.6
0.8

<Fmean, 0.75>

0 50 100
0.2
0.4
0.6
0.8

<Fmean, 0.85>

0 50 100
0.2
0.4
0.6
0.8

<Fmean, 0.95>

0 50 100
0.2
0.4
0.6
0.8

<Tmean, 0.75>

0 50 100
0.2
0.4
0.6
0.8

<Tmean, 0.85>

0 50 100
0.2
0.4
0.6
0.8

<Tmean, 0.95>

0 50 100
0.2
0.4
0.6
0.8

<WTmean, 0.75>

0 50 100
0.2
0.4
0.6
0.8

<WTmean, 0.85>

0 50 100
0.2
0.4
0.6
0.8

<WTmean, 0.95>

Generation

Th
e 

Pr
op

or
ti

on
s 

of
 In

di
vi

du
al

s

GP-MutationSeen
GP-MutationUnSeen

tabuGP-MutationSeen
tabuGP-MutationUnSeen

Figure 12: Curves of the proportions of seen individuals and unseen individuals gener-
ated by mutation of GP and tabuGP along with generations in nine different scenarios,
where GP-MutationSeen and GP-MutationUnseen represents the seen and unseen in-
dividuals found by GP, and tabuGP-MutationSeen and tabuGP-MutationUnseen rep-
resents the the seen and unseen individuals obtained by tabuGP.

from the same two parents. There is another possible way to decide which unseen off-
spring to use as individuals in the next generation. That is to always save the unseen
offspring, either Offspring1 or Offspring2. For example, if Offspring1 is unseen and
Offspring2 is seen, we will save Offspring1. If Offspring1 is seen and Offspring2 is un-
seen, we will save Offspring2. When we get two unseen offspring, we will stop trying,
and keep the two unseen offspring in the next generation. If we consider the origin
of the generated offspring, they can be either originated from <Parent1, Parent1> or
<Parent2, Parent2>. Since this way only considers the quantity of generated offspring
but not their origin, we name the algorithm as tabuGP quantityOnly. The unseen off-
spring of this paper are originated from <Parent1, Parent2> as introduced in Section
3.3.

6.3.1 Quality of Learned Scheduling Heuristics
Table 8 shows the mean and standard deviations of test objectives of GP, tabuGP and
tabuGP quantityOnly based on 30 independent runs in nine scenarios. The results
show that tabuGP achieves the best performance among all compared algorithms with
a rank of 1.86. Specifically, tabuGP performs significantly better than GP in five out
of nine scenarios, while tabuGP quantityOnly is only significantly better than GP in
two out of nine scenarios. This indicates that when generating offspring for the next
generation, we should pay attention to the origin of individuals.

6.3.2 Effect on Diversity of TabuGP
To understand the reasons for the performance difference of tabuGP and
tabuGP quantityOnly, this section investigates their population diversities. Fig-
ure 13 shows the diversity of GP, tabuGP and tabuGP quantityOnly along with gen-
erations according to 30 independent runs in nine scenarios. Both tabuGP and
tabuGP quantityOnly have a higher diversity than GP, and the tabuGP quantityOnly

22 Evolutionary Computation Volume x, Number x

026
25

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/doi/10.1162/evco.a.26/2523400/evco.a.26.pdf by Victoria U
niversity of W

ellington user on 18 M
ay 2025



F. Zhang, M. Ardeh, Y. Mei, and M. Zhang

Table 8: The mean (standard deviation) of test objective values of GP, tabuGP and
tabuGP quantityOnly over 30 independent runs in nine scenarios.

Scenarios GP tabuGP tabuGP quantityOnly

<Fmean, 0.75> 336.40(1.84) 335.40(0.73)(↑) 335.96(1.56)(≈)
<Fmean, 0.85> 386.56(3.92) 384.64(1.64)(↑) 384.73(1.23)(↑)
<Fmean, 0.95> 557.32(9.89) 552.98(6.26)(≈) 551.89(4.85)(≈)
<Tmean, 0.75> 13.46(0.75) 13.30(0.65)(≈) 13.31(0.47)(≈)
<Tmean, 0.85> 40.31(1.79) 39.31(0.72)(↑) 39.44(0.78)(↑)
<Tmean, 0.95> 176.49(4.49) 178.11(5.38)(≈) 175.76(3.74)(≈)
<WTmean, 0.75> 26.89(0.77) 26.48(0.39)(↑) 27.31(1.94)(≈)
<WTmean, 0.85> 75.63(3.09) 74.58(1.56)(↑) 74.49(1.00)(≈)
<WTmean, 0.95> 298.25(14.32) 294.66(8.26)(≈) 295.46(8.34)(≈)

