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Abstract. Multi-objective dynamic flexible job shop scheduling (MO-
DFJSS) is a challenging problem that requires finding high-quality sched-
ules for jobs in a dynamic and flexible manufacturing environment,
considering multiple potentially conflicting objectives simultaneously. A
good approach to MO-DFJSS is to combine Genetic Programming (GP)
with Non-dominated Sorting Genetic Algorithm II (NSGA-II), namely
NSGP-II, to evolve a set of non-dominated scheduling heuristics. How-
ever, a limitation of NSGPII is that individuals with different genotypes
can exhibit the same behaviour, resulting in a loss of population diver-
sity. Semantic genetic programming (SGP) considers individual seman-
tics during the evolutionary process and can enhance population diversity
in various domains. However, its application in the domain of MO-DFJSS
remains unexplored. Therefore, it is worthy to incorporate semantic infor-
mation with NSGPII for MO-DFJSS. This study focuses on semantic
diversity and semantic similarity. The results demonstrate that NSG-
PII considering semantic diversity yields better performance compared
with the original NSGPII. Moreover, NSGPII incorporating semantic
similarity achieves even better performance, highlighting the importance
of maintaining a reasonable semantic distance between offspring and
their parents. Further analysis reveals that the improved performance
achieved by the proposed methods is attributed to the attainment of a
more semantically diverse population through effective control of seman-
tic distances between individuals.

Keywords: Heuristic learning · Multi-objective genetic
programming · Semantic · Multi-objective dynamic scheduling

1 Introduction

Multi-objective dynamic flexible job shop scheduling (MO-DFJSS) is a complex
combinational optimisation problem that involves scheduling multiple jobs on
multiple machines in a flexible manufacturing environment, considering dynamic
job arrivals and conflicting objectives. Solving the MO-DFJSS problem is chal-
lenging due to its combinatorial nature, the presence of multiple conflicting
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objectives, and its dynamic and flexible characteristics. Scheduling heuristics [14]
can quickly adapt and make real-time decisions based on the most up-to-date
information, allowing for practical applications in real-world dynamic environ-
ments. However, manually designing scheduling heuristics can be particularly
challenging, time-consuming, labor-intensive, and require deep domain knowl-
edge [15]. Further, balancing multiple objectives and finding a Pareto front of
high-quality scheduling heuristics require specialised algorithms and techniques,
which might be difficult to incorporate into the manual design process.

Genetic programming (GP) methods have been widely used to automat-
ically evolve scheduling heuristics for solving the DFJSS problem. There are
some studies incorporating well-known Pareto dominance-based methods (i.e.,
non-dominated sorting genetic algorithm II [5] and strength Pareto evolutionary
algorithm 2 [23]) and scalarising function-based methods (i.e., multi-objective
evolutionary algorithm based on decomposition [22]) into GP, named NSGPII
[19], SPGP2 [19], and MOGP/D [16], for MO-DFJSS. Among them, NSGPII
showed the best performance in terms of hypervolume (HV) [24] and inverted
generational distance (IGD) [7], which are two important performance indica-
tors used to measure multi-objective algorithms [9]. However, NSGPII acts on
the genotype of individuals and does not consider semantic information, which
reflects the behaviour of the genotype. Semantic GP [13] has been proposed to
enhance population diversity by integrating semantic information into the evolu-
tionary process. Its effectiveness has been demonstrated across diverse domains,
including symbolic regression [11], classification [1,10], and feature selection [8].
However, to the best of our knowledge, semantic information has not been incor-
porated into NSGPII for solving the MO-DFJSS problem. Given these promising
results, it becomes particularly intriguing to explore how to improve the perfor-
mance of NSGPII for MO-DFJSS by incorporating semantic information.

For this purpose, the objectives of this paper are as follows:

1. Define the semantic and semantic distance concepts in the context of MO-
DFJSS domain, and design strategies to measure the semantic information
derived from MO-DFJSS.

