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Abstract

Dynamic flexible job shop scheduling (DFJSS) has attracted a lot of at-
tention from both academics and industries because of its widespread in-
dustrial impact in the real world. The main challenge in DFJSS involves
simultaneous machine assignment and operation sequencing under dy-
namic environments such as new jobs arriving over time. Among the
existing methods, scheduling heuristics stand out as effective approaches
widely employed because of their simplicity and real-time responsiveness.
Nevertheless, designing scheduling heuristics demands domain knowl-
edge and is a time-consuming process. Genetic Programming (GP), as
a hyper-heuristic method, has demonstrated notable success in automat-
ically evolving scheduling heuristics for DFJSS. However, there is room
for further enhancement in certain aspects to optimise GP’s performance
for DFJSS, particularly concerning diversity-based parent selection mech-
anisms, joint decision-making mechanisms, collaborative heuristic gener-
ation and selection by GP and reinforcement learning (RL), and multi-
objective problem-solving capabilities.

The overall goal of this thesis is to enhance the effectiveness of GP in
automatically evolving high-quality scheduling heuristics for solving the
DFJSS problems. Various machine learning and evolutionary computation
techniques, such as lexicase selection, ensemble, semantic, RL, and multi-
objective optimisation, are incorporated into GP to further improve the
effectiveness of GP for DFJSS.

First, three novel diversity-based parent selection mechanisms are de-
signed to enhance the GP’s ability to explore the search space effectively,

adapt to changes, and maintain a balance between exploration and ex-



ploitation for the successful evolution of high-quality scheduling heuris-
tics. The three parent selection mechanisms are cluster selection, diverse
partner selection, and lexicase selection. The new mechanisms consider
not only the fitness of selected parents but also their diverse strengths,
which is crucial for generating high-quality offspring. Experimental re-
sults demonstrate that the proposed methods, incorporating these newly
designed diversity-based parent selection mechanisms, successfully en-
hance the quality of scheduling heuristics while promoting increased pop-
ulation diversity.

Second, this thesis proposes an innovative ensemble GP method that
employs a population comprising both single individuals and ensemb]es,
and allows the evolution of either a single scheduling heuristic for mak-
ing individual decisions or a group of scheduling heuristics for making
joint decisions for solving the DFJSS problem effectively. For creating an
ensemble, an ensemble construction and selection strategy is developed
for carefully choosing diverse and complementary individuals from the
population. Additionally, new crossover and mutation operators are de-
signed to generate offspring from the selected parents, which can be single
individuals or ensembles. By maintaining a population that includes both
single individuals and ensembles, the proposed method enables effective
exploration of the search space through interbreeding. The experiment
results show that the proposed method outperforms the compared algo-
rithms including ensemble GP methods in terms of learned scheduling

heuristics.

Third, in addition to the widely used GP for automatic scheduling
heuristics learning in DFJSS, RL has gained attention in recent years within
this domain. This thesis proposes a niching GP-assisted RL method, tak-
ing advantage of both GP and RL to effectively address the DFJSS prob-
lems by intelligently heuristic generation by GP and selection by RL simul-
taneously. Specifically, instead of relying on manual scheduling heuris-

tics, RL actions are replaced with scheduling heuristics evolved by the



niching GP. RL is then employed to optimise and adapt these heuristics
based on real-time feedback from the environment. The experiment re-
sults demonstrate the effectiveness of the proposed method in compari-
son to the widely used manual scheduling heuristics and the baseline RL
method. This confirms the capability of GP to enhance RL’s performance
in addressing the DFJSS problem.

Last, this thesis proposes two multi-objective GP methods for evolv-
ing a Pareto front of scheduling heuristics for solving the multi-objective
DFJSS problem. The first method fills the gap by combining a well-
known multi-objective evolutionary algorithm based on decomposition
with GP, resulting in a novel multi-objective GP based on the decom-
position method. This method successfully enhances the spreadabil-
ity /diversity of the evolved Pareto front of scheduling heuristics. The sec-
ond method enhances an existing state-of-the-art multi-objective GP ap-
proach (NSGPII) by incorporating semantic information. The experiment
results demonstrate that NSGPII considering semantic diversity yields
better performance compared with the original NSGPII. Moreover, NSG-
PII incorporating semantic similarity achieves even better performance,
highlighting the importance of maintaining a reasonable semantic dis-
tance between offspring and their parents.
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Chapter 1

Introduction

1.1 Job Shop Scheduling

Job shop scheduling (JSS) [29] is one of the most prominent problems in
industrial production, and it has received extensive attention from schol-
ars and industries. As an important combinatorial optimisation problem,
JSS has the purpose of optimising resource allocation [67], as illustrated
in Figure JSS has many applications in practical fields, such as auto-
motive assembly [280], textile manufacturing [223], chemical material pro-
cessing [241], and semiconductor manufacturing [71]. JSS can be classified
into various categories based on its characteristics. Table [1.1| outlines the
distinctive features of job information and decision requirements across
different types of JSS. Subsequently, this thesis offers a brief description of
each category.

Classical Static Job Shop Scheduling: Classical static JSS [29] involves
constraints determining the operation sequence of multiple jobs, includ-
ing dependencies among operations within the same job. On the shop
floor, there exists a set of machines, and numerous jobs await processing.
Each job comprises a number of operations, and an operation can only be
processed after the completion of its preceding operation. Additionally,
each operation can only be assigned to a fixed machine without flexibility.

1
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l M3 021 03, 013
l M2 02, 012 033

M1 | 03, 01,1 023

0T 1
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Figure 1.1: An example of resource allocation in JSS. The direction of the
arrows and the sequence in which they pass through the machines indicate
the order of processing on the machines.

Table 1.1: The characteristics of job information and decision requirements
in different types of JSS problems.

Problem Static JSS Dynamic JSS Flexible JSS DFJSS

] ) Known Vv Vv
Job information
Unknown Vv i
.. Sequencing vV 4 v v/
Decision .
Routing Vv Vv

Consequently, the objective is to determine the sequence of operations on
machines to minimise the makespan, reduce production costs, or achieve
other specified objectives.

Flexible Job Shop Scheduling: Flexible JSS [233, [179] extends the con-
cept of a traditional job shop by introducing flexibility in machine assign-
ments [233]. In flexible JSS, operations are not restricted to a single ded-
icated machine; instead, they can be processed on a set of optional ma-
chines [81]. Consequently, decision-making in flexible JSS involves not
only selecting the next operation when a machine is available (i.e., se-
quencing decision point) but also determining the optimal machine to
handle a ready operation (i.e., routing decision point) [38]. It is worth
noting that flexible JSS is recognised as an NP-hard problem [38].

Dynamic Job Shop Scheduling: For static ]SS, job information is

known in advance, allowing scheduling decisions to be made with com-
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plete knowledge of all job details. However, real-world scheduling pro-
cesses are often influenced by dynamic events such as the arrival of
new jobs, order cancellations or modifications, uncertainties in processing
times, and machine breakdowns. The dynamically changed system state
makes the problem more complex and makes it more relevant for practi-
cal applications. The JSS problem with dynamic change characteristics is
known as the dynamic JSS problem [115] 197, 242, 251} 263].

Dynamic Flexible Job Shop Scheduling: Dynamic flexible JSS (DFJSS)
combines the challenges of both dynamic JSS and flexible JSS. It holds a
significant appeal within manufacturing systems and has been intensively
studied in previous decades. DFJSS needs to address both machine flexi-
bility and dynamic events simultaneously [263]. Among dynamic events,
the most frequent and common event in the real world is the dynamic ar-
rival of new jobs [268]. Therefore, in this thesis, we focus on DFJSS with

new dynamic job arrivals.

Methods for solving JSS problems can be broadly categorised into dif-
ferent groups based on their characteristics. In the early stage, exact meth-
ods (e.g., mathematical programming [81]) and heuristic methods (e.g., Tabu
search [190], simulated annealing [67], and particle swarm optimisation
[181]) have been proposed for solving JSS problems. While exact meth-
ods are well-suited for small-scale JSS problems, their efficacy diminishes
for large-scale JSS and dynamic JSS problems with real-time requirements.
Similarly, heuristic methods face limitations in adapting to real-time re-

quirements, making them unsuitable for solving dynamic JSS problems.

In response to this, scheduling heuristics, employed as priority func-
tions, have gained widespread use in solving dynamic JSS problems [265].
Their reusable nature, capacity to leverage the latest information, and real-
time responsiveness make them particularly effective and practical. In the
context of JSS, a scheduling heuristic typically involves a single sequenc-
ing rule, used to select an operation at the sequencing decision point.

While in flexible JSS, where both operation sequencing and machine as-
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signment (routing) need to be considered, a scheduling heuristic com-
monly comprises two rules: a sequencing rule and a routing rule [258].
The sequencing rule remains responsible for selecting an operation at the
sequencing decision point, while the routing rule aids in machine selec-
tion when the routing decision point is encountered. Numerous empirical
studies [97, 135, [145]159] have demonstrated the effectiveness of schedul-

ing heuristics in addressing JSS problems.

Although scheduling heuristics have the advantage of generating
schedules in real-time, their design demands domain knowledge and is
time-consuming [259]. Additionally, no single scheduling heuristic proves
universally effective for diverse customer requirements. In the real world,
there are many scenarios that need to be considered for DFJSS. There-
fore, an automatic design of scheduling heuristics for different scenarios
is needed. Hyper-heuristic methods [30] have been employed to generate
high-level heuristics by selecting or combining a set of low-level heuristics

to address complex problems.

Genetic Programming (GP) [119], as a hyper-heuristic method, has
been widely used to automatically evolve scheduling heuristics that pro-
duce high-quality schedules for DFJSS [258]. Among the various evolu-
tionary computational approaches to solving the DFJSS problems, GP has
several key advantages that set it apart from others and are noteworthy.
First of all, GP has a flexible representation, e.g. tree-based GP, which
makes it easy to explore the structure and features with little domain
knowledge [258]. Secondly, the scheduling heuristics evolved by GP offer
good interpretability, which provides more confidence to users to apply
these scheduling heuristics in real-world applications [265]. Finally, the
generalisation ability of these scheduling heuristics evolved through GP
is much stronger compared to other evolutionary computation approaches
[263]. Existing studies [3} 114, 144, 146, 156, 252, 268] have shown the ad-
vantages of GP. In this case, this thesis focuses on improving the effective-
ness of GP in solving the DFJSS problems.
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1.2 Motivations

This section begins with an overview of the fundamental challenges in-
volved with DFJSS. It then presents insights into the rationale behind the
adoption of GP as the main method for solving the DFJSS problems. After-
wards, the motivations behind the four specific contributions in this thesis

are introduced.

1.2.1 Fundamental Challenges of GP for DFJSS

DEFJSS is a challenging problem owing to the following reasons:

1. Dynamic nature and real-time adaptation [84]: DFJSS involves
scheduling jobs with multiple operations in a manufacturing envi-
ronment where the information of jobs is unknown in advance. This
dynamic nature introduces uncertainties and the need for real-time
adaptation in the production environment makes it challenging to

create good and adaptable schedules.

2. Requirements of diverse solutions in large search space [124]: The
number of possible combinations and sequences for scheduling op-
erations of multiple jobs across multiple machines and decision
points grows exponentially with the problem size. This leads to a
vast search space, making it computationally challenging to find op-
timal solutions. To handle this complexity, there is a crucial need
for diverse solutions to prevent getting trapped in local optima and
enable the exploration of a broader solution landscape.

3. Good, stable, and trustworthy decisions requirements [209]:
Achieving high-quality schedules in dynamic environments requires
decisions that are not only good concerning traditional scheduling
objectives but also stable and trustworthy. The schedules must be

robust enough to withstand disruptions caused by dynamic events.
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Stability ensures that schedules remain effective even as the system
changes. Trustworthiness gives customers confidence in believing
the decisions made in dynamic scenarios where unexpected events
may occur. This leads to a requirement of joint decision making by

using a number of scheduling heuristics.

4. Large number of decision points requiring intelligent strategies:
The dynamic and flexible nature of DFJSS introduces a large num-
ber of decision points, including machine assignments and opera-
tion sequencing. The complexity upgrades as the jobs continue to
arrive. Intelligent decision-making (e.g., intelligent heuristic gener-
ation and selection) becomes essential to navigate this intricate de-
cision space. Algorithms must adapt in real-time, making informed
decisions to optimise resource usage and scheduling performance.
The challenge is to develop algorithms that can handle the increased
decision points, ensuring adaptability and efficiency in a dynami-

cally changing environment.

5. Multi-objective optimisation [225]: DFJSS often involves optimis-
ing multiple potential conflicting objectives simultaneously, such
as minimising makespan, reducing production costs, and meeting
delivery deadlines. Balancing these objectives to achieve a well-

rounded solution is inherently challenging.

1.2.2 Limitations of Existing Parent Selection

Parent selection determines which individuals from the current popula-
tion will contribute genetic material to produce offspring for the next gen-
eration, playing an important role in influencing the evolutionary process
and the quality of offspring generated [228]. Its importance lies in sev-
eral key aspects. Firstly, an effective parent selection mechanism helps
preserve valuable building blocks [269]. This aids in maintaining impor-

tant genetic material over generations, enhancing the algorithm’s ability
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to evolve high-quality solutions. Secondly, an effective parent selection
mechanism promotes diversity within the population [191]. A diverse
population is essential for preventing premature convergence [49]. By se-
lecting parents strategically, the algorithm can maintain a diverse set of

individuals, fostering a richer exploration of the search space.

The most commonly employed parent selection for GP is tournament
selection [62]. This approach involves randomly selecting a set of candi-
date individuals and then choosing the candidate individual with the best
fitness as the parent. Tournament selection is applicable for crossover,
mutation, and reproduction. While mutation and reproduction require
only one parent to generate offspring, crossover needs two parents work-
ing together. However, the independent selection of the two parents for
crossover through tournament selection may lead to similarities in their
behaviour, which is not good for generating high-quality offspring with
diverse building blocks. This observation motivates the exploration of
new parent selection mechanisms capable of not only identifying high-
quality individuals based on fitness but also ensuring diverse behaviours

in the selected parents.

Additionally, tournament selection faces the challenge that the chosen
parents may not have effective cooperative abilities for generating high-
quality offspring. In response to this limitation, comparative partner se-
lection [50] and diverse partner selection [7] have been designed to select
pairs of complementary parents. However, these methods cannot be di-
rectly employed to address the DFJSS problems. This motivates us to de-
velop a novel parent selection mechanism capable of selecting individuals
with strong cooperative abilities to produce high-quality offspring specif-
ically tailored for DFJSS.

Furthermore, both of these methods are specifically tailored for
crossover and do not consider mutation. Although mutation occurs less
frequently than crossover, it still plays a role in influencing the evolution-

ary process and solution quality. Lexicase selection [147] was proposed
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to select parents by following different orders of training cases, making
it suitable for both crossover and mutation [2, 121} [122]. Studies have
demonstrated that lexicase selection can pick more diverse parents and
yield better performance than tournament selection in certain problems
[123,[152,[168,203]. Thus, it is reasonable to extend the GP with lexicase se-
lection to evolve scheduling heuristics as well. However, it is non-trivial to
extend the GP with lexicase selection from its successful domains such as
program synthesis and symbolic regression to evolving scheduling heuris-
tics, since the evaluation of an instance in DFJSS is very time-consuming,.
In DFJSS, an instance is usually a large-scale DFJSS simulation with thou-
sands of jobs. Evaluating such an instance requires applying the GP model
many times (each at a decision situation, when a machine becomes idle or
a job operation becomes ready, to be processed) to generate a schedule
given the dynamic job arrivals in the simulation. As a result, we cannot
afford a large number of DFJSS instances (i.e., simulations). On the other
hand, if we use too few instances, then the effectiveness of lexicase se-
lection might be negatively affected. This motivates us to develop a GP
with a new lexicase selection mechanism that can apply lexicase selection
effectively in GP for DFJSS without increasing complexity.

Therefore, there is a need for effective parent selection mechanisms ca-
pable of identifying diverse individuals with the potential to enhance the
quality of scheduling heuristics or complement each other effectively in
generating high-quality offspring in GP for DFJSS.

1.2.3 Limitations of Existing Ensemble GP

Relying on a single scheduling heuristic may not yield optimal perfor-
mance across all decision points and scenarios. Also, the confidence in
decisions made by using only one scheduling heuristic may be unsatisfac-
tory [72]. Joint decision-making involving a group of scheduling heuris-

tics has the potential to enhance overall performance and provide more
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reliable decisions. The ensemble is a promising technique that considers
cooperation between elements to make final decisions [177,[74]. To be spe-
cific, ensemble GP can leverage a group of different programs to obtain
the final solution and improve the credibility of the decision [187, [75].

Several studies [78, 188 205 211] have explored the application of en-
semble GP to address JSS problems. The existing literature on ensemble
GP for scheduling problems can be categorised into three groups. The
first category involves the use of multiple subpopulations to simultane-
ously evolve scheduling heuristics, followed by grouping the best ones
from each subpopulation to form an ensemble [176]. While this approach
produces high-quality scheduling heuristics, it often overlooks coopera-
tion between them during evolution, considering their evolution as in-
dependent processes. The second category employs a single population
to evolve scheduling heuristics, selecting a subset from the final gener-
ation to constitute the ensemble [222]. This method adheres to conven-
tional evolutionary processes, considering diversity through mechanisms
like niching, or evolving based on different subsets of training instances to
generate a diverse set of effective scheduling heuristics. However, despite
addressing diversity concerns, this category ignores cooperation between
scheduling heuristics, with the evolution of each heuristic proceeding in-
dependently. The third category explores the evolution of both single in-
dividuals and ensembles [187]. Nonetheless, the evolution of single indi-
viduals and ensembles remains independent. For instance, this category
typically evolves a set of scheduling heuristics using GP and then employs
heuristic methods (e.g., genetic algorithms) to evolve an ensemble. In such
cases, direct contributions between single individuals and ensembles dur-

ing the evolution process, which could enable mutual benefit, are limited.

In summary, current studies on ensemble GP for solving scheduling
problems are at an early stage and require further exploration. A novel
ensemble GP method is essential for DFJSS, capable of identifying and

leveraging the strengths of both single individuals and ensembles, foster-
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ing mutual benefit between them.

1.2.4 Collaborative Intelligent Heuristic Generation and
Selection through the Integration of GP and RL

GP has long been a successful approach to learning effective scheduling
heuristics in DFJSS [262]. GP employs evolutionary principles to learn
scheduling heuristics through an iterative, population-based, and stochas-
tic process [35]. The key advantage of using GP for DFJSS lies in its abil-
ity to automatically explore a wide range of potential scheduling heuris-
tics by maintaining a population and adapt to the specific characteristics
of the problem at hand with little domain knowledge [206]. Current ap-
proaches in GP for DFJSS commonly involve intelligently heuristic gen-
eration, evolving either a single scheduling heuristic [284] or a group of
heuristics [212] to make decisions across all decision points during the
entire scheduling process. However, this generalised use of scheduling
heuristics might not fully exploit the unique strengths of each heuris-
tic. Manually identifying and distinguishing the advantages of different
scheduling heuristics is challenging and time-consuming. Hence, the in-
tegration of an intelligent heuristic selection mechanism becomes crucial.
This mechanism is expected to automate the selection process of the most
appropriate scheduling heuristic evolved by GP for a given decision point
through interactions with the scheduling environment. This way allows
for more efficient utilisation of a number of scheduling heuristics evolved
by GP in a single run, reducing dependence on a solitary “best” heuris-
tic and minimising the underutilisation of other potentially effective al-
ternatives. Prior to implementing the heuristic selection method, a set of
candidate scheduling heuristics is required. These scheduling heuristics
should demonstrate high quality and exhibit diverse behaviour. While RL
can be a valuable method for generating scheduling heuristics, it typically

updates and refines only one heuristic at a time. This way necessitates
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multiple runs of the RL algorithm to generate a diverse set of heuristics,
which can be inefficient. Traditional GP methods often prioritise obtain-
ing the best scheduling heuristic without emphasising diversity within the
population. Niching [246] has proven to be an effective strategy employed
in GP to enhance its efficacy [143], achieved by augmenting population di-
versity and fostering the presence of multiple diverse scheduling heuris-

tics within the population.

Beyond GP, Reinforcement learning (RL) [36], as a subfield of artifi-
cial intelligence, has gained increasing attention for learning scheduling
agents in DFJSS. RL focuses on creating intelligent decision-making sys-
tems through learning from interactions with an environment, taking ac-
tions, and receiving feedback [137]. Its intelligent decision-making mecha-
nism is characterised by its adaptive capability to refine policies over time
based on experiences and feedback [136]. RL has become popular in train-
ing scheduling agents for solving complex scheduling problems. While
RL excels in end-to-end (direct) learning processes, some challenges arise
in DFJSS scenarios where the number of candidate machines/operations
might change dynamically during the scheduling process [136]. This vari-
ability makes it challenging to fix action spaces and store experiences in
RL. To address this, some RL studies employ manual scheduling heuristics
as actions instead of directly using machines/operations [36, 139]. Then
RL conducts heuristic selection among these actions. However, this indi-
rect approach presents limitations. Firstly, the manually designed schedul-
ing heuristics often exhibit an average level of quality, thereby constrain-
ing the overall quality of high-level scheduling heuristics learned by RL.
Secondly, the manual design process diverse scheduling heuristics is time-

consuming and requires a lot of domain knowledge from experts.

Considering the strengths and weaknesses of both GP and RL, GP ex-
cels at generating multiple comprehensive scheduling heuristics simultane-
ously through population evolution, while RL is good at selecting among

multiple scheduling heuristics at specific decision points. Therefore, ex-
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ploring collaborations between them could be beneficial. The exploration
of intelligent scheduling heuristic generation and selection using a com-
bination of GP and RL might be an interesting dimension to the existing
studies on DFJSS. This integration aims to enhance the capabilities of both
GP and RL in effectively solving the DFJSS problems.

1.2.5 Limitations of Existing Multi-objective GP

The study of the multi-objective DFJSS (MO-DFJSS) problem is impor-
tant as it has a significant impact on industrial applications [160]. In real-
world applications, scheduling problems usually involve multiple con-
flicting objectives. For instance, minimising makespan might conflict with
meeting delivery deadlines. Optimising multiple objectives simultane-
ously can balance these conflicting objectives, offering customers a range
of trade-off options. In this case, it is necessary to study the MO-DFJSS
problem.

Currently, several studies investigate the fusion of Pareto dominance-
based algorithms, such as the non-dominated sorting genetic algorithm II
(NSGA-II) [52] and the strength Pareto evolutionary algorithm 2 (SPEA2)
[289], with GP to address the MO-DFJSS problems [267, 282]. However,
Pareto-dominance algorithms might face difficulties in maintaining the
spreadability /diversity of the Pareto front. A diverse Pareto front ensures
that the solutions cover a wide range of trade-offs between conflicting ob-
jectives. This diversity provides users with a variety of options to choose
from, allowing them to select the heuristic that best suits their require-
ments. This limitation of Pareto-dominance algorithms emphasises the
necessity for a method capable of ensuring significant spreadability in the
evolved Pareto front. The multi-objective evolutionary algorithm based on
decomposition (MOEA /D) is a prominent multi-objective method [276].
Its strength lies in the potential to generate a spread/diverse Pareto front

by decomposing a multi-objective problem into several sub-problems us-
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ing a scalar function and optimising them simultaneously [85]. However,
to the best of our knowledge, no study has explored the use of MOEA /D
for solving the MO-DFJSS problems. Therefore, it is both interesting and
meaningful to investigate whether integrating MOEA /D with GP can fa-
cilitate the evolution of a Pareto-front of high-quality and good spread-
ability scheduling heuristics for solving the MO-DFJSS problems.

Additionally, existing studies indicate that among current multi-
objective GP methods for MO-DFJSS, NSGPII demonstrates superior per-
formance [267]. However, NSGPII operates solely on the genotype of in-
dividuals and does not take into account semantic information, which re-
flects the behaviour of the genotype. Consequently, NSGPII might suffer
from a loss of population diversity. Maintaining diversity ensures that
the algorithm explores a wide range of solutions across the entire Pareto
front., facilitating the discovery of novel and potentially superior solutions
in less-explored regions of the solution space. Therefore, there is a need to
incorporate semantic information into NSGPII to address this limitation.
Semantic GP, as proposed in previous research [217], offers a solution to
enhance population diversity by integrating semantic information into the
evolutionary process. Its effectiveness has been demonstrated across var-
ious domains, including symbolic regression [214], classification [15] 192],
and feature selection [169]. However, to the best of our knowledge, seman-
tic information has not been integrated into NSGPII for solving MO-DFJSS
problems. Given the promising results obtained with semantic GP in other
domains, it is particularly intriguing to explore whether and how incorpo-
rating semantic information can improve the performance of NSGPII for
MO-DFJSS.

1.3 Research Goals

The overall goal of this thesis is to improve the capability of GP for
DFJSS by addressing key aspects, including effective parent selection,
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joint decision-making, intelligent heuristic usage (selection), and multi-
objective problem-solving. Specifically, this thesis focuses on enhancing
GP by developing novel diversity-based parent selection mechanisms, re-
fining decision-making processes by adopting an ensemble technique for
joint decisions, selecting appropriate scheduling heuristics evolved by GP
intelligently by incorporating RL techniques, and handling multiple objec-
tives through the integration of multi-objective optimisation mechanisms.

The details of each objective are shown as follows.

Objective 1: Develop GP with new diversity-based parent selection
mechanisms to select promising and diverse individuals as parents for

automatically evolving effective scheduling heuristics for DFJSS.

The proposed methods are hypothesised to enhance scheduling heuris-
tics for DFJSS by developing effective parent selection mechanisms. This
thesis proposes three parent selection mechanisms. The first one is the
cluster selection, it is expected to select individuals with different be-
haviours as parents. The second one is the diverse partner selection, it is
expected to select individuals with complementary strengths as parents.
The final one is the new lexicase selection, it is expected to select expert
individuals who are effective for different cases as parents. By selecting
such individuals as parents, the goal is to generate high-quality offspring
that will, in turn, enhance the efficacy of the evolved scheduling heuristics
for addressing the DFJSS problems.

Objective 2: Propose a novel ensemble GP method to automati-
cally evolve effective single scheduling heuristics or a group of scheduling
heuristics to make effective joint decisions for solving the DFJSS problems.

The proposed method is hypothesised to maintain a population that in-
cludes both individuals and ensembles, allowing breeding between them
for more effective exploration of the search space. Additionally, a strategy
for ensemble construction and selection is developed to form ensembles
by emphasising diversity and complementarity among individuals. Fur-
thermore, new crossover and mutation operators are designed to generate
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high-quality offspring from both individuals and ensemb]es.

Objective 3: Propose a two-stage framework that utilises GP with a
niching strategy for learning heuristic actions for RL to enable intelligent
GP heuristic selection in solving the DFJSS problems.

Specifically, an initial comparison is conducted between a typical GP
method and a typical RL method for DFJSS, aiming to find their respec-
tive strengths and weaknesses. Subsequently, a two-stage framework is
proposed. In the first stage, a niching GP is proposed to evolve a set of
high-quality and diverse scheduling heuristics, to be employed as actions
for RL. In the second stage, an RL method is employed. It is hypothesised
to use the high-quality and diverse scheduling heuristics evolved from
the niching GP to train intelligent scheduling agents, enabling intelligent

heuristic usage at various decision points.

Objective 4: Propose novel multi-objective GP methods for MO-
DFJSS to automatically evolve a Pareto front of scheduling heuristics to
handle multiple objectives simultaneously.

The proposed method is hypothesised to evolve a Pareto front of ef-
fective scheduling heuristics capable of handling multiple objectives si-
multaneously. This thesis proposes two multi-objective GP methods. The
first one is the multi-objective GP based on decomposition (MOGP/D)
method. It is hypothesised to fill the gap of no existing work incorpo-
rating the well-known MOEA /D and GP for solving the MO-DFJSS prob-
lems. The second method is the semantic NSGPII, which incorporates se-
mantic information to reflect the behaviour of individuals” genotypes. Se-
mantic NSGPII employs two strategies: semantic diversity and semantic
similarity. The semantic diversity strategy aims to generate offspring with
semantically different behaviours. The semantic similarity strategy is hy-
pothesised to generate offspring that not only exhibit semantic diversity
but also maintain similarity with their parents.
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1.4 Major Contributions

This thesis makes the following major contributions, each of which is dis-
cussed in the respective contribution Chapters (Chapters 3 to 6).

Firstly, this thesis has demonstrated how to evolve effective schedul-
ing heuristics by proposing effective diversity-based parent selection

mechanisms to select parents to solve the DFJSS problems.

To be specific, this thesis proposes three parent selection mechanisms,
which are cluster selection, diverse partner selection, and novel lexicase
selection. Cluster selection contributes to the selection of two parents
with different behaviours for crossover and can increase the number of
unique behaviours in the population. Diversity partner selection helps in
selecting a pair of high-quality and complementary parents for crossover.
The results show that the GP with the proposed diverse partner selection
outperforms the baseline GP across all maximum objectives and achieves
comparable performance on all mean objectives. The novel lexicase se-
lection contributes to the selection of individuals with expertise in vari-
ous cases as parents. To avoid increasing the computational cost by us-
ing lexicase selection, a multi-case fitness evaluation method is proposed.
This method addresses the time-consuming evaluation of each instance
through a new definition of case-fitness, generating multiple cases from
a single simulation. Importantly, the newly developed multi-case fitness
definition is not limited to DFJSS but offers general guidelines for effi-
ciently utilising lexicase selection in solving other complex problems with
time-consuming fitness evaluations, such as dynamic vehicle routing and
cloud resource allocation. Furthermore, the superiority of the proposed
GP with the lexicase selection algorithm over other GP algorithms in var-
ious DFJSS scenarios highlights the effectiveness of incorporating lexi-
case selection into GP. This integration enhances population diversity and
strikes a better balance between exploration and exploitation, showcasing

its potential applicability in addressing a wide range of complex problems.



1.4. MAJOR CONTRIBUTIONS 17

Part of the contributions have been published in:

* Meng Xu, Yi Mei, Fangfang Zhang, and Mengjie Zhang. “Genetic
programming with lexicase selection for large-scale dynamic flexible
job shop scheduling”. IEEE Transactions on Evolutionary Computation,
2023, 15 pp. DOI: 10.1109/TEVC.2023.3244607 .

* Meng Xu, Yi Mei, Fangfang Zhang, and Mengjie Zhang. “Genetic
programming with diverse partner selection for dynamic flexible job
shop scheduling”. in Proceedings of the Genetic and Evolutionary Com-
putation Conference Companion, ACM, 2022, pp. 615-618.

* Meng Xu, Fangfang Zhang, Yi Mei, and Mengjie Zhang. “Genetic
programming with multi-case fitness for dynamic flexible job shop
scheduling”. in Proceedings of the IEEE Congress on Evolutionary Com-
putation, IEEE, 2022, 8 pp. DOI: 10.1109 / CEC55065.2022.9870340.

* Meng Xu, Yi Mei, Fangfang Zhang, and Mengjie Zhang. “Genetic
programming with cluster selection for dynamic flexible job shop
scheduling”. in Proceedings of the IEEE Congress on Evolutionary Com-
putation, IEEE, 2022, 8 pp. DOI: 10.1109/CEC55065.2022.9870431.

Secondly, this thesis has demonstrated how to use GP to evolve high-
quality single scheduling heuristics or a group of diverse scheduling
heuristics to enable effective joint decision-making in DFJSS.

This is achieved by proposing a novel ensemble GP method. Differ-
ent from conventional approaches, this method facilitates the evolution
between single individuals and ensembles, enhancing flexibility in the
evolutionary process and improving exploration of the search space. Ex-
perimental results demonstrate the superior performance of the proposed
method compared to standard GP and existing ensemble GP methods for
solving the DFJSS problems. Within the proposed ensemble GP method,
a novel ensemble construction and selection strategy are designed to help

the proposed method in selecting diverse and high-quality individuals for
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constructing an ensemble. Additionally, new crossover and mutation op-
erators are developed to facilitate evolution between single individuals
and ensembles. These operators generate offspring that can be either sin-
gle individuals or ensembles, fostering more flexible breeding between the
two. Experimental results validate the effectiveness of the developed en-
semble construction and selection strategy and show the efficacy of the
newly designed genetic operators. Further analyses reveal that schedul-
ing heuristics within a promising ensemble exhibit varied behaviour while
still sharing certain similarities. This enables them to make consistent deci-
sions in most cases and complement each other at specific decision points.

Part of the contributions have been published in:

* Meng Xu, Yi Mei, Fangfang Zhang, and Mengjie Zhang. “Genetic
programming for dynamic flexible job shop scheduling: Evolution
with single individuals and ensembles”. IEEE Transactions on Evolu-
tionary Computation, 2023, 15 pp. DOI: 10.1109/TEVC.2023.3334626.

Thirdly, this thesis has demonstrated how to combine GP with RL to
take advantage of both methods for making intelligent generation and se-
lection of multiple scheduling heuristics for solving the DFJSS problems
effectively.

This is achieved through a systematic comparison between a typical
GP and a typical RL method for DFJSS, followed by the development
of a new two-stage framework based on niching GP and RL. In the ini-
tial stage, a niching GP is proposed to automatically evolve high-quality
scheduling heuristics, which subsequently serve as actions for RL. The
second stage employs RL to intelligently utilise these evolved scheduling
heuristics. This method addresses the challenge of adapting to changes in
operations at various decision points, enabling the learning of intelligent
agents capable of making good selections among these actions to gener-
ate effective schedules. As an initial exploration into the integration of GP

and RL, this thesis investigates replacing the manual sequencing rules in
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baseline RL with GP-evolved ones as actions, while maintaining the end-
to-end RL process for learning the routing agent identical to the baseline
DRL. Comparative results against baseline RL and commonly used man-
ually designed scheduling heuristics confirm the effectiveness of the pro-
posed method. Additionally, comparisons against traditional GP-assisted
RL validate the efficacy of the proposed niching GP method. Furthermore,
contrasting results against the proposed method without the RL training
process, where the sequencing rule is fixed as one of the candidate actions,
verify the effectiveness of the RL learning process.
Part of the contributions have been published in:

* Meng Xu, Yi Mei, Fangfang Zhang, and Mengjie Zhang.
“Genetic programming and reinforcement learning on learning
heuristics for dynamic scheduling: A preliminary comparison”.
IEEE Computational Intelligence Magazine, 2023, 15 pp. DOL
10.1109/MC1.2024.3363970.

* Meng Xu, Yi Mei, Fangfang Zhang, and Mengjie Zhang. “Nich-
ing Genetic Programming to Learn Actions for Deep Reinforcement
Learning in Dynamic Flexible Scheduling”. IEEE Transactions on Evo-
lutionary Computation, 2024, 15pp. DOI: 10.1109/TEVC.2024.3395699.

Finally, this thesis has demonstrated how to use GP for evolving a
Pareto front of effective scheduling heuristics for solving multiple objec-
tives in DFJSS simultaneously.

This is achieved by proposing two effective multi-objective GP meth-
ods. The first method develops an effective multi-objective GP based on
decomposition (MOGP /D) method for MO-DFJSS by adapting ideas from
the classical MOEA /D along with the characteristics of MO-DFJSS. To mit-
igate the impact of seed rotation in DFJSS [266], a mapping strategy is
proposed to match individuals to sub-problems after evaluation. The ef-
fectiveness of the proposed MOGP /D method in terms of the spreadabil-

ity /diversity of the evolved Pareto front and consistency of the scheduling
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heuristics behaviours is validated by comparing it with the state-of-the-art
Pareto-dominance multi-objective method (NSGPII). However, in terms of
HV and IGD, NSGPII performs better than MOGP/D. The second method
is the semantic NSGPII method, enhancing the NSGPII by integrating se-
mantic information. This method defines the semantic and semantic dis-
tance of scheduling heuristics for DFJSS. Then, by incorporating semantic
diversity and semantic similarity within NSGPII, this method contributes
to evolving better scheduling heuristics than using the original NSGPII.
The results highlight the benefits of considering semantically diverse indi-
viduals for achieving high-quality scheduling heuristics. Moreover, NSG-
PII, considering semantic similarity, achieves the best overall performance,
offering valuable insight into the importance of maintaining a reasonable
semantic distance between offspring and their parents to further enhance
the quality of scheduling heuristics. The results also emphasise the trade-
off between semantic diversity and semantic similarity.

Part of the contributions have been published in:

* Meng Xu, Yi Mei, Fangfang Zhang, and Mengjie Zhang. “A seman-
tic genetic programming approach to evolving heuristics for multi-
objective dynamic scheduling”. in Proceedings of the Australasian Joint
Conference on Artificial Intelligence, Springer, 2023, pp. 403—415.

* Meng Xu, Yi Mei, Fangfang Zhang, and Mengjie Zhang. “Multi-
objective genetic programming based on decomposition on evolv-
ing scheduling heuristics for dynamic scheduling”. in Proceedings of
the Genetic and Evolutionary Computation Conference Companion, ACM,
2023, pp. 427-430.

1.5 Terminology

To avoid confusion, below are the definitions of the terms commonly used

in this thesis:



1.6. ORGANISATION OF THESIS 21

¢ A problem refers to a high-level proposition we aim at solving, such
as the DFJSS problem.

¢ A simulation is a computer program that models the behaviour of
the scheduling process. It replicates the essential features and func-
tions of the real-world system, allowing users to study, analyse, or

conduct experiments with it in a controlled virtual environment.

* An instance denotes a specific simulation conducted with a fixed

random seed.

* A scenario represents a specific problem configuration to be solved,
including instances generated with the same problem configuration,
such as identical objectives and utilisation levels. An instance serves

as an example of a scenario.

* A case is a subset of an instance, representing a segment of that in-

stance. An instance can be divided into multiple cases.

1.6 Organisation of Thesis

The subsequent chapters of this thesis are structured as follows. Chapter
provides a comprehensive review of the essential background and related
work. The primary contributions of this thesis are detailed in Chapters
6l Chapter 7] concludes the thesis. Figure[I.2)illustrates the outline of this
thesis, featuring the main goals (denoted by e) and employed techniques
(denoted by v) for each chapter, along with inter-chapter connections. An
overview of each chapter is shown as follows.

Chapter 2| presents the essential background of scheduling, the exist-
ing methods for JSS, and the basic concepts of GP and RL. This chapter
also conducts a comprehensive review of existing literature on schedul-

ing, with a particular focus on the involved techniques in this thesis.
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Chapter 1

Introduction

I

Chapter 2
Literature Review

Chapter 3 Chapter 5 Chapter 6
Effectiveness Improvement by New Collaborative Heuristic Generation and Selection by Multi-objective Genetic Programming
Parent Selection Mechanisms Genetic Programming and Reinforcement Learning » Improve effectiveness of multi-objective
« Improve effectiveness * Improve effectiveness solving
« Improve diversity * Intergrate intelligent heuristic selection mechanism v Evolutionary multi-objective
v" Multi-case fitness v" Niching v Decomposition
v Lexicase selection v" Reinforcement learning v Semantic
Chapter 4

Joint Decision-making by Ensemble
« Improve effectiveness
« Improve joint decision-making
ability

v Ensemble learning
v' Multi-case fitness
v Lexicase selection

’ Chapter 7
Conclusions

Figure 1.2: The outline of this thesis, including the main goals and in-
volved techniques of each chapter, and the connection between chapters
in this thesis.

Chapter [3| presents the proposed GP algorithm incorporating three
newly developed parent selection mechanisms to enhance its efficacy in
addressing the DFJSS problems. It begins with an overview of the over-
all framework of the proposed algorithms, followed by a detailed expla-
nation of the key components. The chapter then introduces the experi-
mental design, outlining how the experiments were conducted to validate
the effectiveness of the proposed algorithms. Results and discussions fol-
low, showing the efficacy of the proposed method in comparison to other
methods. Further analyses are presented to provide insights into the rea-
sons behind the proposed algorithm’s effectiveness. Notably, the main
techniques emphasised in this chapter are multi-case fitness and lexicase

selection.

Chapter [ introduces the proposed ensemble GP algorithm, designed
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to enhance the effectiveness and joint decision-making ability of the
evolved group of scheduling heuristics for DFJSS. It begins with an
overview of the overall algorithmic framework, followed by a compre-
hensive explanation of key components, including population initialisa-
tion, individual evaluation, ensemble construction and selection, ensem-
ble evaluation, and genetic operators. This chapter then provides an in-
depth description of the experimental design, clarifying how the effective-
ness of the proposed algorithm can be verified through experiments. Re-
sults and discussion follow, demonstrating the efficacy of the proposed
method compared to other methods and highlighting the effectiveness of
key components. Further analyses are presented along with this chapter
to provide insights into the factors that contribute to the effectiveness of
the proposed algorithm. Notably, the key techniques emphasised in this
chapter include ensemble learning, multi-case fitness, and lexicase selec-

tion.

Chapter 5 presents the proposed two-stage framework designed for
collaborative intelligent heuristic generation and selection through the in-
tegration of GP and RL to solve the DFJSS problems. This chapter begins
with an overview of the algorithmic structure, followed by a comprehen-
sive explanation of key components, including state features, niching GP,
and deep RL. An in-depth description of the experimental design follows,
showing how the effectiveness of the proposed algorithm can be verified
experimentally. This is followed by results and discussion, demonstrating
the effectiveness of the proposed method compared to other methods and
highlighting the effectiveness of key components. Further analysis is pro-
vided in this chapter, which provides additional insight into the factors
that contribute to the effectiveness of the proposed algorithm. Notably,
the key techniques emphasised in this chapter are niching and RL.

Chapter [6] describes the proposed two multi-objective GP algorithms
aimed at evolving a Pareto front of effective scheduling heuristics for ad-
dressing the multi-objective DFJSS problems. It first explores MOGP /D
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and then presents the semantic NSGPII algorithm. This chapter then pro-
vides a comprehensive overview of the experimental design, illustrating
how the effectiveness of the proposed algorithm can be verified through
experiments. The results and discussions illustrate the effectiveness of the
proposed algorithm in comparison to other methods. Further analyses
are conducted to provide an in-depth exploration of the factors that con-
tribute to the effectiveness of the proposed algorithm. Notably, the main
technique emphasised in this chapter is the evolutionary multi-objective,
decomposition, and semantic.

Chapter [7] summarises the achieved objectives and the main conclu-
sions of this thesis. Some discussions and future research directions are
also presented in this chapter.



Chapter 2
Background

This chapter begins by introducing the details of the DFJSS problem,
which is the focus of this thesis. Subsequently, fundamental concepts
related to machine learning and evolutionary computation are outlined.
Following this, the principles of GP, the distinction between heuristic and
hyper-heuristic approaches, details on utilising scheduling heuristics for
DFJSS, and the principles of RL are elucidated. Furthermore, this chapter
provides a review of existing approaches for solving diverse JSS problems
and summarises the research in this field. Additionally, related works,
especially techniques related to the research objectives presented in this

thesis are reviewed and summarised.

2.1 Dynamic Flexible Job Shop Scheduling

DFJSS [284] represents a sophisticated and challenging extension of the
classical JSS problem. DFJSS introduces flexibility in terms of machine as-
signments, allowing a job operation to be processed on multiple machines.
Unlike classical JSS, where only sequencing decisions are made (i.e., deter-
mining the order of operations on a fixed machine), DFJSS involves more
intricate decisions. In DFJSS, decisions encompass not only selecting the
operation to be processed by an idle machine but also choosing the specific

25
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machine to process the ready operation [81]. Therefore, DFJSS involves
two distinct decision points:

* Routing decision point: represents the situation when an operation
becomes ready. At the routing decision point, a routing rule is re-

quired to select a machine for the ready operation.