Average Rank 2.17 1.86 1.97

0 50 100

2.5
5.0

<Fmean, 0.75>

0 50 100

2.5
5.0

<Fmean, 0.85>

0 50 100

2.5
5.0

<Fmean, 0.95>

0 50 100

2.5
5.0

<Tmean, 0.75>

0 50 100

2.5
5.0

<Tmean, 0.85>

0 50 100

2.5
5.0

<Tmean, 0.95>

0 50 100

2.5
5.0

<WTmean, 0.75>

0 50 100

2.5
5.0

<WTmean, 0.85>

0 50 100

2.5
5.0

<WTmean, 0.95>

Generation

En
tr

op
y

GP tabuGP tabuGP_quantityOnly

Figure 13: The curves of diversity represented as entropy values of GP, tabuGP and
tabuGP quantityOnly over generations according to 30 independent runs in nine sce-
narios.

keeps a higher diversity along with the generations. tabuGP maintains a higher diver-
sity but has a clear diversity decrease along with generations, which is a sign that the
proposed tabuGP can get a good balance of exploration and exploitation. This is con-
sistent with our findings for the distributions of explored areas of tabuGP in Section
6.1. Further looking at the curves of tabuGP, we can see the trends of the curves are
similar to the tabuGP-CrossoverUnseen and tabuGP-MutationUnseen in Figure 11 and
Figure 12. This indicates that population diversity is affected by the proposed strategies
to keep unseen individuals with built tabu lists.

6.4 Insights of Learned Scheduling Heuristics

Figure 14 shows one of the best learned sequencing rule obtained by tabuGP in scenario
<WTmean, 0.95>. We can see that W is the most important feature for this sequencing
rule (appears 7 times), followed by feature WKR (appears 4 times). PT is also important
for this sequencing rule to order the processing of operations in a queue of a machine
(appears 3 times). In addition, we find that PT/W plays an important role as a learned
building block for this sequencing rule, which is a commonly used rule, i.e., weighted

Evolutionary Computation Volume x, Number x 23

026
25

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/doi/10.1162/evco.a.26/2523400/evco.a.26.pdf by Victoria U
niversity of W

ellington user on 18 M
ay 2025



F. Zhang, M. Ardeh, Y. Mei, and M. Zhang

*

WKR +

/ *

PT W / +

/ W

/ W

PT W

+ -

/ WKR

+ W

WKR WKR

/ W

PT W

Figure 14: An example of one of the best learned sequencing rules in scenario
<WTmean, 0.95>.

shortest processing time in this domain.

-

- +

Max +

Max +

* *

/ Max

OWT *

WIQ MWT

* Max

WKR WIQ NIQ TIS

/ WIQ

OWT *

WIQ MWT

* WIQ

+ NIQ

PT NOR

+ Max

* *

W MWT W MWT

/ NIQ

OWT Min

MWT NPT

MWT Max

Max NIQ

/ NIQ

WKR /

* /

W MWT OWT PT

Figure 15: An example of one of the best learned routing rules in scenario <WTmean,
0.95>.

Figure 15 shows the paired routing rule of the sequencing rule as shown in Fig-
ure 14. Th top three important features are MWT, WIQ and NIQ, which appear 7, 5,
and 5 times, respectively. We can also see W*MWT and OWT/(WIQ*MWT) are two
learned building block which is important for this routing rule, which appear 3 and 2
times. These findings are consistent with our preliminary work about feature impor-
tance of learned scheduling rules in DFJSS (Zhang et al., 2020a, 2021b).

7 Conclusions

The goal of this paper is to propose an effective GP algorithm with tabu lists for DFJSS.
The goal has been successfully achieved by the proposed strategies to guide the search

24 Evolutionary Computation Volume x, Number x

026
25

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/doi/10.1162/evco.a.26/2523400/evco.a.26.pdf by Victoria U
niversity of W

ellington user on 18 M
ay 2025



F. Zhang, M. Ardeh, Y. Mei, and M. Zhang

of GP to explore more unexplored areas. The idea is realised by controlling the genera-
tion of unseen individuals with built tabu lists of visited individuals.