2. Design a semantic NSGPII algorithm to evolve a Pareto front of schedul-
ing heuristics by considering the semantic information during the evolution
process for solving the MO-DFJSS problem.

3. Study the effects of incorporating semantic information into NSGPII on the
performance of the evolved scheduling heuristics for MO-DFJSS in terms of
HV and IGD.

4. Analyse how semantic information affects the performance of evolved schedul-
ing heuristics by NSGPII on solving the MO-DFJSS problem.

2 Background

2.1 Multi-objective Dynamic Flexible Job Shop Scheduling

In MO-DFJSS, a set of jobs J = {J1, J2, ..., Jn} needs to be processed by a
set of machines M = {M1, ...,Mm}. Each job Ji is characterised by its arrival
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time ri, due date di, weight wi, and a sequence of operations [Oi,1, Oi,2, ..., Oi,pi
]

that must be performed in order. Each operation Oi,j has a workload πi,j and
can be processed by a machine from a set of optional machines Mi,j ⊆ M.
The processing time ti,j,k = πi,j/γk for operation Oi,j on machine Mk ∈ Mi,j

depends on the processing speed γk of the machine. Additionally, the machines
are distributed, and there is a transport time τk1,k2 required to move a job
between two machines Mk1 and Mk2 .

The problem assumptions are as follows:

1. An operation cannot start until its preceding operation in the sequence has
been completed and the job has been transported to the designated machine.

2. Each machine can handle only one operation at a time.
3. Each operation can be processed by only one of its optional machines.
4. The scheduling is non-preemptive, meaning once an operation starts, it must

be completed without interruption.

This paper considers six common scheduling objectives: max-flowtime
(Fmax), mean-flowtime (Fmean), max-weighted-flowtime (WFmax), max-
tardiness (Tmax), max-weighted-tardiness (WTmax), and mean-weighted-
tardiness (WTmean). The definitions of these objectives are as follows:

Fmax = maxn
i=1{Ci − ri}, Fmean = 1

n

∑n
i=1(Ci − ri)

WFmax = maxn
i=1{wi(Ci − ri)}, Tmax = maxn

i=1{Ti}
WTmax = maxn

i=1{wiTi}, WTmean = 1
n

∑n
i=1(wiTi)

where Ci is the completion time of the job Ji in the schedule, and Ti = max{Ci−
di, 0} is the tardiness of the job Ji.

To facilitate analysis, we focus on bi-objective scenarios in this paper, which
consider two out of the above six objectives for each scenario. More details
regarding the objective selection will be provided in Sect. 4.

2.2 Related Work

MOGP for MO-DFJSS: In [19], GP is combined with two well-known Pareto
dominance-based multi-objective optimisation algorithms (i.e., non-dominated
sorting genetic algorithm II [5] and strength Pareto evolutionary algorithm 2
[23]) to form NSGPII and SPGP2 to evolve scheduling heuristics to address
the MO-DFJSS problem. Experimental results demonstrate that NSGPII out-
performs the SPGP2 in terms of both training and test HV and IGD val-
ues. Except for Pareto dominance-based methods, in [16], a multi-objective GP
method based on decomposition (MOGP/D) that incorporates the advantages
of multi-objective evolutionary algorithm based on decomposition [22] and GP
to learn scheduling heuristics for MO-DFJSS is proposed. Among the aforemen-
tioned three classical multi-objective GP algorithms, NSGPII performs the best
in terms of HV and IGD performance. Following this, some further studies were
carried out on the basis of NSGPII. In [17], a novel NSGPII approach is presented
for MO-DFJSS by incorporating surrogate technique and brood recombination
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technique. By leveraging the surrogate and brood recombination-assisted app-
roach, the improved NSGPII obtains high-quality scheduling heuristics compared
to the original NSGPII within the same training time. In [20], the influence of
terminal settings on NSGPII for solving MO-DFJSS is studied. Some studies
focus on interpretability [21] or multitask [18] topics in MO-DFJSS. In a word,
MO-DFJSS has become a popular problem and NSGPII has become a widely
used algorithm for solving it.