* Sequencing decision point: represents the situation when a ma-
chine becomes idle. At the sequencing decision point, a sequencing
rule is required to choose an operation from the waiting queue as the

next task for processing.

Besides, DFJSS incorporates the dynamic nature of real-world manu-
facturing environments. Unlike the traditional flexible JSS, DFJSS relaxes
the assumptions of having known information about jobs in advance. In-
stead, it introduces a more realistic scenario where job arrivals are dy-
namic, and their processing times remain unknown until they arrive. An
extensive literature review has shown that the dynamic arrival of jobs is a
prominent consideration in both practical scenarios and existing research
studies [256] 257,282, 284]. The detailed description of DFJSS is as follows.

In the shop floor, there are a set of machines M = {M;, M, ..., M, }.
Jobs J = {Ji, Js, ..., J,,} that need to be processed arrive at the shop floor
over time. The job information (e.g., operations, processing time of each
operation, due date) is not known until it arrives at the shop floor. Each
job J; has an arrival time ;, a weight w;, a due date d;, and consists of mul-
tiple operations [O; 1, 0, 2, ..., O; ,,,] that need to be processed in order. Each
operation O, ; has a workload 7; ;, and can be processed by an optional
machine in M, ; € M. Each machine )M has a unique processing rate
7&- The processing time t; ;;, of operation O; ; on machine M}, is defined
as t;;x = m;;/7 The machines are distributed, and there is a transport
time 7y, 1, [185] to transport a job between machines M}, and Mj,. Follow-
ing are common constraints, assumptions, and objectives associated with
DEFJSS.
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Constraints and Assumptions

* An operation is only allowed to be processed after its preceding op-
eration has been completed.

¢ The operation can only be processed by one of its optional machines.
¢ Recirculation of jobs is not allowed.

* Preemption is not allowed, meaning a machine cannot switch to pro-

cess another operation until completing the current operation.

Objectives

Minimisation of:

e Max flowtime: Fmar = max{Cy —ry,...,C,, — r,},

227=1(Ci—ry)

n 7

Mean flowtime: F'mean =

¢ Mean weighted flowtime: W Fmean = * XZ?:;(Cj 1)

7

Max tardiness: Tmax = max {max {C; — dy,0}, ..., max{C,, — d,,0}},

2 i (max {C;—d;,0})

n /4

Mean tardiness: Tmean =

w; X320 (max {C;—d;,0})
— .

* Mean weighted tardiness: WTmean =

where, C; represents the completion time of job J;.

It is noted that we do not consider all the objectives simultaneously in a
many-objective case. Instead, we evaluate them individually as single ob-
jectives in various scenarios for single-objective DFJSS studies. In the case
of multi-objective DFJSS studies, we examine pairs of objectives together
for each scenario.
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2.2 Basic Concepts and Approaches

2.2.1 Machine Learning

Machine learning [58] is a subset of artificial intelligence that focuses on
the development of algorithms and models that allow computer systems
to learn and make decisions. Machine learning algorithms can be broadly
categorised into supervised learning, unsupervised learning, and rein-

forcement learning [110].

1. Supervised learning [48]: In supervised learning, the algorithm is
trained on a labeled dataset, where the input data is paired with cor-
responding output labels. The model learns to map input features to
the correct output based on labeled training data.

2. Unsupervised learning [17]: Unsupervised learning deals with un-
labeled data, aiming to identify patterns, relationships, or structures
within the data without explicit guidance. The algorithm explores
the inherent structure of the data.

3. Reinforcement learning [111]: Reinforcement learning involves an
agent interacting with an environment and learning to make de-
cisions by receiving feedback in the form of rewards or penalties.
The agent learns through trial and error to maximise cumulative re-

wards.

Machine learning involves training and test processes [110]. During
the training phase, a model(s)/heuristic(s) is/are exposed to labeled or
unlabeled data to learn patterns and relationships. The algorithm learns
a model iteratively to minimise errors or improve performance. During
the test phase, the trained model/heuristic is evaluated on new, unseen
data to assess its generalisation capabilities. The goal is to ensure that

the model/heuristic can make accurate predictions or decisions on data
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it has not encountered during training. JSS falls into the category of re-
inforcement learning (sequential decision-making), where the scheduling
decisions made by the system are based on feedback received from the

environment.

2.2.2 Evolutionary Computation

Evolutionary computation is a family of optimisation algorithms inspired
by the principles of Darwin’s evolution [57]. Evolutionary computation
mimics the process of natural evolution to search for optimal solutions
to complex problems. The goal is to iteratively improve a population of
candidate solutions through processes such as selection, mutation, and
crossover, ultimately converging toward optimal or near-optimal solu-
tions [12]. Evolutionary computation comprises two primary categories:
evolutionary algorithms [11]], such as genetic algorithms [96], GP [119], evo-
lutionary programming [66] and evolution strategies [86], and swarm intel-
ligence [117], such as particle swarm optimisation [68] and ant colony opti-
misation [149]. There are also other evolutionary computation algorithms,
such as evolutionary multi-objective optimisation [198] and memetic com-
puting [155], which also feature a population of candidate solutions but
are not easily integrated into evolutionary algorithms or swarm intelli-
gence. This thesis focuses on evolutionary algorithms.

An evolutionary algorithm begins with the creation of an initial popu-
lation of individuals [5]. Each individual represents a potential solution to
the given problem and is initially generated randomly. The fitness of each
individual in the population is evaluated using a fitness function. The fit-
ness function measures the effectiveness of an individual in addressing a
given problem, offering a quantitative assessment of its quality by assign-
ing fitness to the individual [57]. Fitness plays an important role in the
selection process. Selection involves elitism selection and parent selection.

Elitism selection ensures the best individuals from the current generation



30 CHAPTER 2. BACKGROUND

are preserved and carried over to the next generation unchanged. These
best individuals, often referred to as elites, are typically selected based on
their fitness, with the top-performing individuals being retained. Elitism
helps to maintain high-quality solutions in the population across genera-
tions, preventing the loss of promising individuals due to random varia-
tion or crossover and mutation operators. Parent selection is the process
of choosing individuals from the current population to serve as parents
for generating offspring in the next generation. Individuals are selected
from the current population as parents based on their fitness. Individuals
with better fitness are more likely to be selected, simulating the princi-
ple of “survival of the fittest” [12]. Various selection mechanisms, such as
roulette wheel selection [184] or tournament selection [26], can be used.
After parent selection, the breeding process generates offspring based on
the selected parents by crossover, mutation, and reproduction. Crossover
involves the exchange of genetic material between two parent individuals
to create offspring [107]. In GP, crossover typically occurs at randomly se-
lected points in the individuals” genetic representation. This exchange of
genetic material allows for the combination of beneficial traits from both
parents, potentially producing offspring with improved fitness. Mutation
involves making small, random changes to the genetic material of an in-
dividual. In GP, mutation can occur at various points in an individual’s
genetic representation, such as changing a function or modifying a termi-
nal. Mutation introduces genetic diversity into the population, helping to
explore new regions of the search space and potentially discovering novel
solutions. Reproduction is the process of selecting individuals from the
current population to be carried over to the next generation unchanged.
Reproduction ensures that successful individuals have the opportunity to
pass on their genetic material to subsequent generations. These opera-
tors work together in the evolutionary process of GP to iteratively gen-
erate new generations of individuals. The algorithm continues evolving

populations through multiple generations until a termination criterion is
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met. Termination criteria can include a maximum number of generations,
achieving a satisfactory solution, or reaching a specified level of conver-
gence. Once the algorithm terminates, the best individual(s) in the final
population are considered as the solution(s) to the problem.

2.2.3 Genetic Programming

GP is a powerful evolutionary algorithm that falls under the category of
hyper-heuristic methods [120]. It is widely used for automated genera-
tion and improvement of heuristics to solve complex problems [112]. GP
operates by evolving a population of heuristics to find optimal or near-
optimal solutions. This section provides an overview of the traditional GP
algorithm. Specifically, the representation and key processes of GP are in-
troduced, including the initialisation, evaluation, selection, and evolution.
The flowchart illustrating the steps of the traditional GP is presented in

Figure 2.1}

Population initialisation
. ’ : Breeding (Reproduction,
Training set Fitness evaluation crossover and mutation)

Return the best teration Selection
Test set individual(s) |yes stop? no I

Figure 2.1: The flowchart of traditional GP.

Representation

The representation in GP defines the structure of individuals and is a crit-
ical aspect of the algorithm. Various representations exist, including tree-
based structure [120], linear-based structure [102], grammar-based struc-
ture [16], and gene expression programming [64]. For DFJSS problems, the
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commonly employed representation is the tree-based structure. In DFJSS,
where two types of decision points need consideration (sequencing and
routing), two potential tree-based representations can be used. One op-
tion involves a single-tree-based representation with two subpopulations,
each dedicated to a specific type of decision point [160]. Another option is
a multi-tree-based representation, where one tree is designated for routing
rules, and the other is for sequencing rules [265]. In both single-tree-based
and multi-tree-based representations, the tree is constructed by combining
various functions and terminals. Functions typically denote mathematical
or logical operations, such as {+, —, x, /}, and are represented by internal
nodes in the tree structure. Terminals represent scheduling information
related to the system state, jobs, and machines on the shop floor and serve
as the leaf nodes of the tree. In DFJSS, the multi-tree-based GP has demon-
strated superiority over the single-tree-based GP with two subpopulations
[265]. This is because the multi-tree-based GP allows for the concurrent
evolution of routing and sequencing rules simultaneously, and can better
capture interactions between these rules, leading to more effective solu-

tions.

The routing rule  The sequencing rule

Figure 2.2: An example of multi-tree-based representation of a scheduling
heuristic for DF]JSS.

An illustrative example of the multi-tree-based representation for
DFJSS is depicted in Figure where PT, TIS, WIQ, and MRT are
problem-specific features. PT denotes the processing time of operation.
TIS represents the time in the system of a job. WIQ is the work in the
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queue, representing the total processing time of operations in the queue.
MRT means the machine ready time. If a smaller value represents a higher
priority, the routing rule in Figure 2.2 prefers machines providing smaller
processing time, smaller working in queue, and larger ready time. The
sequencing rule in Figure 2.2 prefers operations with smaller processing

time and smaller time in the system.

Initialisation

Initialisation is an important step in GP involving the creation of an initial
population of candidate heuristics [33]. Individuals in the initial popula-
tion are generated randomly. For tree-based representation, the size and
structure of these trees are determined by parameters like maximum depth
and generation methods. Three common tree generation methods are Full,
Grow, and Ramped-half-and-half. The Full method ensures uniform depth
across all leaf nodes, creating uniformly shaped trees with maximal depth
[119]. The Grow method allows varied depths, providing more flexible
structures [119]. Figure [2.3|illustrates examples of trees generated by the
Full and Grow methods. Terminal nodes in the tree represent variables,
constants, or input values related to the given problem, while function
nodes represent operations or functions. The selection of functions and
terminals during tree creation is randomised. The Ramped-half-and-half in-
volves half the individuals generated using the Full method and the other
half using the Grow method [119]. This method is widely adopted for

initialisation in GP as it produces a more diverse population.

Evaluation

In GP, fitness evaluation is a crucial step that assesses the performance of
individuals within the population based on their ability to solve a given
problem [120]. The goal is to quantify how well each individual addresses

the objectives of the problem. The fitness of an individual is commonly
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R

(a) Full (b) Grow

Figure 2.3: An example of individuals generated by Full and Grow meth-

ods.

evaluated through an objective function representing the specific criteria
the algorithm aims to optimise. In DFJSS, this objective function can be
the flowtime, tardiness, or other scheduling performance metrics [261]]. To
evaluate an individual’s fitness, the GP individual is executed or simu-
lated on training instances, producing a fitness value that quantifies how
well the individual solves the problem. In scheduling with minimisa-
tion objectives, lower values are typically preferred (e.g., shorter flow-
time, shorter tardiness). In scenarios involving multiple conflicting ob-
jectives (multi-objective optimisation), a multi-objective fitness function
can be used [270]. This function combines diverse objectives into a single
metric or evaluates each objective independently. To avoid the high com-
putational cost associated with evaluating the fitness of each individual in
the population, some studies propose using surrogate models [76]. These
models serve as efficient approximations of the true fitness function [263].
Fitness values play a crucial role in the selection process, influencing
the probability of individuals being chosen as parents for breeding. For
problems with minimisation objectives, smaller fitness values increase the
probability of an individual being selected, promoting the evolution of
better solutions. Overall, fitness evaluation is important to the success of
GP, as it guides the evolution of the population toward better solutions
over generations. The effectiveness of the algorithm relies on the accurate
representation of problem-specific objectives in the fitness function.
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Selection

Selection is essential in GP that determines the direction of evolution [90].
Selection can be divided into elite selection and parent selection. Elite selec-
tion involves preserving a certain percentage of the best individuals from
the current generation to be directly carried over to the next generation.
This helps maintain high-performing individuals in the population. Parent
selection determines which individuals from the current population will be
chosen to serve as parents for creating the next generation [62]. The choice
of parents significantly influences the diversity and quality of the popula-
tion.

Individuals with better fitness values are more likely to be selected as
parents. This approach emphasises the principle of “survival of the fittest”
and aims to propagate genetic material from individuals that have per-
formed well in solving the problem. Tournament selection and roulette
wheel selection are two parent selection examples commonly used in GP.

Tournament selection involves randomly selecting a subset of individu-
als from the population and choosing the one with the highest fitness as
a parent [62]. The number of sampled individuals is set manually in ad-
vance. Roulette wheel selection allocates a probability of selection to each
individual in proportion to their fitness [228]. Individuals with better fit-
ness have larger “slices” of the roulette wheel, increasing their chances
of being chosen. The choice of parent selection operator depends on the
specific characteristics of the problem, the desired balance between explo-

ration and exploitation.

Breeding

The breeding process in GP involves the creation of new individuals (off-
spring) by combining genetic material from selected parents [120]. The
primary genetic operators used in GP are crossover, mutation, and repro-

duction.
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Crossover involves exchanging genetic material between two parents to
generate one or more offspring. Crossover facilitates the recombination
of building blocks from different parents, allowing the offspring to inherit
good combinations of genetic material. Different crossover methods exist,
such as subtree crossover and one-point crossover. For example, subtree
crossover selects a subtree from one parent and replaces a randomly cho-
sen subtree in the other parent [265]. An example of the crossover process
in GP for DFJSS can be seen in Figure

Parent A Offspring A
Tree 1 Tree 2 Tree 1 Tree 2

Crossover
point >

Swap

Offspriné B

Tree 1 Tree 2
Parent B \Swap
Tree 1 Tree 2 %

Crossover
_/’point

Figure 2.4: The process of crossover.

Mutation is a genetic operator that introduces small random changes
to an individual’s genetic material [120]. Mutation introduces genetic di-
versity, helping the population explore new regions of the solution space
that might lead to improved solutions. Mutation can take various forms,
such as changing a function or terminal in a subtree, adding or deleting
nodes. Mutation serves as an exploitation mechanism, allowing the algo-
rithm to discover novel solutions and prevent premature convergence. An
example of the mutation process in GP for DFJSS can be seen in Figure

Reproduction is a genetic operator that allows certain individuals (not
necessarily the best ones) to be directly copied into the next generation
without modification [119]. This process preserves high-quality genetic
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Parent Offspring
Tree 1 Tree 2 Tree 1 Tree 2

Mutation
oint\ .. "\
S /// i v\/
Random replace
subtree ! ]

Figure 2.5: The process of mutation.

material, ensuring that superior individuals from the current generation
persist in contributing to the population. By retaining high-quality indi-
viduals, reproduction helps maintain consistency and stability within the
population.

These genetic operators often work simultaneously. Typically, a com-
bination of crossover, mutation, and reproduction is applied to generate
offspring in a new generation [119]. Moreover, crossover typically has the
highest probability of occurrence, followed by mutation, and lastly, repro-
duction in GP for DF]JSS [267]].

2.24 Heuristic and Hyper-heuristic

A heuristic approach refers to a problem-solving strategy or technique for
finding approximate solutions to problems [14]. Heuristics are frequently
employed in dealing with complex or computationally demanding prob-
lems. While heuristic methods do not ensure optimal solutions, they offer
rapid, practical, and often satisfactory results [263]]. Simple rules, such as
scheduling heuristics that prioritise candidate machines or operations, are
considered heuristics in specific domains, like scheduling problems [263].

A hyper-heuristic [32] is a form of heuristic learning approach that
distinguishes itself from traditional heuristics by operating on a set of

heuristics rather than directly generating solutions in the problem’s solu-
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tion space. Hyper-heuristic approaches can be divided into two categories,
which are heuristic selection [25] and heuristic generation [33]. The former
one selects from existing heuristics for different situations, the latter one

generates new high-level heuristics from existing low-level heuristics.
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Figure 2.6: An example of generating high-level heuristic from simple low-

level heuristics with GP.

The relationship between heuristics and hyper-heuristics lies in their
complementary roles in the optimisation process. Heuristics serve as the
fundamental building blocks or strategies for solving specific types of
problems. They are the low-level, problem-specific approaches that can be
effective in certain situations. Hyper-heuristics operate at a higher level
and coordinate the use of heuristics [33]. They aim to optimise the selec-
tion or generation of heuristics based on the characteristics of the given
problem. While heuristics are often designed for specific problem types,
hyper-heuristics offer adaptability. In DFJSS, GP serves as a typical hyper-
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heuristic approach for generating heuristics. Take GP as an example, Fig-
ure 2.6)shows how to generate high-level heuristics from low-level heuris-
tics by GP. The four circles, each in a distinct color, represent different
low-level heuristics, while the circles in gray color denote functions such
as {+, —, x, /}. The GP learning process is illustrated within the yellow
box. Initially, a population of high-level heuristics is randomly generated.
Subsequently, these high-level heuristics are iteratively improved through
processes of evaluation, selection, and breeding across generations. Ul-
timately, the best high-level heuristic(s) is the output of the GP learning

process.
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Figure 2.7: An example of DFJSS decision process.

2.2.5 Scheduling Heuristics

A scheduling heuristic is a priority function used to calculate the priority
of the candidate machines or operations based on the system state and the
state of the candidate machines and operations. In JSS and dynamic JSS,
a scheduling heuristic only includes one sequencing rule, which is used
to select operations when a machine is idle. In flexible JSS and DFJSS,
a scheduling heuristic consists of two rules: a routing rule and a sequenc-
ing rule, which are used when the decision point arrives. An example of

DFJSS and how to use the scheduling heuristic with a routing rule and a
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sequencing rule is shown in Figure As we can see, once an operation
becomes ready (routing decision point), the routing rule will select a ma-
chine to process this operation. Once a machine becomes idle (sequencing
decision point), the sequencing rule will select an operation as the next
task for this machine. The most commonly used scheduling heuristics in-
clude WIQ (the works in the queue), PT (the processing time of operation),
and SL (the slack) [258, 265]. Scheduling heuristic is an efficient method
to make fast decisions at decision points and can cope well with dynamic

events.

2.2.6 Reinforcement Learning

RL [55] is a subfield of machine learning and is normally used as a hyper-
heuristic method. RL is inspired by the way animals learn through trial
and error by interacting with their surroundings. Basic RL is modeled
as a Markov decision process [183] which can be defined by a tuple
(S, A, ¢, R,v), where:

e S isthe set of states,

e A is the set of actions,

¢ is the state transition probability function: ¢(siy1]st, ar),

R is the reward function: R(s, a;, S¢41),
¢ v is the discount factor (0 <~ < 1).

An agent interacts with the environment in discrete time steps. At each
time step ¢, the agent observes the current state s;, selects an action a, from
the set of possible actions A, and receives a reward r; according to the
reward function. The environment transitions to a new state s;,; based on
the state transition probability. The agent’s goal is to learn a policy 7 (als),
a mapping from states to actions, that maximises the expected cumulative
reward [55]. Figure2.8|gives the general framework of RL.
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Figure 2.8: The general framework of RL [153]].

RL encompasses various representations for the policy (heuristic),
which are not only influenced by the learning algorithms but also closely
tied to the nature of the specific problem being addressed. Different
representations exist in RL, including feedforward deep neural networks
[56, 131], recurrent neural networks [151], and graph neural networks
[170}, 250]. Each of these representations requires problem-specific fea-
tures as input. RL utilises learning algorithms to guide the agent in up-
dating its policy based on observed experiences. Common learning algo-
rithms include Q-learning [186], deep Q-networks (DQN) [129], and dou-
ble DON [216]. Among these representations and learning algorithms, the
deep neural network and double DQN are particularly popular for solv-
ing DFJSS problems. Taking RL with the deep neural network and double
DON as an example, the details about key components in RL, including
representation, initialisation, action selection and evaluation, and policy

updating, are introduced as follows.

Representation

The double DQN introduces the concept of using two separate Q-
networks: the online Q-network (Q)) and the target Q-network ()’). The
online Q-network (@) is used for action selection, representing the policy
that an agent follows to interact with its environment. The policy is often

represented by a deep neural network that takes the state of the environ-
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ment as input and outputs Q-values for each possible action.

__________________________________________________________________________________________________________

The sequencing rule The routing rule
--------------------------------------------------- o m e e ey
E i Hidden layer i i Hidden layer
11 Input Output 1 Input Output
11 layer _— layer 1 E layer I layer
—~® —5°
— & — 0
—~ @ —o
Operation Machine i

Figure 2.9: An example of end-to-end neural network-based representa-
tion of a scheduling heuristic for DFJSS.

An illustrative example of the feedforward deep neural network-based
representation for DFJSS is depicted in Figure which includes the
arrangement of neurons (nodes) and connections (edges) between them.
These layers can be broadly categorised into three types: the input layer,
hidden layers, and the output layer. To be specific, the input layer repre-
sents the features or input variables related to the DFJSS scheduling sys-
tem. Each node in the input layer corresponds to a specific feature of the
input data (e.g., the scheduling state in DFJSS). The number of nodes in
the input layer is determined by the dimensionality of the input data. Be-
tween the input and output layers, there can be one or more hidden layers.
Each node in a hidden layer represents a learned feature or abstraction
based on the input data. The output layer produces the final results of
the neural network’s computation. Each node in the output layer repre-
sents a numerical value, representing the priority of each action. For di-
rect (end-to-end) RL, the actions directly represent the machines or opera-
tions, as shown in Figure For indirect RL, the actions correspond to the
scheduling heuristics. Once the scheduling heuristic is determined, it sub-
sequently makes the final decision regarding the machines or operations
to be scheduled. The number of nodes in the output layer is determined
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by the desired output of the network. Each connection between nodes has
an associated weight, representing the strength of the connection. Infor-
mation flows from the input layer, through the hidden layers, and finally
to the output layer through these weighted connections. To be noticed, the
number of hidden layers and nodes in each input/hidden/output layer is
a design choice and can vary based on the complexity of the problem and

can vary for sequencing and routing rules.

Initialisation

The RL process starts with initialising the online Q-network (@), the target
Q-network (Q)'), and the replay memory. Common Q-network initialisa-
tion methods include random initialisation or using pre-trained weights
from a prior related task. Proper initialisation is crucial to ensure a good
starting point for learning. Normally, random initialisation is employed.
The replay memory is initialised empty and is used to store experience

(51, at, 1y, si41) for training the online Q-network.

Action Selection and Evaluation

The action selection process involves choosing an action based on the
state s; of the environment at time step ¢. In double DQN, the agent es-
timates Q-values for each action using its Q-networks. The action a; is
then selected based on a certain exploration-exploitation strategy, such as
epsilon-greedy [216], where the agent chooses the action with the highest
estimated Q-value with high probability, but occasionally explores other
actions. After selecting an action, the agent executes it in the environment
and receives a reward r; and the next state s,;1. The Q-value update rule
in DON is given by the Bellman equation [166] and is represented as Eq.

(2.1)
Q(st;ar) = (1 — o) Q(se, ar) + o (Tt + 7 max Q(St41, a')) (2.1)
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where Q)(s, a;) is the Q-value for state s, and action a;. o, is the learning
rate. r, is the observed reward after taking action a, in state s;. v is the
discount factor. s;,; is the next state and max, Q(s;41, a’) is the maximum
Q-value for the next state s, .

Traditional DQN methods have an overestimation bias issue. Double
DON helps mitigate the overestimation bias present in traditional DQN
methods, leading to more stable and accurate value estimates [216]. The
use of two Q-networks, with one for action selection and one for value
estimation, enhances the learning process and contributes to better policy
updates. The Q-value of the selected action in double DQN is updated
based on the observed reward and the estimated Q-value of the next state,
which is represented as Eq. (2.2).

Qst,ar) = (1 — ) Q(s1, ar) + v (Tt + Q' (8141, argmaxa/Q(Sm, d))) (2.2)

where « is the learning rate. Q)(s, a;) is the Q-value for state s, and action
a; in the online Q-network, Q'(s;41,argmax ,Q(s:41,a’)) is the Q-value for
the next state s;;; using the target Q-network, and argmaxa’Q(s¢1, a’) se-
lects the action that maximises the Q-value in the online Q-network.

The goal is to maximise the cumulative reward as Eq (2.3). A well-
designed reward function is crucial for training a high-quality policy for
RL.

G = Z’yerkH, (2-3)
k=0

where ~ is the discount factor, and ;. is the reward at time ¢ + k + 1.

Policy Updating

The policy updating process involves adjusting the parameters of the Q-
networks to improve the accuracy of Q-value predictions. In double DQN,
this is done through a combination of minimising the temporal differ-

ence error and updating the Q-networks” weights using optimisation tech-
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niques like stochastic gradient descent [216]. The online Q-network (Q)
is used for action selection and is updated more frequently. The target
Q-network (Q') is periodically updated to match the online Q-network’s
parameters. This helps stabilise the learning process and reduce overesti-
mation bias.

The RL with double DQN involves a continuous cycle of action selec-
tion and policy updating. The learning process aims to refine the policy,
enabling the agent to be more proficient at making decisions in complex

and dynamic scenarios.

2.3 Job Shop Scheduling Approaches

This section provides a comprehensive investigation of various ap-
proaches for solving JSS problems, including classical approaches and
their variations. The main approaches are categorised into three classes,
which are exact approaches, heuristic approaches, and hyper-heuristic ap-

proaches. The common approaches used for JSS and their classifications
are shown in Figure

2.3.1 Exact Approaches

Exact approaches for solving JSS problems involve algorithms and tech-
niques that guarantee the identification of an optimal solution within a
reasonable amount of time. These methods are particularly effective for
smaller problem instances, where the computational complexity remains
manageable. Some key exact methods used in JSS include mathematical
programming [221]], integer linear programming [133], branch-and-bound
[281], and dynamic programming [40]. Mathematical programming involves
formulating a mathematical model that represents the JSS problem, typi-
cally in the form of objective functions and constraints [221]. The objec-

tive function quantifies the performance measure to be optimised, such
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Figure 2.10: The common approaches used for JSS and their classifications.

as minimising makespan or total completion time, while constraints cap-
ture the limitations and requirements of the scheduling problem, such as
machine capacities, precedence relationships between operations, and re-
source constraints. Integer linear programming is a specific type of math-
ematical programming where decision variables are restricted to integer
values [133]. In the context of JSS, integer linear programming is often
used to formulate scheduling problems as optimisation models with bi-
nary or integer decision variables representing the assignment of opera-
tions to time periods or machines. Branch-and-bound is a widely used op-
timisation technique that explores the solution space by dividing it into
subproblems and bounding the solution space based on certain criteria.
It efficiently prunes branches of the solution tree that cannot lead to an
optimal solution, reducing the overall search space. Some studies of us-
ing branch-and-bound for JSS can refer to [4, 6]. Branch-and-bound with

time-indexed formulation is a variation of branch-and-bound that formu-
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lates the problem in a time-indexed representation [9], allowing for a more
efficient exploration of the solution space. It exploits the temporal aspects
of the problem to enhance pruning and reduce the search space. Some
other variations of branch-and-bound methods that were proposed and
successfully applied to many small-scale scheduling problems can be seen
in [182, 193]]. Dynamic programming [40] is often used for specific cases,
such as in the context of parallel machine scheduling. It breaks down the
scheduling problem into smaller subproblems and utilises optimal solu-
tions to these subproblems to construct an optimal solution for the overall
problem. Some studies of using dynamic programming for JSS can refer
to [40, 183} [165] 204].

Although exact methods guarantee optimal solutions, they often be-
come computationally intractable for larger problem instances due to their
inherent complexity [274]. Additionally, exact methods struggle to adapt

to dynamically changing parameters.

2.3.2 (Meta-)Heuristic Approaches

(Meta-)Heuristic approaches play a key role in addressing the JSS prob-
lems, particularly for large and complex instances where exact approaches
are computationally infeasible. Unlike exact approaches, (meta-)heuristic
approaches do not guarantee to find an optimal solution. Instead, they
aim to find good enough solutions. (Meta-)Heuristic approaches can be
categorised into two groups: iterative improvement heuristic approaches
and constructive heuristic approaches.

Common iterative improvement heuristic approaches for JSS include ge-
netic algorithm [82, 141], Tabu search [190, 219], simulated annealing [8],
artificial bee colony optimisation [46|277], ant colony optimisation [89,99],
and particle swarm optimisation [130, [132]. Genetic algorithm is inspired
by the process of natural selection [233]. The genetic algorithm explores
the solution space efficiently, leveraging the principles of survival of the



48 CHAPTER 2. BACKGROUND

fittest to converge towards good-quality solutions [179]. Solutions to the
scheduling problem are represented as chromosomes, and genetic opera-
tions such as crossover and mutation are applied to evolve a population
of solutions. Tabu search [79] starts from an initial feasible solution and
explores the neighborhood of the current solution iteratively. To avoid
getting trapped in a local optimum, a flexible “memory” technique (Tabu
list) is used in the Tabu search to record and select the optimisation pro-
cess that has been performed and to guide the search direction for the next
step. In [190], Tabu search was proposed for flexible JSS, which is com-
posed of two parts. One part is used to identify the optimal sequence of
operations, while the other focuses on determining the optimal choice of
machines. This study shows that the Tabu search achieves better perfor-
mance when compared to the branch-and-bound method. Furthermore,
in [63], an innovative circular algorithm based on Tabu Search was intro-
duced. This algorithm is designed to enhance both the exploration and
exploitation aspects of the program, ultimately leading to improved solu-
tions. Simulated annealing is a probabilistic optimisation algorithm that
mimics the annealing process in metallurgy. The algorithm accepts moves
that lead to both better and worse solutions, allowing it to escape local op-
tima [22]. The ant colony optimisation, bee colony optimisation, and par-
ticle swarm optimisation are nature-inspired optimisation algorithms that
found widespread application in solving diverse scheduling problems, as
evidenced by studies such as [46, 59, 167, 100} 220]. Each algorithm lever-
ages the principles of collective intelligence observed in social insects or
particles to guide the search for high-quality schedules.

Overall, the iterative improvement heuristic approaches can find good
solutions and can handle large-scale problems well. However, they are not
suitable for dynamic JSS, since the rescheduling process inherent in itera-
tive improvement heuristic approaches is still time-consuming, making it

inefficient for reacting to dynamic events.

Constructive heuristic approaches (e.g. scheduling heuristics) offer real-
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time schedule generation, making them suitable for dynamic JSS prob-
lems. These approaches assign priorities to operations or machines at de-
cision points based on the system state [34]. Then, operations and ma-
chines are dispatched based on their priorities, with the highest-priority
operation or machine being selected first. Common scheduling heuristics
include First-In-First-Out, Shortest Processing Time First, Longest Process-
ing Time First, and Most Operations Remaining First [196]. The choice of
a scheduling heuristic depends on the specific practical problems or cus-
tomer requirements. For instance, if minimising the mean flowtime of all
jobs is the objective, the Shortest Processing Time First might be the pre-
ferred choice. It’s worth noting that a single scheduling heuristic might not
perform well across various scenarios, and a number of different heuris-
tics are often required. However, designing effective scheduling heuristics
demands a lot of domain knowledge and can be a time-consuming pro-
cess. Moreover, it is challenging to manually design scheduling heuristics
that can perform well on multiple objectives simultaneously.

2.3.3 Hyper-heuristic Approaches

Hyper-heuristic approaches [30], including both heuristic selection and
heuristic generation, represent advanced approaches in solving hard com-
putational search problems. These approaches operate at a high level,
automating the process of selecting or generating heuristics to optimise
scheduling performance. Both heuristic selection and generation are par-
ticularly valuable in dynamic environments where the optimal heuristic
might change over time and are effective in addressing complex prob-
lem structures where predefined heuristics might not be sufficiently adap-
tive. In this case, hyper-heuristic approaches are quite suitable for solving
DFJSS problems.

Heuristic selection involves selecting from a predefined set of existing

heuristics based on their performance in specific situations. The selection
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mechanism relies on historical information or problem-specific features to
identify the most suitable heuristic for the current situation. This adapt-
ability allows the hyper-heuristic to dynamically choose the most effective
heuristic for different instances. Genetic algorithm (GA) hyper-heuristic is
an example of heuristic selection. In [61} [188]], GA hyper-heuristic is used
to solve the JSS problems. To be specific, GA hyper-heuristic navigates the
space of sequences of heuristic choices. In a real-world scheduling chal-
lenge presented in [87], the problem involved scheduling the collection
and delivery of live chickens from farms in Scotland and northern Eng-
land to processing plants, considering specific order requirements. The
proposed GA hyper-heuristic in this scenario incorporates two GAs. One
GA is dedicated to selecting heuristic rules for managing order allocation,
while the other GA focuses on scheduling the arrival of deliveries. The
method has achieved good results in practical applications. RL can also
serve as a heuristic selection method for JSS. In this context, RL is often
applied by considering manual scheduling heuristics as actions. The pro-
cess entails utilising RL to dynamically select appropriate actions when
encountering decision points. RL becomes particularly valuable when the
number of candidate machines or operations is not fixed at different deci-
sion points, posing a challenge in defining a predetermined action space.
[36, 184, 136, 139] are some examples of using RL for making heuristic se-

lections to solve JSS problems.

Heuristic generation goes beyond using predefined heuristics by cre-
ating new heuristics or combining existing ones to adapt to the given
problem. It dynamically learns or evolves heuristics during the optimisa-
tion/learning process. RL can serve as a heuristic generation method for
JSS. However, the application of heuristic generation RL is often limited
to static and non-flexible environments. Dynamic JSS problems, where
the number of candidate machines or operations can change on the shop
floor, pose a significant challenge for heuristic generation RL. GP is a pop-

ular heuristic generation method, which evolves a population of heuris-
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tics over multiple generations. GP has been widely used in automatically
evolving scheduling heuristics for solving JSS problems. In [163]], the ex-
isting studies about using GP and its variants for solving JSS problems
are summarised to provide an overall picture. Each of these variants of
GP is able to evolve scheduling heuristics that are superior to most of
those manually designed ones by human experts in the literature. A more
comprehensive review of using GP for automatically learning scheduling
heuristics to solve JSS problems is detailed in Section[2.4]

Overall, hyper-heuristic approaches, whether through heuristic selec-
tion or generation, represent a powerful paradigm for addressing JSS
problems. These approaches leverage adaptability and computational in-
telligence to dynamically choose or create heuristics, ultimately enhanc-
ing scheduling performance across diverse instances of the JSS problems.
Here, we have provided a general overview of existing approaches, en-
compassing exact approaches, heuristic approaches, and hyper-heuristic
approaches, for various types of JSS problems. Next, we will concentrate
on a comprehensive review of the relevant literature that aligns with our

contributions.

2.4 GP for Evolving Scheduling Heuristics

In recent years, GP has been widely used to solve different kinds of
JSS problems. In [157], a unified framework for the automated design
of scheduling heuristics with GP was developed and the overall picture
of how GP can be applied for evolving scheduling heuristics was pro-
vided. In this section, we will introduce different kinds of GP methods
designed for different kinds of JSS problems. In this thesis, the JSS prob-
lems are classified according to environmental conditions. They are classi-
fied into static scheduling problems, including static JSS and static flexible
JSS problems, and dynamic scheduling problems, including dynamic JSS
and DFJSS problems.
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2.4.1 Static Scheduling Problems

While GP is commonly employed for learning scheduling heuristics in dy-
namic JSS, its applicability extends to static JSS as well. In the domain of
using GP for static JSS, it can be treated either as a learning approach or an
optimisation approach [262]. When GP is used as a learning approach, GP
operates similarly to its application in dynamic JSS. It learns scheduling
heuristics based on training instances, and the learned heuristics are sub-
sequently tested on an unseen test set to assess performance. When GP is
used as an optimisation approach, GP can be utilised directly to obtain so-
lutions or schedules for given problems, skipping the training and testing
phases usually associated with learning approaches. Following are some
examples illustrating the application of GP in JSS and flexible]SS.

Static Job Shop Scheduling: In the early stage, GP is applied to ad-
dress straightforward ]SS problems [150]. The experimental results re-
vealed that GP could evolve effective scheduling heuristics for solving
such problems. Building upon this foundation, Nguyen et al. conducted a
computational study of representations in GP for JSS in [159]. Their find-
ings conclude that integrating system and machine attributes in the repre-
sentation significantly enhances the quality of evolved scheduling heuris-
tics. Then, to further improve the performance, Nguyen et al. proposed a
new kind of scheduling heuristic called iterative scheduling heuristic that
can iteratively refine schedules by leveraging the information recorded
from previous or existing schedules. The work presented in [162] pro-
posed two selection strategies to help surrogate-assisted GP in evolving
scheduling heuristics for JSS. Both strategies are used to select diverse in-
dividuals for the next population. One is to enhance population diversity
by selecting individuals with different behaviours (phenotypes), and the
other one is to choose individuals with different genotypes. In [143], an ef-
ticient feature selection strategy was proposed for GP to solve the JSS prob-
lems. To be specific, a niching-based search framework was developed to

extract a diverse set of good scheduling heuristics, and a surrogate model
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was used to reduce the complexity of fitness evaluation. In addressing a
specific JSS problem with lot-sizing issues, a cooperative coevolution GP
was proposed in [248]. This method obtains effective performance, em-
phasising the efficacy of GP in solving specific challenges within the JSS
problem domain.

In [113]], the focus is on addressing the multi-objective JSS problems
using a novel GP method assisted by the island model. The experimen-
tal results reveal that this innovative GP method, in conjunction with the
island model, exhibits superior performance compared to classical multi-
objective optimisation methods, including NSGAII and SPEA2. The paper
considers three objectives. In a related exploration, the many-objective
JSS problem is studied, which involves considering four or more objec-
tives [140]. To tackle this complex problem, the study proposes a new
hybridised algorithm that combines GP and NSGAIII, showcasing a com-
prehensive approach to address the challenges posed by many objectives
in the JSS domain.

Static Flexible Job Shop Scheduling: In [95], GP is employed to evolve
scheduling heuristics for solving the flexible JSS problem. The evolved
scheduling heuristics demonstrate superiority over manually designed
scheduling heuristics. In a more specialised context, Zhu et al. [286] pro-
posed the application of GP to address a specific flexible JSS problem in-
corporating multi-process planning, showcasing the effectiveness of GP
in solving specific challenges within the flexible JSS problem domain. In
[28], an investigation of both single-tree and multi-tree representations in
GP for solving the flexible JSS problem was conducted. For the single-tree
representation, the work involves learning sequencing and routing rules
in two parallel GP methods, while the GP with multi-tree representation
simultaneously learns scheduling heuristics with sequencing and routing
rules. The effectiveness of both representations was validated on bench-
mark flexible JSS instances against manually designed scheduling heuris-

tics. Furthermore, this study extends its evaluation to dynamic and real-
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world flexible JSS instances, verifying the effectiveness of the proposed
methods.

In [206], the multi-objective flexible JSS problem was studied with three
objectives taken into consideration. However, these objectives are linearly
combined into a single objective, transforming the original multi-objective
flexible JSS problem into a single-objective flexible JSS problem. In [285], a
multi-agent-based GP was proposed for solving the flexible JSS problem,
with a focus on a real-world application of GP in an Aero-Engine blade
manufacturing plant.

Based on the literature review, there are limited studies about using GP
for solving the JSS and flexible JSS problems. Normally, the dynamic is a
more important issue, bringing scheduling scenarios closer to real-world
applications and requiring greater attention.

2.4.2 Dynamic Scheduling Problems

Differing from static JSS, dynamic JSS involves incomplete advanced
knowledge of job or machine information. Generally, GP is employed
as a learning algorithm, with the expectation that the learned scheduling
heuristics from the training process exhibit strong generalisation capabili-
ties to effectively handle a range of unseen instances. Following are some
examples illustrating the application of GP in dynamic JSS and DFJSS.
Dynamic Job Shop Scheduling: In the field of dynamic JSS, GP is ap-
plied to evolve effective scheduling heuristics for dynamic JSS, consider-
ing various dynamic events. Example studies such as [60, 73] 114, 237] fo-
cus on GP for dynamic JSS, particularly in the context of new job dynamic
arrival events. These studies validate the effectiveness of GP against man-
ually designed scheduling heuristics. Enhanced GP methods, integrating
various machine learning techniques such as feature selection [195], multi-
task learning [102], ensemble, niching [171], and surrogate, have been

studied to further improve the effectiveness of GP in dynamic JSS. No-
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table works, including [175, 194, 247, 253]], explore these techniques and
demonstrate improved performance over traditional approaches. Some
studies extend their focus to consider both new job dynamic arrival events
and machine breakdown events. For instance, in [174], simultaneous con-
sideration of dynamic job arrivals and machine breakdowns is addressed,
with the introduction of new machine breakdown terminals designed for
GP. In the above studies, a single-tree representation is employed to learn
scheduling heuristics with a single rule. Nevertheless, in specific scenar-
ios, employing two rules can yield superior results. Differing from the se-
quencing rule and routing rule typically utilised in scheduling heuristics
for flexible JSS, these two rules consist of a general sequencing rule and a
specialised rule tailored for a specific goal. For example, in [173], a niched
GP method combined with multitasking was proposed to evolve two rules
simultaneously, effectively handling various machine breakdown scenar-
ios. This approach generates sequencing rules effective across the entire
dynamic JSS problem and specialist rules specifically tailored for handling
machine breakdown issues. In [158], scheduling heuristics with a sequenc-
ing rule and a due-date assignment rule are evolved for dynamic JSS with
multiple objectives. The due-date assignment rule is evolved specifically
for optimising the tardiness objective. In addition to the effectiveness, cer-
tain studies focus on the interpretability of evolved scheduling heuristics
by GP for dynamic JSS [103, [144].

Moreover, several studies concentrate on the application of GP to ad-
dress multi-objective dynamic JSS. For example, in [160], four novel multi-
objective GP methods for evolving scheduling heuristics in multi-objective
dynamic JSS were proposed. These methods are formulated by integrat-
ing GP with classical multi-objective algorithms, including NSGAII and
SPEA2. In [116] a novel GP for evolving sampling heuristics for multi-
objective dynamic JSS was developed. Specifically, during the evolution-
ary process, sampling heuristics are employed to discard poor instances in
favor of good instances, thereby enhancing the Pareto front. More studies
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of GP for multi-objective dynamic JSS can refer to [1}[158| 161} 164, 243].

Dynamic Flexible Job Shop Scheduling: DFJSS is more complex
compared to other types of JSS due to complicated interactions between
sequencing and routing decisions in a dynamic environment. DFJSS has
been attracting more and more attention from researchers due to its prac-
tical value. In addressing the challenge of managing multiple sequenc-
ing and routing scheduling decisions in a job shop, two typical GP meth-
ods are proposed, which are the cooperative coevolution GP method and
the multi-tree GP method. In the cooperative coevolution GP approach,
the sequencing rule and routing rule are evolved in two distinct sub-
populations [245]. On the other hand, the multi-tree GP method evolves
both sequencing and routing rules simultaneously within a single popula-
tion, with each individual comprising two trees [265]. Research indicates
that both of these methods can achieve superior performance compared
to manually designed scheduling heuristics. On top of that, certain im-
proved cooperative coevolution GP methods and multi-tree GP methods
are developed by combining them with one or multiple machine learn-
ing techniques, such as feature selection, surrogate, multi-task learning,
knowledge transfer, and ensemble for DFJSS [262]. These studies are cate-
gorised and reviewed based on the specific techniques as follows.