The results show that the proposed tabuGP can achieve effective scheduling
heuristics in various DFJSS scenarios. Analyses on the parameter of controlling the
pressure of bringing unseen individuals to the evolutionary process of GP show that
there is a marginal value for exploring unseen individuals, further increasing the value
does not help too much. The analyses on the number of unseen individuals and pop-
ulation diversity during the evolutionary process indicate that the effectiveness of the
proposed algorithm benefits from the diversity brought by unseen individuals and the
origins of unseen individuals. This paper also visualises the population individuals by
using their phenotypic characterisations and PCA technique. The results show that the
proposed algorithm does cover a larger exploration areas. Meanwhile, the proposed
algorithm also has the ability to explore promising areas. Details of other alternative
way to keep offspring to the next generation are also discussed to give readers more
information on implementing the proposed algorithm to specific problems.

We will investigate some interesting directions in future. We plan to design an
interactive GP approach to let GP explore more in the search space that is given as hu-
man preferences. In addition, a more advanced strategy to explore unseen individuals
of tabuGP will be investigated. Theoretical studies of GP on DFJSS will be studied.

References

Ardeh, M. A., Mei, Y., and Zhang, M. (2021). A novel multi-task genetic programming
approach to uncertain capacitated arc routing problem. In Proceedings of the Genetic
and Evolutionary Computation Conference, pages 759–767.

Biegel, J. E. and Davern, J. J. (1990). Genetic algorithms and job shop scheduling. Com-
puters & Industrial Engineering, 19(1-4):81–91.

Braune, R., Benda, F., Doerner, K. F., and Hartl, R. F. (2022). A genetic programming
learning approach to generate dispatching rules for flexible shop scheduling prob-
lems. International Journal of Production Economics, 243:108342.

Brucker, P. and Schlie, R. (1990). Job-shop scheduling with multi-purpose machines.
Computing, 45(4):369–375.

Bülbül, K. and Kaminsky, P. (2013). A linear programming-based method for job shop
scheduling. Journal of Scheduling, 16:161–183.

Burke, E., Gustafson, S., and Kendall, G. (2002). A survey and analysis of diversity
measures in genetic programming. In Proceedings of the Annual Conference on Genetic
and Evolutionary Computation, pages 716–723.

Burke, E. K., Gustafson, S., and Kendall, G. (2004). Diversity in genetic programming:
An analysis of measures and correlation with fitness. IEEE Transactions on Evolution-
ary Computation, 8(1):47–62.

Canbolat, Y. B. and Gundogar, E. (2004). Fuzzy priority rule for job shop scheduling.
Journal of intelligent manufacturing, 15:527–533.

Chen, B. and Matis, T. I. (2013). A flexible dispatching rule for minimizing tardiness in
job shop scheduling. International Journal of Production Economics, 141(1):360–365.

Evolutionary Computation Volume x, Number x 25

026
25

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/doi/10.1162/evco.a.26/2523400/evco.a.26.pdf by Victoria U
niversity of W

ellington user on 18 M
ay 2025



F. Zhang, M. Ardeh, Y. Mei, and M. Zhang

Davis, L. (2014). Job shop scheduling with genetic algorithms. In Proceedings of the
International Conference on Genetic Algorithms and their Applications, pages 136–140.
Psychology Press.

De Arruda Pereira, M., Júnior, C. A. D., Carrano, E. G., and De Vasconcelos, J. A.
(2014). A niching genetic programming-based multi-objective algorithm for hybrid
data classification. Neurocomputing, 133:342–357.

Destouet, C., Tlahig, H., Bettayeb, B., and Mazari, B. (2023). Flexible job shop schedul-
ing problem under industry 5.0: A survey on human reintegration, environmental
consideration and resilience improvement. Journal of Manufacturing Systems, 67:155–
173.

D’Haen, R., Braekers, K., and Ramaekers, K. (2023). Integrated scheduling of order
picking operations under dynamic order arrivals. International Journal of Production
Research, 61(10):3205–3226.

Durasevic, M. and Jakobovic, D. (2018). A survey of dispatching rules for the dynamic
unrelated machines environment. Expert Systems with Applications, 113:555–569.

Ester, M., Kriegel, H. P., Sander, J., Xu, X., et al. (1996). A density-based algorithm for
discovering clusters in large spatial databases with noise. In kdd, volume 96, pages
226–231.