Semantic GP: SGP [13] has recently gained significant attention in the field
of GP. It represents a valuable approach for incorporating semantic informa-
tion into the evolution process, thereby improving the performance of evolved
solutions. One of the key advantages of SGP is its ability to consider the
behaviours/semantics rather than the genotype of individuals [13]. By consider-
ing the behaviour of individuals, SGP introduces semantic information, enabling
a more nuanced understanding of the evolved solutions. The semantic analysis
facilitates the discovery of individual relationships and population composition,
making SGP particularly valuable in domains where different genotypes can give
the same behaviour, such as MO-DFJSS.

Most SGP methods are based on the usage of genetic operators that act on
the genotype to produce offspring, and then accept offspring that satisfy some
semantic criteria into the next population [13]. The semantic criteria can be
semantic diversity [2–4,6] and semantic similarity [11,12]. The consideration of
semantic information enhances the exploration of different dimensions of search
space. SGP has demonstrated its effectiveness across various problem domains,
including symbolic regression [11], classification [1,10], and feature selection [8].

However, the impact of semantic information on NSGPII for MO-DFJSS has
not been investigated. By investigating this, we will be able to open new avenues
for solving the MO-DFJSS problem by extracting meaningful knowledge from
the evolutionary process, which will be explored in this paper.

3 Methods

3.1 Overall Framework

The proposed method uses the NSGPII parent selection, crossover, and muta-
tion to generate offspring for the next generation. On top of that, it designs
novel strategies to decide which kind of offspring is allowed to be added to the
next generation by considering semantic diversity and semantic similarity. In
this section, we begin by providing the definitions of semantic and semantic
distance in MO-DFJSS, then describe the proposed strategies. The flowchart of
the improved NSGPII with the proposed strategies is shown in Fig. 1.

3.2 Semantic in MO-DFJSS

In the research domain of DFJSS, phenotypic characterisation (PC) [17] is usu-
ally used to describe the behaviour of an individual. This paper defines the
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Fig. 1. The flowchart of the proposed NSGPII with the semantic diversity strategy or
the semantic similarity strategy for evolution.

Table 1. An example of calculating the PC of an individual.

Sequencing Routing

Decision
points

Reference
rule

Sequencing
rule

Decision Decision
points

Reference
rule

Routing
rule

Decision

1(O1) 1 3 3 1(M1) 2 1 2

1(O2) 3 1 1(M2) 1 2

1(O3) 2 2 1(M3) 3 3

2(O1) 3 2 1 2(M1) 2 2 1

2(O2) 1 1 2(M2) 3 3

2(O3) 2 3 2(M3) 1 1

3(O1) 1 2 2 3(M1) 1 2 3

3(O2) 2 1 3(M2) 3 1

3(O3) 3 3 3(M3) 2 3

semantic in MO-DFJSS as the PC, which is a list of decisions given by an indi-
vidual on a given number of decision points. These decision points are derived by
applying a reference scheduling heuristic to a given DFJSS instance. Specifically,
this paper employs the weighted shortest processing time (WSPT) as the refer-
ence sequencing rule and working remaining in the queue (WIQ) as the reference
routing rule. Considering that each instance often contains thousands of decision
points, to save time and ease of use, we randomly select 20 sequencing decision
points and 20 routing decision points, each involving a set of 7 candidates (oper-
ations for sequencing rule and machines for routing rule). Then, to calculate the
PC of an individual, the sequencing/routing rule in an individual is applied to
these decision points, and the ranks of the selected operations/machines across
these decision points are utilised to construct the PC. An illustrative example of
calculating the PC for an individual is shown in Table 1, considering 3 sequencing



408 M. Xu et al.

decision points and 3 routing decision points based on the reference scheduling
heuristic. According to the given description, the PC of this example is a com-
bination of sequencing decisions and routing decisions, which is [3, 1, 2, 2, 1, 3].