GP with feature selection: In [244]], an enhanced cooperative coevolution
GP with feature selection was proposed. This method initially runs co-
operative coevolution GP to obtain a diverse set of promising scheduling
heuristics. Subsequently, feature selection and construction are performed
based on the obtained heuristics to generate high-level terminals, which
are then added to the terminal set. The cooperative coevolution GP is then
rerun using the extended terminal set to evolve high-quality scheduling
heuristics. In [269], an improved cooperative coevolution GP with feature
selection was developed. Feature selection is employed to remove unim-
portant features and reduce the search space. Similarly, the same feature

selection technique is utilised in multi-tree GP in [246]. In [255], a novel
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two-stage multi-tree GP with feature selection was designed to evolve
scheduling heuristics specifically with the selected features for DEF]JSS.
Meanwhile, individual adaptation strategies were proposed to leverage
the information from both the selected features and the investigated indi-
viduals during the feature selection process. In [256], a feature selection
strategy was developed to guide GP in searching for the more promising
region by utilising information during the evolutionary process. Specifi-
cally, the probability of each feature is calculated based on the number of
occurrences of features. A larger number of occurrences result in a higher
probability for the feature. During the generation of new individuals and
subtrees for mutation, features are selected based on their probability. In
[257], novel feature selection strategies were proposed to guide subtree se-
lection for crossover and mutation rather than selecting them randomly.
The occurrences of features are utilised to measure the importance of each
subtree of the selected parents. The probability of selecting a subtree is
based on its importance and the type of genetic operators. In [258], a cor-
relation coefficient-based recombination guidance for GP was proposed.
The importance of subtrees is measured based on the correlation coeffi-
cient, and the probability of subtree selection is set according to the im-
portance of the subtree. During crossover, offspring is generated based
on the probability of a subtree, meaning an unimportant subtree from one
parent will be replaced by an important subtree from the other parent.
These studies focus on integrating feature selection techniques into GP to
guide its search towards promising regions, thereby evolving high-quality

scheduling heuristics while saving training time.

GP with surrogate: In [266], appropriate surrogates for cooperative co-
evolution GP were investigated to reduce its computation time while not
sacrificing its performance for solving the DFJSS problem. With the ex-
perimental results, the potential of using surrogate models for solving the
DFJSS problem was confirmed. The effectiveness of surrogate models in

terms of accelerating the evolutionary process and improving the qual-
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ity of the evolved scheduling heuristics on both cooperative coevolution
GP and multi-tree GP was further verified in [283]. In [259], an effec-
tive collaboration mechanism with knowledge transfer for multi-fidelity-
based surrogate models for GP was proposed to solve the DFJSS problem.
First, depending on the characteristics of the problem, the given problem
was simplified and several surrogate models with different fidelity were
developed. Second, an effective collaborative framework with knowl-
edge transfer was proposed for the designed multi-fidelity-based surro-
gate model to evolve effective scheduling heuristics. Regarding knowl-
edge transfer, this study uses the subtree transfer strategy, wherein a par-
ent is chosen from other subpopulations during crossover based on the

transfer rate.

GP with multi-task learning: In [254], a task relatedness-based multi-
task GP was proposed. This study first develops a new relatedness mea-
sure between tasks for multi-tree GP, then proposes a new multitask GP
algorithm that adaptively selects assisted tasks based on the relatedness
measure to solve the DFJSS with multiple tasks simultaneously. The sur-
rogate models are also used in GP for solving multi-task DFJSS problems
[263] 264]. For each task, a surrogate is built which is used not only to
improve the efficiency of solving every single task but also for knowledge
transfer between different tasks.

Moreover, various GP variants find extensive application in address-
ing the DFJSS problem with multiple objectives [39, 260, 271]. Several
investigations [267, 282, 284] integrate cooperative coevolution GP and
multi-tree GP with NSGAII and SPEA2 to evolve a Pareto front of schedul-
ing heuristics for solving MO-DEFJSS problems, often involving new jobs’
dynamic arrival events. In [207], the MO-DFJSS problems incorporating
both new job arrivals and machine breakdowns are explored. These ap-
proaches typically make routing and sequencing decisions in a delay-free
manner, which might have limitations in dynamic environments. To ad-
dress this, [236] proposed a delay method for the multi-objective DFJSS
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problem, delaying routing decisions to ensure decisions are made under
the latest and most accurate information. Specifically, ready jobs are sent
to a pool instead of immediately assigning them to machines. When a
machine becomes idle, the delayed routing policy is employed to create a
candidate operation set for that idle machine. In [271], an interpretability-
aware multi-objective GP was proposed, optimising not only for schedul-
ing quality but also for smaller heuristic sizes to enhance interpretability.
Some studies simultaneously handle multiple tasks and multiple objec-
tives in DFJSS [261}, 270].

Overall, the studies discussed above demonstrate the effectiveness of
GP in addressing DFJSS problems. Subsequently, the following section re-

views related works on GP and specific techniques employed in this thesis.

2.5 Related Work

Based on the above research, scheduling heuristics have been widely used
to solve JSS problems, which can produce good enough solutions within
an acceptable time limit. Also, the scheduling heuristics can be easily ap-
plied to practical problems. At the same time, GP, as a hyper-heuristic,
can automatically evolve high-quality scheduling heuristics. Therefore,
this section provides an in-depth investigation of studies on GP for evolv-
ing scheduling heuristics, which is also the focus of this thesis. In addition,
related works about the specific techniques used in this thesis contributing
to the enhancement of GP are also reviewed.

2.5.1 Parent Selection in GP

In standard GP, tournament selection [26] stands out as the most com-
monly employed parent selection method. This technique involves ran-
domly sampling % individuals (where £ is the tournament size parameter)
from the population. Subsequently, the individual with the best fitness
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among the sampled group is chosen as the parent. Adjusting the k param-
eter allows for control over the selection pressure, where a larger k value
results in higher pressure. Notably, when £ = 1, tournament selection
simplifies to random selection. Many studies have explored tournament
selection in depth, examining its behaviour and seeking ways to improve
its effectiveness. Early studies focus on sampling strategies and selection

pressure.

Fine-tuning the tournament size represents the most direct strategy for
controlling selection pressure in tournament selection [148]. In a mathe-
matical analysis of tournament selection conducted in [27], insights into
the behaviour of tournament selection and the impact of the tournament
size are provided. However, adjusting the tournament size only enables
coarse-level control over selection pressure. An alternative strategy was
proposed in [80], introducing an additional probability to control the se-
lection pressure at a fine level. In [148], the selection pressure of tour-
nament selection under noisy environments was studied and the strong
effect of selection pressure on population diversity and convergence rate
is emphasised. Additionally, [200] proposed an unbiased tournament se-
lection to mitigate sampling bias and eliminate diversity loss. A compre-
hensive exploration of selection pressure control in GP is investigated in
[230]. This study proposed an automatic selection pressure control strat-
egy for GP to dynamically adjust the individuals considered as candidates
for tournament selection. Results indicate that this selection pressure con-
trol strategy could enhance both the effectiveness and efficiency of GP. Xie
et al. [231] investigated the impact of selection pressure on performance
by comparing standard parent selection with and without selection pres-
sure, revealing a significant improvement in algorithm performance with
a level of selection pressure. In [232], Xie et al. studied the impact of
the tournament selection with no replacement, and the results show that
tournament selection with no replacement does not make the selection

behaviour significantly different from that in the standard one. Further-
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more, Xie et al. [229] developed a novel strategy integrating knowledge
of the fitness rank distribution into tournament selection to dynamically
adjust selection pressure. The results indicate the effectiveness of this new
strategy, showcasing the potential of leveraging fitness rank distribution
knowledge for dynamic selection pressure adjustment.

Various extensions of tournament selection have been proposed, in-
troducing alternative selection schemes. Cooperative selection [109] and
rank-based selection [201] represent two such variations, selecting parents
not solely based on fitness but incorporating some rank principles. Seman-
tics have been integrated into tournament selection [70] to enhance seman-
tic diversity. Semantic-based tournament selection identifies individuals
with strong performance but different semantics (behaviours), yielding
promising results in certain regression problems. In [47], a novel form of
tournament selection was developed using statistical analysis of GP error
vectors. Results demonstrate that these new selection schemes contribute
to improved semantic diversity, outperforming both standard tournament
selection and semantic-based selection [70] in regression problems.

Some studies focus on parent selection for crossover. Comparative
partner selection [50] aims to choose a pair of complementary parents, em-
phasising strengths on different training instances. However, this method
might overlook high-quality parent pairs due to its underdeveloped se-
lection strategy. Diverse partner selection [7] addresses the limitations of
comparative partner selection by proposing a smarter strategy. The above
methods tend to select generalist parents that perform relatively well on all
the training instances and exhibit different behaviours, showcasing their
effectiveness in generating high-quality offspring. An alternative strategy
involves selecting “specialist” individuals that excel on specific training
instances despite having lower overall fitness. This allows for the utili-
sation of special promising building blocks (e.g., sub-trees) from these in-
dividuals, which might be lost in standard parent selection schemes. To

retain the promising information in the specialist individuals, Helmuth
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and Matheson [92] proposed the lexicase selection. The basic principle
of lexicase selection is to select parents based on each training case sepa-
rately rather than an aggregated function such as mean squared error. For
example, given an order of the training cases, lexicase selection selects the
individuals in the population that perform the best on the first case and
moves on to the next case. This step is continued until only a single in-
dividual is selected. This way, a specialist individual has a chance to be

selected if its specialised cases are ordered first.

Lexicase selection [203] has outperformed tournament selection across
some benchmark problems [90, 123] 208]. The principle of lexicase selec-
tion is to remove the poor individuals from the whole population one by
one based on a random sequence of the fitness cases/training instances,
until only one individual remains (ties are broken randomly), which is
the selected parent. For each fitness case, the individuals performing
worse than the best individual in this case will be removed. Based on
this, many different variants of lexicase selection methods are proposed,
including e-lexicase selection, random threshold lexicase selection, MAD-
CAP e-lexicase selection, and truncated lexicase selection [203]. They use

different strategies to remove poor individuals.

Among them, e-lexicase selection [123] stands out as the most effec-
tive lexicase selection strategy for parent selection. In e-lexicase selection,
the criteria for eliminating individuals are somewhat relaxed compared to
traditional lexicase selection methods. Specifically, an individual can still
be retained if its fitness, denoted as fit(z), is not significantly worse than
the fitness of the best individual, denoted as fit*, in the current fitness
case, i.e., fit(x) < fit* + e. The parameter ¢ is determined based on the
entire population and might vary across generations. Overall, e-lexicase
selection is the method that can obtain the best solutions among the dif-
ferent variants of lexicase selection methods and is often used as a basis to
propose new variations. In [180], e-lexicase selection is used to solve the
DEFJSS problem for the first time, in which the training set is designed with
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many different instances by using different numbers of jobs and machines.
However, they only consider small-scale instances, where the maximum
number of jobs is no more than 100, and they obtain similar results with
tournament selection. For evaluating the steady-state performance, a large-
scale simulation with thousands of job arrivals is often required. In this
case, the fitness evaluation for an instance becomes very time-consuming,
making it not affordable to use a large number of training instances as fit-
ness cases. Hence, the application of e-lexicase selection to solve the DFJSS
problem without an increase in computational time requires the develop-

ment of new strategies.

2.5.2 Ensemble GP

Ensemble learning is a widely used technique in the machine learning
community [211, 272]. Ensemble learning [189] involves combining the
decisions of multiple models to improve the overall performance of the
system. The idea is to leverage the diversity and complementarity of dif-
ferent models to create a stronger and more accurate ensemble model than
each element model. Ensemble GP is a technique that combines the power
of GP with the idea of ensemble learning [187]. Recently, ensemble GP
has gained attention in the research community for learning a group of
scheduling heuristics [41].

In [88], NELLI-GP is proposed by extending a classical ensemble
method called NELLI, to evolve an ensemble of scheduling heuristics for
solving the JSS problem. NELLI-GP adopts a divide-and-conquer strategy
in which each scheduling heuristic in the ensemble solves a unique subset
of instances. Experiments show that an ensemble of scheduling heuristics
can be evolved that outperforms existing scheduling heuristics and recent
hyper-heuristic methods. In [176], an ensemble of scheduling heuristics is
evolved using cooperative coevolution GP for solving the static JSS prob-
lem and this method can produce more robust scheduling heuristics than
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the classical GP. The cooperative coevolution method contains the same
number of subpopulations as the number of elements in the ensemble,
and each subpopulation is used to evolve a single scheduling heuristic for
the ensemble. However, these works only consider a static scheduling en-
vironment. Further, the individuals (scheduling heuristics) from different
subpopulations interact with each other only when they are evaluated to-

gether as an ensemb]e.

Numerous studies have explored the application of ensemble meth-
ods in dynamic scheduling problems. In [211], four ensemble learning
methods are investigated for creating ensembles of scheduling heuristics
to solve dynamic scheduling problems. These methods included sim-
ple ensemble combinations, BagGP, BoostGP, and cooperative coevolution
GP. The results indicate that creating ensembles of scheduling heuristics
through simple ensemble combinations, BagGP, and BoostGP led to im-
proved scheduling results compared to the standard GP method. In [177],
a preliminary investigation into using GP to evolve ensembles of schedul-
ing heuristics for solving the dynamic JSS problem is conducted. The
grouping is done randomly, and multiple groupings are made for a single
individual to assess overall performance within an ensemble. However,
the proposed method does not show significantly better performance than
the standard GP method. Certain studies have investigated the compar-
ison of different aggregation methods for forming ensembles [175, 212].
In [212], the comparison of various aggregation methods reveals that the
voting aggregation method is notably more stable than other aggregation
methods. In [172], the authors applied ensemble GP and multilevel GP to
solve the dynamic JSS problem, demonstrating that using ensembles could

improve performance compared to single scheduling heuristics.
P p P g g

In addition to these studies focusing on classical ensemble learning
methods, some propose innovative ideas. In [209], the authors explore
various ensemble learning methods and propose an ensemble subset se-

lection method to eliminate elements from the ensemble that do not con-
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tribute to its quality, utilising extra training instances. However, the use
of extra training instances requires additional data and makes the evalua-
tion more time-consuming. In [171], the authors apply the niching mech-
anism to cooperative coevolution GP to evolve an ensemble for dynamic
JSS. Fitness is determined by performance and diversity within an ensem-
ble, calculated through phenotypic distance. The results show that the
niched cooperative coevolution GP method achieved comparable perfor-
mance to baseline cooperative coevolution GP methods but with smaller
rule sizes. In [77], a novel ensemble construction method is proposed, al-
lowing ensembles to include not only scheduling heuristics but also other
ensembles. While this method can yield better performance, it comes at a
higher computational cost.

Some studies explore the combination of GP with heuristic algorithms,
initially learning a set of scheduling heuristics through GP and subse-
quently learning ensembles using heuristic algorithms [74, 75, [78]. For
instance, in [75], a hybrid algorithm that integrates GP and the genetic al-
gorithm is proposed to evolve an ensemble of scheduling heuristics for
solving an online one-machine scheduling problem. This algorithm is a
two-stage algorithm, with GP generating scheduling heuristics and the ge-
netic algorithm evolving ensembles from the heuristics produced by GP.
While this method allows the exploration of different ensemble combi-
nations through the genetic algorithm, it comes with additional training
time. Moreover, it focuses solely on the one-machine scheduling problem,

which is less complex than the DFJSS problem emphasised in this thesis.

In summary, the study in solving the scheduling problems with GP
and ensemble learning is limited. Most of the studies are mainly about
the investigation or comparison of classical ensemble methods applied
to scheduling problems, which cannot provide significantly better per-
formance but suggest that the voting aggregation method can support
better stability than other aggregation methods. Moreover, the exist-

ing studies about combining GP with ensemble technique to scheduling
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problems mainly focus on evolving scheduling heuristics independently,
then grouping the evolved scheduling heuristics by some greedy selection
strategies, while rarely considering the evolution with ensembles. To the
best of our knowledge, no study about GP considers evolution with sin-
gle individuals and ensembles together in the research area of DFJSS. By
allowing breeding between single individuals and ensembles, the search
space can be further explored, increasing the likelihood of discovering
novel and more effective scheduling heuristics. To fill this research gap
and improve the performance of GP for DFJSS, an effective ensemble GP

method is required.

2.5.3 RL for ]SS

RL-based approaches have recently attracted much attention for address-
ing diverse scheduling problems, either through indirect or direct ap-
proaches [98]. In an indirect approach, RL agents are combined with man-
ually designed scheduling heuristics. Conversely, the direct approach in-
volves extracting state features by observing the environment and gen-
erating a scheduling scheme directly with the agent, often referred to as
“end-to-end”. End-to-end RL approaches are primarily employed in static
scheduling problems or scenarios where the number of jobs/machines is
predetermined. The action space remains constant, set to the same num-
ber as the jobs/machines, across different decision points. For instance, in
[278], the actions directly represent candidate machines, while in [250], the
actions correspond to candidate jobs. In [125], an innovative end-to-end
deep RL is designed to tackle the scheduling problem. It demonstrates
promising results, but it still encounters challenges when applied to more
complex dynamic scenarios. Following [125], the same authors further
propose a new end-to-end deep RL method for DFJSS [124]. The main
principle is to divide the DFJSS problem into multiple static scheduling

problems. However, the inherent essence of such an approach is still to
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view the dynamic problem as a static problem to be solved. This does not
allow for timely response to changes in the scheduling environment and
real-time decision-making, which ultimately affects the quality of the solu-
tion. Moreover, such an approach is not efficient. The advantage of end-to-
end methods lies in minimising the need for human-designed heuristics.
This approach allows the model to learn decision-making directly from
raw observations. However, a limitation of these methods is their inabil-
ity to handle problems with dynamically changing action spaces, such as
DFJSS. In DFJSS, the number of jobs can vary in response to a dynamic
environment. Consequently, the number of available actions of deep RL
cannot remain constant throughout, as it needs to adapt to the require-
ments of changing jobs in the scheduling system.

In the indirect application of RL to scheduling problems, manually de-
signed scheduling heuristics are commonly employed as the agents’ ac-
tions. These RL methods address the challenges faced by end-to-end RL
approaches, which encounter difficulties with dynamically changing ac-
tion spaces. Instead of directly utilising machines/operations as actions,
these methods employ manually designed rules as actions. In [249], a
deep RL method with a DQN is proposed for the dynamic JSS problem.
This paper specifically focuses on determining the sequencing rule, and
the actions employed consist of widely used manually designed sequenc-
ing rules. In [56], a deep RL method with a DQN is proposed to solve a
multi-objective flexible JSS problem with crane transportation and setup
times. To tackle the two subproblems within flexible JSS, i.e., operation se-
quencing and machine routing, this paper integrates manually designed
composite scheduling heuristics, combining these subproblems into a uni-
fied framework. Then an agent is learned to make decisions among these
composite scheduling heuristics. Several other studies also adopt a sim-
ilar approach by manually designing composite scheduling heuristics as
actions for RL to solve the DFJSS problem [36, [139] 227, 275]. However, it

is crucial to acknowledge that, for these studies, the strategy of combining
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the two subproblems is typically not optimal. It cannot fully capture the
interaction between the routing and sequencing rules [265], which could
substantially reduce the search space, potentially constraining the explo-

ration of superior solutions.

In addition to the aforementioned methods that directly utilise man-
ually designed composite scheduling heuristics as actions, some ap-
proaches leverage RL to learn the weights associated with these manu-
ally designed composite scheduling heuristics, resulting in a weighted
scheduling heuristic [84]. A similar but more advanced strategy is pro-
posed in [45], where GP is used to learn scheduling heuristics, replac-
ing the manually designed ones. This kind of method can be effective
in adapting to dynamic and changeable environments, as it does not ne-
cessitate consideration of the impact of variations in the number of candi-
date machines/operations at different decision points. However, a notable
limitation of this method is the pre-determination of the aggregation func-
tion, which solely relies on a weighted sum function. This predetermined
choice still narrows down the search space by limiting the range of func-
tions available. Additionally, no sufficient evidence is provided to explain
why this particular predetermined aggregation function is able to yield
good results.

In [136], a deep RL method with a double DQN model is proposed
to solve the DFJSS problems. Different from the aforementioned stud-
ies utilising composite scheduling heuristics as actions to jointly address
sequencing and routing decisions, they employ a distinct training strat-
egy. Specifically, the sequencing rule and the routing rule are trained sep-
arately. For training the routing rule, the actions directly correspond to
the machines, while for the sequencing rule, manual rules are used as ac-
tions, which can address the challenge posed by the varying number of
jobs in different decision-making scenarios. This method would not re-
duce the search space as much as in the above studies. In such cases,

deep RL is utilised to enhance the performance of traditional methods but



2.5. RELATED WORK 69

cannot fully address their inherent limitations. For instance, if the man-
ually designed scheduling heuristics lack high quality, their effectiveness
as actions can be constrained, and the incorporation of RL might not yield
substantial improvements.

Following the work [136], to overcome its limitation that needs a lot
of domain knowledge of experts to design scheduling heuristics, a possi-
ble way is to use the heuristic generation method (e.g., GP) to automati-
cally learn some high-quality and diverse scheduling heuristics as actions.
Therefore, it is reasonable and necessary to explore the combination of GP
and RL in solving the DFJSS problem. The key advantage of using GP lies
in its ability to automatically explore a wide range of potential scheduling
heuristics and adapt to the specific characteristics of the problem at hand
with little domain knowledge [206]. Traditional GP methods typically fo-
cus on obtaining the best scheduling heuristic without emphasising the
diversity within the population. However, in addition to the effectiveness
of each scheduling heuristic as an action, diversity among actions is cru-
cial in RL. Niching [246] has proven to be an effective strategy employed in
GP to enhance both its effectiveness and population diversity [143]. This is
achieved by fostering the presence of multiple diverse scheduling heuris-
tics within the population.

Drawing on the strengths of GP and the niching strategy, it would be
interesting to investigate whether the performance of RL can be enhanced
by employing GP with a niching strategy to autonomously learn effective
and diverse scheduling heuristics as actions to address the DFJSS prob-
lems. Furthermore, it would also be interesting to investigate whether this
integration can enhance the performance of GP for DFJSS.

2.5.4 Multi-objective GP

DEFJSS, aiming to address multiple objectives simultaneously, poses a sig-

nificant challenge. Presently, there are studies exploring the application
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of Pareto dominance-based algorithms for MO-DFJSS problems [267, 282].
In [267], strategies from non-dominated sorting genetic algorithm II (NS-
GAII) [52] and strength Pareto evolutionary algorithm 2 (SPEA2) [289] are
integrated for the first time into GP, named NSGPII [267] and SPGP2 [267],
with a multi-tree representation to evolve scheduling heuristics for solving
MO-DFJSS. In [282], not only is tree-based GP with NSGAII and SPEA2
tested, but cooperative coevolution GP with NSGAII and SPEA2 is also
proposed to address the MO-DEJSS. These studies have demonstrated that
NSGAII and SPEA2 can be combined with GP to produce high-quality
Pareto fronts of scheduling heuristics in terms of HV and IGD for tackling
MO-DFJSS. However, besides HV and IGD, the spreadability of the Pareto
front and the consistency in the behaviours of the scheduling heuristics

are also important and need to be considered.

The MOEA/D is a well-known multi-objective method [276].
MOEA/D decomposes a multi-objective Problem into several sub-
problems using a scalar function and then optimises them simultaneously
[85]. MOEA/D possesses strengths that make it potentially capable of
evolving a Pareto front of scheduling heuristics with good spreadability.
MOEA /D utilises a decomposition approach that enables the optimisation
of multiple sub-problems in different directions simultaneously, facilitat-
ing the generation of a spread Pareto front. Further, the high search ca-
pability of MOEA /D, especially for difficult multi-objective problems, has
been repeatedly reported [104) 105, [126]].

While there have been studies demonstrating the potential of using
decomposition-based methods for solving static ]SS problems [37, 108,167,
235,279], to the best of our knowledge, there is no study using MOEA /D
for solving the MO-DEFJSS problem. In this context, it is intriguing to inves-
tigate whether incorporating MOEA /D with GP can evolve a Pareto front
of superior scheduling heuristics compared to the current state-of-the-art
multi-objective algorithm for MO-DEFJSS.

Moreover, beyond the innovation of integrating classical multi-
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objective algorithms with GP and handling the challenges inherent in this
integration, there is a need for additional exploration of other techniques.
NSGPII stands as the current state-of-the-art multi-objective optimisation
algorithm for MO-DFJSS. Several studies further enhance NSGPII in solv-
ing MO-DFJSS problems. In [260], a novel NSGPII approach is presented
for MO-DFJSS by incorporating surrogate techniques and brood recom-
bination techniques. Through the utilisation of the surrogate and brood
recombination-assisted method, the enhanced NSGPII achieves superior
scheduling heuristics compared to the original NSGPII within the same
training time. In [270], the impact of terminal settings on NSGPII for solv-
ing MO-DFJSS is investigated. While some studies focus on interpretabil-
ity [271] or multitasking [261] aspects in MO-DFJSS, the integration of
other techniques in GP remains limited. Exploring additional techniques
is essential to augment the capabilities of existing multi-objective GP algo-
rithms in addressing the MO-DFJSS problem.

Given that existing multi-objective GP algorithms focus solely on the
genotype of individuals, neglecting phenotype information that reflects
genotype behaviour, a promising direction for improvement involves
enhancing population diversity by integrating semantic techniques into
these algorithms. Semantic techniques involve associating meaning with
individuals. Semantic GP [217] has recently gained significant attention in
the field of GP. It represents a valuable approach for incorporating seman-
tic information into the evolution process, thereby improving the perfor-
mance of evolved solutions. One of the key advantages of semantic GP is
its ability to consider the behaviours/semantics rather than the genotype
of individuals [217]. By considering the behaviour of individuals, seman-
tic GP enables a more nuanced understanding of the evolved solutions.
The semantic analysis facilitates the discovery of individual relationships
and population composition, making semantic GP particularly valuable in
domains where different genotypes can give the same behaviour, such as
MO-DFJSS.
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Most semantic GP methods are based on the usage of genetic operators
that act on the genotype to produce offspring, and then accept offspring
that satisfy some semantic criteria into the next population [217]. The se-
mantic criteria can be semantic diversity [19, 20, 21} 42, 43, |69] and se-
mantic similarity [44, 214} 215]. The consideration of semantic information
enhances the exploration of different dimensions of search space. Seman-
tic GP has demonstrated its effectiveness across various problem domains,
including symbolic regression [214]], classification [15,192], and feature se-
lection [169]. It would be interesting to explore whether the integration of
semantic information into existing multi-objective GP algorithms can con-
tribute to the evolution of effective Pareto fronts of scheduling heuristics
for solving MO-DFJSS problems.

2.6 Chapter Summary

This chapter begins by introducing various types of JSS problems, with
a specific emphasis on the DFJSS problem under investigation. Subse-
quently, it covers the foundational concepts of machine learning and evo-
lutionary computation, which serve as essential background knowledge
for this thesis. Following this, the technical aspects of GP, the distinc-
tion between heuristics and hyper-heuristics, the application of schedul-
ing heuristics for solving DFJSS, and the technical intricacies of RL are
discussed. Furthermore, the chapter explores various approaches to JSS,
including exact methods, heuristic approaches, and hyper-heuristic ap-
proaches. Additionally, this chapter presents a comprehensive overview
of related work in the field, beginning with studies on using GP for evolv-
ing scheduling heuristics, with a focus on those that are highly relevant
to the research objectives of this thesis. The limitations of the existing re-
search are highlighted below.

e Firstly, in GP for DFJSS, the existing parent selection mechanisms

primarily rely on fitness, lacking effectiveness in choosing parents
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with diverse abilities or strong cooperation abilities for generating

offspring.

* Secondly, while a collaborative ensemble of scheduling heuristics
tends to outperform a single heuristic, the development of ensem-
ble GP for evolving such groups for DFJSS is still in its early stages,
which requires further exploration.

¢ Thirdly, in addition to GP, RL has gained popularity in DFJSS as a
heuristic selection approach. Both GP and RL have their strengths
and limitations. While GP excels in intelligently generating schedul-
ing heuristics, relying solely on a single heuristic throughout the
long-term scheduling process might not always be effective. On the
other hand, RL is good for heuristic selection. However, manually
designing scheduling heuristics as actions can be time-consuming
and might not always lead to effective performance. Exploring the
combination of intelligent heuristic generation and selection simul-
taneously by incorporating GP and RL presents an intriguing and

unexplored topic worthy of investigation.

¢ Finally, recognising that some users might have multiple require-
ments, there is a need for increased attention to MO-DFJSS problems.

An in-depth analysis of existing work on DFJSS has revealed key gaps
and limitations, motivating the development of new methods for solving
the DFJSS problems effectively. Therefore, subsequent chapters will sys-
tematically address these challenges, covering enhancements in improv-
ing parent selection mechanisms, leveraging the collective strength of mul-
tiple scheduling heuristics for effective joint decision-making instead of
relying on a single one, developing intelligent heuristics selection method
for DFJSS, and enhancing GP’s multi-objective problem-solving capabili-

ties.
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Chapter 3

Diversity-based Parent Selection

Mechanisms

This chapter proposes three novel diversity-based parent selection mech-
anisms in GP to leverage individuals with diverse strengths as parents for
generating high-quality offspring to evolve effective scheduling heuristics
for DFJSS.

3.1 Introduction

Parent selection plays an important role in identifying promising individ-
uals that carry good genes [90]. Parent selection recommends individu-
als as parents for crossover, mutation, and reproduction to generate off-
spring. Tournament selection [62] is the classical parent selection method
that selects parents based on their fitness. Tournament selection selects the
parents independently, without considering diversity and the relationship
between the selected parents. As a result, it may select high-quality par-
ents with very similar structures/behaviours, leading to premature con-
vergence in GP [31} 43]. To overcome this limitation, a straightforward
way is to select individuals with different behaviours as parents to gen-

erate diverse individuals. Thus, it is reasonable to propose a new parent

75
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selection mechanism in GP to select individuals not only based on fitness
but also with different behaviours as parents.

On the other hand, some selection methods, such as diverse partner se-
lection (DPS) [7] and lexicase selection (LS) [147] have the advantage of se-
lecting more diverse parents to improve the quality of produced offspring.
Both DPS and LS are proposed to select parents that specialise in different
instances. On one hand, an individual is likely to be selected to be a parent
regardless of its overall fitness (e.g., average error over all the instances),
as long as it performs well on some instances. This can increase the diver-
sity of the selected parents and thus the generated offspring. On the other
hand, since each parent must specialise on some instances, it is expected
to have some promising building blocks that can be inherited by its off-
spring. In other words, DPS and LS can select a wider range of parents
with different promising building blocks rather than randomly reducing
the selection pressure. DPS and LS have shown success in solving some
optimisation problems [7, 90, 92} 208]. Thus, it is reasonable to extend the
GP with DPS and LS to evolve scheduling heuristics as well.

However, it is non-trivial to extend the GP with DPS or LS from its suc-
cessful domains such as classification, program synthesis, and symbolic
regression to evolving scheduling heuristics. In terms of DPS, its success
relies on the characterisation of the behaviour of an individual in differ-
ent cases. In existing studies, a case is naturally defined as a data point
for classification or regression, and the behaviour in a case can be easily
characterised as the classification/regression error on that data point (the
smaller the better). However, they cannot be directly applied to evolving
scheduling heuristics for DFJSS, which is not a supervised learning prob-
lem (i.e., there is no ground truth of each decision in DFJSS). In terms of LS,
the evaluation of an instance in DFJSS is very time-consuming. In program
synthesis and symbolic regression, an instance typically consists of a given
input and its target output. Evaluating an instance requires applying the

model only once to generate the predicted outputs given the inputs. How-



3.1. INTRODUCTION 77

ever, in DFJSS, an instance is usually a large-scale DFJSS simulation with
thousands of jobs. Evaluating such an instance requires applying the GP
model many times (each at a decision situation, when a machine becomes
idle or a job operation becomes ready to be processed) to generate a sched-
ule given the dynamic job arrivals in the simulation. As a result, we cannot
afford a large number of DFJSS instances (i.e., simulations). On the other
hand, if we use too few instances, then the effectiveness of LS is negatively
affected.

According to the above issues, this chapter proposes three novel par-
ent selection mechanisms for selecting diverse individuals as parents to

generate high-quality scheduling heuristics for DFJSS.

3.1.1 Chapter Goals

The goal of this chapter is to develop GP with three novel parent selection mech-
anisms that apply cluster selection, DPS, and LS effectively in GP for generating
high-quality and diverse scheduling heuristics without increasing complexity for
DFJSS. By developing and comparing these three parent selection mecha-
nisms, we expect to investigate which way of parent selection can achieve
superior scheduling performance. Specifically, this chapter has the follow-

ing objectives:

1. Propose novel GP algorithms with three novel parent selection
mechanisms (i.e., cluster selection, DPS, and LS) that consider not
only fitness but also diversity or complementarity to generate high-
quality offspring for solving the DFJSS problem effectively.

2. Develop a novel multi-case fitness evaluation strategy to address
the time-consuming evaluation issue of each instance (simulation) in
DPS and LS by a new definition of case-fitness, which creates multi-

ple cases from a single simulation.

3. Analyse the effectiveness of the proposed algorithms in terms of the
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quality of evolved scheduling heuristics and how the proposed algo-
rithms influence the population diversity of GP.

3.1.2 Chapter Organisation

The rest of this chapter is organised as follows. Detailed description of
the proposed algorithms is given in Section The experimental design
is provided in Section followed by results and discussion in Section

Further analyses are conducted in Section Finally, Section
concludes this chapter.

3.2 Proposed Algorithms

This section describes the proposed GP algorithms with the three novel
parent selection mechanisms (i.e., cluster selection, DPS, LS). For each al-
gorithm, the overall framework of the proposed algorithm is first intro-
duced. Then, the key components and the detailed parent selection mech-

anisms are given.

3.2.1 GP with Cluster Selection
The Overall Framework

The overall framework of the proposed GP with cluster selection (GPCS)
tor DFJSS is shown in Figure As with traditional GP algorithms, pop-
ulation initialisation, fitness evaluation, elitism selection, parent selection,
reproduction, crossover, and mutation are all main processes. The pro-
posed algorithm uses reproduction, subtree mutation, and tree-swapping
crossover operators [265] to generate offspring. For reproduction, the par-
ents are directly inherited to the next generation. For subtree mutation, a
new subtree is randomly generated by sampling from the terminals and

functions. We then randomly select a subtree from the parent and replace
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Figure 3.1: The flowchart of the proposed GPCS method.

it with the newly generated subtree. For tree swapping crossover, for one
tree, we randomly select a subtree from each parent and swap them. For
another tree, we simply swap the entire tree.

The main innovation of GPCS is to use cluster selection to replace tour-
nament selection to select a pair of more diverse parents in the evolution
process for crossover.

In the cluster selection, the Kmeans cluster strategy with an adaptive
number of groups is proposed and used after fitness evaluation to di-
vide individuals in the population into different groups based on their
behaviour similarities. Each group contains a number of individuals with
similar behaviours. Then, when two parents are needed for crossover, the
cluster selection randomly selects two different groups, we call them pre-
liminary winners one and preliminary winners two. After that, tournament

selection is used to select two individuals from preliminary winners one
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and preliminary winners two, respectively. These two individuals are the
parents used for crossover.

Behaviour Similarity Estimation

For the cluster selection, the decision priorities on 20 sequencing decision
points and 20 routing decision points [93] in a fixed instance is used to es-
timate how similar two individuals behave with each other. The selection
of 20 decision points for both sequencing and routing balances accuracy
and computational efficiency, informed by existing research [264, 263].
The decision priority denotes the index sequencing of the candidate opera-
tions/machines made by the individual (scheduling heuristic) on the de-
cision point. For example, if we have 3 sequencing decision points and 3
routing decision points, each with 7 candidate operations/machines, and
the index of candidate operation/machine is between 1 and 7. Then the
decision priorities for an individual z on these decision points can be rep-
resented as Figure

Decision priority from high to low

( 1 3 4 6 5 7 2
Sequencing > 3 1 5 | 4 6 7
decisions
> 1 7 6 4 5 2 3
6 2 5 7 4 3 1
dRO.“t.'”g 40321567
ecisions
4 1 3 5 7 6 2
\

Figure 3.2: An example of the decision priorities on 3 sequencing decision

points and 3 routing decision points.

It can be seen from Figure that each row represents the decision
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priority on each decision point which is the priority order of candidate
operations/machines. The whole table denotes the decision priorities of
the individual z. We can estimate the behaviour similarity between two
individuals based on the mean Pearson distances between decision priori-
ties of the two individuals x,y. The Pearson distance on the decision point
d; is defined as the dis(z,y); = 1 — p(x,y);, where p(z,y); represents the
Pearson correlation which can be calculated by Eq. (3.1).

> i1 (Xig = px,)(Yig — )
p(,

T, y)i = = = (3.1)
\/ijl(Xij - MXi)z\/ijl(nj — py;)?

where n is the number of candidate machines/operations. X, =
(X, -, Xip) and Y; = [V, - -+, Y},] represent the decision priority on the
decision point d; (each row in Figure by two individuals, respectively.
fx, and py, are the average value of X; and Y.

Overall, the process of calculating the behaviour similarity between in-
dividuals is as Algorithm 1} Firstly, for each individual and each decision
point, this method calculates the priority of each candidate, to form the
decision priority (Line [2). Secondly, for each decision point, this method
calculates the Pearson correlation between the decision priority of the two in-
dividuals (Line[3). At the same time, we can calculate the Pearson distance
on each decision point (Line d). Finally, the behaviour similarity is calcu-
lated as the mean of the Pearson distance over all the decision points (Line
6).

The Pearson correlation has been used in DFJSS to measure the impor-
tance of each subtree for an individual and has shown success in improv-
ing the effectiveness of the scheduling heuristics by swapping the unim-
portant subtree with the important subtree to do crossover [258]. There-
fore, we use the mean Pearson distances to estimate the similarity between
individuals. Based on Eq. (3.1), the Pearson correlation p(x,y) is always
in the range of [—1, 1], so the mean Pearson distance is always between 0
and 2. To be specific, if two individuals have the same decision priority
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on all the decision points, the mean Pearson distances between them is 0,
on the other hand, if they have very different decision priorities on all the

decision points, the mean Pearson distance between them is near 2.

Algorithm 1: Behaviour similarity estimation
Input: The two individuals: x and y; 40 DFJSS decision points:
D={dy,...,dy}
Output: The behaviour similarity between the two individuals: sim(z, y).
1 fori=1—40do

2 Apply the two individual z, y on the decision point d; to get the decision
priority X; and Y;, respectively;

3 Calculate the Pearson correlation p(z,y); between the decision priorities X; and
Y; of two individuals;

4 Calculate the Pearson distance dis(x,y); = 1 — p(x, y); between the two
individuals;

5 end

sim(z,y) = 2?21 dis(x,y);/40;
return sim(z,y);

(=2}

N

Kmeans Cluster

The proposed cluster selection uses the Kmeans method to divide the
population into different groups. Different from the traditional Kmeans
method which uses the Euclidean distance to estimate the similarity be-
tween two lists of values, we use the mean Pearson distance to estimate
how similar two individuals behave with each other, which is introduced
before. The center for each group is selected based on fitness. That is, the
decision priorities of the individual with the best fitness in a group is set
as the center.

In the Kmeans method, pre-setting the group size may result in uneven
distribution, with some groups containing a substantially larger number
of individuals compared to others. For instance, one group may have 100

individuals, while another might have only 5. This imbalance poses a chal-
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lenge, as selecting a parent from a smaller group may lead to the hyper-
selection (selected many times) of certain individuals with good fitness,
potentially compromising the diversity of selected parents. To address
this issue, we introduce an adaptive cluster number strategy. After the
Kmeans method partitions the population into distinct groups, we exam-
ine the number of individuals in each group. If a group contains fewer
than m individuals, those individuals are relocated to another group with
the most similar behaviour. The similarity is calculated using the mean
Pearson distance between each individual and the central individual in the
target group. Subsequently, groups devoid of individuals are eliminated.
This adaptive approach aims to maintain diversity in parent selection by
mitigating the impact of unevenly sized groups.

The Cluster Selection

The cluster selection is used to select parents only for crossover. Different
from the traditional tournament selection, it has two steps, the first step
is to select two groups randomly. Then, in each group, the tournament
selection is applied to select a parent with the best fitness in the second
step. In this way, we can select two parents with promising fitness and
perform dissimilar to each other.

3.2.2 GP with Diverse Partner Selection
The Overall Framework

The overall framework of the proposed GP with DPS (GPDPS) for DFJSS
is shown in Figure At first, a population of individuals is initialised
by the ramped-half-and-half method. Then, at each generation, each in-
dividual is evaluated by the newly developed multi-case fitness evalua-
tion. The multi-case fitness evaluation calculates both the standard fitness

value for other genetic operators (e.g., mutation and elitism) and a list of
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Figure 3.3: The flowchart of the GPDPS method for DFJSS.

case-fitnesses that play the role of the bit string in DPS for crossover. Af-
ter the multi-case fitness evaluation, the case-fitness values in the list are
normalised by the fitness normalisation step. Then, a number of elites
with top-standard fitness are selected for the next generation directly. Af-
terward, the breeding process is conducted to generate offspring through
parent selection and genetic operators. Specifically, the parents for mu-
tation and reproduction are selected by the traditional tournament selec-
tion, while the parents for crossover are selected by the newly developed
DPS operator based on the normalised list of case-fitness calculated by the
multi-case fitness evaluation. Note that the crossover and mutation rates
are adjusted based on the number of times that the suitable second parent
fails to be selected by DPS. The operator rate tuning strategy is the same as
the original method [7]. Specifically, each time DPS fails to select suitable
parents, the crossover (mutation) rate is decreased (increase) by 1/popsize.

Because if DPS consistently fails to select suitable parents, it suggests the
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current crossover and mutation rates might not be promoting sufficient ex-
ploration and diversity within the population. By decreasing the crossover
rate and increasing the mutation rate, the algorithm prioritises exploration
over exploitation. This allows for the introduction of new genetic material
and potentially helps the population increase diversity. After the entire
breeding process, the crossover and mutation rates are reset to the default
values. The above steps are repeated until a stopping criterion is met, and
the best individual is returned.

In the proposed GPDPS for DFJSS, we adopt the multi-tree individual
representation and multi-tree-based genetic operators, which are the same
as that of GPCS. Briefly speaking, each individual consists of two trees,
one representing the routing rule, and the other representing the sequenc-
ing rule. Given two parents, the crossover randomly selects one tree, and
swaps random subtrees between this tree of the two parents. It also swaps
the entire other tree of the two parents. Given a parent for mutation, we
randomly select a tree from the parent and replace a random subtree of
the tree with a newly generated subtree. More details can be found in the
original literature [265]].

Overall, the main differences between GPDPS and existing GP meth-
ods are the steps of (1) multi-case fitness evaluation, (2) case-fitness nor-
malisation, (3) parent selection for crossover based on DPS, and (4) opera-
tor rate tuning, which are highlighted in Figure They will be described
in more detail subsequently [265].