Galván, E. and Schoenauer, M. (2019). Promoting semantic diversity in multi-objective
genetic programming. In Proceedings of the Genetic and Evolutionary Computation Con-
ference, pages 1021–1029.

Gere Jr, W. S. (1966). Heuristics in job shop scheduling. Management Science, 13(3):167–
190.

Hart, E. and Sim, K. (2016). A hyper-heuristic ensemble method for static job-shop
scheduling. Evolutionary Computation, 24(4):609–635.

Hildebrandt, T. and Branke, J. (2015). On using surrogates with genetic programming.
Evolutionary Computation, 23(3):343–367.

Hildebrandt, T., Heger, J., and Scholz-Reiter, B. (2010). Towards improved dispatching
rules for complex shop floor scenarios: a genetic programming approach. In Proceed-
ings of the Conference on Genetic and Evolutionary Computation, pages 257–264. ACM.

Jackson, D. (2010). Promoting phenotypic diversity in genetic programming. In Inter-
national Conference on Parallel Problem Solving from Nature, pages 472–481. Springer.

Jaklinović, K., Dhurasević, M., and Jakobović, D. (2021). Designing dispatching rules
with genetic programming for the unrelated machines environment with constraints.
Expert Systems with Applications, 172:114548.

Juárez-Smith, P., Trujillo, L., Garcı́a-Valdez, M., Fernández de Vega, F., and Chávez,
F. (2019). Local search in speciation-based bloat control for genetic programming.
Genetic Programming and Evolvable Machines, 20:351–384.

Kaban, A., Othman, Z., and Rohmah, D. (2012). Comparison of dispatching rules in
job-shop scheduling problem using simulation: a case study. International Journal of
Simulation Modelling, 11(3):129–140.

26 Evolutionary Computation Volume x, Number x

026
25

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/doi/10.1162/evco.a.26/2523400/evco.a.26.pdf by Victoria U
niversity of W

ellington user on 18 M
ay 2025



F. Zhang, M. Ardeh, Y. Mei, and M. Zhang

Kelly, J., Hemberg, E., and O’Reilly, U.-M. (2019). Improving genetic programming
with novel exploration-exploitation control. In European Conference on Genetic Pro-
gramming, pages 64–80. Springer.

Koza, J. R. and Poli, R. (2005). Genetic programming. In Search Methodologies, pages
127–164. Springer.

Langdon, W. B. and Poli, R. (2013). Foundations of genetic programming. Springer Science
& Business Media.

Li, X. and Gao, L. (2016). An effective hybrid genetic algorithm and tabu search for
flexible job shop scheduling problem. International Journal of Production Economics,
174:93–110.

Liu, A., Luh, P. B., Yan, B., and Bragin, M. A. (2021). A novel integer linear program-
ming formulation for job-shop scheduling problems. IEEE Robotics and Automation
Letters, 6(3):5937–5944.

Maier, T., Sanders, P., and Dementiev, R. (2019). Concurrent hash tables: Fast and
general (?)! ACM Transactions on Parallel Computing, 5(4):1–32.

Manne, A. S. (1960). On the job-shop scheduling problem. Operations Research, 8(2):219–
223.

Nguyen, S., Mei, Y., and Zhang, M. (2017). Genetic programming for production
scheduling: a survey with a unified framework. Complex & Intelligent Systems,
3(1):41–66.

Nguyen, S., Zhang, M., Alahakoon, D., and Tan, K. C. (2018). Visualizing the evolu-
tion of computer programs for genetic programming. IEEE Computational Intelligence
Magazine, 13(4):77–94.

Nguyen, S., Zhang, M., Johnston, M., and Tan, K. C. (2015). Automatic programming
via iterated local search for dynamic job shop scheduling. IEEE Transactions on Cy-
bernetics, 45(1):1–14.

Nicolau, M. and Fenton, M. (2016). Managing repetition in grammar-based genetic
programming. In Proceedings of the Genetic and Evolutionary Computation Conference,
pages 765–772.

Ono, K., Hanada, Y., Kumano, M., and Kimura, M. (2019). Enhancing island model
genetic programming by controlling frequent trees. Journal of Artificial Intelligence
and Soft Computing Research, 9(1):51–65.

Prajapati, V. K., Jain, M., and Chouhan, L. (2020). Tabu search algorithm (tsa): A com-
prehensive survey. In Proceedings of International Conference on Emerging Technologies
in Computer Engineering: Machine Learning and Internet of Things, pages 1–8. IEEE.