Based on the PC, the semantic distance between individuals inda and indb
is defined as the number of different decisions between their semantics and can
be calculated based on Eq. (1). In contrast to other semantic methods that
typically rely on Euclidean distance for calculating semantic differences, this
paper proposes this definition because the Euclidean distance between machine
or operation rankings in semantics is considered meaningless in DFJSS.

disa,b =
∑40

i=1 da,b,i where da,b,i =

{
0 if pca,i = pcb,i

1 otherwise
(1)

3.3 Semantic Diversity Strategy

This strategy aims to enhance the semantic diversity of the population by only
accepting offspring that are semantically different from each other. Two indi-
viduals are considered semantically different if their semantic distance is greater
than 0. This strategy is used whenever an offspring is generated by crossover
or mutation. To be specific, when an offspring indo is generated, we compare it
with all the other offspring already generated at the current generation. If indo
is found to be semantically different from all the existing ones, it is accepted as
a new offspring. However, if any duplicates are found, indicating that it is not
semantically different, the offspring indo is discarded. This process is repeated
iteratively until the population is filled with semantically different offspring.

3.4 Semantic Similarity Strategy

This strategy builds upon the aforementioned semantic diversity approach and
introduces an additional constraint to control the semantic similarity between
generated offspring and their parents. The degree of semantic similarity between
individuals is restricted by a threshold α. Specifically, when an offspring indo is
generated, we first compare it with all the previously generated offspring in the
current generation. If indo is found to be semantically different from all existing
ones, we further examine whether it is semantically similar to at least one of its
parents. This is done by assessing whether the semantic distance between indo
and its parent indp is smaller than the threshold α. If indo is similar to any of
its parents, then it is accepted as a new offspring; otherwise, it is discarded. This
process is iterated until the offspring population is filled. The idea behind this
strategy is that by limiting the similarity between offspring with their parents,
we expect evolution to be smooth, without losing convergence, and at the same
time maintain diversity. To achieve this goal, the key point is to determine an
appropriate α value.
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4 Experiment Design

4.1 Dataset

This paper utilises the DFJSS simulation model [14] as an experimental tool
to do the investigation. For each instance, we assume the presence of 6000 jobs
(the first 1000 are warm-up jobs) that need to be processed by 10 heterogeneous
machines with varying processing rates. The processing rates are randomly gen-
erated within the range of [10, 15]. The distances between machines and the
entry/exit point are assigned using a uniform discrete distribution between 35
and 500. The transportation speed is set to 5. New jobs arrive over time accord-
ing to a Poisson process. Each job consists of a random number of operations,
generated from a uniform discrete distribution between 2 and 10. Jobs have dif-
ferent importance, represented by weights. Specifically, 20%, 60%, and 20% of
jobs have weights of 1, 2, and 4, respectively. The workload for each operation
is assigned using a uniform discrete distribution within the range of [100, 1000].
The due date for each job is determined by adding 1.5 times its processing time
to its arrival time. The utilisation level plays a significant role in simulating
different scenarios. A higher utilisation level indicates a busier job shop.

In this paper, six scenarios are examined by considering different combina-
tions of objectives and different utilisation levels (0.85 and 0.95), which are:
Scenario 1: Fmax and WTmax with 0.85; Scenario 2: Fmax and WTmax with
0.95; Scenario 3: WFmax and Tmax with 0.85; Scenario 4: WFmax and Tmax
with 0.95; Scenario 5: Fmean and WTmean with 0.85; and Scenario 6: Fmean
and WTmean with 0.95. For each scenario, 50 instances are used for training,
while a separate set of 50 unseen instances is used for test.