Multi-case Fitness Evaluation

In DFJSS, one is typically interested in the “steady-state” performance of a
scheduling heuristic, i.e., when the job shop state such as utilisation level
becomes stable in the simulation. To this end, the DFJSS simulation needs
to have a substantially large number (e.g., 5000) of job arrivals to be able to
exclude the warm-up stage (e.g., the first 1000 job completions) and mea-

sure the “steady-state” performance of scheduling heuristics. As a result,
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even a single simulation is time-consuming. To balance training efficiency
and generalisation, most existing GP approaches [94, 236, 264, 283] use a
single simulation for fitness evaluation in each generation, but change to
a new simulation (e.g., by changing the random seed) in each new genera-
tion. Specifically, the evaluated scheduling heuristic is applied to the simu-
lation/instance to generate a schedule, and its fitness is set to the objective
value (e.g., mean flowtime, maximal tardiness) of its generated schedule.
If considering each simulation (the case-fitness is the objective value of the
generated schedule), then the traditional fitness evaluation with a single
simulation is not applicable for DPS, since there are not enough number
of instances. To address this issue, we propose a new multi-case fitness
evaluation strategy that can extract a large number of cases from a single

simulation.

Algorithm 2: Multi-case fitness evaluation for DFJSS.
Input: The individual to be evaluated: z; DFJSS simulation: sim; Number of

jobs in the simulation: n; Number of cases: c.
Output: Standard fitness sf(z); Case-fitness vector cf(z).
1 Calculate the number of jobs in each case g = n/c;
2 Run the simulation sim with the scheduling heuristic = to obtain the
corresponding schedule S = sim/(z);
3 forj=1—ndo
4 ‘ Obtain the job completion time C; from S;
5 end
6 fori=1—cdo
7 Set the ith group of jobs J; <~ {g x (i = 1)+ 1,...,g x i};
8 Calculate the case-fitness cf;(z) < obj,c 7. (C});
9 end

10 Calculate sf(x) based on Eq. or Eq. . ;

11 return sf(z), cf(x);

The multi-case fitness evaluation strategy is described in Algorithm
Specifically, we divide the jobs to be processed in the simulation into a

number of groups. First, we index the jobs in the order of their arrivals in
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Figure 3.4: An example of dividing 8 jobs in a simulation into 4 groups.

the simulation, i.e., job 1 is the first arrived job. This way, different evalu-
ated individuals have the same jobs in each case, and their case-fitnesses
are comparable. Then, we create each case based on a subset of jobs. If
there are total n jobs to be divided into ¢ groups (assuming n can be di-
vided by c¢), then each group contains g = n/c jobs. Specifically, group ¢
consists of the jobs with index from g x (i — 1) + 1 to g x i. Figure 3.4|gives
an example of dividing 8 jobs in a simulation into 4 cases. Each job has an
arrival time and a completion time. Note that the jobs might not be com-
pleted in the same order they arrive (e.g., job 3 arrives after job 2, but is
completed before it). The 8 jobs are divided into 4 cases/groups based on
their arrival order. Then, we can calculate the objective function based on
the jobs in each case. For example, if the objective is the mean flowtime,
then the case-fitness of case i is calculated by Eq. (3.2).

gxi

cf,»(x)zl (¢ —r). (3.2)

9 jmgx-1)41
where C; and r; represent the completion time and arrival time of the job
Jj.
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If the objective is the maximal tardiness, then the case-fitness of case ¢
is calculated by Eq. (3.3).

cf;(z) = max T;. (3.3)

je{gx(i—1)+1,....,gxi} J

where T} denotes the tardiness of job the J;.

The standard fitness can be either calculated directly from the job com-
pletion time, or from the case-fitnesses. For max-objectives, the standard
fitness can be calculated by Eq. (3.4). For mean-objectives, the standard
fitness can be calculated by Eq. (3.5).

S fmaz = max {cfy,cfy, -+ cf.}, (3.4)

[

1
mean = — f;. 3.5
sf ~D.c (3.5)

=1
Case-Fitness Normalisation

To avoid bias to any case during DPS, for each case, we normalise the
case-fitnesses of all individuals in the population. In this context, bias
refers to a situation where certain cases disproportionately influence the
calculation of the benefit score. This means that some cases might have a
greater impact on the final benefit score than others. Specifically, for each

casei = 1,...,c, the normalisation is done by

cf;(x) — min{cf;(z")|2" € pop}

ofi(z) (3.6)

max{cf;(2')|z’ € pop} — min{cf;(z’)|2’ € pop}

The New Diverse Partner Selection

Algorithm [3| describes the newly developed DPS. It first selects the first
parent, i.e., the recipient, by tournament selection. Then, it keeps selecting
the second parent by tournament selection and examines if the second par-
ent has sufficient positive influence on the recipient. To this end, we define

« as the actual influence of the second parent to the recipient, and /5 as the
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expected positive influence. If o > 3, then the second parent is confirmed
as the donor, and the selection is terminated. Otherwise, the selection is
continued. In the end, the operator rates are tuned accordingly.
Compared with the existing DPS, the main difference is on the calcula-
tion of the v and  parameters. Specifically, the new o parameter is defined

as follows.

axy, xg) = Z cfia,) = cfi(zs) : (3.7)

max(cf;(z1), cf;(x2))

In other words, it calculates the total normalised advantage of the case-
fitness cf;(z,) over cf;(x;) (the smaller the better, since the objective is
minimised) over all the cases.

Algorithm 3: Diverse Partner Selection for DFJSS.
Input: The population: pop; Number of trials K

Output: Selected parents: z;, z,

Juy

Select z; € pop by tournament selection;
2 fork=1— K do
3 Select x5 € pop by tournament selection;

4 | Calculate o(zy, z2) by Eq.
5 if a(zq,x2) > 0 then

6 ‘ return xq, x5;
7 end
s end

o

Decrease (increase) crossover (mutation) rate by 1/popsize;

10 return z, xs;

The new 3 parameter is set to 0, which means that the crossover is
allowed if the second parent has a positive influence on the recipient.

Figure 3.5 gives an example of finding a suitable donor for the recip-
ient. The left side shows the normalised case-fitness lists of three indi-
viduals, where Indl represents the recipient and /nd2 and Ind3 are the
candidates of the donor.
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Figure 3.5: An example of the new DPS method.

The right-hand side calculates the o values of Ind2 and Ind3. We can
see that o, is negative while o is positive. Therefore, we select Ind3 rather
than /nd2 as the donor.

3.2.3 GP with Lexicase Selection
Overall Framework

Figure shows the overall framework of GP with LS (GPLS). It starts
with initialising a population of individuals, each as a scheduling heuris-
tic. Then, in each generation, the newly proposed multi-case fitness evalua-
tion is applied to each individual to obtain both the standard fitness (that
standard GP uses) and a case-fitness vector. The multi-case fitness eval-
uation has been described in section Afterwards, the elitism selec-
tion selects the elite individuals based on their standard fitness. Then, the
new LS is applied to select parents to go through the breeding process and
generate offspring by genetic operators. The breeding process and genetic
operators are the same as that of GPCS and GPDPS. This new LS combines
both tournament selection and LS. More precisely, it utilises tournament
selection for the initial & generations and switches to LS afterward.

The use of the switching criterion is to tackle the hyper-selection issue
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Figure 3.6: The flowchart of the proposed GPLS algorithm.

[91] of LS, i.e., if an individual performs significantly better than others
on most cases, then it will be selected much more often than other indi-
viduals. This is more likely to occur at the early stage of the evolutionary
process, where most of the individuals are randomly generated and the
population is very diverse. In this case, it is likely that only a few elite
individuals dominate most other individuals on most cases. LS tends to
always select these elite individuals regardless of the order of the case,
and the population diversity can be lost very fast. Therefore, we propose
to use tournament selection in the first i generations, and then switch to
LS when most individuals are good enough and can specialise on different

cases.

The New Lexicase Selection

The new LS selects parents by tournament selection in the first 4 genera-

tions, and then switches to LS afterwards. The traditional tournament se-
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lection is adopted, which first samples k individuals randomly, and then
selects the one with the best standard fitness. More detailed information
on LS is provided below.

The LS used in this chapter is extended from the e-LS [123]. First, a can-
didate pool of individuals is created by randomly sampled individuals from
the population. In other words, the candidate pool is a random subset of
the population. Then, the traditional e-LS is applied to the candidate pool
to select the parent. The use of the candidate pool borrows the advantages
of limiting the selection pressure [231] of LS.

Algorithm 4: Lexicase selection for DFJSS.

Input: The population: pop; Number of cases: ¢; Candidate pool size: p.

Output: The selected individual: y.
1 Get a random permutation ¢ < shuffle(l,...,c);
2 Create the candidate pool I' by randomly selecting p individuals with no
replacement from pop;
3 forj=1—cdo

4 a <+ ¢[j];
5 Get the best case-fitness cf;: cf} + min{cf,(z) |z € T'};
6 € « CalculateEpsilon(T,a);
7 forz € I'do
8 ‘ if cf,(z) > cf + € then Remove z from I’;
9 end
10 if there is only one individual in T’ then
11 ‘ return y + T'[1];
12 end
13 end

14 Random select an individual y from candidates I’;
15 return y;

Algorithm @] shows the LS for DFJSS. After shuffling the order of the
cases (Line [I) and creating the candidate pool I' with p individuals (Line
), the individuals in the candidate pool are removed case by case. For
each case q, the best case-fitness cf, among all the individuals in the can-
didate pool is first identified. Then, the e parameter is calculated for the
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current case by the function CalculateEpsilon(I',a), which will be de-
scribed in Algorithm 5| Then, all the individuals in the candidate pool
whose case-fitness on a is worse than cf;, + € are removed from I'. This
individual removal is repeated for all the cases in the shuffled order ¢,
or until there is only a single individual left in I' (Line . If there are
still multiple individuals left in I after enumerating all the cases, then the
parent is randomly selected from I'" (Line [14).

In Algorithm[d] the e parameter is the threshold to accept slightly worse
individuals than the best in a case. It is important to set a proper e value
to be neither too greedy nor too random. Here, we set the ¢ value based
on the distribution of the case fitness of the individuals in the candidate
pool [180]. It is described in Algorithm 5| First, we calculate the median
of the case fitness of all the individuals in I" on case a. Then, we calculate
the difference between each case-fitness and the median. Finally, we set
€ to the median of all such differences. By using the median of all the
differences, we can have a more robust estimation on the variance of the
case fitness in the population than by using a fixed € value or the mean,
as the median is less sensitive to outliers. Such advantage is more obvious
in the GP for DFJSS, where the training instance is changed at each new

generation, which can result in large noise in the fitness evaluation [264].

Algorithm 5: CalculateEpsilon(I', a).

Input: The candidate pool: I'; index of current case: a.

Output: The epsilon: ¢
1 Calculate the median of the current case fitness of all the individuals in the
candidate pool: y < median{cf,(z) |z € T'};
// Calculate the difference between each case fitness and
the median
2 forz € I'do
3 ‘ 0(x) « |cfo(z) — pl;
4 end
5 Set € to the median of all the differences: € < median{d(z) | x € T'};

6 returne;
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3.3 Experimental Design

3.3.1 Dataset

In the experiment, we use the simulation model [264] that assumes 5000
jobs need to be processed by 10 heterogeneous machines. The processing
rate of each machine is randomly generated within the range [10, 15]. The
travel time between machines and the travel time between the entry/exit
point and each machine is sampled from a uniform discrete distribution
between 7 and 100.

For DFJSS simulation, new jobs will arrive over time according to a
Poisson process with a rate A. Each job has a different number of op-
erations that are randomly generated by a uniform discrete distribution
between 2 and 10. In addition, the importance of jobs might be different,
which is indicated by weights. The weights of 20%, 60%, and 20% of jobs
are set as one, two, and four, respectively. The workload of each operation
is assigned by uniform discrete distribution within the range [100, 1000].
The due date factor is set to 1.5, which means that the due date of a job is

set to 1.5 times of its total processing time after its arrival time.

The utilisation level is a key factor in simulating different DFJSS sce-
narios. A higher utilisation level indicates a generally busier job-shop sce-
nario. In this chapter, we consider eight scenarios based on four objectives
and two utilisation levels (0.85 and 0.95). To ensure the accuracy of the
collected data, warm-up jobs (the first 1000 jobs) were used to obtain typ-
ical scenarios that occur in the long-term simulation of the DFJSS system.
Then, data were collected for the next 4000 jobs. The simulation stops af-
ter completing 6000 jobs. This way, we can almost make sure that the first
arrived 4000 jobs have been completed. We generate a single replication
of simulation, but change the random seed at each generation of GP to
improve the generalisability of the evolved scheduling heuristics [94].
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Table 3.1: The description of terminals and functions.

Terminal Description
TIS time stay in the system = t - arrivalTime
4 the job weight
NOR the remaining operation number of the job
WKR the remaining work
rDD the relative due date = DD - t
SLACK | theslack
PT the processing time for the operation
OWT the waiting time for the operation =t - ORT
NPT the median processing time for the succeeding operation
MWT the waiting time for the machine =t - MRT
NIQ the operation number in the machine waiting queue
WIQ the total work in the machine waiting queue
TRANT | the transportation time
Functions | maz, min, +, —, X, protected /

"t current time; arrivalTime: job arrival time; DD: due date; ORT:
ready time of operation; MRT: ready time of machine;

3.3.2 Parameter Setting

In the experiments, the terminal and function sets of GP are shown in Table
The terminal set consists of the features related to machines (e.g., NIQ,
WIQ, and MWT), operations (e.g., PT, NPT, and OWT), jobs (e.g., WKR,
NOR, W, and TIS), and transport (e.g., TRANT). In the function set, the
arithmetic operators take two arguments. The “/” operator is protected
and returns 1 if divided by zero. The max and min functions take two
arguments and return the maximum and minimum of their arguments,
respectively. The proposed algorithm is implemented based on an open-
source platform called ECJ [138]. The GP parameter settings are shown in
Table For the parent selection, cluster selection, DPS, LS, and tourna-
ment selection are used. In the experiments, we set the minimal number
of cases to 10 so that there are enough cases for the LS to play a reasonable

role. The maximal number of cases is set to 100 (so that each case contains
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at least 40 jobs) to control the uncertainty of the case-fitness.

Table 3.2: The parameter settings of GP.

Parameter Value
Population size 1000
Number of generations 50
Method for initialising population =~ Ramped-half-and-half
Initial minimum/maximum depth 2 /6
Elitism 10
Maximal depth 8
Crossover rate 0.80
Mutation rate 0.15
Reproduction rate 0.05
Terminal /non-terminal selection rate  10% / 90%
Switching criterion h 5

The number of cases ¢

Candidate pool size p

10, 25, 40, 50, 80, 100
10, 20, 30, 40, 50, 60, 70, 80
100, 200, 400, 600, 800, 1000

3.3.3 Comparison Design

The proposed GPLS algorithm has two important parameters, which are
the number of cases (c) and candidate pool size (p). At the beginning,
a sensitivity analysis is done to select the best pair of parameters (c,p).
Then, to verify the effectiveness of the proposed three novel parent selec-
tion mechanisms (GPCS, GPDPS, and GPLS) algorithm, we compare them
with the following algorithms:

1. GP7: The traditional GP approach that uses tournament selection
with size 7. This is the standard GP hyper-heuristic for DFJSS.

2. GP4: The traditional GP approach that uses tournament selection
with size 4. It is known that tournament size can control the selec-

tion pressure of tournament selection [229]. By reducing the tourna-
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ment size from 7 to 4, the traditional GP can have a better population
diversity.

3. GPLS'": The GPLS with multiple instances [180]. In the fitness eval-
uation, it uses c different instances, each of which is a short simula-
tion with 1000/c warm-up jobs, and stops after completing the next
4000/c jobs.

4. GPm: GP with multi-case fitness evaluation and tournament selec-
tion with size 7. It simply sets the fitness to the mean of all the case-
titnesses. Note that GPm is also a proposed algorithm in this chapter
that only uses multi-case fitness. The comparison with GPm can help
find whether LS works.

5. STS": The GP with semantic tournament selection with size 7 [47].
It uses the case-fitness vector and selects the individual that is sig-
nificantly better than the other based on the Wilcoxon rank sum test.
The tie is broken randomly.

6. STS*: The GP with semantic tournament selection with size 7 [47].
It uses the case-fitness vector, and selects the individual that is sig-
nificantly better than the other based on the Wilcoxon rank sum test.
The tie is broken by selecting the individual with smaller program

size.
To verify different hypotheses, we form the following comparisons:

1. Comparison between GPLS and GP7, GP4, and GPLS': This can ver-
ify the effectiveness of the proposed multi-case fitness evaluation

strategy.

2. Comparison between GPLS and GPm, STS", and STS®: This can ver-
ify the effectiveness of the LS under the proposed multi-case fitness
evaluation.
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Each compared algorithm is run 30 times independently to train the
scheduling heuristics for each scenario. To evaluate the test performance
of the trained scheduling heuristics, we use 30 unseen simulations in the
test set, each with 1000 warm-up jobs and 5000 jobs afterwards. The test
performance is defined as the average objective value of the schedules gen-
erated by the scheduling heuristics over the 30 test simulations.

3.4 Results and Discussions

3.4.1 Sensitivity Analysis

To have a comprehensive sensitivity analysis of the c and p parameters, we
consider a wide range of parameter values, i.e., ¢ € {10, 25,40, 50, 80, 100}
and p € {10, 20, 30, 40, 50, 60, 70, 80, 100, 200, 400, 600, 800, 1000}. Note that
when p = 1000 (the entire population), the LS is equivalent to the tradi-
tional e-LS.
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Figure 3.7: The heat map of test performance of GPLS with different num-

bers of case and pool size on eight scenarios.
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Figure [3.7| shows the heat map of the test performance of GPLS with
different (c, p) parameter values on the 8 test scenarios. The darker (blue)
colour indicates smaller values (better test performance), while the lighter
(yellow) colour indicates larger values (worse test performance). From
Figure we can see that a large number of cases and small candidate
pool size (bottom right region) tend to lead to poor performance, while a
relatively small number of cases (e.g, 25~50) and a relatively large candi-
date pool size (e.g., 400~800) tend to result in promising test performance.
Different scenarios show different distributions of the test performance.
For example, the colors of the <Fmax, 0.85> and <Fmax, 0.95> scenar-
ios are much darker than the <Fmean, 0.85> and <Fmean, 0.95> scenar-
ios. However, the best regions for all the scenarios are consistently located
around the top left.

In addition, we compare each parameter setting with the baseline GP7,
using the Wilcoxon rank sum test with a significance level of 0.05. We
found that 9 parameter settings, i.e., (10, 200), (25, 80), (25, 200), (25, 400),
(25, 600), (25, 800), (40, 200), (40, 800) and (80, 600), can obtain significantly
better than GP7 on 7 out of the 8 test scenarios. Among these 9 settings,
(25, 800) performed slightly better than others. Therefore, we select ¢ = 25
and p = 800 for GPLS in the subsequent experiments.

3.4.2 Test Performance

In this section, we first compare the proposed GP methods with three
novel parent selection methods to baseline GP with the standard tourna-
ment selection (GP7) to find which one of the proposed parent selection
methods is the best.

Table 3.3|shows the mean (standard deviation) of the test performance
of the 30 independent runs of GPCS, GPDPS, and GPLS on the 8 scenarios.
We have also conducted the Wilcoxon rank sum test with a significance

level of 0.05 to make pairwise comparisons (each algorithm is compared
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Table 3.3: The mean (standard deviation) of the test performance of the 30
independent runs of GP7, GPCS, GPDPS, GPLS on 8 scenarios.

GP7 GPCS GPDPS GPLS
" 1291.40(12.62) 1297.73(19.28)(=) 1284.45(12.46)(1)(1)  1282.77(13.77)(N)(1)(=)
" 1375.33(16.77)  1380.39(19.94)(1) 1368.16(23.17)(1)(1)  1359.44(13.49)(1)(1)(=)
524.54(2.93)  524.39(3.14)(=)  525.54(4.86)(=)(=)  523.46(3.56)(N(M)(1)
|| 566.69(323)  568.50(4.52)(=)  566.83(3.20)(=)(=)  565.84(2.62)(=)(1)(=)
| 733.27(14.69)  735.60(13.58)(=)  719.52(11.28)(1)(1)  717.05(13.34)(1)(1)(=)
" 860.42(19.09)  858.33(18.67)(=)  847.18(18.69)(1)(1)  831.09(11.74)(1)(1)(=)
" 2323.13(161.67) 2319.98(109.23)(=) 2246.78(73.55)(1)(=) 2240.34(65.35)(1)(1)(=)
2460.96(100.40) 2445.11(97.36)(=) 2426.09(93.69)(=)(=) 2398.00(110.64)(1)(=)(=)

" S: Scenarios, 1: <Fmax, 0.85>, 2: <Fmax, 0.95>, 3: <Fmean, 0.85>, 4: <Fmean, 0.95>, 5: <Tmax,
0.85>, 6: <Tmax, 0.95>, 7: <WTmax, 0.85>, 8: <WTmax, 0.95>.

*

ooqc\mhw*m»-\cn*

with all the algorithms to its left in the table). The “1/|/=" after each
entry in the table indicates that the corresponding results are significantly
better /worse than or similar to the results of the compared algorithm. For
example, for the <Fmax, 0.85> scenario, the (1)(1)(=) for GPLS indicates
that GPLS performed significantly better than GP7 and GPCS, and there is
no statistical difference between GPLS and GPDPS.

From the table, it is evident that GPLS consistently achieves signifi-
cantly superior performance compared to GP7 and GPCS across 7 out of
the 8 test scenarios. Furthermore, GPLS outperforms GPDPS on a spe-
cific scenario (<Fmean, 0.95>) and demonstrates comparable performance
with GPDPS on all other scenarios. Notably, GPDPS exhibits notably su-
perior performance over GP7 on 5 out of 8 scenarios and outperforms
GPCS on half of the 8 scenarios. GPCS, on the other hand, exhibits no-
tably poorer performance than GP7 on one scenario (<Fmax, 0.95>) and
performs similarly to GP7 on the remaining scenarios. The superiority
of GPLS and GPDPS over GP7 and GPCS verity the effectiveness of the
proposed LS and DPS. However, the proposed cluster selection does not
contribute significantly to improving test performance. Among the three
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novel parent selection methods, LS emerges as the most effective. To fur-
ther explore the components related to GPLS, we conduct two additional
comparisons focusing on the effectiveness of the newly proposed multi-
case fitness evaluation and LS, respectively.

Effectiveness of Multi-Case Fitness Evaluation

To verify the effectiveness of the multi-case fitness evaluation strategy, we
compare GPLS with GP7, GP4, and GPLS'. GP4 uses the tournament se-
lection but has a better population diversity by reducing the tournament
size from 7 to 4. GPLS' uses a case-fitness list, where each case-fitness is

based on a set of short instances/simulations.

Table 3.4: The mean (standard deviation) of the test performance of the 30
independent runs of GP7, GP4, GPLS', GPLS on 8 scenarios.

GP7 GP4 GPLS! GPLS

‘| 1291.40(12.62) 1294.29(10.08)(=) 1280.10(10.95)(1)(1) 1282.77(13.77)()(N)(=)
1375.33(16.77)  1378.48(16.63)(=)  1362.07(18.37)(1)(1)  1359.44(13.49)(1)(1)(=)
524.54(2.93)  523.28(2.36)(1)  523.072.07)(1)(=)  523.46(3.56)(1)(=)(=)
566.69(3.23)  567.02(3.67)(=)  596.42(175.53)(=)(=)  565.84(2.62)(=)(=)(=)
733.27(14.69)  740.84(16.44)(})  722.33(14.49)(D)(1)  717.05(13.34)(D)(1)(=)
‘| 860.42(19.09)  861.83(17.92)(=)  835.51(13.01)(1)(1)  831.09(11.74)(1)(1)(=)
2323.13(161.67) 2239.42(45.33)(=) 2224.77(56.65)(1)(1)  2240.34(65.35)(1)(1)(=)
2460.96(100.40) 2494.17(123.86)(=) 2443.69(117.17)(=)(1) 2398.00(110.64)(1)(1)(=)

* S:Scenarios, 1: <Fmax, 0.85>,2: <Fmax, 0.95>, 3: <Fmean, 0.85>, 4: <Fmean, 0.95>, 5: <Tmax, 0.85>,
6: <Tmax, 0.95>, 7: <WTmax, 0.85>, 8: <WTmax, 0.95>.
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Table 3.4|shows the mean (standard deviation) of the test performance
of the 30 independent runs of GP7, GP4, GPLS’, and GPLS on the 8 sce-
narios. From the table, we can see that GPLS obtains significantly better
performance than GP7 and GP4 on 7 out of the 8 test scenarios. GPLS
performs similarly to GPLS’ on all the scenarios. In addition, GPLS' per-
formed significantly better than GP7 and GP4 on 6 out of the 8 test sce-
narios, which is slightly worse than GPLS. The advantages of GPLS and



102 CHAPTER 3. DIVERSITY-BASED PARENT SELECTION

GPLS' over GP7 and GP4 verify the effectiveness of the use of multi-case
titness instead of a single aggregated fitness in parent selection for evolv-

ing DFJSS scheduling heuristics.
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Figure 3.8: The convergence curves of the test performance of the com-

pared methods on the 8 scenarios.

Figure shows the convergence curves of the test performance of
GP7, GP4, GPLS!, and GPLS on the 8 scenarios. From the figure, we can
see that GPLS has a faster convergence than GP7 and GP4, as its conver-
gence curves are almost always below that of GP7 and GP4 for all the
scenarios. This verifies the effectiveness of the proposed multi-case fitness
selection strategy. On the other hand, although GPLS' shows competitive
tinal test performance in Table its convergence curves in Figure
are shown to be quite fluctuating and unstable, especially in the <Fmean,
0.95> scenario, where it shows worse test performance and large variance.
A possible reason is that GPLS' uses several small-scale instances (160 jobs
and 40 warm-up jobs) for evaluation, and these instances are all from the
beginning stage of the scheduling system and the small number of warm-
up jobs can not simulate a stable scheduling system very well. This leads
to overfitting and worse generalisation of the evolved scheduling heuris-
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tics.
Opverall, the advantages of GPLS over GP7, GP4, and GPLS' verify the
effectiveness of the proposed multi-case fitness evaluation.

Effectiveness of Lexicase Selection

To verity the effectiveness of the use of LS, we compare GPLS with GPm,
STS", and STS®. All the compared algorithms employ the multi-case fit-
ness, but have different parent selection schemes. GPm simply averages
the case-fitnesses into a single fitness, and uses the tournament selection.
For the mean-objectives, it becomes equivalent to the baseline GP. How-
ever, for the max-objectives, its fitness is different from the standard fit-
ness. STS" and STS® select parents by conducting statistical significance
test on the case-fitness lists. They are also state-of-the-art GP parent selec-

tion methods that improve population diversity.

Table 3.5: The mean (standard deviation) of the test performance of the 30
independent runs of GPm, STS", STS?, GPLS on 8 scenarios.

GPm STS* STS* GPLS
" 1282.42(12.36) 1317.59(19.20)(}) 1372.22(65.59)(1)(1)  1282.77(13.77)(=)(1)(1)
1367.34(19.42) 1406.85(22.18)()) 1488.40(81.23)(1)(})  1359.44(13.49)(1)(N)(1)
523.87(3.38)  526.20(4.51)(1)  532.30(640)(1)(1)  523.46(3.56)(=)(1)(1)

567.73(327)  570.20(5.02)(})  578.633.84)(1)(l)  565.84(2.62)(H)(N)(1)

720.74(15.91)  763.96(19.89)())  835.54(46.86)(1)(})  717.05(13.34)(=)(1)(1)
830.88(11.50)  883.68(23.94)(})  971.03(59.00)(1)(})  831.09(11.74)(=)(1)(1)
" 2250.66(64.28) 2358.00(64.15)(}) 2464.33(98.52)(1)(}) 2240.34(65.35)(=)(1)(1)
" 2428.43(79.14) 2586.20(117.66)(}) 3434.35(412.91)(1)(}) 2398.00(110.64)(=)(1)(1)

" S: Scenarios, 1: <Fmax, 0.85>, 2: <Fmax, 0.95>, 3: <Fmean, 0.85>, 4: <Fmean, 0.95>, 5: <Tmax,
0.85>, 6: <Tmax, 0.95>,7: <WTmax, 0.85>, 8: <WTmax, 0.95>.

*
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Table |3.5/shows the mean (standard deviation) of the test performance
of the 30 independent runs of GPm, STS", STS?, and GPLS on the 8 scenar-
ios. From the table, it can be seen that GPLS achieved significantly better

performance than GPm on 2 scenarios, and is comparable with GPm on
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all the remaining scenarios. It significantly outperformed STS" and STS®
for all the 8 scenarios. This verifies the effectiveness of the proposed LS.

GPm obtained significantly better performance than GP7 on 5 scenar-
ios, which shows that even averaging the case-fitness can improve the per-
formance, especially on the max-objectives. This is because the multi-case
titness evaluation uses more information, e.g., the completion time of ¢
jobs (each for a case) rather than a single job with the maximal objective
value. This can improve the generalisation. This might also be one of
the reasons that GPLS performs well. However, STS" and STS® perform
significantly worse than GP7 on almost all the 8 scenarios. This is contra-
dictory to the results in [47], where STS" and STS® performed better than
tournament selection and semantic in selection [70] for solving regression
problems. A possible reason is that the DFJSS problem is more complex
than regression problems and the strategy to select parents based on the
statistical test might give poor individuals high probabilities to be selected
in DFJSS.

In summary, the above two comparisons with different sets of other
existing GP approaches verify the effectiveness of the proposed GPLS, and
the newly proposed multi-case fitness evaluation and LS.

3.4.3 Distribution of Parent Fitness

Using the multi-case fitness evaluation instead of the standard fitness is
expected to reduce the selection pressure and allow more specialist indi-
viduals with worse standard fitness to be selected as parents.

To analyse such behaviour of the multi-case fitness evaluation, we plot
the distribution of the standard fitness of the selected parents in a run of
GP7, GPm, and GPLS. Figure shows the distributions at generation 5,
20, 35, and 45 in the <Fmax, 0.85> scenario. Note that all three algorithms
use the tournament selection on the standard fitness until generation 5.

Thus, They have exactly the same process in the first generation, and the
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Figure 3.9: The violin plots of the standard fitness of the selected parents
of GP7, GPm, and GPLS at generation 5, 20, 35, and 45 in scenarios <Fmax,
0.85> of a single run.

same distribution of parent fitness at generation 5. After that, we can see
that both GPm and GPLS achieved a wider-spread distribution than GP7.
An interesting pattern is that GPm and GPLS were able to select parents
with better standard fitness than GP7. This indicates that the multi-case fit-
ness evaluation can help the algorithms generate better individuals, which

can then be used as parents in subsequent generations.

3.4.4 Phenotypic Diversity

Besides the fitness, the phenotypic characterisation (PC) [93] is a more
comprehensive representation of the behaviour of a GP rule. The PC of
a GP rule is represented as a numeric vector, where each dimension is the
decision made by the rule under a decision situation (e.g., the index of the
selected candidate by an idle machine from its queue).

Figure[3.10]shows the convergence curves of the number of unique PCs
in the population in GP7, GP4, and GPLS on the 8 scenarios. From the
figure, we can see that GP4 always contains more unique PCs in the pop-
ulation than GP7 for all the scenarios, which is expected. The convergence
curves of GPLS and GP7 overlap with each other in the first 5 generations
due to the switching criterion. After generation 5, GPLS starts to have
more unique PCs than GP7. Compared to GP4, GPLS has more unique



106 CHAPTER 3. DIVERSITY-BASED PARENT SELECTION

<Fmax, 0.85> <Fmean, 0.85> <Tmax, 0.85> <WTmax, 0.85>

=R L \

10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
<Fmax, 0.95> <Fmean, 0.95> <Tmax, 0.95> <WTmax, 0.95>

700
600
500-
400-
00 300 .

200

Unique PC
N
o
C?

[e ]
o
o

0 10 20 30 40 50 O 1020304050 0 1020304050 o 10 20 30 40 50
Generation

GP7 ~GP4 - GPLS

Figure 3.10: The convergence curves of unique PCs of GPLS and compari-
son methods on eight scenarios.

PCs on three scenarios (<Fmean, 0.85>, <Fmean, 0.95>, <WTmax, 0.85>)
in the later stages of the evolutionary process, while has fewer unique PCs
on four scenarios (<Fmax, 0.85>, <Fmax, 0.95>, <Tmax, 0.85>, <Tmax,
0.95>). Considering Table where GPLS significantly outperformed
GP4 although it has slightly lower phenotypic diversity, we can see that
increasing phenotypic diversity, although important, is not the only rea-
son for the performance improvement in GPLS.

3.5 Further Analyses

3.5.1 Correlation between Case-Fitnesses

For LS based on the case-fitness list, an important factor is the correlation
between the fitnesses of different cases. Ideally, the population should
contain individuals that specialise at different cases to increase the selec-
tion diversity. If the case-fitnesses are highly correlated, the selected par-
ent will be the same regardless of the order of the case. That is, if an indi-
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vidual A is better than B on one case, it is highly likely to be better on other
cases. As a result, LS has no advantage over the tournament selection.

2500-

2000~

Case

Figure 3.11: The standard fitness and case-fitness of the top 400 individuals
of GPLS at generation 1, 25 and 45 on the <Fmean, 0.85>.

To investigate the correlation between case-fitnesses, we plot the case-
fitnesses of the top 400 individuals in the population of GPLS (that are
most likely to be selected by LS) in the early stage (generation 1), mid-
dle stage (generation 25) and late stage (generation 45) for the <Fmax,
0.85> and <Fmean, 0.85> scenarios. Figures and show the re-
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sults, where each individual corresponds to a line and the standard fitness

of the individual is also given on the most left as a reference.
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Figure 3.12: The standard fitness and case-fitness of the top 400 individuals
of GPLS at generation 1, 25, and 45 on the <Fmax, 0.85>.

From the figures, we can see that in both scenarios, initially there are
a few individuals that perform well on almost all the cases (their lines
are below the others). However, as the evolution proceeds, the lines of
different individuals become more mixed together, and it is difficult to see
any individual’s line always below that of the others for all the cases. This
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suggests that we can select different individuals under different orders of
cases. In addition, we see that the distribution of the case-fitness has a
higher variance in the <Fmax, 0.85> scenario than that in the <Fmean,
0.85> scenario. This is expected since the Fmax objective is more sensitive
to outliers (the job with the maximal flowtime).
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Figure 3.13: The Pearson correlation between standard fitness and case-
titness of the top 400 individuals of GPLS at generation 1, 25 and 45 on the
<Fmax, 0.85> and <Fmean, 0.85>.

We also calculate the Pearson correlation between the standard fitness
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and each case-fitness of the top 400 individuals at generations 1, 25, and
45, as shown in Figure We can see that in generation 1, all the case-
fitnesses are very highly correlated with the standard fitness. This is con-
sistent with our observations in Figures and However, genera-
tions 25 and 45 show different patterns. Specifically, in the <Fmax, 0.85>
scenario, all the cases except case 11 in generation 25 and case 9 in gener-
ation 45 have low correlations with the standard fitness. This implies that
the standard fitness is mostly determined by a single case, which contains
the job with the largest flowtime. In the <Fmean, 0.85> scenario, all the
cases have low correlations with the standard fitness. This suggests that

we can select a wide range of specialist individuals by LS.

3.5.2 Frequency of Case Usage

Different cases might have different abilities to distinguish promising in-
dividuals. For example, if a case usually leads to ties between individuals,
then other subsequent cases are needed to further identify the best indi-
vidual. In this sense, different cases might be used at different frequencies.
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Figure 3.14: The frequency of the cases used by GPLS at generations 5, 20,
35, and 45 in the <Fmax, 0.85> scenario.

To investigate this issue, we plot the frequency that each case is used
by GPLS at generations 5, 20, 35, and 45 in the <Fmax, 0.85> scenario, as
shown in Figure It can be seen that different cases have very similar
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frequencies to each other. This indicates that all the cases have similar

abilities to distinguish the individuals, which is a good sign.

3.5.3 Rule Size

In this section, we investigate how the proposed multi-case fitness eval-
uation strategy and LS affect the size of the evolved rules by comparing
GPLS with GP7 (baseline GP). Tables[3.6|and 3.7/ show the mean and stan-
dard deviation of the sizes of the evolved best routing rules and sequenc-
ing rules of GPLS and GP7 (baseline GP) on the 8 scenarios. In the tables,
the “+/—/=" after each entry indicates that the corresponding rule size
obtained by GPLS is significantly larger/smaller than or similar to the size
obtained by GP?7.

Table 3.6: The mean (standard deviation) of the size of the evolved best

routing rules of 30 independent runs of GP7 and GPL for the 8 scenarios.

Scenario GP7 GPLS
<Fmax, 0.85> 36.53(11.65) 52.60(17.51)(+)
<Fmax, 0.95> 37.87(14.51) 53.33(16.67)(+)

<Fmean, 0.85> | 52.27(15.39) 55.73(18.48)(=)
<Fmean, 0.95> | 50.47(16.58) 48.33(12.14)(=)
<Tmax, 0.85> | 37.27(13.31) 46.60(13.78)(+)
<Tmax, 0.95> | 33.07(17.33) 44.40(14.88)(+)
<WTmax, 0.85> | 40.80(14.03) 46.00(12.37)(=)
<WTmax, 0.95> | 39.60(20.47) 47.33(10.35)(+)

From Table we can see that GPLS obtained significantly larger
routing rule size than GP7 on 5 scenarios (<Fmax, 0.85>, <Fmax, 0.95>,
<Tmax, 0.85>, <Tmax, 0.95>, <WTmax, 0.95>) and there is no statistical
significant difference on the other scenarios. Table 3.7| shows that GPLS
obtained significantly larger sequencing rule size than GP on 2 scenarios
(<WTmax, 0.85>, <WTmax, 0.95>) and similar on the other scenarios.
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Table 3.7: The mean (standard deviation) of the size of the evolved best
sequencing rules of 30 independent runs of GP7 and GPLS for the 8 sce-

narios.

Scenario GP7 GPLS
<Fmax, 0.85> | 42.60(15.86) 44.73(14.48)(=)
<Fmax, 0.95> | 44.00(14.48) 48.47(11.86)(=)

<Fmean, 0.85> | 33.67(12.14) 32.27(17.88)(=)
<Fmean, 0.95> | 39.73(17.82) 29.33(13.78)(=)
<Tmax, 0.85> | 48.40(17.89) 50.80(16.96)(=)
<Tmax, 0.95> | 41.53(14.75) 50.67(15.08)(=)
<WTmax, 0.85> | 26.27(22.64) 40.87(19.90)(+)
<WTmax, 0.95> | 28.40(12.53) 45.87(19.73)(+)

P UG-

The above results suggest that GPLS tends to allow larger GP rules (es-
pecially routing rules) to survive, which might be a reason of the superior
performance of GPLS.

3.5.4 Insight on the Evolved Scheduling Heuristics

Figures and give the tree structures of the routing rule and the se-
quencing rule from a scheduling heuristic evolved by GPLS on the <Fmax,
0.85> scenario.

The routing rule is a combination of six terminals (TRANT, MWT, PT,
NOR, WIQ, and TIS), where TRANT is the most frequently used terminal
(used 5 times). It is followed by MWT and PT, which are used 2 times.
NOR, WIQ, and TIS, on the other hand, are used only once. The routing
rule (Figure can be simplified to R, as shown in Eq. (3.8).

Ry = max{max{WIQ + PT,min{min{TIS, TRANT — MWT},

(3.8)
TRANT — MWT + NOR}} + PT,TRANT} + TRANT

If the operation has been waiting for a long time (a large TIS), this rule
can be further simplified as Ry ~ max{T RANT+WIQ+2PT, 2T RANT —
MWT + PT,2TRANTY}. For a candidate machine with an empty queue



3.5. FURTHER ANALYSES 113

fwia] [pr] [wn] [~ ]
| ﬂl\llh |
| ﬂl\llh |

Figure 3.15: An example of the evolved routing rule by GPLS on scenario
<Fmax, 0.85>.

(WIQ=MWT=0), R; can be further simplified as Ry ~ max{TRANT +
2PT,2TTRANT + PT}, which means that an idle machine with a smaller
transportation time (TRANT) and a smaller processing time (PT) is pre-
ferred. For a candidate machine with a busy queue (WIQ is large) of the
machine (large WIQ), R; can be further simplified as R; ~ TRANT +
WIQ + 2PT, which prefers small transportation time, small work in the
queue, and small processing time. In other words, this routing rule tends
to select machines with smaller transportation time (TRANT), smaller
processing time (PT), and smaller work remaining in the waiting queue
(WIQ).

The sequencing rule is a combination of seven terminals (WKR, TIS,
WIQ, PT, NOR, W, and NPT). WKR and TIS are the most frequently used
terminals, which are both used 4 times. It is followed by WIQ, PT, NOR,

and W, which are used 2 times. NPT is used only once. The sequencing
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Figure 3.16: An example of the evolved sequencing rule by GPLS on sce-
nario <Fmax, 0.85>.

rule (Figure can be simplified to S as shown in Eq. (3.9).
So =min{W — WKR,min{W — WKR, max{TIS, NPT}}
- (WIQ—-PT)} —(WIQ — PT) — NOR 4+ min{ NOR (3.9)
—WKR,TIS — WKR} —max{TIS,TIS}

This rule shows that the selection strategy is mainly based on the
weight of the job (W), the processing time of the operation (PT), the
work remaining of the operation (WKR), and the time that the opera-
tion has been waiting (TIS). Note that in most practical decision situa-
tions, the subtree W — W KR outputs a smaller value than the subtree
max{7'[S, NPT}, the number of operations remaining (NOR) is always
smaller than TIS, and the work remaining in the waiting queue (WIQ) is
always the same. Therefore, this sequencing rule can be further simplified
as S ~ W +2PT —2W KR —TIS. In other words, this rule tends to select
operations with a smaller weight (W), a smaller processing time (PT), a
larger work remaining (WKR), and a larger time in system (TIS).

Overall, we can see that for the routing decisions, the attributes of the

machines, such as the transportation time and processing time (related to
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the processing rate of machines) play decisive roles. For the sequencing
decisions, the information of operations, such as the processing time (re-
lated to the workload of operations), time in the system, and work remain-
ing, play decisive roles. This phenomenon is consistent with our intuition
that for the max-flowtime objective, the machines that are not busy and
have short transportation time are good choices to process ready opera-
tions, and the operations that stay in the system for a long time and have

much remaining work should be completed as soon as possible.

3.5.5 Further Discussions

In [202], it is argued that the LS is good for solving modal problems, which
is defined as follows: “a problem is modal if a solution has to do something
qualitatively different in different circumstances, that is, on inputs from different
classes.” The symbolic regression problems are proven to be modal prob-
lems [202].

DEFJSS is more complex than symbolic regression, with dynamic job
arrival events and complex system states. In order to improve training ef-
ficiency, we divide one instance of DFJSS into multiple cases to obtain a list
of case-fitnesses, which means that different cases might not be indepen-
dent. If this occurs, then the scheduling heuristics will not be qualitatively
different in different circumstances (cases). Our analysis on the parents’
fitness shows that the scheduling heuristics do give different schedul-
ing solutions in different circumstances (cases), and the proposed GPLS
works on the DFJSS problem. Therefore, we conservatively hypothesise
that DFJSS can be considered as a modal problem, but more experiments
and analyses should be performed to verify it in the future. In addition,
considering the analysis of the correlation between case-fitnesses, GPLS
performs significantly better, especially on max-objectives. This is because
the scheduling heuristics perform more differently on max-objectives than

on mean-objectives, which is consistent with the description in [202]. The
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reason for this difference is that the mean-objectives focus on achieving
an average performance across multiple jobs, allowing scheduling heuris-
tics with well-rounded performance to be more competitive compared to

max-objectives.