Salama, S., Kaihara, T., Fujii, N., and Kokuryo, D. (2022). Multi-objective approach
with a distance metric in genetic programming for job shop scheduling. International
Journal of Automation Technology, 16(3):296–308.

Sitahong, A., Yuan, Y., Li, M., Ma, J., Ba, Z., and Lu, Y. (2022). Designing dispatch-
ing rules via novel genetic programming with feature selection in dynamic job-shop
scheduling. Processes, 11(1):65.

Evolutionary Computation Volume x, Number x 27

026
25

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/doi/10.1162/evco.a.26/2523400/evco.a.26.pdf by Victoria U
niversity of W

ellington user on 18 M
ay 2025



F. Zhang, M. Ardeh, Y. Mei, and M. Zhang

Tay, J. C. and Ho, N. B. (2008). Evolving dispatching rules using genetic programming
for solving multi-objective flexible job-shop problems. Computers & Industrial Engi-
neering, 54(3):453–473.

Vanneschi, L., Castelli, M., and Silva, S. (2014). A survey of semantic methods in genetic
programming. Genetic Programming and Evolvable Machines, 15:195–214.

Xu, M., Mei, Y., Zhang, F., and Zhang, M. (2022). Genetic programming with diverse
partner selection for dynamic flexible job shop scheduling. In Proceedings of the Ge-
netic and Evolutionary Computation Conference Companion, pages 615–618.

Xu, M., Mei, Y., Zhang, F., and Zhang, M. (2023a). Genetic programming for dynamic
flexible job shop scheduling: Evolution with single individuals and ensembles. IEEE
Transactions on Evolutionary Computation, DOI: 10.1109/TEVC.2023.3334626.

Xu, M., Mei, Y., Zhang, F., and Zhang, M. (2023b). Genetic programming with lexicase
selection for large-scale dynamic flexible job shop scheduling. IEEE Transactions on
Evolutionary Computation, DOI: 10.1109/TEVC.2023.3244607.

Xu, M., Zhang, F., Mei, Y., and Zhang, M. (2021). Genetic programming with archive
for dynamic flexible job shop scheduling. In Proceedings of the IEEE Congress on Evo-
lutionary Computation, pages 2117–2124. IEEE.

Zhang, F., Mei, Y., Nguyen, S., Tan, K. C., and Zhang, M. (2022a). Instance rotation
based surrogate in genetic programming with brood recombination for dynamic job
shop scheduling. IEEE Transactions on Evolutionary Computation, 27(5):1192–1206.

Zhang, F., Mei, Y., Nguyen, S., Tan, K. C., and Zhang, M. (2022b). Multitask genetic pro-
gramming based generative hyper-heuristics: A case study in dynamic scheduling.
IEEE Transactions on Cybernetics, 52(10):10515–10528.

Zhang, F., Mei, Y., Nguyen, S., and Zhang, M. (2020a). Genetic programming with
adaptive search based on the frequency of features for dynamic flexible job shop
scheduling. In Proceedings of the European Conference on Evolutionary Computation in
Combinatorial Optimization, pages 214–230. Springer.

Zhang, F., Mei, Y., Nguyen, S., and Zhang, M. (2020b). Guided subtree selection for
genetic operators in genetic programming for dynamic flexible job shop schedul-
ing. In Proceedings of the European Conference on Genetic Programming, pages 262–278.
Springer.

Zhang, F., Mei, Y., Nguyen, S., and Zhang, M. (2020c). A preliminary approach to
evolutionary multitasking for dynamic flexible job shop scheduling via genetic pro-
gramming. In Proceedings of the Genetic and Evolutionary Computation Conference, pages
107–108. ACM.

Zhang, F., Mei, Y., Nguyen, S., and Zhang, M. (2021a). Correlation coefficient based re-
combinative guidance for genetic programming hyper-heuristics in dynamic flexible
job shop scheduling. IEEE Transactions on Evolutionary Computation, 25(3).

Zhang, F., Mei, Y., Nguyen, S., and Zhang, M. (2021b). Evolving scheduling heuristics
via genetic programming with feature selection in dynamic flexible job shop schedul-
ing. IEEE Transactions on Cybernetics, 51(4):1797–1811.