4.2 Parameter Setting

The terminal set and function set for GP are displayed in Table 2. The terminal
set comprises features associated with machines (e.g., NIQ, WIQ, and MWT),
operations (e.g., PT, NPT, and OWT), jobs (e.g., WKR, NOR, rDD, SLACK,
W, and TIS), and transport (e.g., TRANT). The function set consists of arith-
metic operators that require two arguments. The division operator (“/”) is pro-
tected and returns 1 if divided by 0. The “max” and “min” functions take two
arguments and return the maximum and minimum values, respectively. Regard-
ing the parameter configurations, the population size is set as 1000, and the
Pareto front is output after 50 generations. The Ramped-half-and-half method
is employed for population initialisation. The crossover and mutation rates are
set to 0.85 and 0.15, respectively. Parent selection is performed using tournament
selection with a size of 7.

5 Experimental Results

To simplify the algorithm description, we name NSGPII with semantic diversity
strategy as NSGPIId, and NSGPII with semantic similarity strategy as NSGPIIs.
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Table 2. The GP terminal and function set for DFJSS.

Notation Description

NIQ the number of operations in the queue

WIQ the work in the queue

MWT the waiting time of the machine = t∗ - MRT∗

PT the processing time of the operation

NPT the median processing time for next operation

OWT the waiting time of the operation = t - ORT∗

WKR the work remaining

NOR the number of operations remaining

rDD the relative due date = DD∗ - t

SLACK the slack

W the job weight

TIS time in system = t - releaseTime∗

TRANT the transportation time

Function +, −, ×, /, max, min
∗

t: current time; MRT: machine ready time; DD: due date;

ORT: operation ready time; releaseTime: release time.

For NSGPIIs, different α values are tested, including 6, 8, 10, 12, and 14. To
measure and compare the performance of algorithms, we conducted 30 inde-
pendent runs for each algorithm and employed Friedman’s test and Wilcoxon
rank-sum test for comparison. If Friedman’s test yielded significant results, we
proceed with the Wilcoxon rank-sum test for pairwise comparisons between the
improved NSGPII considering the semantic diversity strategy or the semantic
similarity strategy and the classical NSGPII, using a significance level of 0.05.

In the subsequent results, we use the symbols “↑”, “↓”, and “=” to indicate
statistical significance, denoting better, worse, or similar results compared to
their counterparts, respectively. We use two widely used measurement indicators,
HV [24] and IGD [7], to assess algorithms. A higher HV value (or a smaller IGD
value) represents superior performance.

5.1 Test Performance

Tables 3 and 4 present the mean and standard deviation of the HV and IGD
results for different algorithms across 30 independent runs on the test instances
of the six scenarios. The bottom of the tables shows the results of the Wilcoxon
comparison and Friedman’s test.

For NSGPIIs, we expect evolution to be smooth, without losing convergence,
and at the same time maintain diversity. To achieve this goal, the key point is
to determine an appropriate α value. Therefore, we first analyse the effect of
α on NSGPIIs. From the tables, we can see that NSGPIIs with α = 6 shows
significantly better HV and IGD performance across all the 6 scenarios. NSGPIIs
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Table 3. The mean (standard deviation) test HV of 30 independent runs of NSGPII,
NSGPIId and NSGPIIs with different α for 6 scenarios.

Scenario NSGPII NSGPIId NSGPIIs

α = 6 α = 8 α = 10 α = 12 α = 14

1 0.82(0.04) 0.86(0.04) 0.85(0.03) 0.86(0.04) 0.86(0.04) 0.86(0.03) 0.86(0.04)

2 0.79(0.04) 0.82(0.04) 0.84(0.03) 0.84(0.03) 0.83(0.03) 0.84(0.02) 0.82(0.03)

3 0.87(0.03) 0.88(0.03) 0.89(0.04) 0.89(0.03) 0.89(0.03) 0.89(0.03) 0.89(0.02)

4 0.95(0.01) 0.95(0.01) 0.96(0.01) 0.96(0.02) 0.96(0.01) 0.96(0.01) 0.96(0.01)