3.6 Chapter Summary

The goal of this chapter is to propose innovative diversity-based parent
selection mechanisms for GP. These mechanisms aim to choose diverse in-
dividuals as parents, facilitating the generation of high-quality offspring
and the evolution of effective scheduling heuristics for solving large-scale
DFJSS problems involving thousands of jobs. To achieve this goal, three
novel parent selection mechanisms are proposed: cluster selection, the
new DPS, and the new LS.

The cluster selection method categorises individuals in the population
into different clusters based on their behavioural similarity. When two
parents are required for crossover, individuals are selected from differ-
ent groups based on their fitness to ensure both effectiveness and diver-
sity. The new DPS and new LS mechanisms focus on selecting individuals
with expertise in different cases as parents to generate offspring. To fa-
cilitate DPS and LS, a multi-case fitness evaluation strategy is designed,
efficiently dividing a large DFJSS simulation (instance) into multiple cases
and extracting case-fitnesses. This strategy is more efficient than directly
evaluating individuals on multiple instances. The underlying idea is that
parents specialising in diverse cases are expected to contribute to the pro-
duction of high-quality offspring.

The effectiveness of the proposed GP methods, incorporating the three
novel parent selection mechanisms, is validated through comparisons
with various existing GP approaches across eight large-scale DFJSS sce-
narios. Among the three mechanisms, the new LS exhibits superior per-
formance, followed by the new DPS, with cluster selection demonstrating
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relatively lower effectiveness. Further analysis shows that the effective-
ness of the GPLS is attributed to the utilisation of the information of more
jobs, the increased phenotypic diversity of the population by using parents
with a wider fitness distribution to generate offspring, and the increased
rule size.

This chapter focuses on developing effective GP methods with novel
parent selection mechanisms to evolve single scheduling heuristics for
solving the DFJSS problem. In the next chapter, we will study a joint
decision-making mechanism by incorporating the ensemble technique
into GP to evolve a group of scheduling heuristics that collaboratively
make decisions to address the DFJSS problem. Specifically, the LS tech-
nique is employed as a parent selection mechanism in this chapter. In
the next chapter, LS will be used to select diverse individuals, forming an
ensemble that contributes to enhanced decision-making capabilities. No-
tably, the proposed multi-case fitness evaluation strategy, proposed in this
chapter, will also be used in the next chapter to support the application of
LS.
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Chapter 4

Joint Decision-making by

Ensemble

This chapter focuses on leveraging the ensemble technique to enhance the
effectiveness of GP in evolving a group of scheduling heuristics for mak-
ing joint decisions for DFJSS.

41 Introduction

Most of the existing GP methods for DFJSS mainly focus on evolving one
scheduling heuristic [236) 253]]. Recently, there has been a growing trend
to learn a group of scheduling heuristics and leverage this group to make
joint decisions, allowing for further exploration of the search space and the
discovery of high-quality solutions [213]. Ensemble GP (EGP) is a variant
of GP, incorporating GP with ensemble learning, which is able to combine
multiple scheduling heuristics into an ensemble to make a decision [118].
In EGP, each scheduling heuristic in an ensemble is expected to be dif-
ferent and complementary to others [53]. The output of each scheduling
heuristic in an ensemble is then combined using an aggregation function,
such as voting or averaging, to make a final joint decision [154]. The goal
of EGP is to improve the performance and generalisation ability of GP by

119
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leveraging the strengths of multiple scheduling heuristics while mitigat-
ing their weaknesses [175]. In this way, the probability of making a sub-
optimal decision in a given decision point is reduced, as the elements can
complement each other to avoid poor decisions. Consequently, an ensem-
ble is expected to be more stable than a single scheduling heuristic, which
can also provide confidence and trust for users, especially in real-world
applications [224]. EGP has been applied in various domains, such as re-
gression [273] and classification [23] 154, 199], and has shown promising
results in terms of performance and generalisation ability.

Recently, EGP has been applied to evolve a group of scheduling heuris-
tics for solving scheduling problems [74, 75, 78, 211]. However, existing
studies on EGP for scheduling problems are still in their early stages and
exhibit several limitations. Some studies only consider the cooperation
of scheduling heuristics during evaluation, while neglect the cooperation
during evolution. Others treat the evolutionary processes of single indi-
viduals and ensembles independently, overlooking the direct contribu-
tions of individuals and ensembles to each other. Overall, the existing
research on EGP for solving scheduling problems is still in its infancy and
requires further exploration. A novel EGP method is required that has the
potential to identify the strengths of both single individuals and ensem-
bles, and make them mutually reinforcing. On the other hand, the lexi-
case selection is a very effective technique to improve population diversity,
having the principle to evolve mutual complementary expert individuals
that are good for handling different cases [240]. This highly motivates us
to incorporate lexicase selection and ensemble techniques so that diverse

individuals can be found by lexicase selection to form an ensemble.

4.1.1 Chapter Goals

The goal of this chapter is to propose a novel EGP method to exploit the
strengths of both single individuals and ensembles to effectively solve the DF]SS
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problems. The proposed method contains a new ensemble construction and
selection strategy which is used to select diverse individuals to form en-
sembles and considers the evolution of single individuals and ensembles
together within a single population. Single individuals, being simpler solu-
tions, can efficiently explore the search space, identify promising regions,
and provide useful building blocks. Ensembles, combining different in-
dividuals, might be able to get better performance by using these useful
building blocks together. Ensembles with high performance can be “de-
constructed” to identify the single individuals that contribute to their suc-
cess. This knowledge can be used to create new, potentially even better
ensembles in future generations. This creates a feedback loop where ex-
ploration by single individuals informs the creation of effective ensembles,
which in turn, might discover new areas for exploration. Specifically, the
objectives of this chapter are as follows:

1. Propose a new EGP method for DFJSS, called EGP¢, which enables
the evolution of a population consisting of both single individuals
and ensembles, offering more flexibility in the evolutionary process

and better exploration of search space.

2. Design a new ensemble construction and selection strategy to help
the proposed EGP* method select diverse and high-quality individ-
uals into an ensemble. The strategy uses lexicase selection to choose
diverse individuals good at solving different cases as candidates
and then employs a new similarity-checking technique to further en-

hance diversity.

3. Develop new crossover and mutation operators to facilitate the evo-
lution between single individuals and ensembles in EGP¢. The off-
spring generated by these operators can be either single individuals
or ensembles, resulting in more flexible breeding between single in-
dividuals and ensembles.
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4. Analyse the effectiveness of the proposed algorithm in terms of the
quality of evolved ensembles of scheduling heuristics.

5. Analyse the differences and similarities of the scheduling heuristics

in the evolved ensembles by the proposed method.

4.1.2 Chapter Organisation

The rest of this chapter is organised as follows. A detailed description
of the proposed algorithm is presented in Section The experimental
design is given in Section followed by the presentation of results and
discussion in Section[4.4] Additional analyses are conducted in Section[4.5
Finally, Section [4.6] concludes this chapter.

4.2 Proposed Algorithm

4.2.1 Overall Framework

[ Population initialisation [¢—(Start)

—>| Individual evaluation | By using multi-case fitness evaluation

Ensemble construction

" By using lexicase/tournament selection
and selection

By using voting aggregation function and

Ensemble evaluation | . ) .
| multi-case fitness evaluation

Output individual/ensemble

with best fitness End
No
Seed | Elitism Selection |
rotation
| Parent selection | From individuals and ensembles
v

Genetic operators

Between individual and individual, individual
Crossover
and ensemble, ensemble and ensemble
Mutation On individual or ensemble

Figure 4.1: The flowchart of the proposed EGP° method.
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The flowchart of the proposed EGP® method is shown in Figure
Population initialisation, fitness evaluation, parent selection, and breed-
ing (crossover and mutation) are the main processes in GP, whereas special
designs are developed for each part. In addition, the ensemble construc-
tion and selection strategy as well as the ensemble evaluation are newly
proposed. The detailed population initialisation and the potential com-
binations of parents for the proposed crossover and mutation operators
can be seen in Figure It illustrates that the population comprises both
single individuals and ensembles, and it presents three possible combina-
tions of parents for crossover and two possibilities of parents for mutation.

Overall, there are six differences between the proposed EGP* and classical
GP methods:

1. Population initialisation: EGP® initialises and maintains a population

containing both single individuals and ensembles instead of only in-

dividuals (Section ;

2. Individual evaluation: EGP¢ uses a multi-case fitness evaluation to
assign each individual a list of case-fitnesses and standard fitness
rather than only one standard fitness (Section ;

3. Ensemble Construction and Selection: EGP® uses lexicase selection to
select individuals to form an ensemble, which is expected to select
diverse individuals that are good at handling different cases. Ad-
ditionally, a newly proposed similarity-checking strategy is used to

further ensure the diversity and complementarity of elements in the

ensemble (Section 4.2.4);

4. Ensemble evaluation: EGP? uses a multi-case fithess evaluation to as-

sign each ensemble a list of case-fitnesses and standard fitness (Sec-

tion 4.2.5);

5. Genetic operators: EGP® proposes new crossover and mutation oper-

ators to generate offspring which allows both individual(s) and en-
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semble(s) to be parent(s). Also, the generated offspring can be either
individual(s) or ensemble(s) (Section ;

6. Output: EGP® allows an individual or ensemble as the final output,
depending on which one has the best training performance, while
classical GP methods output an individual as the final result and tra-
ditional EGP methods output an ensemble as the final result. In other
words, the output of EGP° is more flexible.

population (1) (2) 3)

Iparents for. |:| |:|
'crossover 1

i____"__i__

| —1
parentfor  ind,t | . >
"mutation :I:I:Or N e |:|
enN (1) 1 (2)| | ensemble _______
1 1 -
! individual 1 parent
e e ¢ ffl_ ________ : parent : _ I é_&

Figure 4.2: The population composition and possible parent combina-
tion(s) for crossover and mutation of the proposed EGP* method.

4.2.2 Population Initialisation

Different from classical GP methods which hold a population of individu-
als only, our method initialises and maintains a population P of both sin-
gle individuals ® = {ind,,--- ,ind,} and ensembles A = {e,.11,--- ,en},
P = ® U A, where N represents the population size. During the popula-
tion initialisation process, n single individuals ¢ are first initialised by the
ramped-half-and-half method [119]. Following that, the individual eval-
uation process gives each individual a list of case-fitnesses and standard
titness based on the current training instance by multi-case fitness eval-
uation [240] (details will be shown in Section 4.2.3). Then, based on the
case-fitnesses of each individual, the ensemble construction and selection
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process selects diverse individuals to form N — n ensembles A (details
will be shown in Section [4.2.4). In this way, we finish the population ini-
tialisation using not only individuals but also ensembles to fill the whole
population.

4.2.3 Individual Evaluation

The individual evaluation process encompasses the utilisation of the
multi-case fitness evaluation strategy, which assigns a list of case-fitnesses
and standard fitness to each individual within the population [240]. A de-
tailed explanation of the multi-case fitness evaluation strategy is provided
in Chapter 3, For ease of reference, a concise overview of the multi-case
fitness evaluation strategy is presented below.

In each generation, a new training instance consisting of n jobs is used
for evaluation. To obtain the list of case-fitnesses, the instance is divided
into a number of cases based on the jobs. Specifically, if we intend to di-
vide the instance into c cases, the n jobs are split into ¢ groups, with each
group containing g = n/c jobs based on their arrival time. This strategy
ensures that each case contains the same group of jobs, making it fair to
compare the case-fitnesses between individuals. The calculation equation
is different according to the objective being optimised.

For example, when considering the mean-flowtime as the objective, the
case-fitness cf;(x) for the ith case of individual ind, is computed using Eq.
(4.1). The standard fitness is determined as the mean of the case-fitness
values, as depicted in Eq. (4.2).

1 gx1t
cti(z) == Y (Cj—r)). (4.1)
gj:gx(i—l)-i—l
1 C
mean = — f;. 4.2
5 fomean = — ; c (4.2)
where C; and r; represent the completion time and arrival time of the job
Jj.
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When targeting the max-tardiness as the objective, the case-fitness
cf;(x) for the ith case of individual ind, is calculated using Eq. (4.3).
The standard fitness is computed as the maximum value among the case-
fitnesses, as presented in Eq. (#.4).

sz(ZIJ) - je{gx(z{q?fl ,,,,, g><z'}Tj‘ (43)
Sfmax = max {Cfla Cf27 T JCfC}J (44)

where T); denotes the tardiness of job the J;.
The case-fitnesses are used for lexicase selection, while the standard
fitness is used for elitism selection and tournament selection.

4.2.4 Ensemble Construction and Selection

The ensemble construction and selection process selects individuals to con-
struct ensembles. The goal of ensemble construction and selection is to
choose diverse and complementary individuals for constructing each en-
semble. It involves two parts: lexicase selection and similarity-checking.
The pseudo-code of forming an ensemble by the ensemble construction
and selection is shown in Algorithm [} At the beginning, the ensemble
e; is empty (Line[I). To achieve diverse and complementary individuals
for an ensemble, we first use lexicase selection to select individuals [240]
(Line ). By lexicase selection, we expect to select a diverse set of expert
individuals that are good at handling different cases. Every time a can-
didate individual is selected and ready to be added to the ensemble, the
similarity-checking process is triggered to check whether the selected can-
didate individual is good at handling different cases from the individuals
that are already in the ensemble.

To be specific, as the individual is selected by lexicase selection through
a sequence of cases, it is expected to perform well on the cases that rank
front in the case sequence. For example, we consider 5 cases and select

an individual ind, based on the case sequence o, = [2,1,5,3,4]. Among
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Algorithm 6: Ensemble construction and selection.

Input: Individual set: ®; Ensemble size: s; Number of cases for
similarity-checking: h; Similarity threshold: ¢.
Output: An ensemble of scheduling heuristics: e;.
1 e« 0;
2 times < 0;

3 while size(e;) < s & times < 3x*sdo

4 ind, < LexicaseSelection(®);
5 04 < CaseOrder(ind,);
// Similarity-checking

6 Na,b < 0;

7 for ind;, € e; do

8 op < CaseOrder(indy);

9 fork=1— hdo

10 if 0,[k] == op[k] then
1 | Mo ¢ Nap + SE=L - P(og[k], 0p[k));
12 end

13 end

14 end

15 if n < ( then

16 ‘ e; + e; Uind,;

17 end

18 times < times + 1;
19 end

20 return e;;

these 5 cases, this individual is expected to perform the best on the 2nd
case (as o,]1] = 2), followed by the 1st case (as 0,[2] = 1), and finally
the 4th case (as 0,[5] = 4). Further, we believe that different cases have
different importances. In this case, every time an individual is added to
the ensemble, the case sequence o, used for the lexicase selection is also
recorded. Then, we check the similarity between the top h cases of the case
sequence of the candidate individual and that of all the individuals in the
ensemble (Line [IT). Only when the individual is selected using different

cases (i.e., the similarity 7 is smaller than a threshold (), it can be added
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to the ensemble (Line . Here, the threshold ( is set to 0, which means
that we expect elements in the ensemble to be selected based on totally
different top h cases of the case sequence. This approach enforces maximal
diversity in ensemble creation, mitigating potential bias towards specific
cases.

For example, if we consider that the first 2 cases (h = 2) play more
important roles, then we perform the similarity-checking between indi-
viduals by comparing whether the first 2 cases are the same. Meanwhile,
if we set the ensemble size to s, then when there have been s individuals
added to the ensemble or 3 * s individual additions have been tried, the
process is finished and an ensemble is obtained. Specifically, the similarity
1a,» between individuals ind, and ind, is calculated as Eq. .

h
Nab = Z C_k%l ’ P(Oa[k]v Ob[k]) (45)

k=1

where P(o,[k], 0p]k]) is a decision variable, which is 1 if the kth case o,[k]
of individual ind, equal to the kth case o,[k| of individual ind,, and 0 oth-

erwise.

4.2.5 Ensemble Evaluation

At each generation, both single individuals and ensembles are evaluated
on the same training instance(s). Since an ensemble consists of multiple in-
dividuals (i.e., scheduling heuristics), an aggregation method is required
to make a decision at each decision point. In this chapter, we adopt the
voting strategy [154] to make the final decision. The voting strategy selects
the operation/machine that received the most votes from all the schedul-
ing heuristics in the ensemble. Same to the individual evaluation, we use
the multi-case fitness evaluation [240] to evaluate each ensemble. After en-
semble evaluation, the standard fitness and a list of case-fitnesses of each
ensemble are obtained.
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4.2.6 Genetic Operators

During the evolutionary process, tournament selection is used to select
parents, which allows both single individuals and ensembles to be chosen
based on their standard fitnesses. Crossover and mutation operators are
commonly used to generate offspring in GP. We develop novel crossover
and mutation operators, which can be applied to both single individuals
and ensembles to generate offspring. In addition, in order to explore a
wider range of ensemble combinations, the proposed ensemble construc-
tion and selection in Section enables the generation of ensemble off-
spring by selecting individuals from the current generation to form en-
sembles. The details about the newly proposed crossover and mutation

operators are shown as follows.

Crossover

Crossover requires two parents. In our proposed EGP° method, the se-
lected two parents have three possible combinations, i.e., individual and
individual, individual and ensemble, or ensemble and ensemble:

¢ If the two parents are both individuals, the conventional tree swap-
ping crossover [265] is adopted to generate two offspring, and the

two offspring are individuals.

¢ If one parent is an individual and the other is an ensemble, then one
offspring is generated by randomly selecting an individual from the
ensemble to do tree swapping crossover between this individual and
the other individual parent. The generated offspring is an individ-
ual. The other offspring is generated by randomly replacing an indi-
vidual of the ensemble with the individual parent. This offspring is
an ensemble. The detailed process is shown in Figure

¢ If the two parents are both ensembles, then two offspring are gen-
erated by randomly selecting an individual from each ensemble and
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swapping them. Both offspring are ensembles. The detailed process
is shown in Figure

Parent A: individual Parent B: ensemble

___________________________________________________________________

routing sequencing

random *

Crossover

______________________

%
o

* random

Crossover
point

Offspring B: ensemble

Individual 1 Individual 2

____________________________________________________________________

Figure 4.3: The crossover process between an individual and an ensemble.

Mutation

Mutation generates offspring from a single parent. There are two situa-

tions depending on the parent, i.e., individual or ensemble:
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Parent A: ensemble Parent B: ensemble

____________________________________________________________________________

Crossover Crossover

point Pttt : LT : point

_______ Offspring A: ensemble ~ Offspring B: ensemble
Individual 1 Individual 2 i Individual 1 Individual 2

____________________________________________________________________________

Figure 4.4: The crossover process between two ensembles.

e If the parent is an individual, then the standard subtree mutation
[265] is adopted to generate offspring, and the offspring is also an
individual.

¢ If the parent is an ensemble, then we randomly select an individual
from the ensemble and apply the standard subtree mutation to gen-
erate an offspring. The generated offspring is an individual. The
detailed process is illustrated in Figure

Note that for mutation, the generated offspring is a single individual
regardless of whether the parent is an individual or an ensemble. The
reason for allowing only individuals rather than ensembles as offspring
is that in addition to producing ensemble offspring that can be inherited

to the next generation, we also want to explore more ensemble structures
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Parent: ensemble

_________________________________________

_________________________________________

Mutation
point

Figure 4.5: The mutation process for an ensemble parent.

by randomly combining the generated offspring to form different ensem-
bles based on the proposed ensemble construction and selection strategy.
Therefore, in order to leave some place for new ensembles while main-
taining the ratio of single individuals and ensembles in the population
at the same time, only individuals are allowed as offspring for mutation.
In addition, to further maintain the same ratio of single individuals and
ensembles in the population, the proposed method limits the number of
ensembles to a fixed number N —n. That is, when the generated ensembles
reach N — n, the proposed method ignores the generated ensembles and

only keeps the generated individuals as offspring.

4.2.7 Computational Complexity

To help understand the efficiency of the proposed algorithm, especially
when dealing with the large-scale and complex DFJSS problem. We anal-

yse the computational complexity. The computational complexity of the
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classical GP algorithm mainly depends on the following factors: pop-
ulation size (INV), number of generations (G), and the complexity of fit-
ness evaluation (7). In each generation, the GP algorithm performs vari-
ous operations like selection, crossover, mutation, and fitness evaluation.
The computational complexity of these operations is typically linear with
respect to the population size and the complexity of fitness evaluation.
When considering the classical GP algorithm applied to the large-scale
DFJSS problem. The computational complexity of fitness evaluation is
equal to the computational complexity of simulating a DFJSS instance,
which mainly depends on the number of decision points D required to
process. Thus, the computational complexity of fitness evaluation (¥') can
be approximated as (D). In each generation, the computational complex-
ity of other steps such as crossover, mutation, and parent selection are
much smaller than that of the fitness evaluation, and thus can be ignored.
Overall, the total computational complexity of classical GP for solving the
large-scale DFJSS problem can be approximated as O(N * G * D).

In the proposed EGP*, the newly proposed ensemble construction and
selection strategy may add some extra complexity to the classical GP.
However, the impact on training time is relatively small. The computa-
tional complexity of the ensemble construction and selection process, as
shown in Algorithm [6| mainly depends on the ensemble size (s) and lex-
icase selection (L). The worst-case computational complexity for a single
lexicase selection is p * ¢, where p denotes the candidate pool size and
c is the number of cases. Specifically, the computational complexity for
constructing an ensemble can be approximated as s * p * ¢, which is signif-
icantly lower than the computational complexity of fitness evaluation of
the DFJSS problem (s * p x ¢ < D), which involves thousands of decision
points D. Moreover, if jobs arrive frequently, the waiting queue for each
machine will expand, leading to more decision points and significantly
increasing the computational complexity of evaluating a DFJSS instance.

Hence, the proposed EGP® would not significantly increase the overall
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training computational compared to the classical GP. The total computa-
tional complexity of using EGP* for solving the large-scale DFJSS problem
is still O(N * G % D), which is the same as the classical GP.

4.3 Experimental Design

The dataset employed for simulating various job shop scheduling scenar-
ios, along with the terminals and functions utilised for constructing indi-
viduals in this chapter, remains consistent with Chapter 3| The configura-
tion of the improved and compared GP methods and experimental design

of this chapter are outlined as follows.

4.3.1 Parameter Setting

The parameter configurations for all GP methods can be found in Table
Specifically, an ensemble size of 5 is set for EGP*, as previous research
has demonstrated that this ensemble size is able to provide promising per-
formance, and increasing the ensemble size does not yield significant im-

provements in results [210, 213].

4.3.2 Comparison Design

In this chapter, we consider six scenarios by considering two different
utilisation levels (0.85 and 0.95) and three different objectives (F'maz,
Tmaz, and WT'mean). To validate the effectiveness of the presented EGP*
method, we compare it against the following algorithms:

1. GP: the standard multi-tree GP proposed for the DFJSS problem that
outputs an individual as its final result [265].

2. BagGP: the Bagging GP that evolves an element each time using a
different subset of training instances. It finally outputs the group of

all the evolved elements as an ensemble [209].
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Table 4.1: The configuration of parameters for GP methods.

Parameter Value

Initialisation method Ramped-half-and-half
Initial maximum /minimum tree depth | 6 / 2
Population size 1000

Maximal number of evaluations 50000
Maximal tree depth 8
Elitism individual /ensemble 8/2
Crossover/mutation rate 0.8/0.2

Non-terminal/terminal selection rate | 0.9 / 0.10
Parent selection Tournament selection with size 7
Ensemble construction and selection Lexicase selection

Ensemble from offspring probability 0.3

3. CCGP: the cooperative coevolution GP with 5 subpopulations, each
has 200 individuals [176]. The final output ensemble consists of the
best individuals in the 5 subpopulations.

4. DivNichGP: the GP with a niching technique and a greedy ensem-
ble selection strategy [222]. It uses a niching technique to increase
population diversity and evolve a diverse set of effective individu-
als. Then, the ensemble is formed by selecting the individuals in the
final population in a greedy way (from the best to the worst). To be
noticed, DivNichGP outputs the best individual during the evolu-
tion process and then outputs the ensemble every 1000 evaluations
when doing the greedy selection.

5. M3GP: the multidimensional multiclass GP with multidimensional
populations [18]. It starts with one scheduling heuristic per
ensemble and uses three newly designed operators for remov-
ing/adding/swapping scheduling heuristic(s) from/to/between
ensemble(s). It finally outputs the best-evolved ensemble. To be

noticed, we do not restrict the evaluation times to 50000, and we
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use crossover and mutation rates of 0.5, following the settings of the
original paper [18].

6. eGP: the ensemble GP [187]. It has 2 subpopulations, one for evolv-
ing scheduling heuristics and the other for evolving ensembles.
The evolution of the subpopulation with individuals is the same
as classical GP. It proceeds the evolution of ensembles by remov-
ing/adding/swapping scheduling heuristic(s) from/to/between
ensemble(s). It finally outputs the best-evolved ensemble. We adopt
the same parameter settings as M3GP, in accordance with the config-

urations presented in the original paper [187].

The reasons to select these algorithms as the comparison methods are
because: 1) GP is a typical method to the DFJSS problem, and is widely
used as a benchmark in this field; 2) BagGP is a variation that applies
a classical ensemble learning technique (Bagging) to GP; 3) CCGP, Di-
vNichGP, M3GP, and eGP are effective GP-based methods for evolving

ensembles of heuristics.

4.4 Results and Discussions

4.4.1 Sensitivity Analysis

To examine the impact of the number of ensembles on the proposed EGP*
method, a sensitivity analysis was conducted. Figure 4.6 presents violin
plots illustrating the test performance of 30 runs of the proposed EGP*
method with varying numbers of ensembles (20, 40, 60, 80, and 100) in the
population across six scenarios. To be noticed, the number of single indi-
viduals in the population changes as the number of ensembles changes.
For example, when we consider 20 ensembles, the number of single indi-
viduals in the population will be 1000 — 20 x 5 = 900. The black curves

in the figure represent the trend of the mean test performance as the num-
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ber of ensembles increases. It is evident that the effect of the number of
ensembles on the test performance varies across different scenarios.

Moreover, Table provides the mean and standard deviation of the
test performance for EGP® using different numbers of ensembles in the
population across 30 independent runs in the six scenarios. To rank the
EGP¢ method with varying numbers of ensembles, we conducted the
Friedman test [287]. The results indicate that the EGP¢ method with 40
ensembles achieved the highest rank, followed by 60, 20, 80, and 100 en-
sembles, respectively. Hence, we observe that the EGP® method with 40
ensembles delivers the best performance among the tested parameters.
Subsequent sections will focus on further analyses using the EGP* method
with 40 ensembles. To simplify the description, in the subsequent sections
we use EGP* to denote EGP* with 40 ensemb]es.

<Fmax, 0.85> <Tmax, 0.85> <WTmean, 0.85>
1350- 380
750- 370-
1320-
360-
1290- 700- 350-
7
i) ; ! ! ! ! } ! ! ! . 340- . ; ; ; !
S 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100
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1400 440-
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Figure 4.6: The violin plots of the test performance of 30 runs of the pro-
posed EGP¢ with different ratios of single individuals and ensembles on 6

scenarios.
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Table 4.2: The mean and standard deviation test performance of the EGP*
method with different numbers of ensembles in the population through 30
independent runs across 6 scenarios.

s* | EGP:-20 EGP*-40 EGP*-60 EGP*-80 EGP*-100
1" |1297.57(24.33) 1296.30(15.68) 1296.95(18.93) 1294.92(17.83) 1307.81(23.21)
2 1382.50(24.17) 1380.17(32.67) 1372.36(18.27) 1387.91(27.49) 1385.42(34.20)
3 | 700.98(16.23) 704.40(13.83) 704.29(17.65) 705.48(15.23) 709.33(21.96)
4" | 812.95(20.88) 807.93(16.10) 808.15(17.46) 819.59(24.45) 812.00(22.79)
5 | 352.60(5.69) 354.06(9.25) 355.33(8.71)  358.09(8.45)  357.10(8.93)
6 | 440.00(11.06) 436.66(8.59) 441.02(10.15) 445.02(13.91) 447.20(14.51)
Rank 25 1.83 2.33 4 433

" S: Scenarios, 1: <Fmax, 0.85>, 2: <Fmax, 0.95>, 3: <Tmax, 0.85>, 4: <Tmax, 0.95>, 5: <WTmean,
0.85>, 6: <WTmean, 0.95>.

4.4.2 Test Performance

Table {4.3| gives the mean and standard deviation of the test performance
derived from 30 independent runs of the EGP® method and compared
methods across six DFJSS scenarios. We employ the Wilcoxon rank sum
test [54] to perform comparisons, where EGP® is compared with GP,
BagGP, CCGP, DivNichGP, M3GP, and eGP, respectively. The results are
considered significant when the obtained p-value is less than 0.05 and a
smaller (better) mean test performance is given. The symbols “1/|/="
next to the results of EGP* in the table indicate whether the results are
significantly better than, worse than, or comparable to the results of each
algorithm located to the left of EGP°. In the case of the <Fmax, 0.85> sce-
nario (first row of the table), the (=)(T)(T)(T)(1)(T) for EGP¢ indicates that
EGP* shows no significantly different performance from that of GP, per-
forms significantly better than BagGP, CCGP, DivNichGP, M3GP, and eGP.
In addition, the Friedman test [287] is conducted to rank these methods.
From Table it is observed that EGP¢ performs significantly bet-
ter than DivNichGP on two scenarios and is comparable to DivNichGP

on the remaining four scenarios. Compared to standard GP, EGP® out-
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Table 4.3: The mean and standard deviation performance of the EGP* and
compared methods on unseen test instances through 30 independent runs
across 6 scenarios.

Scenario GP BagGP CCGP DivNichGP
<Fmax, 0.85> 1304.36(23.96) 1338.32(20.62) 1354.59(36.46) 1305.82(15.66)
<Fmax, 0.95> 1388.71(27.11)  1446.07(31.94) 1472.51(87.37) 1389.39(27.44)
<Tmax, 0.85> 711.58(14.85)  742.77(13.18) 768.02(40.37)  705.16(14.90)
<Tmax, 0.95> 816.22(18.08)  874.25(12.31) 899.91(71.35)  813.72(20.42)

<WTmean, 0.85> | 354.89(9.53) 370.13(6.23)  361.58(14.27)  352.62(7.33)
<WTmean, 0.95> | 440.69(10.79)  457.32(5.26)  446.36(10.04)  439.35(9.10)

Improvement 0.73% 4.88% 5.56% 0.40%
Average rank 2.67 5.33 5.67 217
Scenario M3GP eGP EGP°

<Fmax, 0.85> 1558.49(72.74) 1322.48(25.00) 1296.30(15.68)(=)(M)(T)(M(T)(1)

<Fmax, 0.95> | 1768.12(298.25) 1418.06(52.46) 1380.17(32.67)(H)(T)(T)(T)(H)(T)

<Tmax, 0.85> 918.16(54.20)  722.19(24.10)  704.40(13.83)(M)(M(TH)(=)(D)(1)

<Tmax, 0.95> 1082.08(99.83)  833.77(23.87)  807.93(16.10)(M(M(MH)(=)(T)(1)
<WTmean, 0.85> | 430.99(13.87)  358.15(8.29)  354.06(9.25)(=)(T)(T)(=)(1)(1)
<WTmean, 0.95> | 531.80(25.51) 443.74(11.48)  436.66(8.59)(=)(T)(1)(=)(1)(1)

Improvement 20.52% 2.16% -

Average rank 7.0 4.0 1.17

performs it on three out of six scenarios. For the remaining three sce-
narios, EGP® performs similarly to GP but with better mean test perfor-
mance and smaller standard deviation. Moreover, EGP* significantly out-
performs BagGP, CCGP, M3GP, and eGP on all six scenarios. In addition,
the outcomes of the Friedman test presented in Table.3]indicate that EGP*
ranked first, followed by compared methods with the order DivNichGP,
GP, eGP, BagGP, CCGP, and M3GP. More precisely, the average improved
percentage p of the proposed EGP* over each comparison method A across
the 6 scenarios are calculated based on the Eq. and shown at the bot-
tom of Table The reason why BagGP, CCGP, M3GP, and eGP perform
worse than the proposed EGP¢ and GP is that these methods do not con-
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sider the problem-specific characteristics of DFJSS. They neglect the com-
monly used seed rotation strategy in DFJSS, which plays a crucial role in
its optimisation process.

6

(Obj(A) — Obj(EGP?))
Z Obj(A)

p(EGP?|A) = (4.6)

1
6 i=1
To further compare the proposed EGP® with standard GP and Di-
vNichGP which are the second and third places, Figure 4.7 shows their
convergence curves of the mean test performance of 30 runs from the num-
ber of evaluations 5000 to the number of evaluations 50000 on 6 scenarios.
As we can see, compared to standard GP, EGP® converges faster and ul-
timately converge to better results on scenarios <Tmax, 0.85>, <Fmax,
0.95>, and <Tmax, 0.95>. For the remaining scenarios, the curves of
standard GP and EGP¢ are quite close to each other but EGP* finally
gives smaller (better) test performance when arriving at 50000 evaluations.
Compared to DivNichGP, except for the scenario <WTmean, 0.85>, EGP°
converges faster and gives better test performance on most of the gener-
ations on the remaining scenarios. Overall, the results confirm that the
proposed EGP® method is more effective than standard GP, BagGP, CCGP,
DivNichGP, M3GP, and eGP.

4.4.3 Effectiveness of Ensemble Construction

To study the effect of the proposed ensemble construction and selection
on the proposed method, we compare the proposed EGP* method to a
variation of EGP® that uses the standard tournament selection to select
elements to form ensembles (not using the proposed ensemble construc-
tion and selection), which is named EGP’. Table 4.4 provides the mean
and standard deviation test performance resulting from 30 independent
runs of both EGP* and EGP* across 6 scenarios. Notably, EGP® outper-
forms EGP’ on 3 scenarios and demonstrates no statistical difference in

comparison to EGP* within the remaining 3 scenarios. Moreover, on the
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Figure 4.7: The convergence curves of the mean test performance of 30
runs of standard GP, DivNichGP, and EGP¢ on 6 scenarios.

3 scenarios with similar performance, the proposed EGP* method gives

numerically better performance (smaller mean test objective value) than

EGP'. Through the comparison of these two methods, the effectiveness of

the proposed ensemble construction and selection strategy is verified.

Table 4.4: The mean and standard deviation of test performance from 30

independent runs of EGP* and EGP* across 6 scenarios.

Scenario EGP! EGP*
<Fmax, 0.85> | 1306.09(23.11)  1296.30(15.68)(=)
<Fmax, 0.95> | 1421.66(184.43) 1380.17(32.67)(1)
<Tmax, 0.85> | 710.56(16.87)  704.40(13.83)(=)
<Tmax, 0.95> 820.41(21.94)  807.93(16.10)(1)

<WTmean, 0.85> | 354.21(9.22)  354.06(9.25)(=)
<WTmean, 0.95> | 440.41(3.94) 436.66(8.59)(1)
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4.4.4 Effectiveness of Genetic Operators

To test the effectiveness of the presented genetic operators that consider
single individuals and ensembles together, we conducted experiments
comparing EGP* to a variation of EGP* with classical crossover and mu-
tation operators, which we named EGP¢. The EGP¢ method only allows
individuals to be parents and produce individual offspring, while the pro-
posed ensemble construction and selection strategy is still used to popu-
late the ensemble portion of the population. Table 4.5/ presents the mean
and standard deviation test performance by 30 runs of EGP® and EGP* on
6 scenarios. The results show that EGP® outperforms EGP* on 2 scenarios
and performs comparably on the other 4 scenarios. These findings con-
tirm the effectiveness of the presented genetic operators (new crossover
and mutation) in generating high-quality offspring by leveraging the ad-

vantages of both single individuals and ensemb]es.

Table 4.5: The mean and standard deviation of test performance from 30
independent runs of EGP* and EGP* across 6 scenarios.

Scenario EGP° EGP®
<Fmax, 0.85> 1302.21(25.29) 1296.30(15.68)(=)
<Fmax, 0.95> 1388.67(31.58) 1380.17(32.67)(=)
<Tmax, 0.85> 707.28(13.74)  704.40(13.83)(=)
<Tmax, 0.95> 820.45(24.65)  807.93(16.10)(1)

<WTmean, 0.85> | 357.16(7.86) 354.06(9.25)(1)
<WTmean, 0.95> | 440.69(12.11) 436.66(8.59)(=)

4.5 Further Analyses

4.5.1 Performance of Ensemble and Elements

We typically expect an ensemble to perform better than each individual
element within it. In this case, to analyse the performance relationship
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between the ensemble and its individual elements, we create the scatter
plots (z, y) with the ensemble performance as the = and the element perfor-
mance as the y. The visualisation is based on the 30 runs from the number
of evaluations 40000 to 50000, where EGP*® produces the ensemble as the
best solution for every 1000 evaluations. The scatter plots of the training
performance of the ensemble versus the training performance of the ele-
ment from the number of evaluations 40000 to 50000 of 30 runs by EGP* on
6 scenarios are shown in Figure To be noticed, the points in red colour
represent that the ensemble outperforms the corresponding individual el-
ement and the line denotes the reference line of y = x which makes it easy
to see the performance relationship between the ensemble and its individ-
ual elements. It can be seen from Figure 4.8} the learned ensembles always

outperform their individual element on the training instances.
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Figure 4.8: The scatter plots of the train performance of the ensemble ver-
sus that of its each element from the number of evaluations 40000 to 50000
of 30 runs by EGP* on 6 scenarios.
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Figure 4.9: The scatter plots of the test performance of the ensemble versus

the test performance of its each element from the number of evaluations
40000 to 50000 of 30 runs by EGP¢ on 6 scenarios.

However, we observe different phenomena on unseen instances. Fig-
ure(4.9|shows the scatter plots of the test performance of the ensemble ver-
sus the test performance of the element from the number of evaluations
40000 to 50000 of 30 runs by EGP® on 6 scenarios. Similarly, the points
in red colour represent that the ensemble outperforms the corresponding
individual element, while the points in blue colour indicate that the en-
semble performs worse than the corresponding individual element. As
we can see, it is possible for an individual element to outperform the en-
semble it belongs to on the unseen test set. Nevertheless, the visualisation
indicates that in most cases, the ensemble still outperforms the individual

element by a significant margin.

This finding emphasises the importance of carefully selecting elements

to ensure that the formed ensemble can achieve better performance. This
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also suggests that a combination of single individuals and ensembles is
necessary to achieve good performance. Moreover, it suggests that the
ensemble construction and selection process may not fully capture the un-
derlying characteristics of the problem for the unseen data, which could
be explored in future research to improve the ensemble construction and
selection strategy.

4.5.2 Ensemble Win Percentage

The proposed method incorporates both single individuals and ensembles
in its population, it is interesting to track which type of solution, i.e., in-
dividual or ensemble, performs better at each generation, as well as the
percentage of times each type of solution achieves the best performance
across 30 runs.

Figure illustrates the percentage of times an ensemble achieves
the best performance every 1000 evaluations of EGP¢ and EGP*® across six
scenarios of 30 runs. For different scenarios, we observe different phe-
nomena. For the scenarios with max-objective, at the beginning, the per-
centage of ensembles that achieve the best solution is low, but as evolution
progresses, the percentage of ensembles that achieve the best solution in-
creases, reaching a peak of approximately 50% around at sixth generation.
Subsequently, the percentage of ensembles achieving the best solution de-
creases but remains stable at around 10% towards the end of evolution.
For the scenarios with mean-objective, a similar trend in the curve was
observed, but the corresponding values were relatively large. To be spe-
cific, initially, the proportion of ensembles that reach the best solution is
low. However, as evolution continues, this proportion gradually increases,
peaking at approximately 80% by the sixth generation. Subsequently, the
percentage of ensembles attaining the best solution declines but stabilises
at around 20% towards the end of the evolutionary process. This is a high
proportion considering that the proportion of ensembles in the entire pop-
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Figure 4.10: The convergence curves of the percentage of the ensemble is
output as the best solution every 1000 evaluations on 6 scenarios of 30 runs
by the proposed EGP*.

ulation is only 4.8%. By tracking the performance of each solution type
and the percentage of times each type achieves the best performance, we
suggest that a dynamic adjustment strategy to change the proportion of
ensembles and individuals in the population can help to optimise the pop-
ulation and improve overall solution quality, which can be explored in the
future. In addition to this, the above results show that the ensemble has a
more pronounced role on the scenarios with mean-objective. In this case,
we suggest to further analyse the difference between different objectives
and design specific strategies for different objectives.

Furthermore, to provide a more intuitive understanding of the results,
we present the number of runs in which ensembles are significantly better,

worse, or comparable to individuals in the population out of 30 runs every



4.5. FURTHER ANALYSES 147

1000 evaluations on six scenarios of EGP¢, which is shown as Figure
It can be seen that the distinction is not only scenario-dependent but also
changes with the evolutionary process. To be specific, in scenarios with
a max-objective, ensembles outperform individuals in most cases during
the early stages of evolution. As the evolution progresses, the frequency
of ensembles outperforming individuals decreases, while the frequency of
ensembles behaving similarly to individuals increases. In the late stages
of evolution, ensembles perform significantly better than individuals in a
few cases and have no statistical difference from individuals in most cases.
However, in the scenario with a mean-objective (i.e., the bottom graph in
Figure 4.11), ensembles perform better than individuals in most cases at
the early stages of evolution. In the middle stages of evolution, ensem-
bles mostly perform significantly worse than individuals, while in the late
stages of evolution, ensembles exhibit no significant difference from indi-

viduals in most cases.
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Figure 4.11: The number of runs that ensembles are significantly better
and worse than, or comparable to individuals out of 30 runs every 1000
evaluations on 3 scenarios of EGP*.

More detailed, Figure illustrates the fitness distribution of single



148 CHAPTER 4. JOINT DECISION-MAKING BY ENSEMBLE

Number of evaluations 1000 Number of evaluations 25000 Number of evaluations 50000
0.004- 0.006

0.003- ]
> 0.003 0.004-
‘n 0.002- ]
2 0.002
[@)
©

0.001- 0.001- 0.0021 —/\\“
0.000- — AR (00 MRS . 0. e
1000 2000 3000 4000 5000 1000 2000 3000 4000 5000 1000 2000 3000 4000 5000
fitness

individuals [ | ensemble

Figure 4.12: The fitness distribution of ensembles and individuals of a sin-
gle run at the beginning (number of evaluations 1000), middle (number of
evaluations 25000), and late (number of evaluations 50000) stages of evo-
lution on the scenario <Fmax, 0.95> of EGP®.

individuals and ensembles from a single run at the early (the number of
evaluations 1000), middle (the number of evaluations 25000), and late (the
number of evaluations 50000) stages of evolution of EGP® on the <Fmax,
0.95> scenario. The range of fitness values displayed in the figure is lim-
ited to 1000 to 5000, as most single individuals and ensembles fall within
this range. As observed in Figure at the beginning stage of evolution,
the shape of the distribution of fitness of ensembles is higher and leaner
than individuals and performs better overall, while as the evolution pro-
cess goes on, the shape of the distribution of fitness of ensembles becomes
shorter and wider than that of individuals. At the same time, the over-
all density of ensembles’ fitness is relatively uniformly distributed, rather
than being very concentrated within a certain range, as is the case with
individuals. Given the above analyses, we obtain the following observa-

tions:

1. Firstly, even in the early stages of evolution, when individuals tend
to perform poorly, ensembles can still achieve better performance by
combining them;

2. Secondly, the better performance achieved by ensembles can help to
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provide a lower bound for optimisation and thus is able to improve
the overall population performance of both single individuals and
ensembles;

3. Thirdly, the wider and shorter density distribution of ensemble fit-
ness as evolution proceeds indicates that ensembles can provide
more stable performance than individuals;

4. Finally, when focusing on the proportion of individuals/ensembles
that perform exceptionally well (i.e., fitness within the range of 1000
to 2000), ensembles still have a higher proportion than individuals.
This observation further confirms the effectiveness of ensembles as

an effective technique for improving solution quality.