28 Evolutionary Computation Volume x, Number x

026
25

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/doi/10.1162/evco.a.26/2523400/evco.a.26.pdf by Victoria U
niversity of W

ellington user on 18 M
ay 2025



F. Zhang, M. Ardeh, Y. Mei, and M. Zhang

Zhang, F., Mei, Y., Nguyen, S., and Zhang, M. (2022c). Learning strategies on schedul-
ing heuristics of genetic programming in dynamic flexible job shop scheduling. In
Proceedings of the IEEE Congress on Evolutionary Computation, pages 1–8. IEEE.

Zhang, F., Mei, Y., Nguyen, S., and Zhang, M. (2022d). Multitask multiobjective genetic
programming for automated scheduling heuristic learning in dynamic flexible job-
shop scheduling. IEEE Transactions on Cybernetics.

Zhang, F., Mei, Y., Nguyen, S., and Zhang, M. (2022e). Phenotype based surrogate-
assisted multi-objective genetic programming with brood recombination for dy-
namic flexible job shop scheduling. In Proceedings of the IEEE Symposium Series on
Computational Intelligence, pages 1218–1225. IEEE.

Zhang, F., Mei, Y., Nguyen, S., and Zhang, M. (2023a). Survey on genetic programming
and machine learning techniques for heuristic design in job shop scheduling. IEEE
Transactions on Evolutionary Computation, 28(1):147–167.

Zhang, F., Mei, Y., Nguyen, S., Zhang, M., and Tan, K. C. (2021c). Surrogate-assisted
evolutionary multitask genetic programming for dynamic flexible job shop schedul-
ing. IEEE Transactions on Evolutionary Computation, 25(4):651–665.

Zhang, F., Mei, Y., and Zhang, M. (2018). Genetic programming with multi-tree repre-
sentation for dynamic flexible job shop scheduling. In Proceedings of the Australasian
Joint Conference on Artificial Intelligence, pages 472–484. Springer.

Zhang, F., Mei, Y., and Zhang, M. (2019). A new representation in genetic programming
for evolving dispatching rules for dynamic flexible job shop scheduling. In Proceed-
ings of the European Conference on Evolutionary Computation in Combinatorial Optimiza-
tion, pages 33–49. Springer.

Zhang, F., Mei, Y., and Zhang, M. (2023b). An investigation of terminal settings on mul-
titask multi-objective dynamic flexible job shop scheduling with genetic program-
ming. In Proceedings of the Conference on Genetic and Evolutionary Computation, pages
259–262.

Zhou, Y., Yang, J., and Huang, Z. (2020). Automatic design of scheduling policies for
dynamic flexible job shop scheduling via surrogate-assisted cooperative co-evolution
genetic programming. International Journal of Production Research, 58(9):2561–2580.

Zhu, L., Zhang, F., Zhu, X., Chen, K., and Zhang, M. (2023). Sample-aware surrogate-
assisted genetic programming for scheduling heuristics learning in dynamic flexible
job shop scheduling. In Proceedings of the Genetic and Evolutionary Computation Con-
ference, pages 384–392.

Evolutionary Computation Volume x, Number x 29

026
25

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/doi/10.1162/evco.a.26/2523400/evco.a.26.pdf by Victoria U
niversity of W

ellington user on 18 M
ay 2025


	Introduction
	Background
	Dynamic Flexible Job Shop Scheduling
	Genetic Programming for DFJSS
	Representation
	Scheduling Heuristics for Machine Assignment and Operation Sequencing

	Related Work
	Diversity in GP
	GP Diversity for Job Shop Scheduling


	Proposed GP Algorithm with Tabu List for DFJSS
	Framework of the Proposed GP Algorithm with Tabu List
	Tabu List
	Building a Tabu List
	Search Efficiency with Tabu List

	Generating Unseen Individuals
	Summary

	Experiment Design
	Simulation Model
	Comparison Design
	Parameter Settings

	Results and Discussions
	Sensitivity Analyses of Parameter tries for tabuGP
	Quality of Evolved Scheduling Heuristics
	Statistical Test
	Violin Plots for the Learned Best Scheduling Heuristics
	Curves of Average Objective Values of Learned Scheduling Heuristics on Test Instances

	Training versus Test
	Diversity of Algorithms
	Training Time

	Further Analysis
	Distributions of Explored Areas
	The Number of Seen and Unseen Individuals
	Individuals Generated by Crossover
	Individuals Generated by Mutation

	Alternative Way to Keep Offspring
	Quality of Learned Scheduling Heuristics
	Effect on Diversity of TabuGP

	Insights of Learned Scheduling Heuristics

	Conclusions