5 0.61(0.20) 0.59(0.18) 0.73(0.09) 0.66(0.12) 0.70(0.14) 0.60(0.18) 0.69(0.14)

6 0.98(0.01) 0.98(0.01) 0.98(0.01) 0.98(0.01) 0.98(0.01) 0.98(0.01) 0.98(0.01)

↑/=/↓ - 2/4/0 6/0/0 4/2/0 5/1/0 4/2/0 4/2/0

rank 6.67 5.0 2.33 3.0 3.17 4.0 3.83

Table 4. The mean (standard deviation) test IGD of 30 independent runs of NSGPII,
NSGPIId and NSGPIIs with different α for 6 scenarios.

Scenario NSGPII NSGPIId NSGPIIs

α = 6 α = 8 α = 10 α = 12 α = 14

1 0.12(0.03) 0.10(0.03) 0.10(0.02) 0.10(0.03) 0.10(0.02) 0.09(0.02) 0.10(0.03)

2 0.12(0.03) 0.10(0.02) 0.10(0.02) 0.10(0.02) 0.10(0.02) 0.10(0.01) 0.10(0.02)

3 0.07(0.03) 0.07(0.02) 0.06(0.02) 0.06(0.02) 0.06(0.02) 0.06(0.02) 0.06(0.01)

4 0.03(0.01) 0.03(0.01) 0.02(0.01) 0.02(0.01) 0.02(0.00) 0.03(0.01) 0.02(0.01)

5 0.28(0.19) 0.29(0.17) 0.16(0.07) 0.21(0.11) 0.19(0.11) 0.28(0.18) 0.20(0.13)

6 0.01(0.01) 0.01(0.01) 0.01(0.00) 0.01(0.01) 0.01(0.01) 0.01(0.01) 0.01(0.01)

↑/=/↓ - 2/4/0 6/0/0 3/3/0 5/1/0 3/3/0 5/1/0

rank 6.5 5.17 2.67 2.67 3.17 4.17 3.67

with α = 8, α = 12, and α = 14 show significantly better HV performance than
NSGPII on 4 scenarios and show similar HV performance as NSGPII on the other
2 scenarios. NSGPIIs with α = 10 shows significantly better HV performance
on 5 scenarios and shows similar HV performance as NSGPII on the remaining
1 scenario. Also, NSGPIIs with α = 8 and α = 12 both show significantly better
HV performance than NSGPII on 3 scenarios and show similar HV performance
as NSGPII on the other 3 scenarios. NSGPIIs with α = 10 and α = 14 both
show significantly better HV performance on 5 scenarios and show similar HV
performance as NSGPII on the remaining 1 scenario. Based on the Friedman’s
test results, in terms of HV performance, NSGPIIs with α = 6 achieves the
highest rank, followed by NSGPIIs with α = 8, NSGPIIs with α = 10, NSGPIIs

with α = 14, NSGPIIs with α = 12 in order. In terms of test IGD performance,
both NSGPIIs with α = 6 and α = 8 secure the first position, NSGPIIs with
α = 10 ranks second, followed by NSGPIIs with α = 14, NSGPIIs with α = 12
in order. Since NSGPIIs with α = 6 performs the best among all the NSGPIIs
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with different α values, it is used for further analysis. For simplicity, we refer to
NSGPIIs with α = 6 as NSGPIIs.

Then we compare NSGPII, NSGPIId, and NSGPIIs. We can see that,
NSGPIId shows significantly better HV and IGD performance than NSGPII
on 2 scenarios and obtains similar HV and IGD performance as NSGPII on the
remaining 4 scenarios. NSGPIIs gives even better performance. NSGPIIs shows
significantly better HV and IGD performance than NSGPII across all the 6 sce-
narios. Based on the Friedman’s test results, NSGPIIs ranks the first among
these three methods, followed by NSGPIId and NSGPII in order.