4.5.3 Elements Contribution to Ensemble

To avoid the situation that one individual dominates all the others or the
situation that other individuals make no contributions to the ensemble, it
is interesting to study the ensemble contribution of each individual in an
ensemble. Here, the ensemble contribution J, represents the percentage of
the same decisions made by an individual element ind; compared to the
decisions made by the ensemble e; across all decision points [175], which
can be calculated by Eq. (#.7).
1 Zija

0; = E'lD% (4.7)
where D; represents the total number of decisions when e; works for the
training instance(s). Z; 4 is a decision variable, equal to 1 when ind; gives
the same decision with e; on the dth decision point.

If an individual has an ensemble contribution of 0 (no same decision),
it means that the individual does not make any contribution to the ensem-
ble. Conversely, if an individual has an ensemble contribution of 1, it im-
plies that this individual is dominating the ensemble. We expect each in-

dividual to give a high ensemble contribution, also it is expected that each
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individual gives a relatively consistent (similar) ensemble contribution on
training instances (training ensemble contribution) and on unseen test in-
stances (test ensemble contribution). Figure gives the point plots of
training ensemble contribution versus test ensemble contribution of each
individual in an ensemble when the ensemble is output as the best solution
at each generation by the proposed EGP* on 6 scenarios of 30 runs. The
points in red colour represent that the test ensemble contribution is higher
than the training ensemble contribution, while the points in blue colour
indicate that the test ensemble contribution is lower than the training en-
semble contribution. Also, the line denotes the reference line of y = =z,
which makes it easy to see the relationship between the training ensem-
ble contribution and the test ensemble contribution of each individual. It
can be seen that, EGP¢ can evolve ensembles wherein each element can
support a high training and test ensemble contribution (higher than 0.89).
This gives evidence that every element in ensembles contribute to the per-
formance of the ensemble. Also, about half of the situations where the
training ensemble contribution is higher than the test ensemble contribu-
tion, and half of the situations where it is the opposite. In general, the
tigure shows that each point lies near the line y = x, which means each
individual can provide a test ensemble contribution that is generally con-
sistent with its training ensemble contribution. This finding suggests that
we can trust the training results and use the trained ensembles on unseen

instances.

4.5.4 Diversity

Diversity plays an important role not only in the population but also in
the ensemble. In this chapter, the proposed method holds a population
containing both single individuals and ensembles, and most of the en-
sembles are formed by individuals in the population using the developed

ensemble construction and selection strategy. This section explores the di-
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Figure 4.13: The scatter plots of training ensemble contribution versus test
ensemble contribution of each individual in the learned ensembles from
the number of evaluations 40000 to 50000 by the proposed EGP* on 6 sce-

narios of 30 runs.

versity among individuals within the population. Within the domain of
DFJSS, phenotypic diversity is more meaningful than genotypic diversity, as
scheduling heuristics that have different structures (genotypes) can have
the same behaviour (phenotype). Here, the phenotypic diversity is quan-
tified through the calculation of the distinct sets of decisions made by in-
dividuals within the population across 20 sequencing and 20 routing deci-
sion points [238].

Figure shows the convergence curves of the phenotypic diversity
on each generation by the proposed EGP® and EGP* on 6 scenarios of 30
runs. It can be observed that the proposed EGP* gives a higher phenotypic
diversity on almost all the generations on 5 of the scenarios, except for the
scenario <WTmean, 0.95>. Analysing these results with the test perfor-
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mance of EGP® and EGP’ from Section it shows that higher pheno-
typic diversity is able to contribute to obtaining good performance on the
scenarios with max-objective, while not contribute to obtaining good per-

formance on the scenario with mean-objective.

<Fmax, 0.85> <Tmax, 0.85> <WTmean, 0.85>
700- | 700- | 700- |
600- \ 600- \ 600- \\
500- | 500~ | 500-
>\400- \\\%\“ 400- \\m 400-
£°300- 300- 300-
§200-. TN eSS D00 e e A 2005 S
5 0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000
§ <Fmax, 0.95> <Tmax, 0.95> <WTmean, 0.95>
*g 700- \ 700- \ 700- \
2 600- 600- 600- {
% 500- | 500- | 500~ |
400- 400- 400- \
300- KM-’\ 300- kww 300- \\\N\“
200 200- 200-

0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000
The number of evaluations

EGP! - EGP®

Figure 4.14: The convergence curves of the phenotypic diversity of the in-
dividuals in the population by the proposed EGP® and EGP* on 6 scenarios
of 30 runs.

This observation implies that, for the DFJSS problem, it is beneficial to
prioritise increasing diversity when optimising the max-objective, while
focusing more on convergence when optimising the mean-objective. This
is because of the characteristic of these two types of objectives in DFJSS: 1)
The max-objective is more sensitive to outliers, as it focuses on optimising
the worst-case job/machine. If there are occasional jobs or machines that
have significantly higher processing times, the max-objective may priori-
tise reducing the impact of those outliers, potentially at the expense of the
majority of jobs. Consequently, there is a higher risk of getting trapped in
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local optimal when handling the max-objective. 2) The mean-objective, on
the other hand, is less sensitive to outliers and extreme values. It aims for
a balanced performance across all jobs and machines. By converging to-
wards solutions that distribute the workload evenly, the algorithm can en-
sure that no particular job or machine is significantly overburdened. This
leads to improved overall system performance and minimises potential
bottlenecks or delays. In summary, when optimising the max-objective,
diversity is crucial to explore the search space effectively and avoid being
stuck in local optimal. Conversely, when optimising the mean-objective,
convergence is an important consideration to improve the average perfor-

mance and achieve a balanced workload distribution.

4.5.5 Training Time

Different from other chapters in this thesis, the evaluation process in this
chapter involves individuals and ensembles which might influence the
training time. In this case, this chapter conducts training time analyses.

Table 4.6: The mean (standard deviation) training time (in minutes) of 30

independent runs of GP and EGP* methods for 6 scenarios.

Scenario GP EGP¢
<Fmax, 0.85> 103.84(10.91)  94.22(11.64)(1)
<Fmax, 0.95> 109.21(11.87)  99.88(9.83)(1)
<Tmax, 0.85> 103.24(11.89)  91.52(10.45)(1)
<Tmax, 0.95> 109.91(13.08)  98.46(14.61)(1)

<WTmean, 0.85> | 108.80(17.29) 102.85(21.36)(1)
<WTmean, 0.95> | 111.83(18.32) 103.68(12.52)(1)

Table 4.6 presents the mean (standard deviation) training time (in min-
utes) of 30 independent runs for both GP and EGP* methods across six
scenarios. Notably, EGP® exhibits significantly shorter training times in
comparison to GP. This is attributed to our specific approach to limit-

ing EGP* to yield the same number of scheduling heuristic evaluations
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throughout the entire training process. To elaborate, suppose GP performs
1000 scheduling heuristic evaluations. With our proposed EGP¢, consid-
ering 40 ensembles, each with 5 scheduling heuristics, the total evaluation
count consists of 40 ensemble evaluations and 800 (1000 — 40 x 5 = 800)
scheduling heuristic evaluations. To ensure a stable scheduling environ-
ment, we leverage the first 1000 jobs for warm-up purposes in each eval-
uation. For evaluating an ensemble, all the 5 scheduling heuristics in the
ensemble share one DFJSS instance, which means that they share the same
1000 warm-up jobs. Compared with evaluating each scheduling heuristic
independently (each scheduling heuristic needs 1000 warm-up jobs), we
save 160000 (40 x (5 — 1) x 1000 = 160000) job schedules for every gener-
ation. Given the consideration of a large-scale DFJSS problem, the evalua-
tion step consumes the most time during training. Despite the additional
time taken for ensemble construction and selection, it has a minimal im-
pact compared to the reduction of job processing during the evaluation
process. Thus, the proposed EGP¢ effectively achieves superior perfor-
mance within a shorter training time, further validating its effectiveness.
More precisely, the proposed method saves the training time by 8.72%
8.72% = (% + ..+ %)/6 * 100%) compared to classi-
cal GP. In conclusion, the results demonstrate that EGP® can offer superior
performance in significantly less time, highlighting both the effectiveness

and efficiency of this proposed approach.

4.5.6 Structure Analyses of Elements in Ensemble

Studying the structure of elements in an ensemble can help users under-
stand the principles of each element. This understanding can give users
more confidence in using the evolved ensemble [142]. In this case, we con-
sider the tree structures of routing rules in an evolved ensemble of a single

run on the scenario <Fmax, 0.85> of EGP* as an example.

Figure[d.15illustrates the structures of routing rules, the training fitness
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of the ensemble, and the training ensemble contribution of each rule. The
overall training fitness of this ensemble is 1359.25, better than the training
fitness of each individual element, which ranges from 1424.19 to 1505.83.
Additionally, the ensemble contribution of each individual element ranges
from 0.92 to 0.99. The tree structures of these five routing rules can be
expressed in the following simplified expressions:

R; =min(min(NI1Q, SL) + 2PT + TRANT,WIQ) + PT + min(max(NOR

— PT,1), PT — NIQ + max(PT, 1)) + TRANT + max(TRANT, WIQ)

Ry =min(min(WIQ, PT — NOR + min(SL, WKR)) + TRANT,WIQ) + PT+
NOR — NIQ

TRANT
Rs =2min(min(NIQ, SL) + PT + TRANT,WIQ) + WIQ + TRANT
Ry =min(min(NI1Q,SL) + PT + TRANT,WIQ) + PT + min

max(min(WIQ, PT), YOR)

min(max(TRANT,WI1Q), ) + max(TRANT, WIQ)

(4.8)

TRANT TOWTZ T[S — %) +max(TRANT,WIQ)
Rs =min(TIS,WIQ) + 2PT + TRANT — NIQ + 2max(TRANT, WIQ)
NOR
OWT

To provide specific details, as illustrated in Eq. (4.8), the routing rule
R, is composed of 6 terminals (NIQ, SL, PT, TRANT, WIQ, and NOR),
with PT being the most frequently utilised terminal (appearing 6 times).
Following closely is TRANT, employed 3 times. Meanwhile, the routing
rule R, consists of 7 terminals (WIQ, PT, NOR, SL, WKR, TRANT, and
NIQ), with WIQ and TRANT being the predominant terminals (each oc-
curring 4 times). Additionally, PT and NOR are used 2 times. As for
routing rule Rj, it involves 5 terminals (NIQ, SL, PT, TRANT, and WIQ).
TRANT and WIQ are the terminals most frequently employed, each ap-
pearing 3 times, followed by NIQ, SL, and PT, each used 2 times. Moving
on to routing rule R, it encompasses 8 terminals (NIQ, SL, PT, TRANT,
WIQ, NOR, OWT, and TIS). PT claims the highest frequency (occurring 4
times). Both TRANT and WIQ are employed 3 times. Lastly, the routing
rule Rj is combined with 7 terminals (TIS, WIQ, PT, TRANT, NIQ, NOR,
and OWT). Within this combination, WIQ and TRANT lead the pack with
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Figure 4.15: The tree structure of routing rule of an evolved ensemble with
its training fitness and training ensemble contribution of a single run on
scenario <Fmax, 0.85> of EGP°.

3 appearances. PT follows with 2 appearances. These rules behave differ-
ently (give different training fitness), but there are some similarities. We
can see that there are some terminals (NIQ, PT, TRANT, and WIQ) used
by all these five routing rules, also PT and TRANT play important roles
(high use frequency) in the routing decision point, which is expected, as
processing time (PT) and transportation time (TRANT) are two important
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factors of the machine. Moreover, it is observed that some elements in the
ensemble share the same subtrees. For example, R,, Rs, R4, and R; all
have the subtree max(TRANT, WIQ). Rs and R, both have the subtree
min(min(NIQ, SL) + PT + TRANT,WIQ).

We can see that, the routing rules with some general subtrees can cover
most decision points, but some different subtrees are required for some
specific decision points, which means these different subtrees can help
these rules complement with each other to make better overall decisions.
Such a phenomenon inspires us to aim for learning a good rule that is gen-
eralisable to most decision points while also having subtrees that can play

crucial roles in specific decision points.

4.6 Chapter Summary

This chapter proposes a novel EGP method named EGP¢, which allows the
evolution of single individuals and ensembles together to solve the DFJSS
problem. Extensive experiments and analyses demonstrate the effective-
ness of our proposed method in terms of the evolved scheduling heuristic
quality compared to existing recent popular GP methods. To be precise,
the proposed method improves the test performance by 0.73% and saves
the training time by 8.72% compared with the classic GP. Our proposed
strategies, including ensemble construction and selection, and genetic op-
erators considering both single individuals and ensembles, have also been
verified to be effective in improving the performance of our EGP® method.

Further analyses show that these strategies can generate high-quality
single individuals and ensembles by preserving population diversity and
supporting high ensemble contributions from ensemble elements. More-
over, the structural analyses of elements in the ensemble demonstrate that
a promising ensemble contains elements with both shared subtrees and
distinctive subtrees, allowing for effective complementarity and finally

leading to improved overall joint decision-making capabilities. This com-
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bination of the ensemble enables the ensemble to make reliable decisions
for a wide range of decision points while also excelling in specific decision
points. Overall, we believe that our findings contribute to the advance-
ment of the field of GP and ensemble learning and have the potential for
practical applications in real-world scheduling scenarios.

Chapters 3| mainly focus on evolving single scheduling heuristics to
solve the DFJSS problems. This chapter focuses on developing an effective
GP method with the ensemble learning technique that allows for evolving
not only single scheduling heuristics to make individual decisions but also
a group of scheduling heuristics to make joint decisions for solving the
DFJSS problem. In the next chapter, we will further explore the utilisation
of a group of scheduling heuristics evolved by GP via RL for solving the
DEFJSS problems.



Chapter 5

Collaborative Heuristic
Generation and Selection by
Genetic Programming and

Reinforcement Learning

This chapter focuses on the development of a collaborative heuristic gen-
eration and selection method by integrating GP and RL for DFJSS. GP is
leveraged to generate a diverse set of high-quality scheduling heuristics,
while RL is employed to select the most suitable scheduling heuristics for

different decision points in DFJSS.

5.1 Introduction

GP [24, 119] and RL [137] have demonstrated their effectiveness in au-
tomatically learning scheduling heuristics for dynamic scheduling prob-
lems. GP has been a successful approach for learning effective schedul-
ing heuristics in DFJSS for a long time, and it remains dominant in this

research field [262]. GP uses the evolutionary principles for learning

159
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scheduling heuristics through an iterative, population-based, and stochas-
tic evolutionary process [35]. Recently, RL has gained increasing attention
in learning scheduling heuristics for dynamic scheduling problems. RL
learns scheduling heuristics by interacting with the dynamic scheduling
environment. Specifically, at each step, the RL agent chooses an action
from the action space based on the current state, using the policy (schedul-
ing heuristic) that maps states to actions. The agent then receives a reward
and moves to the next state according to the state transition probability.
For an episodic problem, the process repeats until the agent reaches a ter-
minal state. After each episode, a discounted accumulated reward is ob-
tained according to a discount factor. The agent’s goal is to maximise the
expectation of such long-term accumulated reward starting from any ini-
tial state [128]. GP and RL are mechanically dissimilar, although they both

learn policies/scheduling heuristics to make decisions at decision points.

Currently, some RL-based approaches presume a fixed and constant
number of machines/operations as actions at decision points and learn an
end-to-end strategy to solve the JSS problems [101]. Consequently, these
approaches face challenges when applied to DFJSS with varying numbers
of machines/operations [101]. In response to this challenge, researchers
have attempted to use indirect ways to overcome the difficulty of hav-
ing different numbers of candidate machines/operations at different de-
cision points. In particular, the utilisation of manually designed schedul-
ing heuristics as actions in RL has been adopted for handling the vary-
ing number of machines/operations [36, 139]. In this approach, when
RL selects a specific action (scheduling heuristic), the chosen scheduling
heuristic is subsequently employed to make decisions regarding the can-
didate machines and operations. However, this kind of method still has
limitations. Firstly, the manually designed scheduling heuristics often ex-
hibit an average level of quality, thereby constraining the overall quality
of high-level scheduling heuristics learned by RL. Secondly, the manual
design process of a set of diverse scheduling heuristics is time-consuming
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and requires a lot of domain knowledge from experts. GP [119] has been
applied with notable success to address JSS problems [28]. Instead of rely-
ing on manually designed heuristics, GP employs an evolutionary process
to iteratively learn and refine candidate scheduling heuristics over multi-
ple generations. The key advantage of using GP for ]SS lies in its ability
to automatically explore a wide range of potential scheduling heuristics
and adapt to the specific characteristics of the problem at hand with lit-
tle domain knowledge [206]. Traditional GP methods typically focus on
obtaining the best scheduling heuristic without emphasising the diversity
within the population. Niching [246] has proven to be an effective strat-
egy employed in GP to enhance its effectiveness [143]. This is achieved by
increasing population diversity, fostering the presence of multiple diverse
scheduling heuristics within the population. Leveraging the strengths of
RL, GP, and the niching strategy, there is potential to explore the effective-
ness of a hybrid method combining these methods for achieving enhanced
scheduling results in DFJSS.

5.1.1 Chapter Goals

The goal of this chapter is to investigate a hybrid two-stage GP and RL method
enabling intelligent heuristics generation and selection across diverse decision
points to enhance both GP and RL for solving the DFJSS problems effectively.
To be specific, the objectives of this chapter are as follows.

1. Propose a new two-stage learning method that integrates the benefits
of GP and RL to learn intelligent scheduling agents to address the
challenges of the DFJSS problems.

2. Propose a niching GP for the first stage, aiming to evolve a diverse
set of heuristics as actions for RL. This approach offers several ad-
vantages: (1) it reduces dependency on domain-specific knowledge
compared to manual heuristic design; (2) it yields actions with supe-

rior performance compared to manual heuristics; (3) it offers a vari-
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ety of heuristics as actions, capable of addressing diverse decision-

making scenarios.

3. Employ the RL method for the second stage that uses the learned
high-quality and diverse scheduling heuristics by the niching GP as
actions to learn intelligent scheduling agents for DFJSS.

4. Verify whether the proposed method outperforms the baseline RL
and GP method, as well as widely used manually designed schedul-
ing heuristics. Conduct further analyses to identify the factors con-

tributing to the effectiveness of the proposed method.

5.1.2 Chapter Organisation

The subsequent sections of this chapter are organised as follows. Section
describes the proposed algorithm. The experimental design and re-
sults are detailed in Sections 5.3|and respectively. Additional analyses
are presented in Section Lastly, Section [5.6| offers conclusions for this
chapter.

5.2 Proposed Algorithm

We first conducted a comparison between a typical GP method and a typ-
ical RL method for DFJSS problems, as described in our publication [239].
After identifying the respective advantages of these two methods, we then
proposed a hybrid GP and RL method, which is detailed as follows.

5.2.1 Overall Framework

The overall framework of the proposed algorithm is shown in Figure
The framework is denoted as niching GP-assisted DRL (NichGP-
DRL). In the first stage, a niching GP (NichGP) method is presented to
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autonomously learn a diverse set of high-quality scheduling heuristics.
Subsequently, in the second stage, the learned sequencing rules by the
NichGP are utilised as actions for the DRL method to adaptively select
the most appropriate learned heuristic at different decision points. The
subsequent sections provide detailed insights into the state features, the
proposed NichGP method, and the DRL method.

| Training instance(s) |

| State features |7

v —
[ NichGP |
Stage 1 } learn
| Diverse scheduling heuristics (Actions) |
DRI
Stage 2 learn

v
| Routing agent || Sequencing agent |

| Test instance(s) |

Figure 5.1: The overall framework of the proposed NichGPDRL method.

5.2.2 State Features

The state features utilised for both NichGP and DRL are derived from
the following characterisations. These features remain consistent with the
baseline DRL in [136] to ensure a fair comparison. Most of them corre-
spond to the terminals typically used by GP for DFJSS, as discussed in
previous chapters, while some are new additions based on the baseline
DRL in [136]]. For your convenience, this chapter lists the state features as
follows. For further details, please refer to [136].

1. PT};m(t): The processing time of the operation O;; on the machine

Q,, at time ¢.
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10.

11.

12.

13.
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. WKR;(t): The work remaining, representing the total processing

time of the job J; for the remaining operations at time ¢.

CR;(t): The completion rate, denoting the percentages of completed

operations among all the operations of the job J; at time ¢.

. TTD;(t): The time until due, meaning the remaining time of the job

J; until the due date at time ¢.

. SLACK;(t): The slack of the job .J; at time ¢, SLACK(t) = tJ** —t —

WK R;(t).

WIQ.,(t): The remaining work (total processing time of all the oper-

ations) in the waiting queue of machine (2, at time ¢.

NIQ,,(t): The number of operations in the waiting queue of machine

,, at time t.

MRT,,(t): The ready time of machine (2, at time ¢, i.e., when ma-
chine becomes idle.

MWT,,(t): The waiting time of machine 2, at time t, MWT,,(t) =
t — MRT,,(t).

MBT,,(t): The busy time, denoting the total working time of ma-

chine M,, at time ¢.

NPT;;11(t): The median of the processing time for the next opera-

tion O; ;4. at time ¢.

NOR;(t): The number of the remaining operations of the job J; at

time ¢.

OWT;,(t): The waiting time of the operation O;; at time ¢,
OWT;;(t) =t — ORT;,(t), where ORTj,(t) denotes the ready time
of the operation O;;, which denotes the time of an operation arrives

at the queue of the machine.
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14. t: The current time of the scheduling system.

15. TIS;(t): The time that the job J; has been in the scheduling system
attime ¢, TIS;(t) =t —t5™.

| Population initialisation | 1 Sequencing rule 1 1 i Action 1 [

¥ 1 Sequencing rule 2 , - ! Action 2 []!

1 . 1 1 . .

4>| Fitness evaluation | ! : ! ' : I
v ! O

1 Sequencing rule p E Acti.on p

| [,
| Niching | f
; Yes Output top p
?
lteration stop? scheduling heuristics

Seed No
rotation
y

Evolution

Selection
Crossover
Mutation
Reproduction

Figure 5.2: The flowchart of the GP method of Stage 1.

5.2.3 Stage 1: Niching GP training

Figure gives the flowchart of NichGP. Different from the traditional
GP method, NichGP uses a niching strategy [143] after fitness evaluation
to remove duplicated and poor individuals from the population. In this
case, NichGP aims to achieve the coexistence of multiple high-quality and
diverse scheduling heuristics in the population. In DFJSS, phenotypic di-
versity is more meaningful than genotypic diversity [240]. In this chap-
ter, phenotypic diversity is considered to manage a niche. We adopt the
phenotypic characterisation (PC) [93, 143] to measure the phenotypic di-
versity. The PC is defined as a vector of values. Each value within the

vector signifies the rank by the reference rule assigned to the candidate
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machine/operation where the calculated rule designates the highest prior-
ity at a given decision point. This chapter uses the sequencing rule and the
routing rule from the best individual at each generation as the reference se-
quencing rule and reference routing rule, respectively. To process a DFJSS
instance, typically comprising thousands of decision points, we adopt a
computational efficiency strategy by focusing on 20 sequencing decision
points and an equivalent number of routing decision points. Therefore,
a PC of a scheduling heuristic contains 40 values. To be specific, an un-
seen instance is used to get all the decisions which involves 7 candidate
machines/operations. Then we shuffle the decisions and randomly get 20
sequencing decision points and 20 routing decision points. The PC for an
individual involves a combination of sequencing and routing decisions. A
detailed description of the PC has been given in Chapter 6|

The pseudo-code of NichGP is detailed in Algorithm [7] NichGP com-
putes the PC, denoted as pc;, for each individual ind; within the popu-
lation at every generation (see line [f). Subsequently, a clearing strategy
[246] is applied, penalising individuals within a niche that show poor per-
formance by assigning them an infinite fitness value (see line @ [236]. The
clearing strategy takes into account two crucial parameters: the radius §
of each niche, signifying the PC distance between niches, and the capac-
ity x of each niche, representing the number of high-quality individuals
to be retained in the niche. In this chapter, we use Euclidean distance to
calculate the distance between PCs. Notably, in contrast to traditional GP,
NichGP employs the clearing strategy each time when the fitness eval-
uation process is conducted. Moreover, top p individuals are output as
the actions for DRL. It is important to highlight that, while DRL only re-
quires sequencing rules since it can learn an end-to-end routing agent for
the DFJSS problem considered [136], our method involves evolving both
routing and sequencing rules simultaneously using NichGP. The reason
for this lies in our findings: when we experimented by keeping the rout-

ing rule fixed as a manual rule and evolving only the sequencing rule, we
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Algorithm 7: The pseudo-code of NichGP.

10

11

12

13

14

15

16

Input: Population size: N; Generations: G.

Output: A list of top p individuals: A = [indy, ... ,ind,].

Initialise population pop with IV individuals;

90

while g < G do

Fitness evaluation for each individual ind; in pop;

// Calculate PC of each individual

pop « calculate PC (pop);

// Use clearing strategy to penalize individuals within
a niche that show poor performance

Clearing(pop);

Selection;

Crossover /Mutation/Reproduction;

g—g+1;

end
A+ 0;
14 0;
while i < pdo
A +— AUind;;
end
return A;

observed that the performance of the sequencing rules is constrained by

the fixed routing rule, which will affect the effectiveness of the proposed
method.

5.2.4 Stage 2: DRL training

We adopt the DRL framework with a DQN presented in [136]. However,
our method differs in that we replace the actions used to train the sequenc-

ing agent with those learned through the proposed NichGP. The specifics

of the DRL framework are presented as follows. Markov decision pro-
cess (MDP) [65] is used to model the process that the DRL for solving the
DFJSS problem. The MDP is a fundamental framework in RL that math-
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Figure 5.3: The flowchart of the DRL method of Stage 2.

ematically formalises decision-making in an environment where an agent
interacts to achieve a goal. The Markov property plays an important role
in utilising DQN effectively. It assumes that the future state depends only
on the current state and the action taken, not the entire history of previous
states and actions. Many complex problems (e.g., DFJSS) might not strictly
adhere to the Markov property. However, by carefully designing the state
representation, it is able to capture the essential information about the en-
vironment’s history within the current state. This allows us to leverage
DQNs even in situations with some degree of dependency on past actions.
The MDP has a 5-element tuple representation: < S, A, P,y, R >. S repre-
sents the state space, which is the set of all possible situations or configu-
rations that the environment can be in. A denotes the action space, which
is the set of all possible actions that the agent can take. P is the transition
probabilities, the probabilities associated with transitioning from one state
(s¢) to another (s,41) after taking a specific action (a;). It characterises the
dynamics of the environment. R means the reward function, that specifies

the immediate reward (r;) the agent receives after transitioning. It is re-
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lated to the goal or objective of the agent. - represents the discount factor
which is a parameter between 0 and 1 that discounts future rewards. It
helps in balancing the trade-off between immediate and future rewards.

Figure illustrates the flowchart of the DRL method. To mitigate
the exponential growth in the state-action space during multi-agent DRL
training [13], the sequencing agent and the routing agent are trained sep-
arately. This separation is employed to manage the coordination of ex-
ploration efforts, striking a balance between local and global exploration
trade-offs [13]. Additionally, during the training of the sequencing agent,
the routing rule is kept fixed as the earliest available machine, and the se-
quencing rules derived from the learned scheduling heuristics are utilised
as actions. When training the routing agent, the sequencing rule is set
as the First-in-First-out operation, and the routing agent takes end-to-end
training, enabling it to make direct decisions among candidate machines.
During the training process, the routing/sequencing agent observes the
current state (s;) of the environment and then selects an action (a;) based
on its policy (7). The environment transitions to a new state (s;;1) accord-
ing to the transition probabilities (7). The agent receives a reward (r;)
from the reward function. The agent updates its knowledge (Q function
and policy) based on the observed state, action, reward, and the resulting
state. The process repeats over multiple time steps as the agent learns to

maximise cumulative rewards.

In this chapter, a double DQN architecture is used to train the agent.
Double DQN is an enhancement of the traditional DQN, designed to ad-
dress a common issue known as overestimation bias in Q-learning [186].
It is developed to improve the stability and performance of DQN algo-
rithms. Double DQN uses two separate neural networks: one for action
selection (referred to as the action network) and another for Q-value eval-
uation (referred to as the target network). The action-selection network
is responsible for determining the best action, while the target network is

used to estimate the Q-value of that action.
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The ultimate goal of the agent is to find an optimal policy that max-
imises the expected cumulative reward over time in the given environ-
ment. This is typically achieved through the DRL method that iteratively
improves the agent’s policy based on its experiences. These experiences
play a central role in the learning process. By exploring different actions
in various states, the agent can gather information about the environment,
which is essential for making informed decisions. The proposed DRL uses
experience replay, where past experiences are stored in memory and ran-
domly replayed during learning. This helps the agent learn from a diverse
set of experiences and mitigates the impact of correlated sequential data.
About the action representation, the routing agent’s actions directly corre-
spond to the selected machine within the workcenter, given the fixed num-
ber of machines in this study. The sequencing agent’s actions entail the
selection of a NichGP-learned sequencing rule. This approach addresses
the challenge posed by a changing queue, making the direct selection of
operations impractical. More details about the reward function and other
processes can be found in [136].

5.3 [Experimental Design

5.3.1 Dataset

This chapter explores a dynamic production system with continuous job
arrivals. The dataset employed in this chapter differs from those in other
chapters of this thesis and aligns with those specified in [136]. The reason
for adopting the dataset from [136] is to enable a direct comparison be-
tween the proposed NichGP-assisted DRL method and the original DRL
method presented in [136]. This way ensures fairness in the comparison
and helps mitigate potential issues that may arise from transitioning an al-
gorithm from its original dataset to a new one. To assess the performance

of the proposed method and comparison methods, we examine four sce-
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narios based on the following three critical factors:

1. Job Arrival Rate / System Utilisation level: the job arrival rate is
closely linked to the system’s utilisation level, denoted as E(u). This
metric can be calculated as follows:

: E(t) x w

) = E((mim x 100%
where £ and w represent the number of machines and workcenters,
respectively. E(t) stands for the expected processing time of all op-
erations across all machines, and E(in) represents the expected time
interval between job arrivals. In this study, we assume a 90% utilisa-
tion level (E(u)) to simulate a busy production environment [136].
Additionally, we assume that the time interval (X) between suc-
cessive job arrivals follows an exponential distribution [234]: X ~
Exp(E(in)).

2. Heterogeneity of Processing Time: the processing time (t?;?m) for
each operation (O,;) on machine (2, is randomly sampled from a
uniform distribution (U[L,, H,|), with L, and H, denoting the lower
and upper limits of the processing time, respectively. For different
scenarios, we consider different average processing times:

[[High heterogeneity: ¢~ U[5,25] Low heterogeneity:
e~ U[10,20]

3 Due Date Tightness: the due date (t;l“e) for each job (/) is assigned
based on its expected total processing time and the due date factor
(a;). This chapter considers two types of due date tightness ranges
(U[Lq, Ha)):

e High tension: a; ~ U[1, 2]

e Low tension: a; ~ UL, 3]
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The due date is calculated as follows:

k] 7 tpro

e =19 + o Z( e jzm>704jNU[LdaHd]

Based on the above descriptions, the four scenarios used to evaluate
the performance are as follows:

e HH: the processing time exhibits high heterogeneity ([5,25]), and
high tension in due dates ([1, 2]);

e HL: the processing time exhibits high heterogeneity ([5, 25]), and low
tension in due dates ([1, 3]);

e LH: the processing time has low heterogeneity ([10,20]), and high
tension in due dates ([1, 2]);

* LL: the processing time has low heterogeneity ([10, 20]), and low ten-
sion in due dates ([1, 3]).

Furthermore, the shop floor is equipped with 3 workcenters, each of
which is equipped with 2 machines. Each instance of the simulation covers
a production period of 1000 time units, during which approximately 124
jobs arrive on the shop floor.

5.3.2 Parameter Setting

The features described in Section are used by both the NichGP and
DRL. NichGP employs a function set {+, —, X, /, max, min}, where / is pro-
tected, returning 1 in case of division by 0. Additional parameters for
NichGP are presented in Table The parameter settings were carefully
chosen to ensure a fair comparison with the baseline DRL method. The
NichGP method is implemented in Python using the DEAP package [51].
With the advantage of parallel evaluation, the multiprocessing package
[10] in Python is employed to speed up NichGP’s training process. The
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DRL implementation, utilising PyTorch [178] in Python, is detailed in Ta-

ble|5.2{[136], encompassing parameters and network structures.

Table 5.1: The parameter settings of the proposed NichGP method.

Parameter Value
Population size 200
Number of generations 50
Instances in each generation 2
Method for initialising population | Ramped-half-and-half
Initial minimum/maximum depth 2/6
Elitism 10
Maximal depth 8
Crossover rate 0.80
Mutation rate 0.15
Reproduction rate 0.05

Terminal /non-terminal selection rate
Parent selection
Output as actions for DRL

10% / 90%
Tournament selection with size 4

Top 4 individuals

Table 5.2: The parameter configuration of the DRL method.

Parameter Routing Sequencing
Exploration rate (¢) | 0.3 decays to 0.1 0.3 decays to 0.1
Discount factor (y) | 0.8 0.8

Learning rate 0.01 decays to 0.001  0.01 decays to 0.001
Minibatch size 128 64
Replay memory size | 512 256
Input layer size 9 25
Output layer size | 2 4
Hidden layer size | 16x16x16x8x8 48x36x36x24x24x12
Channels 1 6
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5.3.3 Comparison Design

To verify the effectiveness of our proposed NichGPDRL method, we com-
pare our method with the following methods. This chapter incorporates
four manually designed routing rules and four manually designed se-
quencing rules which are widely used in industry [139, 124]. These are
combined to create 16 scheduling heuristics, forming the basis for com-
parison with the learned scheduling heuristics from NichGP and DRL
methods. This comparative analysis with manually designed rules offers
an intuitive perspective on the effectiveness of the proposed NichGPDRL
method, highlighting their strong generalisation capabilities. The man-
ually designed routing and sequencing rules taken into comparison are
listed as follows.
Routing rules:

1. Earliest completion time (ECT): gives the machine that has the small-
est sum of available time and remaining processing time the highest

priority;

2. Minimum execution time (MET): gives the machine that has the min-

imum execution time the highest priority;

3. Earliest available (EA): gives the machine that has the earliest avail-
able time the highest priority;

4. Least work in the queue (LWIQ): gives the machine that has the least
work remaining (total processing time) in its queue the highest pri-

ority.
Sequencing rules:

1. Shortest processing time (SPT): gives the operation that has the
shortest processing time the highest priority;

2. Earliest due date (EDD): gives the operation whose job has the earli-
est due date the highest priority;



5.3. EXPERIMENTAL DESIGN 175

3. Least work remaining (LWR): gives the operation whose job has the
least work remaining (processing time) the highest priority;

4. First-in-first-out (FIFO): gives the operation that arrives the first the
highest priority.

In addition, the GP-assisted DRL (GPDRL) is used as a baseline to
verity the effectiveness of the proposed NichGP method. Moreover, the
method that NichGPDRL without DRL training is employed (NichGP#).
For NichGP#, the sequencing rule remains fixed as one of the candidate
rules (actions), serving to validate the efficacy of the DRL learning process.
For each method, 30 independent runs are conducted to train 30 schedul-
ing heuristics. In both NichGP (stage 1) and DRL (stage 2), the training
process involves 100 instances. In the case of NichGP, two instances are
applied per generation, and the top 4 scheduling heuristics, learned over
50 generations (totaling 100 instances), are returned. For DRL, the learned
sequencing and routing agents are obtained after completing the 100 train-
ing instances. After training, we evaluate the objective values generated
by the learned scheduling agents in 30 independent runs across 100 un-

seen instances for each of the four scenarios.
1. 16 widely used manual scheduling heuristics;

2. DRL [136]]: the routing agent is trained to directly select from ma-
chines/operations while the sequencing agent is trained to select

from manual sequencing rules;

3. GPDRL: the routing agent is trained to directly select from ma-
chines/operations while the sequencing agent is trained to select

from the learned sequencing rules by the original GP;

4. NichGP# (# € [1,2,3,4]): the routing agent is trained through
DRL [136] using an end-to-end way, directly selecting from ma-
chines/operations. Meanwhile, the sequencing agent remains fixed

as one of the rules learned by the proposed NichGP;
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5. NichGPDRL (ours): the routing agent is trained to directly select
from machines/operations while the sequencing agent is trained to
select from the learned sequencing rules by the proposed NichGP.

By comparing with these methods, we can validate the effectiveness of
the proposed NichGPDRL method, assess the performance of learned se-
quencing rules by GP methods in comparison to manually designed ones,
and evaluate the efficacy of the proposed niching strategy in learning di-
verse and high-quality sequencing rules, as opposed to the traditional GP
method.

Table 5.3: The mean and standard deviation training performance of 30
independent runs of the proposed NichGPDRL method with different o

values.

HH HL LH LL Rank
537.40(333.24) 173.40(194.79) 1492.33(900.92) 636.03(627.94)| 1.25
551.82(353.12) 172.60(184.53) 1519.75(885.75) 651.72(648.31)| 1.75
561.35(344.87) 187.45(194.74) 1540.70(859.74) 664.25(656.11)| 3
588.73(386.7) 194.70(202.84) 1594.92(937.7) 689.90(676.96)| 4
616.37(367.32) 205.52(183.95) 1599.77(903.5) 695.33(693.09)| 5
648.45(384.99) 225.05(257.65) 1667.58(933.76) 730.05(713.3) | 6

U = WO N = Ol

5.4 Results and Discussions

5.4.1 Influence of the Radius Parameter in NichGP

The parameter radius, denoted as J, plays a critical role in NichGDP, repre-
senting the degree of dissimilarity between individuals within the NichGP.
This dissimilarity level, in turn, can have an impact on the performance of
the learned agent through RL. To explore this effect, we conduct experi-
ments using six d values: 0, 1, 2, 3, 4, and 5. Specifically, when 6 = 0, it
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signifies that a distance larger than 0 between scheduling heuristics is con-
sidered acceptable, while other scheduling heuristics are penalised. The
respective training performance of the proposed NichGPDRL method for
each § value is shown in Table The results of the Friedman test [287]],
revealing a p-value of 0.002 (falling below the significance threshold of
0.05), indicate significant differences among different § values. Consider-
ing the average rank of these methods across all four scenarios, a radius
of 0 attains the highest rank with a value of 1.25. Additionally, we observe
that as the radius value increases, the rank decreases. This phenomenon
suggests that increasing the radius does not lead to performance improve-
ment but rather degrades it. A radius of 0 yields the best performance.
Consequently, for subsequent experiments and analyses, we use NichGP-
DRL to represent the proposed method with a radius of 0.

5.4.2 Test Performance

Table 5.4{gives the mean and standard deviation test performance of 30 in-
dependent runs of the proposed NichGPDRL methods and comparison
methods. The Friedman test results, yielding a p-value of 4.28 x 107®
(smaller than 0.05), indicate significant differences among the methods.
Notably, all scheduling heuristics learned by hyper-heuristic methods
(DRL, NichGP#, GPDRL, and the proposed NichGPDRL) outperform all
the manually designed ones. Among the hyper-heuristic methods, DRL
exhibits the worst performance. The proposed NichGPDRL obtains the
best performance, with NichGP1 following closely as the second best.
NichGP3 secures the third position, while NichGP2 takes the fourth po-
sition. NichGP4 and GPDRL closely follow in the fifth position.

To be more specific, we employ the Wilcoxon rank sum test [226]
to compare the proposed NichGPDRL method with each comparison
method across the four scenarios. The results, denoted by significantly

better (1), worse (J), or statistically similar (=) compared to other meth-
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Table 5.4: The mean and standard deviation test performance of 30 in-

dependent runs of the proposed NichGPDRL methods and comparison

methods.

Algorithm

HH HL

LH

LL

Rank

ECT+SPT
ECT+EDD
ECT+FIFO
ECT+LWR
MET+SPT
MET+EDD
MET+FIFO
MET+LWR
EA+SPT
EA+EDD
EA+FIFO
EA+LWR
LWIQ+SPT
LWIQ+EDD
LWIQ+FIFO
LWIQ+LWR

1014.29(0.00)(1)
1082.88(0.00)(1)
1245.73(0.00)(1)
1305.73(0.00)(1)
1437.83(0.00)(1)
1719.43(0.00)(1)

611.06(0.00)(1)
441.37(0.00)(1)
705.08(0.00)(1)
791.42(0.00)(1)
960.87(0.00)(1)
782.12(0.00)(1)

(

(

(

(

(

(

1965.50(0.00)(1) 1223.73(0.00)(1)

2028.35(0.00)(1) 1345.42(0.00)(1)

3261.69(0.00)(1) 2297.7(0.00)(1)

3824.05(0.00)(1) 2235.12(0.00)(1)

4254.86(0.00)(1) 2871.10(0.00)(1)

3937.37(0.00)(1) 2740.29(0.00)(1)

3496.10(0.00)(1) 2461.64(0.00)(1)

4003.76(0.00)(1) 2305.48(0.00)(1)
(

4219.96(0.00)(1) 2945.80(0.00)(1)

2457.59(0.00)(1)
2424.66(0.00)(1)
2748.60(0.00)(1)
2505.60(0.00)(1)
4534.33(0.00)(1)
4755.69(0.00)(1)
5274.61(0.00)(1)
4966.10(0.00)(1)
3409.09(0.00)(1)
3403.57(0.00)(1)
3930.47(0.00)(1)
3491.85(0.00)(1)
3601.45(0.00)(1)
3524.99(0.00)(1)
4064.07(0.00)(1)
3688.77(0.00)(1)

1699.70(0.00)(1)
1265.08(0.00)(1)
1727.35(0.00)(1)
1607.48(0.00)(1)
3509.15(0.00)(1)
3087.73(0.00)(1)
3800.25(0.00)(1)
3693.70(0.00)(1)
2430.36(0.00)(1)
1901.17(0.00)(1)
2617.09(0.00)(1)
2352.15(0.00)(1)
2568.60(0.00)(1)
2045.50(0.00)(1)
2720.61(0.00)(1)
2505.47(0.00)(1)

9
8
10.5
10.5
16.5
16.25
18.5
18.5
15.25
14.5
19.75
16.75
17.25
16.5
21
19

DRL
NichGP1
NichGP2
NichGP3
NichGP4

GPDRL
NichGPDRL

1003.30(43.95)(1) 463.28(43.48)(1) 2383.47(70.08)(1) 1219.51(70.33)(1)| 7.25
929.08(54.08)(=) 385.49(34.95)(1) 2255.22(83.52)(=) 1125.61(77.46)(=)| 3
943.44(77.26)(=) 388.38(46.60)(=) 2285.84(95.21)(=) 1115.44(47.15)(=)| 4
932.07(63.95)(=) 381.97(43.54)(=) 2273.90(91.91)(=) 1122.20(79.08)(=)| 3.75
944.85(63.73)(=) 390.78(43.78)(1) 2269.25(100.79)(=) 1119.19(53.11)(=)| 4.25
929.84(43.46)(=) 375.08(32.04)(=) 2299.29(88.82)(1) 1211.13(64.51)(1)| 4.25
927.50(42.44)  372.18(19.13)  2263.42(70.21)  1121.14(75.55) | 1.75

)
)
)
)
4468.28(0.00)(1) 3022.68(0.00)(1)
)
)
)

ods, are presented alongside the results of the comparison method in Table
Upon analysing these results, we observe that the proposed NichGP-
DRL significantly outperforms DRL and all manually designed scheduling
heuristics across all four scenarios. When compared with NichGP+#, the
proposed NichGPDRL performs better than NichGP1 and NichGP4 on the
scenario HL. When compared with GPDRL, NichGPDRL performs signif-
icantly better than GPDRL on two scenarios (LH and LL) while perform-
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Figure 5.4: The box plots of the test performance of 30 independent runs
of the proposed NichGPDRL, GPDRL, NichGP+#, and DRL methods.

ing similarly with GPDRL on the other scenarios (HH and HL). Impor-
tantly, it never performs worse than the other methods in any other scenar-
ios. These results validate the effectiveness of the proposed NichGPDRL
method and highlight the effectiveness of the proposed niching strategy in
aiding GP to generate high-quality and diverse actions for DRL compared
to the original GP.

Figure visualises the box plots of the test performance of 30 in-
dependent runs of the proposed NichGPDRL and other hyper-heuristic
methods. The box plots highlight the significant advantages of the pro-
posed algorithm compared to the DRL algorithm. It illustrates the benefits
of combining GP and DRL over using DRL independently. The demon-
strated advantages emphasise the effectiveness of the proposed NichG-
PDRL of integrating GP into DRL. Furthermore, the effectiveness of the
proposed NichGP# is verified through these results.
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Figure 5.5: The pie plots of the action contribution of 30 independent runs
of the DRL, GPDRL, and the proposed NichGPDRL methods on four sce-

narios.



5.5. FURTHER ANALYSES 181

5.5 Further Analyses

5.5.1 Action Contribution

In the learning process of RL, the selection process involves choosing from
four scheduling heuristics (actions) at each decision point. This section
focuses on the analysis of action contribution, defined as the percentage of
times each action is utilised relative to the total number of decision points.
The mean of action contributions is calculated across 30 independent runs
for the DRL, GPDRL, and the proposed NichGPDRL methods across four
scenarios.

The results are presented in Figure 5.5/ using pie plots. The pie plots re-
veal that, in the case of the DRL method, action 1 (A1, SPT) assumes a key
role across all four scenarios, securing the highest percentage in each sce-
nario, exceeding 50% in three of them. Subsequently, action 3 (A3, SLACK)
secures the second-highest percentage. Action 4 (A4, CR) attains the third
rank, while action 2 (A2, WIQ) ranks the lowest, constituting about only
1% on all four scenarios. In contrast to the DRL method, GPDRL, and
NichGPDRL methods exhibit similar action contributions across the four
actions. This shows that the scheduling heuristics evolved by GP and
NichGP can generate key rules that contribute to the overall performance.

5.5.2 Behaviour Difference between Heuristics

This chapter proposes a NichGP method to iteratively evolve a set of di-
verse scheduling heuristics for use as actions in RL. This section investi-
gates the behaviour difference among scheduling heuristics evolved through
the proposed NichGP. To ensure a fair comparison, we employ an un-
seen instance to generate 100 sequencing decisions. Subsequently, each
scheduling heuristic evolved by NichGP and GP is evaluated on these 100
decisions, with the Hamming distance utilised to calculate the behavioural

difference between each pair of sequencing rules (a total of 6 pairs for 4 se-
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quencing rules). The average percentage of behavioural difference across
all pairs is then computed as the behaviour difference p. The function to
calculate the behaviour difference is as Eq. (5.1).

B S Hamming(seqq, seqy)

; (5.1)

P

where, seq, and seg, represent different sequencing rules. Table 5.5/ gives
the mean and standard deviation behaviour difference of 30 independent
runs of the proposed NichGPDRL and GPDRL methods. It can be seen
that the proposed NichGPDRL shows significantly higher behaviour dif-
ference than the GPDRL on all the four scenarios. The NichGPDRL out-
performs the GPDRL about more than 3 times on behaviour difference.
This verifies the effectiveness of the proposed NichGP in learning diverse
scheduling heuristics for DRL.

Table 5.5: The mean and standard deviation behaviour difference of 30
independent runs of the proposed NichGPDRL and GPDRL methods.

Scenario GPDRL NichGPDRL
HH 0.051(0.097)  0.161(0.066)(1)
HL 0.054(0.058) 0.126(0.089)(1)
LH 0.045(0.080) 0.205(0.074)(1)
LL 0.045(0.058)  0.119(0.044)(1)

5.5.3 Generalisation to More Complex Scenarios

The ability to generalise is a crucial metric for evaluating an algorithm. On
one hand, an algorithm’s generalisation ability can be assessed by exam-
ining the performance of its trained heuristics on unseen test instances at
similar scales. In this context, as demonstrated in the comparison of test
performances in Table it is evident that the proposed NichGPDRL ex-
hibits superior generalisation ability compared to DRL. On the other hand,
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generalisation ability can be further validated by extending the applica-
tion of trained heuristics to unseen test instances at more complex scales.
To achieve this, scheduling heuristics learned by the proposed NichGP-
DRL and comparison methods are tested on instances featuring a higher
number of jobs and a large number of workcenters. Specifically, the test in-
stances involve 248 jobs arriving over 2000 units of time and 620 jobs arriv-
ing over 5000 units of time. Similar to Table 100 unseen instances are
employed for testing. Furthermore, the test performance of 16 manually
designed scheduling heuristics is presented as a baseline for comparison,

to verify the effectiveness of the proposed method.

Table 5.6: The mean and standard deviation test performance of the DRL,
the NichGPDRL, and comparison methods on eight scenarios with a large

number of jobs arrival (2000 unit times).

Algorithm HH HL LH LL

ECT+SPT | 2175.22(0.00)(1) 1353.44(0.00)(1) 5257.93(0.00)(1)  3698.47(0.00)
ECT+EDD | 2441.94(0.00)(1) 1026.63(0.00)(1) 5246.53(0.00)(1)  2806.27(0.00)
ECT+LWR | 2830.33(0.00)(1) 1763.24(0.00)(1) 5510.60(0.00)(1)  3653.18(0.00)
ECT+FIFO | 2730.64(0.00)(1) 1588.24(0.00)(1) 5938.43(0.00)(1)  3806.03(0.00)

7
7
1)
7

_— = <X X AR

MET+SPT | 3342.30(0.00)(1) 2278.09(0.00)(1) 10838.54(0.00)(1) 8710.86(0.00)(1)
MET+EDD | 4088.80(0.00)(1) 2065.01(0.00)(1) 12083.85(0.00)(1) 8248.97(0.00)(1)
MET+LWR | 4830.47(0.00)(1) 3282.75(0.00)(1) 12079.90(0.00)(1) 9342.84(0.00)(1)
MET+FIFO | 4726.93(0.00) ) 9601.56(0.00)(1)

EA+SPT | 8602.50(0.00)(1) 6419.72(0.00)(1) 7761.20(0.00)(1)  5715.40(0.00)(1)

7
1)
7
7
7

EA+EDD |10251.10(0.00)(1) 6596.72(0.00)(1) 8042.18(0.00)(1)  4788.28(0.00)
EA+LWR |10526.01(0.00)(1) 7767.38(0.00)(1) 8125.91(0.00)(1) 5670.46(0.00)
EA+FIFO |11028.04(0.00)(1) 7884.14(0.00)(1) 8895.89(0.00)(1)  6108.21(0.00)
LWIQ+SPT | 8955.59(0.00)(1) 6648.55(0.00)(1) 8133.55(0.00)(1)  5960.71(0.00)
LWIQ+EDD |10569.78(0.00)(1) 6836.88(0.00)(1) 8335.29(0.00)(1)  5063.08(0.00)
LWIQ+LWR |10975.34(0.00)(1) 8123.35(0.00)(1) 8442.37(0.00)(1)  5864.28(0.00)(1)
LWIQ-+FIFO |11560.02(0.00)(1) 8316.44(0.00)(1) 9231.12(0.00)(1)  6336.31(0.00)(1)
DRL  |2154.31(96.78)(1) 1041.14(86.75)(1) 4996.29(157.03)(1) 2599.83(153.23)(1)
NichGPDRL| 2027.05(100.62)  882.36(45.47)  4813.97(234.03)  2415.20(147.26)

(
(
(
(
(
(
(
1) 3020.21(0.00)(1) 12819.83(0.00)(
(
(
(
(
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(
(
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Tables and [5.9] present the mean and standard deviation
of test performances for the proposed NichGPDRL and comparison meth-
ods across two sets of scenarios: one characterised by a substantial number
of job arrivals and the other featuring different numbers of workcenters.
The “1” next to the comparison method in these tables signifies that the
results of NichGPDRL are significantly better than those of all the com-
pared algorithms. These findings demonstrate that NichGPDRL outper-
forms DRL and all manually designed scheduling heuristics, even when
directly applied to more complex instances without retraining. While DRL
outperforms most manually designed scheduling heuristics in 16 scenar-
ios, exceptions include ECT+EDD on scenario HL with 248 jobs, ECT+SPT
on scenario HH with 620 jobs, ECT+EDD on scenario LL with six work-
centers, each with two machines, and ECT+EDD on scenarios HL and LH
with nine workcenters, each with two machines. These findings demon-
strate that both NichGPDRL and DRL methods can be applied to more
complex scenarios without retraining. Moreover, NichGPDRL exhibits su-
perior generalisation ability compared to DRL as it provides even better

performance.

5.5.4 Discussions on Enhancing GP capability

This chapter proposes a novel two-stage framework aimed at harnessing
the strengths of both GP and RL to tackle the DFJSS problem. As a pre-
liminary work to investigate the combination of these two methods, this
chapter builds upon a baseline DRL method proposed in [136]. In [136],
an end-to-end DRL method is proposed to learn a routing agent capable of
directly selecting from candidate machines when encountering a routing
decision point. Additionally, a heuristic selection DRL approach is pre-
sented to learn a sequencing agent responsible for selecting from manual
sequencing rules to make further decisions among candidate operations.

In this context, this chapter focuses on replacing the manual sequencing
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Table 5.7: The mean and standard deviation test performance of the DRL,

the NichGPDRL, and comparison methods on eight scenarios with a large

number of jobs arrival (5000 unit times).

Algorithm

HH

HL

LH

LL

ECT+SPT
ECT+EDD
ECT+LWR
ECT+FIFO
MET+SPT
MET+EDD
MET+LWR
MET+FIFO
EA+SPT
EA+EDD
EA+LWR
EA+FIFO
LWIQ+SPT
LWIQ+EDD
LWIQ+LWR
LWIQ+FIFO

5670.90(0.00)(1)
6479.19(0.00)(1)
7733.09(0.00)(1)
7528.22(0.00)(1)
8741.83(0.00)(1)
10906.19(0.00)(1
12775.60(0.00)(1
12569.91(0.00)(1
25364.02(0.00)(1
31222.59(0.00)(t
33417.17(0.00)(
33899.75(0.00)(1
26428.54(0.00)(1
31893.24(0.00)(1
33286.78(0.00)(1
34631.34(0.00)(1)

~— O~ O~ N

3540.29(0.00)(1)
2924.44(0.00)(1)
4849.61(0.00)(1)
4450.15(0.00)(1)
6000.12(0.00)(1)
5394.65(0.00)(1)
8787.98(0.00)(1)
8111.35(0.00)(1)
19582.27(0.00)(1)
22163.05(0.00)(1)
25770.86(0.00)(1)
25385.47(0.00)(1)
20302.60(0.00)(1)
22543.42(0.00)(1)
25493.15(0.00)(1)
25898.14(0.00)(1)

14346.88(0.00)(1)
14474.19(0.00)(1)
15235.86(0.00)(1)
16426.80(0.00)(1)
30705.00(0.00)(1T)
34920.13(0.00)(1T)
35324.91(0.00)(1T)
37149.28(0.00)(1T)
22400.26(0.00)(1T)
23034.26(0.00)(1T)
23429.87(0.00)(T)
25530.17(0.00)(1T)
23554.17(0.00)(1T)
24278.45(0.00)(1T)
24435.33(0.00)(1T)
26808.94(0.00)(1T)

10342.80(0.00)(1)
8065.42(0.00)(1)

10315.41(0.00)(?1)
10918.11(0.00)(1)
25227.22(0.00)(1T)
25013.67(0.00)(1T)
28118.48(0.00)(T)
28687.94(0.00)(1T)
17089.66(0.00)(1)
14708.75(0.00)(1)
16962.71(0.00)(1)
18210.69(0.00)(1)
17867.04(0.00)(1)
15397.05(0.00)(1)
17631.24(0.00)(1)
19191.36(0.00)(*1)

DRL
NichGPDRL

5781.12(253.85)(1) 2834.20(214.81)(1) 14065.40(448.60)(1) 7773.84(431.70)(1)
5386.88(231.38)  2397.40(144.05)  13534.79(609.15)  7333.81(578.69)

rules with sequencing rules learned by GP to enhance the effectiveness of
the sequencing agent, while retaining the use of the end-to-end DRL for
learning the routing agent. Based on the results and analyses presented,
we demonstrate that the proposed NichGPDRL method significantly out-
performs the baseline DRL method (i.e., GP + RL > RL), while achieving
statistically similar performance to NichGP (which utilises an end-to-end
routing agent and single GP-learned sequencing rule). However, we are
unable to conclusively prove that the proposed NichGPDRL method out-
performs the baseline GP method (i.e., GP + RL > GP). In future research,
it would be intriguing to explore whether GP + RL indeed outperforms
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Table 5.8: The mean and standard deviation test performance of the DRL,

the NichGPDRL, and comparison methods on eight scenarios with a large

number of workcenters (6 workcenters).

Algorithm HH HL LH LL
ECT+SPT | 1771.04(0.00)(1) 988.88(0.00)(1)  4323.62(0.00)(1)  2646.83(0.00)(1)
ECT+EDD | 1780.71(0.00)(1) 522.47(0.00)(1)  3983.73(0.00)(1)  1503.14(0.00)(1)
ECT+LWR | 2205.35(0.00)(1) 1229.67(0.00)(1) 4187.14(0.00)(1)  2440.70(0.00)(1)
ECT+FIFO | 2244.21(0.00)(1) 1183.49(0.00)(1) 4860.78(0.00)(1)  2749.25(0.00)(1)
MET+SPT | 2674.45(0.00)(1) 1637.45(0.00)(1) 7225.88(0.00)(1)  5022.53(0.00)(1)
MET+EDD | 2803.78(0.00)(1) 853.85(0.00)(1)  7005.63(0.00)(1)  3453.68(0.00)(1)
MET+LWR | 3499.82(0.00)(1) 2085.59(0.00)(1) 7596.67(0.00)(f)  5030.36(0.00)(1)
MET+FIFO | 3668.17(0.00)(1) 2067.90(0.00)(1) 8573.12(0.00)(t)  5477.07(0.00)(1)
EA+SPT | 6080.39(0.00)(1) 3915.84(0.00)(1) 6100.94(0.00)(1)  3922.60(0.00)(1)
EA+EDD | 6625.08(0.00)(1) 3117.37(0.00)(1) 5667.42(0.00)(1)  2458.70(0.00)(1)
EA+LWR | 6573.10(0.00)(1) 4097.93(0.00)(1) 5811.79(0.00)(1)  3534.29(0.00)(1)
EA+FIFO | 7772.72(0.00)(1) 4799.38(0.00)(1) 6756.52(0.00)(1)  4019.94(0.00)(1)
LWIQ+SPT | 6253.02(0.00)(1) 3993.08(0.00)(1)  6205.48(0.00)(1)  3972.28(0.00)(1)
LWIQ+EDD | 6862.33(0.00)(1) 3397.43(0.00)(1)  5896.02(0.00)(1)  2732.58(0.00)(1)
LWIQ+LWR | 7100.61(0.00)(1) 4486.30(0.00)(1) 5999.24(0.00)(1)  3637.71(0.00)(1)
LWIQ+FIFO | 8034.78(0.00)(1) 4975.42(0.00)(1) 6958.58(0.00)(1)  4174.30(0.00)()
DRL  |1597.57(97.59)(1) 570.07(103.14)(1) 3841.77(142.62)(1) 1401.16(165.89)(1)
NichGPDRL| 1460.45(72.37) 375.57(23.01) 3709.01(137.02) 1244.96(64.20)
GP by further investigating a heuristic selection DRL for learning routing

agents or investigating different combination methods of GP and RL.

5.5.5 Structure Analysis of Sequencing Rules

In this secti

on, we analyse the structure of sequencing rules evolved by

NichGP and used as actions for DRL. We randomly select a run and the

structures o
0.9
For the s

f the 4 sequencing rules are shown in Figures and

equencing rule 1 in Figure it comprises four terminals: PT,

SLACK, NIQ, and WKR. Notably, SLACK emerges as the predominant ter-
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Table 5.9: The mean and standard deviation test performance of the DRL,

the NichGPDRL, and comparison methods on eight scenarios with a large

number of workcenters (9 workcenters).

Algorithm HH HL LH LL
ECT+SPT | 3171.25(0.00)(1) 1742.07(0.00)(1) 7411.42(0.00)(1)  4459.58(0.00)(1)
ECT+EDD | 2918.00(0.00)(1)  712.32(0.00)(1)  6182.24(0.00)(1)  2045.61(0.00)(?)
ECT+LWR | 3603.28(0.00)(1) 1942.15(0.00)(1) 6829.04(0.00)(1)  3862.74(0.00)(1)
ECT+FIFO | 4209.50(0.00)(1) 2199.16(0.00)(1)  8202.33(0.00)(1)  4522.05(0.00)(1)
MET+SPT | 4191.48(0.00)(1) 2422.35(0.00)(1) 11246.05(0.00)(1) 7509.85(0.00)(1)
MET+EDD | 4084.71(0.00)(1)  935.13(0.00)(1) 10013.13(0.00)(1) 4300.95(0.00)(1)
MET+LWR | 5312.86(0.00)(1) 3000.78(0.00)(1) 11339.11(0.00)(1) 7204.76(0.00)(1)
MET+FIFO | 5872.18(0.00)(1) 3139.97(0.00)(1) 12896.23(0.00)(1) 7883.16(0.00)(1)
EA+SPT | 9681.76(0.00)(1) 6014.37(0.00)(1) 9606.73(0.00)(1)  5984.38(0.00)(*)
EA+EDD | 9566.29(0.00)(1) 4112.08(0.00)(1) 8376.61(0.00)(1)  3331.55(0.00)(1)
EA+IWR | 10398.22(0.00)(1) 6304.28(0.00)(1) 9149.84(0.00)(1)  5372.83(0.00)(1)
EA+FIFO | 12197.22(0.00)(1) 7209.15(0.00)(1) 10862.16(0.00)(1) 6261.37(0.00)(1)
LWIQ+SPT | 10156.43(0.00)(1) 6274.87(0.00)(1) 10104.80(0.00)(1) 6250.91(0.00)(*T)
LWIQ+EDD | 10142.49(0.00)(1) 4272.82(0.00)(1) 8779.17(0.00)(t)  3587.16(0.00)(1)
LWIQ+LWR | 10680.63(0.00)(1) 6479.56(0.00)(1) 9455.17(0.00)(1)  5539.43(0.00)(*1)
LWIQ+FIFO | 12520.61(0.00)(1) 7477.10(0.00)(1) 11321.88(0.00)(1) 6575.32(0.00)(*)
DRL 2695.19(199.71)(1) 863.03(223.10)(1) 6249.33(271.75)(1) 1970.43(352.45)(T)

NichGPDRL

2446.60(149.44)

462.48(34.11)

5976.72(244.07)

1613.10(89.89)

minal within this rule, having been utilised four times. Following SLACK,

both PT and WKR are employed twice, while NIQ is employed only once.

The simplified representation of the sequencing rule 1 is denoted as S;
and is expressed in Eq. (5.2). Given that NIQ, representing the number
of operations in the waiting queue for a machine, remains constant for all

candidate operations, it can be disregarded. This rule prioritises jobs that

have a shorter processing time for the current operation, a smaller slack,

and a higher percentage of the current processing time relative to the re-

maining processing time of the job.

S, = PT + NIQ + SLACK +

SLACK

PT
WKR

(5.2)
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Figure 5.6: The sequencing rule 1 tree structure of four sequencing rules
evolved by a NichGP run.

Regarding the sequencing rule 2 in Figure it comprises five termi-
nals: PT, SLACK, NPT, WKR, and TIS. Notably, SLACK emerges as the
most frequently used terminal in this rule, having been employed four
times. Subsequently, PT is used twice, while NPT, WKR, and TIS are each
used only once. The simplified representation of the sequencing rule 2 is
denoted as S, and is expressed in Eq. (5.3). The interpretation of this rule
varies depending on specific scenarios. When the SLACK time of a job
surpasses the sum of the remaining processing time and the time the job
has spent in the system, the rule gives preference to jobs with shorter pro-
cessing times, shorter slack time, and smaller processing times for their
subsequent operations. Conversely, if the SLACK time of a job is less than
the sum of its remaining processing time and the time it has stayed in the
system, the rule favors jobs with shorter processing times, shorter slack

time, smaller processing times for their next operations, shorter remaining
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Figure 5.7: The sequencing rule 2 tree structure of four sequencing rules
evolved by a NichGP run.

processing time, and shorter time spent in the system.

Sy =2x PI'+3x SLACK + NPT

(5.3)
+ max{SLACK,WKR + TIS}

+ /

L+ ) L7 | sacd [ P |

}SLACKI ‘ NPTI ‘ TIS I ‘ NIQ I

Figure 5.8: The sequencing rule 3 tree structure of four sequencing rules
evolved by a NichGP run.
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Concerning the sequencing rule 3 in Figure it comprises five termi-
nals (PT, SLACK, NPT, NIQ, and TIS), with SLACK being the predominant
terminal, utilised twice. PT, NPT, NIQ, and TIS are each used only once.
The simplified representation of the sequencing rule 3 is denoted as S3 and
is illustrated in Eq. (5.4). Since NIQ represents the number of operations in
the waiting queue of the machine and remains constant for all candidate
operations, it can be disregarded. This rule prioritises jobs with shorter
slack time, smaller processing time for their next operation, shorter time

spent in the system, and longer processing time.

TIS SLACK
Sy = SLACK + NPT + 175+ =5 (5.4)

‘SLACI{ ‘ max ‘ ‘ + ‘ ‘ max ‘

Figure 5.9: The sequencing rule 4 tree structure of four sequencing rules
evolved by a NichGP run.

Regarding the sequencing rule 4 in Figure it consists of four termi-
nals (PT, SLACK, NPT, and TIS), with SLACK being the most frequently
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utilised terminal, employed six times. PT follows with two occurrences,
while NPT and TIS are each used only once. The simplified representation
of the sequencing rule 4 is denoted as S, and is expressed in Eq. (5.5). This
rule has different meanings in distinct situations. When the processing
time of the next operation significantly exceeds the slack time, the current
processing time, and the duration the job has spent in the system, it fa-
vors jobs with shorter processing times for the next operation and shorter
slack times. Alternatively, under different circumstances, the rule priori-
tises jobs with shorter processing times, shorter slack times, and shorter

durations spent in the system.

Sy =max{NPT,(SLACK + max{T1S,SLACK})
x max{SLACK + PT,max{SLACK, (5.5)
max{T1S,SLACK}, PT}}} + SLACK

Based on the above analyses of various sequencing rules, it is evident
that both slack time and current processing time are crucial features that
hold significant importance in their decision-making criteria. Addition-
ally, the processing time of the next operation and the time spent in the
system are also important factors in selecting a candidate job for process-
ing as the next task. Despite these similarities, there are notable differ-
ences. For instance, the sequencing rules 1 and 2 consider the remaining
processing time of the job, while sequencing rules 3 and 4 do not take
this into account. Furthermore, the sequencing rule 3 exhibits a prefer-
ence for jobs with longer processing times, while all other rules favor jobs
with shorter processing times. This observation indicates that these rules
focus on distinct situations during the long-term scheduling process and
exhibit different behaviours. The variations among these rules empower
the proposed NichGPDRL algorithm to make informed decisions in select-
ing an expert rule at specific decision points, thereby facilitating intelligent
scheduling.
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5.6 Chapter Summary

This chapter takes advantage of both GP and RL and presents a hybrid GP
and RL method (NichGPDRL) to learn effective sequencing and routing
agents for making intelligent selections among heuristics across different
decision points to address the DFJSS problem. Specifically, the niching
GP method is employed to learn a diverse set of high-quality scheduling
heuristics. Subsequently, the sequencing rules derived from these learned
scheduling heuristics serve as actions for the DRL method. This method
tackles the challenge of RL that requires adapting to altered operations at
various decision points, enabling the learning of intelligent agents capa-
ble of making optimal selections among these actions to generate effective
schedules. It is important to note that this chapter serves as an initial ex-
ploration into integrating GP and RL. We extend an existing published
DRL method (the baseline DRL) by incorporating the proposed NichGP,
resulting in NichGPDRL. The baseline DRL learns an end-to-end routing
agent to manage a fixed number of machines and a heuristic selection se-
quencing agent to handle the dynamically changing number of operations.
In this case, our enhanced method focuses solely on replacing the manu-

ally designed sequencing rules with NichGP-evolved ones.

Comparative results against baseline DRL, end-to-end routing agent
with GP evolved sequencing rules, and widely used manually designed
scheduling heuristics validate the effectiveness of the proposed hybrid
method. Additionally, comparisons against traditional GP-assisted DRL
confirm the effectiveness of the proposed niching GP method. Further-
more, contrasting results against the proposed method without the DRL
training process, where the sequencing rule is fixed as one of the candidate
actions, verify the efficacy of the DRL learning process. Further analysis
of action contribution demonstrates that the scheduling heuristics learned
by the niching GP method contribute similar percentages to the overall

performance. The behavioural analysis reveals that the proposed nich-
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ing GP method can learn diverse scheduling heuristics compared to tradi-
tional GP methods. Structural analysis indicates that the learned schedul-
ing heuristics by the niching GP exhibit similarities but also show distinct
performances at different decision points. Overall, this chapter shows that
the hybrid GP and RL method contributes to the development of effective
agents for solving the DFJSS problem.

With the assistance of GP, the capability of RL for DFJSS has been sig-
nificantly enhanced. This, in turn, extends GP’s capability to contribute
positively to DRL for DFJSS. However, the performance of RL + GP still
cannot match GP’s performance for these DFJSS problems. Future work
will be necessary to further investigate more effective combinations of GP
and RL to achieve better performance than both GP and RL.

Chapter _3| introduces three diversity-based parent selection mecha-
nisms for GP to produce high-quality offspring and ultimately evolve ef-
fective single scheduling heuristics for addressing the DFJSS problems.
In Chapter [}, an ensemble GP method is developed to evolve a group of
scheduling heuristics for making joint decisions to solve the DFJSS prob-
lems. This chapter further explores the utilisation of a group of scheduling
heuristics evolved by GP, employing RL to select appropriate scheduling
heuristics among the diverse ones at different decision points. All these
chapters solely focus on solving single-objective DFJSS problems. In the
next chapter, we propose two novel multi-objective GP algorithms de-
signed to effectively tackle multi-objective DFJSS problems.
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Chapter 6

Multi-objective Genetic

Programming

This chapter proposes new methods using GP and multi-objective solving
techniques for solving the multi-objective DFJSS (MO-DEFJSS) problems.

6.1 Introduction

In practical manufacturing, for some situations, DFJSS needs to consider
different objectives in parallel [261], which is known as multi-objective
DFJSS (MO-DFJSS). In MO-DFJSS, objectives are usually conflicted, such
as mean-flowtime (Fmean) and max-tardiness (Tmax), which is a common
difficulty in multi-objective optimisation. The study of MO-DFJSS is of
great practical importance. However, the study on MO-DFJSS is limited.
Currently, there are only a few studies about incorporating well-known
Pareto dominance-based methods (i.e., non-dominated sorting genetic al-
gorithm II [52] and strength Pareto evolutionary algorithm 2 [289]) into
GP, named NSGPII [267] and SPGP2 [267], for MO-DFJSS. They can suc-
cessfully evolve a Pareto front of scheduling heuristics for solving the MO-
DEFJSS problems. However, Pareto-dominance algorithms can sometimes
have difficulty in preserving the spreadability/diversity of the Pareto

195
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front, which is crucial for generating a representative set of solutions
[288] [127]. Real-world decision-making often involves revising priorities
or weights assigned to different objectives. A well-spread set of solutions
provides more flexibility in such situations. If solutions are clustered to-
gether, changes in preference might leave users with very few options
[106]. This limitation of Pareto-dominance algorithms suggests the need
for a method that can provide great spreadability of the evolved Pareto

front of scheduling heuristics.

Multi-objective evolutionary algorithm based on decomposition
(MOEA/D) is a well-known multi-objective method [276]. The key idea
of MOEA /D is to decompose a multi-objective optimisation problem into
a number of sub-problems via a scalar function and then optimise them
simultaneously [85]. The strength of MOEA/D that makes it have the
potential to deal with the difficulties that Pareto dominance-based algo-
rithms cannot handle. MOEA /D uses a decomposition approach that al-
lows the optimisation of multiple sub-problems in different directions si-
multaneously, making it possible to generate a spread Pareto front. Fur-
ther, the high search capability of MOEA /D, especially for difficult multi-
objective problems, has been repeatedly reported [104, 105} [126]. Some
works have shown the potential of using MOEA /D algorithms for solving
static scheduling problems [37, 108, 235, 279]. However, to the best of our
knowledge, there is no study using MOEA /D for solving the MO-DFJSS
problem. It is interesting to investigate the incorporation of MOEA /D and
GP for solving the DFJSS problem.

In addition, among the existing multi-objective algorithms for DFJSS,
the NSGPII showed the best performance in terms of HV [290] and IGD
[134]. However, NSGPII acts on the genotype of individuals and does not
consider semantic information, which reflects the behaviour of the geno-
type. Semantic GP [217] has been proposed to enhance population di-
versity by integrating semantic information into the evolutionary process.

Its effectiveness has been demonstrated across diverse domains, includ-
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ing symbolic regression [214], classification [15, 192], and feature selec-
tion [169]. However, to the best of our knowledge, semantic information
has not been incorporated into NSGPII for solving the MO-DFJSS prob-
lem. Given these promising results, it becomes particularly intriguing to
explore how to improve the performance of NSGPII for MO-DEFJSS by in-

corporating semantic information.

6.1.1 Chapter Goals

The goal of this chapter is to propose two novel multi-objective GP methods
for solving the MO-DFJ]SS with multiple objectives. The proposed two multi-
objective GP methods are expected to evolve a Pareto front of effective
scheduling heuristics. To be specific, the objectives of this chapter are as
follows.

1. Propose two novel multi-objective GP methods (i.e., MOGP/D and
semantic NSGPII) for evolving a Pareto front of effective scheduling
heuristics for MO-DFJSS. The MOGP/D is developed by adapting
ideas from the classical MOEA /D [276] along with the characteris-
tics of MO-DFJSS. The semantic NSGPII is built upon the original
NSGPIL

2. Design a mapping strategy to match individuals to sub-problems
(MO-DFJSS considering different weight combinations) for the
MOGP/D for reducing the effects of seed rotation in MO-DFJSS.

3. Define the semantic and semantic distance concepts in the context of
the MO-DFJSS domain for the proposed semantic NSGPII, design
strategies to measure the semantic information derived from MO-
DFJSS, and design strategies to use the semantic information during
the evolution process.

4. Verify the effectiveness of the proposed MOGP /D and semantic NS-
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GPII methods by comparing them with the state-of-the-art Pareto-
dominance multi-objective method.

5. Analyse how semantic information affects the performance of
evolved scheduling heuristics by NSGPII on solving the MO-DFJSS

problem.

6.1.2 Chapter Organisation

The rest of this chapter is organised as follows. Detailed description of
the proposed two algorithms are given in Section The experimental
design is provided in Section followed by results and discussions in
Section[6.4] Further analyses are conducted in Section Finally, Section
concludes this chapter.

6.2 Proposed Algorithms

6.2.1 MOGP/D

In this section, we hybrid MOEA /D with GP with multi-tree representa-
tion to evolve effective Pareto front of scheduling heuristics on solving the
MO-DFJSS problem. The proposed algorithm is named MOGP/D. The
flowchart of the proposed MOGP /D can be seen in Figure

Following the main strategies of MOEA /D, MOGP /D has population
initialisation, sub-problem decomposition, fitness evaluation, fitness nor-
malisation, parent selection, and breeding. Different from MOEA /D, com-
bined with strategies and features of GP, also considering the characteris-
tic of MO-DFJSS, MOGP/D has the training process and the test process,
searches in the heuristic space, ignores the neighbor replacement strategy,
develops a mapping strategy, and uses the tournament selection.

To be specific, the training process finally output Pareto front of

scheduling heuristics evolved on the training instances. Then the Pareto
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Figure 6.1: The flowchart of MOGP/D.

front of scheduling heuristics are used on unseen test instances to measure
their performance. In MOGP/D, each individual has two trees, represent-
ing the routing rule and sequencing rule respectively, which are combined
by features in the heuristic space. In addition, MOGP/D changes the
training instance (rotates seed) for each new generation which is a normal
strategy in the domain of GP for DFJSS, which helps improve the gener-
alisation ability of the learned scheduling heuristics. However, this strat-
egy might destroy the relationship among neighbors, as the fit scheduling
heuristic for each sub-problem in the current generation might not fit the
sub-problem in the next generation anymore. To avoid this situation, a
mapping strategy is proposed to match individuals to sub-problems af-
ter fitness evaluation. To generate offspring, tournament selection is used
to select good parents for breeding. Traditional MOEA /D evaluates off-
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spring immediately after it is generated and uses the offspring to replace
the parents/neighbors if it outperforms the parents/neighbors. Thus, the
survival of the fittest proceeds within the breeding process of each gen-
eration, and no tournament selection is needed to choose parents. How-
ever, GP prefers to reserve all the offspring. Therefore, MOGP /D does not
adopt the neighbor replacement strategy, instead, it reserves all the off-
spring. As we change the training instance for every new generation in
MOGP/D, before proceeding with the survival process and mapping, we
combine parents and offspring to do fitness evaluation. Fitness normalisa-
tion is conducted to reduce the influence of objective bias. Then, the map-
ping process will select the fittest individual for each sub-problem. After
mapping, the population will shrink back to the original population size.
Finally, the non-dominated individuals from the final generation will be
output and used on the test set to measure their performance. The fitness

normalisation and mapping strategies are described as follows in detail.

Fitness Normalisation

Since it is not easy to estimate the ideal points and nadir points of a real-
world problem, especially, when we change the training instance for each
new generation in MO-DFJSS. In this chapter, we use the ratio f;,/b;,; of the
objective value of each individual f;; versus the objective value obtained
by the baseline rules b, ; as the normalised fitness obj;, on the objective ¢.
We select one routing rule for all the objectives, which is the Least work
remaining in queue (LWIQ) rule, and five specific sequencing rules for the
tive objectives, which are listed in Table

The Mapping Strategy

The mapping strategy is used to map individuals to sub-problems after
moving to a new generation. The mapping process proceeds after fitness

normalisation, the details can be seen in Algorithm
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Table 6.1: The baseline rules for fitness normalisation.

Objective | Sequencing rule

Fmax FCFS: first come first serve

Fmean SPT: shortest processing time

Tmax EDD: earliest due date

Slack : ini
Tmean ac pe.rRP"l-"plusPT slack pe.r rerr-1a1n1ng
processing time plus processing time

WTmean | WATC: weighted apparent tardiness cost [218]

We can see that, the individuals P from parents and offspring are com-
bined together and divided into two groups A and B. The group A con-
tains individuals with normal objective values, while the group B stores
poor individuals with Inf. objective values (Line [I). We generate a ran-
dom permutation Q* of sub-problems 2 (Line 2). For each sub-problem,
we calculate the weight-sum objective value (Line [7) and select the indi-
vidual with the smallest weight-sum objective from the group A (Line[9) if
the group A is not empty. Otherwise, an individual in the group B is ran-
domly selected (Line: and assigned to this sub-problem. The selected
individual will then be deleted from its original group (Lines [1T]and [15).
The whole process goes on until each sub-problem is assigned an individ-
ual. Totally N individuals are selected for the N sub-problems and the
remaining /N individuals will be deleted.

6.2.2 Semantic NSGPII

This section introduces the proposed semantic NSGPII method. The pro-
posed method uses the NSGPII parent selection, crossover, and mutation
to generate offspring for the next generation. On top of that, it designs
novel strategies to decide which kind of offspring is allowed to be added to
the next generation by considering semantic diversity and semantic simi-
larity. In this section, we begin by providing the definitions of semantic and
semantic distance in MO-DFJSS, then describe the proposed strategies. The
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Algorithm 8: Mapping individuals to sub-problems.

Input: The population P combining parents and offspring with 2V individuals,
(Yincludes N sub-problems.
Output: Matched pairs {ps, o; } between each individual p, € P and each
sub-problem «; € Q.

1 Divide individuals in P into two groups, one group A contains a individuals
with normal fitness, and the other group B stores b individuals with Inf. fitness
(bad run), where a + b = 2N ;

2 Generate a random permutation £2* of sub-problems 2;

3 foreach sub-problem a; € 2* do

4 Obtain the weight vector w; for sub-problem «;;

5 if A is nonempty then

6 foreach individual p; € A do

7 Calculate the weight-sum objective value 7 of the individual p; on

the sub-problem a;: 7/ = 31", w; ; * obji ¢, where obj; ; denotes
the normalised fitness of individual p; on the objective ¢;

8 end
9 k = argmini—y,_o(nl);
10 Individual py, is assigned to sub-problem c;;
11 A= A/pi;
12 end
13 else
1 Random select an individual p, from B and assign it to sub-problem «; ;
15 B =B/p:;
16 end
17 end

flowchart of the improved NSGPII with the proposed strategies is shown

in Figure

Semantic in MO-DFJSS

This chapter defines the semantic in MO-DEFJSS as the phenotypic charac-
terisation (PC) [260]. In the research domain of DFJSS, PC [260] serves as
a common method to describe an individual’s behaviour. Although the
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Figure 6.2: The flowchart of the proposed NSGPII with the semantic di-

versity strategy or the semantic similarity strategy for evolution.

PC is employed to analyse population diversity by the proposed meth-
ods in Chapter (3| it has not been thoroughly introduced. This chapter
provides a comprehensive understanding of the PC. The PC represents
a list of decisions given by an individual on a given number of decision
points. These decision points are derived by applying a reference schedul-
ing heuristic to a given DFJSS instance. Specifically, this chapter employs
the weighted shortest processing time (WSPT) as the reference sequencing
rule and working remaining in the queue (WIQ) as the reference routing
rule. Considering that each instance often contains thousands of decision
points, to save time and ease of use, we randomly select 20 sequencing de-
cision points and 20 routing decision points, each involving a set of 7 can-

didates (operations for sequencing rule and machines for routing rule).
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Table 6.2: An example of calculating the PC of an individual.

Sequencing Routing
Decision Reference Sequencing . Decision Reference Routing .
Decision Decision
points rule rule points rule rule
1(01) 1 3 1(M;) 2 1
1(02) 3 1 3 1(Ms) 1 2 2
1(03) 2 2 1(Ms3) 3 3
2(04) 3 2 2(My) 2 2
2(0») 1 1 1 2(M>) 3 3 1
2(03) 2 3 2(Ms3) 1 1
3(01) 1 2 3(My) 1 2
3(02) 2 1 2 3(Ma) 3 1 3
3(03) 3 3 3(Ms3) 2 3

Then, to calculate the PC of an individual, the sequencing/routing rule
in an individual is applied to these decision points, and the ranks of the
selected operations/machines across these decision points are utilised to
construct the PC. An illustrative example of calculating the PC for an indi-
vidual is shown in Table 6.2, considering 3 sequencing decision points and
3 routing decision points based on the reference scheduling heuristic. Ac-
cording to the given description, the PC of this example is a combination

of sequencing decisions and routing decisions, which is [3, 1,2, 2,1, 3].

Based on the PC, the semantic distance between individuals ind, and
indy is defined as the number of different decisions between their seman-
tics and can be calculated based on Eq. (6.I). In contrast to other semantic
methods that typically rely on Euclidean distance for calculating seman-
tic differences, this chapter proposes this definition because the Euclidean
distance between machine or operation rankings in semantics is consid-
ered meaningless in DFJSS.

0 ifpca; = pep.;
disay =10, dapi where dgp; = o . 6.1)
1 otherwise
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Semantic Diversity Strategy

This strategy aims to enhance the semantic diversity of the population by
only accepting offspring that are semantically different from each other.
Two individuals are considered semantically different if their semantic
distance is greater than 0. This strategy is used whenever an offspring
is generated by crossover or mutation. To be specific, when an offspring
ind, is generated, we compare it with all the other offspring already gener-
ated at the current generation. If ind, is found to be semantically different
from all the existing ones, it is accepted as a new offspring. However, if
any duplicates are found, indicating that it is not semantically different,
the offspring ind, is discarded. This process is repeated iteratively until

the population is filled with semantically different offspring.

Semantic Similarity Strategy

This strategy builds upon the aforementioned semantic diversity ap-
proach and introduces an additional constraint to control the semantic simi-
larity between generated offspring and their parents. The degree of seman-
tic similarity between individuals is restricted by a threshold «. Specif-
ically, when an offspring ind, is generated, we first compare it with all
the previously generated offspring in the current generation. If ind, is
found to be semantically different from all existing ones, we further ex-
amine whether it is semantically similar to at least one of its parents. This
is done by assessing whether the semantic distance between ind, and its
parent ind, is smaller than the threshold a. If ind, is similar to any of its
parents, then it is accepted as a new offspring; otherwise, it is discarded.
This process is iterated until the offspring population is filled. The idea be-
hind this strategy is that by limiting the similarity between offspring with
their parents, we expect evolution to be smooth, without losing conver-
gence, and at the same time maintain diversity. To achieve this goal, the

key point is to determine an appropriate o value.
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6.3 Experimental Design

The dataset employed for simulating various job shop scheduling scenar-
ios, along with the terminals and functions utilised for constructing indi-
viduals in this chapter, remains consistent with Chapter 3| Regarding the
parameter configurations, the population size is set as 1000, and the Pareto
front is output after 50 generations. The Ramped-half-and-half method is
employed for population initialisation. The crossover and mutation rates
are set to 0.85 and 0.15, respectively. Parent selection is performed using
tournament selection with a size of 7. In addition, the experimental design
of this chapter is outlined as follows.

6.3.1 Performance Measures

The three key indicators used for verifying the proposed multi-objective
algorithms are Hypervolume, Inverted Generational Distance, and Maximum

Spread. Their principles are described below.

1. Hyper Volume (HV) [290]: Given a solution set A and a set of refer-
ence points Z*, HV describes the size of the space covered:

HV(A) =\ (U 3:|a<x<z) (6.2)

acA

where )\ indicates the Lebesgue measure. a < x < z denotes x domi-
nates z and is dominated by a. A high HV value is preferable.

2. Inverted Generational Distance (IGD) [134]: Given a solution set A
and a set of reference points Z*, IGD measures the distance from the
reference points to the solution set:

S mingea d(z, a)

m

IGD(A, Z*) = (6.3)

where d(z;,a) represents the Euclidean distance between z; and a.
We prefer the algorithm with a low IGD value.
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3. Maximum Spread (MS) [127]: Let A be a solution set to a multi-
objective problem, MS measures the range of A by considering the

maximum extent of each objective:

MS(A) = J mzi(aj — aj)? (6.4)
= a,a

The higher the MS, the better the algorithm.

6.3.2 Comparison Design

This chapter proposes a MOGP /D algorithm and proposes two strategies
to incorporate semantic information into NSGPII for MO-DFJSS, which
are the semantic diversity strategy and the semantic similarity strategy. To
simplify the algorithm description, we name NSGPII with semantic diver-
sity strategy as NSGPII?, and NSGPII with semantic similarity strategy as
NSGPII. To verify the effectiveness of MOGP/D, NSGPII?, and NSGPII?,
they are compared with the original (state-of-the-art) NSGPII algorithm.
Besides, for NSGPII®, different o values are tested, including 2, 4, 6, 8, 10,
12, and 14.