Through the above analysis, we can see that semantic information plays an
important role in improving the performance of NSGPII on the MO-DFJSS prob-
lem. The HV and IGD performance of NSGPII can be improved by increasing
the diversity of the behaviours of the individuals in the population. Moreover,
requiring the offspring to have similar semantic behaviour with their parents
can further improve the HV and IGD performance of NSGPII in solving the
MO-DFJSS problem. This finding highlights the positive impact of considering
semantic diversity and semantic similarity in NSGPII on addressing the MO-
DFJSS problem.

5.2 Population Distribution

The proposed semantic diversity and semantic similarity strategies aim to limit
the semantic distance between individuals in the population. It is interesting to
study the semantic distribution of individuals in the population. The semantic
represents the behaviour of the individual, which is a 40-dimensional vector. To
visualise the semantics of individuals in the population, we employ t-SNE to
reduce the dimensions to a 2-dimensional space.

Fig. 2. Visualisations of the dimensionality reduced semantic of individuals of NSGPII,
NSGPIId, and NSGPIIs of one run in the scenario 4 and scenario 6 during the start
(generation 1), middle (generation 25), and late (generation 50) stages of evolution.
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Specifically, Fig. 2 visualises the dimensionality reduced semantic of indi-
viduals in the population of NSGPII, NSGPIId, and NSGPIIs across different
generations (1, 25, and 50) in scenarios 4 and 6. From Fig. 2, we can clearly see
that NSGPII has several regions of more concentrated semantic distribution in
each subfigure. This aligns with our expectations, as NSGPII does not impose
limitations on semantic distance between individuals. Compared to NSGPII, the
semantic distributions obtained by NSGPIIs, on the other hand, are relatively
widespread and do not have as clearly concentrated areas as NSGPII. Compared
to NSGPII and NSGPIIs, NSGPIId gives the most diverse semantic distribu-
tions. This finding highlights the significance of restricting the semantic distance
between individuals, as it allows to achieve a population with a relatively more
uniform semantic distribution, avoiding losing diversity, and potentially leading
to better final scheduling heuristics. These insights emphasise the importance
of controlling semantic distances between individuals during the evolutionary
process of NSGPII. Furthermore, it reveals that the improved final performance
achieved by the inclusion of semantic information in NSGPII is attributed to its
ability to evolve a more semantically diverse population.

6 Conclusions

This study has successfully demonstrated the advantages of integrating semantic
information into NSGPII for addressing the MO-DFJSS problem. Firstly, this
study contributes to giving the definitions of the semantic and semantic distance
of scheduling heuristics for DFJSS. Then, by incorporating semantic diversity
and semantic similarity within NSGPII, this study contributes to evolving bet-
ter scheduling heuristics than using the original NSGPII. The results highlight
the benefits of considering semantically diverse individuals for achieving high-
quality scheduling heuristics. Moreover, NSGPII, considering semantic similarity,
achieves the best overall performance, offering valuable insight into the impor-
tance of maintaining a reasonable semantic distance between offspring and their
parents to further enhance the quality of scheduling heuristics. This emphasises
the trade-off between semantic diversity and semantic similarity. Furthermore,
the analysis of the population semantic distribution reveals that by controlling
semantic distances between individuals, we are able to achieve a more seman-
tically diverse population. This is the key factor contributing to the enhanced
performance achieved by the proposed methods.

Overall, this paper demonstrates the potential of incorporating semantic
information into the evolution process of NSGPII for MO-DFJSS, providing valu-
able insights into the benefits and considerations of utilising semantic informa-
tion in solving complex scheduling problems. Further deeper studies are needed
to explore and optimise the integration of semantic information in GP to achieve
even better results for solving the MO-DFJSS problem. Some other research
techniques (e.g., feature selection and surrogate) can also be combined with
GP for solving the MO-DFJSS problem. In addition, although the study here
is conducted on the MO-DFJSS problem, we believe that the techniques and
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results presented here are transferable to other complex problems. We expect
the semantic information used in this work to be easily extendable to other
different problems.
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