To measure and compare the performance of algorithms, we conducted
30 independent runs for each algorithm and employed Friedman’s test
and Wilcoxon rank-sum test for comparison. If Friedman's test yielded
significant results, we proceed with the Wilcoxon rank-sum test for pair-
wise comparisons between the improved NSGPII considering the seman-
tic diversity strategy or the semantic similarity strategy and the classical
NSGPII, using a significance level of 0.05. In the subsequent results, we
use the symbols “1”, “|”, and “=" to indicate statistical significance, de-
noting better, worse, or similar results compared to their counterparts, re-
spectively.

In this chapter, six scenarios are examined by considering different

combinations of objectives and different utilisation levels (0.85 and 0.95),
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which can refer to Table For each scenario, 50 instances are used for
training, while a separate set of 50 unseen instances is used for the test.

Table 6.3: Six scenarios.

Scenario Objective 1 Objective 2 Utilisation
1 max-flowtime max-weighted-tardiness 0.85
2 max-flowtime max-weighted-tardiness 0.95
3 max-weighted-flowtime max-tardiness 0.85
4 max-weighted-flowtime max-tardiness 0.95
5 mean-flowtime mean-weighted-tardiness 0.85
6 mean-flowtime mean-weighted-tardiness 0.95

6.4 Results and Discussions

6.4.1 Test Performance

Tables and [p.6| present the mean and standard deviation of the HY,
IGD, and MS results for different algorithms across 30 independent runs
on the test instances of the six scenarios. The bottom of the tables shows
the results of the Wilcoxon comparison and Friedman's test. For NSGPII®,
we expect evolution to be smooth, without losing convergence, and at the
same time maintain diversity. To achieve this goal, the key point is to
determine an appropriate o value. Therefore, we first analyse the effect of
« on NSGPII®. Then we compare NSGPII, MOGPD, NSGPII?, and NSGPII®
with the best a.

It is evident from the HV results presented in Table (6.4 that NSGPII®
with o = 6 exhibits markedly superior performance in terms of HV across
five scenarios compared to NSGPII and obtains statistically similar HV
performance on the remaining one scenario. NSGPII® with o = 8, a = 10,
a = 12, and o = 14 demonstrate significantly better HV performance than

NSGPII on four scenarios, with statistically similar HV performance ob-
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Table 6.4: The mean (standard deviation) test HV of 30 independent runs
of NSGPII, MOGP/D, NSGPII¢ and NSGPII® with different « for 6 scenar-

i0s.
. NSGPII®
Scenario | NSGPII | MOGP/D | NSGPII¢

a=2 a=4

1 0.84(0.04) | 0.81(0.06) | 0.86(0.04) | 0.76(0.07) 0.84(0.03)

2 0.82(0.03) | 0.78(0.05) | 0.85(0.03) | 0.74(0.06) 0.82(0.03)

3 0.87(0.03) | 0.88(0.03) | 0.88(0.03) | 0.82(0.04) 0.86(0.03)

4 0.95(0.01) | 0.95(0.01) | 0.95(0.01) | 0.93(0.02) 0.95(0.01)

5 0.59(0.23) | 0.58(0.23) | 0.58(0.18) | 0.57(0.17) 0.62(0.12)

6 0.98(0.01) | 0.98(0.02) | 0.98(0.01) | 0.97(0.01) 0.98(0.01)
1/=/1 - 0/4/2 2/4/0 0/1/5 0/6/0

rank 7 7.58 6.17 10 6.92
. NSGPII®
Scenario

a=06 a=38 a=10 a=12 a=14

1 0.86(0.03) 0.86(0.04) 0.86(0.04) 0.87(0.03) 0.86(0.04)

2 0.86(0.03) 0.86(0.03) 0.86(0.03) 0.86(0.02) 0.85(0.03)

3 0.89(0.04) 0.89(0.03) 0.89(0.03) 0.89(0.03) 0.89(0.02)

4 0.96(0.01) 0.96(0.02) 0.96(0.01) 0.96(0.01) 0.96(0.01)

5 0.73(0.09) 0.66(0.12) 0.70(0.14) 0.59(0.18) 0.69(0.14)

6 0.98(0.01) 0.98(0.01) 0.98(0.01) 0.98(0.01) 0.98(0.01)
1/=/1 5/1/0 4/2/0 4/2/0 4/2/0 4/2/0

rank 3.08 3.58 3.25 3.5 3.92

served on the remaining two scenarios. NSGPII® with o = 4 obtains sta-

tistically similar HV performance as NSGPII on all six scenarios. How-

ever, NSGPII® with o = 2 obtains statistically similar HV performance as

NSGPII on only one scenario and performs significantly worse than NSG-

PII on the remaining five scenarios. According to the Friedman'’s test re-
sults, NSGPII® with oo = 6 achieves the highest rank, followed by NSGPII*
with o = 10, NSGPII* with o = 12, NSGPII* with o = 8, NSGPII* with
a = 14, NSGPII* with o = 4, and finally NSGPII®* with a = 2. Given
that NSGPII® with o = 6 demonstrates the best performance among all

NSGPII® variants with different « values, further comparisons are made
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with other algorithms. Comparing NSGPII® with a = 6 to other algo-
rithms, it is evident that MOGP /D yields significantly inferior HV perfor-
mance than NSGPII on two scenarios and shows statistically similar HV
performance on the remaining five scenarios. NSGPII? exhibits signifi-
cantly better HV performance than NSGPII on two scenarios, with simi-
lar HV performance observed on the remaining four scenarios. Notably,
NSGPII* with @ = 6 surpasses both of these methods in terms of HV.
Furthermore, NSGPII® consistently demonstrates significantly better HV
performance compared to NSGPII across five scenarios. As per the Fried-
man’s test results, NSGPII®* with o = 6 ranks highest among these four
methods, followed by NSGPII?, NSGPII, and MOGP/D.

In terms of IGD performance (refer to Table , NSGPII®* with o = 6,
a =38 a =10, a = 12, « = 14 demonstrate significantly superior per-
formance compared to NSGPII across four scenarios and obtains statisti-
cally similar IGD performance on the remaining two scenarios. NSGPII”®
with a = 4 exhibit significantly better IGD performance than NSGPII
on one scenario, while displaying statistically similar IGD performance
on the remaining five scenarios. In contrast, NSGPII® with o« = 2 per-
forms worse than NSGPII on five scenarios and shows statistically com-
parable IGD performance on one scenario. According to the Friedman'’s
test results, NSGPII® with o« = 8 achieves the highest rank, followed by
NSGPII® with a = 6, NSGPII®* with o = 10, NSGPII* with o = 14, NSGPII®
with a = 12, NSGPII* with o = 4, and finally NSGPII®* with o = 2.
As NSGPII® with @ = 8 demonstrates the best performance among all
NSGPII® variants with different o values, further comparisons are con-
ducted with other algorithms. When compared with other algorithms, it
is evident that MOGP/D yields significantly worse IGD performance than
NSGPII on half scenarios and shows statistically similar IGD performance
on the remaining half scenarios. NSGPII* demonstrates significantly bet-
ter IGD performance than NSGPII on two scenarios, while achieving sim-

ilar IGD performance to NSGPII on the remaining four scenarios. No-
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Table 6.5: The mean (standard deviation) test IGD of 30 independent runs

of NSGPII, MOGP/D, NSGPII¢ and NSGPII® with different « for 6 scenar-
i0s.

. NSGPII®
Scenario | NSGPII | MOGP/D | NSGPII¢

a=2 a=4

1 0.11(0.03) | 0.13(0.05) | 0.10(0.03) | 0.14(0.04) 0.09(0.02)

2 0.11(0.02) | 0.15(0.04) | 0.09(0.02) | 0.16(0.04) 0.11(0.02)

3 0.07(0.02) | 0.08(0.03) | 0.07(0.02) | 0.10(0.03) 0.07(0.02)

4 0.03(0.01) | 0.04(0.01) | 0.03(0.01) | 0.05(0.02) 0.03(0.01)

5 0.30(0.23) | 0.31(0.23) | 0.29(0.17) | 0.30(0.17) 0.24(0.10)

6 0.01(0.01) | 0.01(0.01) | 0.01(0.01) | 0.02(0.01) 0.01(0.00)
1/=/1 - 0/3/3 2/4/0 0/1/5 1/5/0

rank 7.08 8.5 5.67 9.75 5.58
) NSGPII®
Scenario

a=06 a=38 a=10 a=12 a=14

1 0.10(0.03)  0.09(0.03) 0.10(0.02) 0.09(0.02) 0.09(0.03)

2 0.09(0.02)  0.09(0.02) 0.09(0.02) 0.09(0.01) 0.10(0.02)

3 0.06(0.02) 0.06(0.02) 0.06(0.01) 0.06(0.02) 0.06(0.01)

4 0.02(0.01)  0.02(0.01) 0.02(0.00) 0.03(0.01) 0.02(0.01)

5 0.16(0.07)  0.22(0.10) 0.19(0.11) 0.29(0.18) 0.20(0.13)

6 0.01(0.00) 0.01(0.01) 0.01(0.01) 0.01(0.01) 0.01(0.01)
1t/=/1 4/2/0 4/2/0 4/2/0 4/2/0 4/2/0

rank 3.42 3.33 3.58 442 3.67

tably, NSGPII* with oo = 8 exhibits even better performance. Furthermore,
NSGPII® with o = 8 consistently demonstrates significantly better IGD
performance compared to NSGPII across four scenarios. Based on the
Friedman'’s test results, NSGPII* with o = 8 ranks first among these four
methods, followed by NSGPII¢, NSGPII, and MOGP/D.

In terms of MS performance (refer to Table [6.6), among all the vari-
ants of NSGPII* with different o, NSGPII®* with o« = 2 and a = 4 exhibit
significantly worse performance compared to NSGPII on two scenarios,
while showing statistically similar MS on four scenarios. NSGPII® with
a =6, a =38 a =10, and o = 12 demonstrate significantly inferior
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Table 6.6: The mean (standard deviation) test MS of 30 independent runs
of NSGPII, MOGP/D, NSGPII¢ and NSGPII® with different « for 6 scenar-
10S.

NSGPII®

a =2 a=4

Scenario | NSGPII | MOGP/D | NSGPII“

0.45(0.18) | 0.59(0.19) | 0.38(0.14) | 0.37(0.12) 0.49(0.16)
0.63(0.16) | 0.75(0.13) | 0.60(0.15) | 0.53(0.18) 0.58(0.14)
0.22(0.11) | 0.23(0.06) | 0.19(0.07) | 0.17(0.11)  0.16(0.07)
0.17(0.07) | 0.23(0.12) | 0.16(0.09) | 0.16(0.11) 0.17(0.08)
0.11(0.08) | 0.16(0.07) | 0.09(0.07) | 0.08(0.08) 0.08(0.06)

6 0.01(0.01) | 0.01(0.01) | 0.01(0.01) | 0.01(0.01) 0.01(0.01)
1/=/1 - 4/2/0 0/6/0 0/4/2 0/4/2
rank 3.58 1.75 5.92 7.33 5.75

NSGPII®

a==6 a=38 a=10 a=12 a=14
0.41(0.17)  0.44(0.18) 0.46(0.17) 0.42(0.18) 0.37(0.17)
0.65(0.13)  0.57(0.13) 0.65(0.18) 0.61(0.17) 0.61(0.14)
0.16(0.05)  0.19(0.10) 0.15(0.08) 0.16(0.05) 0.16(0.07)
0.15(0.06)  0.13(0.06) 0.17(0.10) 0.14(0.06) 0.13(0.05)
0.10(0.07)  0.10(0.08)  0.08(0.07) 0.12(0.09) 0.08(0.09)

6 0.01(0.01)  0.01(0.01)  0.01(0.01) 0.01(0.01) 0.01(0.01)
t/=/1 0/5/1 0/5/1 0/5/1 0/5/1 0/2/4
rank 5.67 6.17 5.42 5.75 7.67

gl = W N =

Scenario

gl b= W N =

MS performance than NSGPII on one scenario, while displaying statisti-
cally similar MS performance on the remaining five scenarios. Moreover,
NSGPII® with a = 14 obtains significantly worse performance compared
to NSGPII on four scenarios, while showing statistically similar MS on
the remaining two scenarios. According to the Friedman’s test results,
NSGPII® with a = 10 achieves the highest rank among all the variants of
NSGPII® with different «, followed by NSGPII® with & = 6, & = 4 and
a = 14 which rank equally, NSGPII® with o = 8, NSGPII° with o = 2, and
NSGPII® with o = 14. As NSGPII® with o = 10 demonstrates the best MS
performance among all NSGPII® variants with different o values, further
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comparisons are conducted with other algorithms. When compared with
other algorithmes, it is evident that MOGP /D yields significantly better MS
performance than NSGPII on four scenarios and shows statistically simi-
lar MS performance on the remaining two scenarios. NSGPII? exhibits
statistically similar MS performance to NSGPII across all six scenarios.
NSGPII® with o = 10 shows slightly inferior performance. It demon-
strates significantly worse MS performance compared to NSGPII on one
scenario and shows statistically similar MS performance on the remaining
five scenarios. Based on the Friedman’s test results, MOGP /D ranks first
among these four methods, followed by NSGPII, NSGPII®* with o = 10,
and NSGPII“.

In summary, MOGP/D exhibits a broader exploration of the Pareto
front of scheduling heuristics (MS) compared to NSGPII¢, NSGPII*, and
NSGPII. Concerning the covered space (HV), NSGPII® demonstrates the
highest performance, significantly outperforming MOGP/D, NSGPII,
and NSGPII. NSGPII? shows significantly better performance than NS-
GPII and MOGP/D, with MOGP/D exhibiting the least favorable re-
sults. When considering the distance to the reference points (IGD),
NSGPII® consistently achieves superior performance, significantly sur-
passing MOGP /D, NSGPII, and NSGPIL NSGPII? also outperforms NS-
GPII and MOGP/D in this regard, with MOGP/D displaying the least
favorable outcomes. Overall, when considering the HV metric, NSGPII®
with a = 6 attains the highest performance, followed by NSGPII? and
NSGPIL. MOGP/D exhibits the least favorable performance. For conve-
nience, throughout the subsequent analysis, we use NSGPII® to denote
NSGPII® with a = 6.

Through the above analysis, we can see that semantic information
plays an important role in improving the HV and IGD performance of
NSGPII on the MO-DFJSS problem. The HV and IGD performance of NS-
GPII can be improved by increasing the diversity of the behaviours of the

individuals in the population. Moreover, requiring the offspring to have



214 CHAPTER 6. MULTI-OBJECTIVE GENETIC PROGRAMMING

similar semantic behaviour with their parents can further improve the HV
and IGD performance of NSGPII in solving the MO-DFJSS problem. This
tinding highlights the positive impact of considering semantic diversity
and semantic similarity in NSGPII on addressing the MO-DFJSS problem.
However, the incorporation of semantic information does not contribute
to improving the MS performance. Despite MOGP /D exhibiting the worst
HYV and IGD performance, it attains the highest MS performance.

6.5 Further Analyses on Population Distribution

Scenario 4,gen 1 Scenario 4,gen 25 Scenario 4,gen 50
50 A
25 4 2 33
0- 3 7 §
_o5 | & . ::__. s ] ” ' 354

=50 0 50

Dimension 2

—50 0 50
Dimension 1
o NSGPII ¢ NSGPIld ¢ NSGPIIs

Figure 6.3: Visualisations of the semantics of individuals of one run of
NSGPII, NSGPII?, and NSGPII® on the scenario 4 and scenario 6 during
the start (generation 1), middle (generation 25), and late (generation 50)

stages of evolution.

The proposed semantic diversity and semantic similarity strategies aim
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to limit the semantic distance between individuals in the population. It is
interesting to study the semantic distribution of individuals in the popu-
lation. The semantic represents the behaviour of the individual, which is
a 40-dimensional vector. To visualise the semantics of individuals in the
population, we employ t-SNE to reduce the dimensions to a 2-dimensional
space.

Specifically, Figure [6.3| visualises the dimensionality reduced semantic
of individuals in the population of NSGPII, NSGPII?, and NSGPII* across
different generations (1, 25, and 50) in scenarios 4 and 6. From Figure
we can clearly see that NSGPII has several regions of more concentrated
semantic distribution in each subfigure. This aligns with our expectations,
as NSGPII does not impose limitations on semantic distance between in-
dividuals. Compared to NSGPII, the semantic distributions obtained by
NSGPII®, on the other hand, are relatively widespread and do not have as
clearly concentrated areas as NSGPII. Compared to NSGPII and NSGPII®,
NSGPII” gives the most diverse semantic distributions. This finding high-
lights the significance of restricting the semantic distance between individ-
uals, as it allows to achieve a population with a relatively more uniform
semantic distribution, avoiding losing diversity, and potentially leading
to better final scheduling heuristics. These insights emphasise the im-
portance of controlling semantic distances between individuals during the
evolutionary process of NSGPIIL. Furthermore, it reveals that the improved
final performance achieved by the inclusion of semantic information in
NSGPII is attributed to its ability to evolve a more semantically diverse

population.

6.6 Chapter Summary

This chapter first proposes a MOGP /D method for the MO-DFJSS prob-
lem, aiming to evolve a Pareto front of scheduling heuristics capable of

handling multiple objectives simultaneously. Through conducted exper-
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iments, it is evident that, in comparison to the existing state-of-the-art
multi-objective GP algorithm for DFJSS (NSGPII), MOGP/D exhibits im-
proved spreadability of trained Pareto front of scheduling heuristics on
unseen test instances. However, MOGP /D cannot achieve better HV and
IGD performance than NSGPII. Consequently, this chapter further pro-
poses a novel approach to improve the NSGPII, namely the semantic NSG-
PII method, designed to integrate semantic information into NSGPII. This
study successfully demonstrates the effectiveness of the proposed seman-
tic NSGPII in evolving a Pareto front of scheduling heuristics for effec-
tively addressing the MO-DEFJSS problem. To be specific, this study first
contributes to giving the definitions of the semantic and semantic distance
of scheduling heuristics for DFJSS. Then, by incorporating semantic di-
versity and semantic similarity within NSGPI]I, this study contributes to
evolving better scheduling heuristics than using the original NSGPIL

The results highlight the benefits of considering semantically diverse
individuals for achieving high-quality scheduling heuristics. Moreover,
NSGPII, considering semantic similarity, achieves the best overall perfor-
mance, offering valuable insight into the importance of maintaining a rea-
sonable semantic distance between offspring and their parents to further
enhance the quality of scheduling heuristics. This emphasises the trade-
off between semantic diversity and semantic similarity. Furthermore, the
analysis of the population semantic distribution reveals that by controlling
semantic distances between individuals, we are able to achieve a more se-
mantically diverse population. This is the key factor contributing to the
enhanced performance achieved by the proposed methods. Overall, this
chapter demonstrates the potential of incorporating semantic information
into the evolution process of NSGPII for MO-DFJSS, providing valuable
insights into the benefits and considerations of utilising semantic informa-

tion in solving complex scheduling problems.



Chapter 7
Conclusions

This thesis focuses on addressing the challenges of DFJSS through the de-
velopment of innovative GP methods. The overall goal is to improve the
capability of GP to automatically learn effective scheduling heuristics for
DFJSS. This goal has been successfully achieved through a comprehensive
exploration of various aspects of GP, including the integration of diversity-
based parent selection mechanisms, the establishment of stable and reli-
able joint decision-making via ensemble, the infusion of intelligent heuris-
tic selection via RL, and the enhancement of multi-objective problem-
solving capabilities through novel multi-objective GP algorithms. The ef-
fectiveness of each proposed algorithm is measured using the DFJSS sim-
ulation with a range of measurements and analyses.

The rest of this chapter highlights the achieved objectives in this thesis,
followed by the main conclusions. This is followed by an in-depth discus-
sion that illustrates the key insights from this research area. Finally, poten-
tial directions for future research are outlined, drawing from the findings

and contributions of this thesis.

7.1 Achieved Objectives

This thesis has achieved the following research objectives.

217
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1. Firstly, this thesis has proposed three novel diversity-based par-

ent selection mechanisms for GP, enhancing its capability to ex-
plore solution spaces and evolving high-quality scheduling heuris-
tics effectively (Chapter [3). These mechanisms, namely cluster se-
lection, innovative diverse partner selection, and new lexicase selec-
tion, have demonstrated remarkable efficacy. The new cluster selec-
tion operator adeptly chooses two parents with distinct behaviours
for crossover, showcasing a noteworthy phenomenon: the crossover
between parents with dissimilar behaviours increases the number
of unique behaviours within the population. The innovative di-
verse partner selection operator effectively selects a pair of parents
with high quality and complements each other for crossover. Mean-
while, the new lexicase selection operator excels at choosing par-
ents with expertise in different cases. To use the newly designed di-
verse partner selection and lexicase selection mechanisms efficiently,
a new multi-case fitness evaluation strategy is developed. The multi-
case fitness evaluation strategy divides a large DFJSS simulation into
multiple cases to extract a list of case-fitnesses. This is more efficient
than directly evaluating individuals on multiple instances. The ef-
fectiveness of the proposed GP methods with these parent selection
operators is verified through comparisons with various existing GP
methods across multiple DFJSS scenarios. Further analysis reveals
that the increased population diversity by these diversity-based par-
ent selection operators significantly contributes to the generation of
high-quality scheduling heuristics for DFJSS.

Secondly, this thesis has developed a novel ensemble GP method
to make good and trustworthy joint decisions for DFJSS (Chapter
M). The proposed ensemble GP introduces a specific population
structure comprising both single individuals and ensembles. This
method enables the evolution of either a single scheduling heuris-

tic for individual decisions or a group of scheduling heuristics for
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joint decisions within a single population in solving the DFJSS prob-
lem. In addition, the proposed ensemble construction and selection
strategy, coupled with innovative crossover and mutation operators,
contribute to an effective exploration of the search space through in-
terbreeding. Experimental results showcase the superiority of this
method over existing traditional and ensemble GP methods, at-
tributing success to good and trustworthy joint decision-making, en-

hanced population diversity, and extensive search space exploration.

3. Thirdly, this thesis has explored an integration of GP and RL for
making intelligent heuristics usage into the DFJSS domain (Chapter
B). Initially, a comparative analysis between a typical GP method
and a typical RL method in DFJSS is conducted. After evaluating the
strengths and limitations of GP and RL, a novel niching GP-assisted
RL method is proposed. This method intelligently selects schedul-
ing heuristics evolved by the niching GP for decision-making at var-
ious decision points. It replaces manual scheduling heuristics with
those evolved by the niching GP, with RL optimising and adapting
scheduling heuristics based on real-time feedback. Experimental re-
sults confirm the effectiveness of the proposed method, outperform-
ing traditional methods and highlighting the behavioural distinc-
tions among learned scheduling heuristics by the niching GP and
their contributions throughout the scheduling process. Although
this integration does not improve GP’s performance on the DFJSS
problem, it successfully extends GP’s capability to play a significant

role in improving RL’s performance on DFJSS.

4. Lastly, this thesis has presented two multi-objective GP methods
for evolving a Pareto front of high-quality scheduling heuristics to
tackle the MO-DEFJSS problem (Chapter [6). The first method com-
bines a well-known multi-objective evolutionary algorithm based on
decomposition with GP, enhancing the spreadability of the Pareto
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front of scheduling heuristics. The second method enhances an ex-
isting state-of-the-art multi-objective GP method (NSGPII) by inte-
grating semantic information. For this method, the concepts of se-
mantic and semantic distance are first defined within the context of the
MO-DFJSS domain. Then, strategies are proposed to measure the se-
mantic information obtained from MO-DFJSS. Subsequently, seman-
tic NSGPII methods considering semantic diversity and semantic
similarity are developed. The experiment results demonstrate that
NSGPII methods considering semantic diversity and semantic sim-
ilarity yield better performance compared with the original NSGPII
through effective control of semantic distances between individuals.

In summary, this thesis provides a comprehensive and diverse set of
contributions, advancing the state-of-the-art in GP methods for DFJSS and

paving the way for further research and exploration in this domain.

7.2 Main Conclusions

In this section, the main conclusions of this thesis drawn from each contri-
bution chapter (i.e., Chapter 3| to[) are described.

7.2.1 Diversity-based Parent Selection Mechanisms

To select suitable parents for generating high-quality offspring in GP, three
main issues are required to be considered. Firstly, is relying solely on
fitness as the selection criterion sufficient, or would incorporating addi-
tional criteria such as diversity enhance the effectiveness of parent selec-
tion? Secondly, when diversity is considered, how should the difference
between individuals be measured? Lastly, after determining the diversity
among individuals, how can suitable individuals be selected as parents?
Chapter 3| introduces two strategies for measuring the differences be-

tween individuals. The first strategy involves a phenotypic characteristic-
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based method, wherein individuals are mapped to a list of values rep-
resenting their behaviour. The distance between these lists serves as a
straightforward measure of the difference between individuals. The sec-
ond strategy is the proposed multi-case fitness-based method, which effi-
ciently compiles a list of case-fitnesses from a single instance. Each case-
fitness signifies an individual’s performance on a subset of jobs within this
instance. The differences between these case-fitnesses are utilised to mea-
sure the differences between individuals. Chapter 3| proposes three novel
diversity-based parent selection mechanisms: cluster selection, diverse
partner selection, and lexicase selection. These mechanisms facilitate the
selection of individuals as parents based on not only fitness but also their
distinctive behaviours, allowing each to contribute their own strength to
the generation of high-quality offspring. The success of these parent se-
lection mechanisms lies in their ability to choose high-quality individuals
with diverse behaviours as parents, thereby generating offspring that ex-
hibit both quality and diversity within the population.

The results show that the proposed GP algorithms, incorporating novel
diversity-based parent selection mechanisms, effectively choose high-
quality and diverse parents, leading to the generation of high-quality off-
spring. The algorithms also demonstrate an enhanced population diver-
sity and a better balance between exploration and exploitation. Further-
more, the newly developed multi-case fitness definition is expected to be
extended beyond DFJSS, providing general guidance for efficiently using
these novel parent selection mechanisms to solve other intricate problems
with time-consuming fitness evaluations, such as dynamic vehicle routing

and cloud resource allocation.

7.2.2 Joint Decision Making with Ensemble

To make good and reliable decisions, using an ensemble of multiple

scheduling heuristics to make joint decisions is an effective way, while two
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issues need to be considered. Firstly, how to construct an ensemble using
suitable individuals as its components? Secondly, whether the constructed

ensembles be further enhanced through some evolutionary mechanisms?

Chapter [ proposes an effective ensemble construction and selection
strategy for GP. This strategy focuses on selecting individuals with high-
quality and complementary characteristics to form an ensemble. The re-
sulting ensemble is utilised to facilitate good and reliable joint decision-
making at decision points. Furthermore, the chapter presents a novel pop-
ulation framework that allows both individuals and ensembles to evolve
together within a single population. Additionally, new genetic operators
(crossover and mutation) are developed to enable the breeding of individ-
uals and ensembles, generating offspring that can be either individuals or
ensembles. The success of the proposed algorithm can be attributed to the
careful selection of high-quality and complementary individuals for en-
semble formation. Furthermore, the effective evolutionary mechanisms,
allowing individuals and ensembles to breed together, contribute to ex-
ploring the search space more comprehensively.

Comprehensive experiments and analyses demonstrate the effective-
ness of the proposed method, particularly in terms of the quality of
evolved scheduling heuristics compared to existing popular GP methods.
Precisely, the proposed method demonstrates a noteworthy improvement
in test performance, boasting a 0.73% enhancement, and achieves a com-
mendable 8.72% reduction in training time compared to classic GP meth-
ods. The effectiveness of key strategies, such as ensemble construction
and selection, along with genetic operators accommodating both single
individuals and ensembles, has been verified, contributing to the overall
improved performance of the proposed method. Further analyses reveal
that these strategies foster the generation of high-quality single individ-
uals and ensembles by preserving population diversity and encouraging
high ensemble contributions from individual elements. Moreover, struc-

tural analyses of ensemble elements indicate that a good ensemble con-
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tains elements with both shared subtrees and distinctive subtrees, allow-
ing for effective complementarity and finally leading to improved overall
decision-making capabilities. This combination of the ensemble enables
the ensemble to make reliable decisions for a wide range of decision points
while also excelling in specific decision points. Overall, these findings ad-
vance the understanding of GP and ensemble learning, and the proposed

method holds promising applications in real-world scheduling scenarios.

7.2.3 Intelligent Heuristic Generation and Selection by GP
and RL

To make an effective schedule that addresses numerous decision points, a
possible way is to intelligently select a suitable scheduling heuristic at each
decision point. This process involves addressing two primary challenges.
First, there is a need to generate a diverse set of scheduling heuristics with
distinct behaviours. Second, the task involves developing a mechanism
for intelligent decision-making when faced with a decision point.

Chapter 5| presents a two-stage framework that integrates GP and RL
for learning effective sequencing and routing agents to address the DFJSS
problem. Specifically, the niching GP method is employed to learn a di-
verse set of high-quality scheduling heuristics. Subsequently, the sequenc-
ing rules derived from these learned scheduling heuristics serve as actions
for the DRL method. This method tackles the challenge of adapting to al-
tered operations at various decision points, enabling the learning of intel-
ligent agents capable of making optimal selections among these actions to
generate effective schedules.

Comparative results against baseline DRL and widely used manually
designed scheduling heuristics validate the effectiveness of the proposed
method. Additionally, comparisons against traditional GP-assisted DRL
confirm the effectiveness of the proposed niching GP method. Further-

more, contrasting results against the proposed method without the DRL
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training process, where the sequencing rule is fixed as one of the candidate
actions, verify the efficacy of the DRL learning process. Further analysis of
action contribution demonstrates that the scheduling heuristics learned by
the niching GP method contribute similar percentages to the overall per-
formance. The behavioural analysis reveals that the proposed niching GP
method can learn diverse scheduling heuristics compared to traditional
GP methods. Structural analysis indicates that the learned scheduling
heuristics by the niching GP exhibit similarities but also show distinct per-
formances at different decision points. While this integration of GP and RL
does not enhance GP’s performance on the DFJSS problem, it effectively
extends GP’s capability to significantly improve RL’s performance. Future
work could further investigate more effective combinations of GP and RL
to enhance the capabilities of both GP and RL for DFJSS.

7.2.4 Multiple Objectives-solving Ability in GP

To improve the multiple objectives-solving ability of GP, two main issues
need to be considered. Firstly, how to evolve a Pareto front of scheduling
heuristics with good spreadability and high consistency? Secondly, how
to consider semantic information in the evolution process to generate a
Pareto front consisting of high-quality scheduling heuristics?

Chapter [f] proposes two novel multi-objective GP algorithms to evolve
a high-quality Pareto front. The first algorithm, the multi-objective GP
based on decomposition (MOGP/D), decomposes the MO-DFJSS prob-
lem into scalar sub-problems, optimising them simultaneously in a sin-
gle run using different combinations of weights. The second algorithm,
the semantic NSGPII, introduces the concepts of semantic and semantic dis-
tance in the MO-DFJSS domain. Semantic diversity and semantic similar-
ity strategies are then developed, with the former accepting individuals
with unique semantics as offspring, and the latter further constraining the

semantic distance between offspring and their parents. Finally, two en-
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hanced NSGPII algorithms are proposed by integrating NSGPII with ei-
ther the semantic diversity strategy or the semantic similarity strategy.

The results show that the proposed algorithms can evolve high-quality
Pareto fronts for MO-DFJSS. Although MOGP/D exhibits inferior perfor-
mance in terms of HV and IGD metrics, it demonstrates superior spread-
ability compared to all other methods. Furthermore, the results effec-
tively show the benefits of integrating semantic information into NSGPII
for tackling the MO-DEFJSS problem. Firstly, this study contributes to giv-
ing the definitions of the semantic and semantic distance of scheduling
heuristics for DFJSS. Then, by incorporating semantic diversity and se-
mantic similarity within NSGPI], this study contributes to evolving better
scheduling heuristics than using the original NSGPII. The results highlight
the benefits of considering semantically diverse individuals for achiev-
ing high-quality scheduling heuristics. Moreover, NSGPII, considering
semantic similarity, achieves the best overall performance, offering valu-
able insight into the importance of maintaining a reasonable semantic dis-
tance between offspring and their parents to further enhance the quality
of scheduling heuristics. This emphasises the trade-off between semantic
diversity and semantic similarity. Furthermore, the analysis of the popu-
lation semantic distribution reveals that by controlling semantic distances
between individuals, it is able to achieve a more semantically diverse pop-
ulation. This is the key factor contributing to the enhanced performance
achieved by the proposed methods.

7.2.5 Overall Contributions to GP and Al

This thesis proposes advancements to GP on four key aspects. These ad-
vancements enhance its ability to learn high-quality scheduling heuristics
specifically for solving the DFJSS problem. However, the contributions of
this thesis extend beyond the DFJSS domain and can be applied to other

artificial intelligence domains.
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Firstly, in GP, maintaining a diverse population is crucial for effective
exploration of the search space and preventing premature convergence.
By proposing new diversity-based parent selection mechanisms, this the-
sis addresses a fundamental challenge in GP, encouraging the exploration
of a wider range of possibilities, leading to potentially more creative so-
lutions. Secondly, this thesis incorporates ensemble learning within GP.
The joint decision making by ensemble GP can leverage the strengths of
different individual models within the ensemble to create a more robust
solution. Moreover, the proposed ensemble GP method opens doors for
further research on allowing flexible breeding between single individuals
and ensembles more deeply within the GP framework. Thirdly, by propos-
ing the NichGPDRL for intelligent heuristic generation and selection us-
ing a combination of GP and RL, this thesis leverages the strengths of both
GP and RL, using GP’s ability to generate a diverse set of heuristics with
RL’s focus on selecting the best heuristic for specific situations. The idea
of hybridising GP and RL opens doors for further research on integrating
GP and RL. Lastly, by proposing two new multi-objective methods, this
thesis contributes to the field of multi-objective optimisation within GP.
The proposed methods expand the applicability of GP to tackle complex
problems with multiple, potentially conflicting objectives and encourage
further exploration of how GP can be effectively used for multi-objective
problem solving by using semantic information. In conclusion, all the pro-
posed methods in this thesis can be adaptable to different problem types
by incorporating domain-specific knowledge into the selection process.

7.3 Future Work

7.3.1 Training Time Reduction

Reducing the training time of GP is an important and growing research
topic in the field of evolutionary algorithms. Since GP methods involve the
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iterative evolution of programs, the computational demands of training,
particularly in domains like DFJSS with a considerable number of jobs,
can be very large. While this thesis does not explicitly focus on reducing
training time, it touches upon this aspect in two studies. Firstly, to mit-
igate the risk of increasing training time, a multi-case fitness evaluation
strategy (Chapter 3)) is proposed in this thesis when employing the newly
designed diverse partner selection and lexicase selection. This strategy
allows for efficient evaluations by dividing one DFJSS instance into multi-
ple cases instead of directly using multiple instances, minimising the im-
pact on training time. Secondly, in the context of ensemble-based decision-
making (Chapter [4), this thesis contributes to time reduction by reducing
the warm-up process and maintaining a constant population size (number
of scheduling heuristics), whether they come from individuals or ensem-
bles. This method simplifies the evaluation and potentially saves training
time. While these efforts address specific aspects of training time, a more
focused exploration of strategies explicitly aimed at reducing GP training
time remains an area for future research. Researchers can potentially com-
bine various methods to achieve more substantial reductions in training
time, considering the unique challenges posed by different problem do-
mains.

The following are some aspects and potential future directions related
to the topic of reducing training time in GP:

1. Efficient fitness evaluation: Optimising the fitness evaluation step
is crucial. Researchers can investigate techniques to streamline
the evaluation of candidate solutions, such as employing surro-
gate models, approximation methods, or pre-selection approaches
to identify promising candidates for more thorough evaluation.

2. Smart initialisation and warm starting: Developing intelligent ini-
tialisation strategies to provide a good starting point for evolution
can aid in quicker convergence. Warm-starting approaches, where
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the evolution is initialised with information from previous runs, can

be investigated to accelerate the convergence process.

3. Algorithmic improvements: Investigating algorithmic enhance-
ments, such as more efficient crossover and mutation operators, can
contribute to faster convergence. Designing operators that are tai-
lored to the problem structure and encourage rapid exploration can

be beneficial.

7.3.2 Interpretability of Scheduling Heuristics

Interpretability of scheduling heuristics evolved by GP is a critical research
topic, gaining prominence as artificial intelligence systems become more
prevalent in practical applications. Understanding the decision-making
processes of evolved scheduling heuristics is crucial for their acceptance
and practical implementation. GP, with its symbolic and tree-based rep-
resentation, has an inherent interpretability that aligns with how humans
understand the structure of computer programs [142]. Based on existing
studies and a survey on the interpretability of GP, a GP model is generally
more interpretable if it possesses one or more of the following properties
[142]: 1) A GP model with fewer nodes in its tree-based representation
requires fewer steps for a human user to simulate its behaviour, thus im-
proving simulatability. 2) A GP model with simpler functions and a flatter,
shallower tree structure also enhances simulatability. 3) A GP model that
uses fewer distinct features contains fewer concepts to comprehend, mak-
ing it easier to interpret. 4) A GP model with structures that follow cer-
tain grammars enhances decomposability and simulatability. This thesis
focuses on improving the performance of GP in solving the DFJSS prob-
lems. It also touches on the topic of interpretability by analysing the tree
size and structure of the evolved scheduling heuristics. While the present
thesis may not delve deeply into interpretability, future research in this

domain can explore several aspects:
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1. Explanation mechanisms for evolved heuristics: Develop tech-
niques or frameworks that generate human-readable explanations
for the decisions made by evolved scheduling heuristics. This could
involve identifying critical features or decision points within the
evolved programs and translating them into understandable rules
or patterns.

2. Visualisations: Create visualisation tools that can represent the
decision-making process of evolved scheduling heuristics in an in-
tuitive and accessible manner. This could involve graphical repre-
sentations of the scheduling logic or interactive interfaces that allow

users to explore the behaviour of evolved heuristics.

3. Human-in-the-loop approaches: Investigate approaches that in-
volve human feedback in the interpretability process. This could in-
clude methods where users provide input on the interpretability of
evolved scheduling heuristics, helping to refine the evolved schedul-

ing heuristics iteratively.

7.3.3 Effective Utilisation of Multiple Scheduling Heuris-

tics

Effectively utilising multiple scheduling heuristics evolved by GP, rather
than relying solely on the best one, represents a crucial and challenging
research topic. In practical scenarios, a single “best” heuristic may not al-
ways be optimal for diverse and dynamic situations. Leveraging the diver-
sity of evolved heuristics has the potential to yield more robust and adapt-
able scheduling solutions. This thesis addresses this aspect through two
key studies. Firstly, the ensemble work (Chapter 4) exploits the strengths
of multiple scheduling heuristics to make more informed joint decisions,
revealing the advantages of using diverse heuristics for improved sched-
ules. Secondly, the integration of GP and RL (Chapter 5) contributes to the



230 CHAPTER 7. CONCLUSIONS

generation and selection of multiple scheduling heuristics to make deci-
sions when meeting different decision points. While these studies demon-
strate the potential of leveraging multiple scheduling heuristics, a more in-
depth exploration in this area is necessary. Future research should concen-
trate on developing advanced strategies and methodologies that fully ex-
ploit the diversity and adaptability offered by multiple scheduling heuris-
tics evolved through GP.

The following are examples of future work related to the topic of effec-
tive utilisation of multiple scheduling heuristics in GP:

1. Ensemble learning strategies and decision fusion techniques: De-
velop advanced ensemble learning strategies that can intelligently
combine the outputs of multiple evolved heuristics. This could in-
volve dynamic weighting, where the influence of each heuristic is
adjusted based on the characteristics of the current scheduling in-
stance or its historical performance. This could also involve explor-
ing decision fusion techniques to integrate the decisions made by
different evolved heuristics. Methods like voting systems, stacking,
or hierarchical decision-making can be investigated to exploit the

strengths of individual heuristics in various decision scenarios.

2. Context-aware and adaptive scheduling mechanisms: Investigate
context-aware scheduling approaches that consider the specific con-
text of the scheduling problem. Evolved heuristics could be chosen
based on the characteristics of the jobs, machines, or the historical
performance of heuristics in similar contexts. Design mechanisms
that dynamically select and adapt scheduling heuristics based on the
characteristics of the jobs, machines, or the historical performance of

heuristics in similar contexts.
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7.3.4 Advanced Multi/many-objective Optimisation

Advanced multi/many-objective optimisation by GP represents a signif-
icant and forward-looking research topic. This thesis contributes to this
field through two studies. Firstly, a novel multi-objective GP based on
the decomposition method is introduced, showcasing its ability to suc-
cessfully evolve a Pareto front with good spreadability and consistency.
Secondly, an enhanced NSGPII incorporating semantic information is pro-
posed, demonstrating its effectiveness in evolving high-quality Pareto
fronts. While existing techniques have made progress, there is room for
further advancements to address the complexities of real-world problems
with multiple conflicting objectives. Future research in this area should
focus on developing advanced methods within the context of GP. Here are

some examples of potential future work:

1. Hybrid approaches: Investigate hybrid approaches that combine
GP with other machine learning techniques, such as surrogate or
transfer learning, to enhance its capability of solving multi/many-

objective problems.

2. Preference-based multi-objective optimisation: Integrate
preference-based methods into GP that can efficiently handle
preference information for multi-objective optimisation.  This
involves incorporating human preferences into the optimisation
process to guide the algorithm towards solutions that align with

decision-makers’ subjective preferences.

7.3.5 Integration of GP and RL

Considering the strengths and limitations of GP and RL, integrating them
to enhance the capabilities of both for addressing JSS problems offers a
promising approach to tackle complex optimisation challenges in manu-

facturing and production environments. This thesis touches upon this as-
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pect in one study (Chapter[5). The integration of GP and RL contributes to
the generation and selection of multiple scheduling heuristics for solving
the DFJSS problem. While this study verifies the effectiveness of the inte-
gration of GP and RL over baseline RL and manually designed scheduling
heuristics, the results cannot demonstrate its effectiveness over baseline
GP. Future research could focus on developing more effective integration
methods that enhance the capabilities of both GP and RL. Here are some
potential avenues for future work:

1. Considering both global and local feedback: In GP, the optimisa-
tion objective (fitness function) typically aligns with the overarching
optimisation goal and is determined after the entire scheduling pro-
cess, relying on global information. Conversely, RL utilises an opti-
misation objective (reward function) that often differs from the over-
all goal, being provided based on local information. This distinction
paves the way for a hybrid GP and RL approach that effectively in-
tegrates both global and local feedback.

2. Experience information utilisation: In RL, historical experience is
sometimes stored in a replay memory to aid future decisions. GP
can adopt this concept by storing experience information, which can
then guide the population breeding process. For example, this in-
formation can inform decisions regarding crossover or mutation to

improve scheduling heuristics.

3. Attention mechanisms: Certain RL methods utilise attention mech-
anisms to prioritise important information while disregarding noise.
GP can integrate similar mechanisms to selectively focus on domi-
nant information and eliminate the influence of redundant or noisy
data from the training instances that could potentially degrade per-
formance.

4. Population mechanisms: GP operates by maintaining and optimis-

ing a population of scheduling heuristics concurrently. These heuris-
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tics explore the search space from various regions simultaneously,
fostering diversity. RL can leverage this concept by optimising multi-
ple scheduling heuristics simultaneously, allowing them to reinforce
each other and collectively contribute to improved performance.
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