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Abstract

The health of King Salmon (Oncorhynchus tshawytscha) holds significant
economic value for New Zealand but has not been thoroughly investigated. This
study using machine learning-based prediction methods leverages datasets sourced
from the Cawthron Institute, encompassing variables such as blood biochemistry
and hematology, body composition, feeding ratios, biometrics, growth measure-
ments, sample assessments, histological data, and environmental parameters.
An exhaustive data preprocessing and exploratory analysis are conducted on the
collected raw data. Feature selection is imperative in our project as it can help
to identify the most relevant predictors thereby enhancing model performance.
Moreover, it improves interpretability by emphasizing the most significant pre-
dictors. Subsequently, we employ machine learning techniques with feature se-
lection methods to facilitate the health prediction of King Salmon. Through this
approach, this research identifies and underscores the pivotal variables influ-
encing the health of King Salmon, offering significant insights into aquaculture
health management.
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Chapter 1

Introduction

1.1 Motivation

King Salmon, scientifically known as Oncorhynchus tshawytscha, predominantly farmed in
New Zealand, holds paramount significance from both ecological and economic perspec-
tives. The health and well-being of this species are intricately influenced by a blend of
genetic, environmental, and anthropogenic factors [30, 72, 79, 90]. With the burgeoning
growth of the aquaculture industry, it becomes imperative to comprehend the complex dy-
namics underpinning the health of King Salmon. Such understanding is crucial not only for
optimizing production but also for safeguarding sustainability.

Machine learning, particularly classification models, has transformed various fields by
enabling intricate pattern recognition that often surpasses traditional statistical methods[34].
For King Salmon, such classification models can classify health status by analyzing complex
interrelations among variables. While traditional methods may be limited in extracting pat-
terns from a large number of variables, machine learning can potentially assimilate infor-
mation from a plethora of parameters[71], such as blood biochemistry, and more, to make
accurate health predictions.

Despite King Salmon’s critical importance to the global aquaculture sector, the appli-
cation of machine learning in aquaculture, particularly for King Salmon, remains an un-
derexplored terrain in contemporary research. In particular, there is a noticeable dearth of
research employing machine learning techniques to predict their health. This gap is par-
ticularly evident in the fact that there have been no studies investigating king salmon us-
ing a combination of parameters extracted from blood biochemistry and hematology, body
composition, feeding and feed conversion rates, biometric information, growth, sample as-
sessment, histology, and environmental data. Furthermore, the identification of key factors
influencing health predictions for these fish remains an unresolved question. Meanwhile,
the presence of numerous features poses a challenge: not all of them are equally important
for classification. This is where the concept of feature selection becomes indispensable [60].
By pinpointing the most relevant features, we can potentially achieve several objectives:
(1) enhance the accuracy and efficiency of the classification model; (2) reduce the compu-
tational cost; and (3) provide clear insights into the specific factors that significantly influ-
ence King Salmon’s health that may potentially reveal the mechanisms that influence fish
health. Understanding the key determinants for King Salmon health is not just an academic
work; it has real-world implications, aiding breeders in optimizing conditions, and aiding
researchers in targeted studies.
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1.2 Goal

For this study, we aim to apply machine learning techniques to predict the health status of
King Salmon by collecting comprehensive information on King Salmon, with a particular
emphasis on feature selection. By successfully identifying these paramount features, we
hope to unravel deeper insights into King Salmon biology. Such findings are poised to revo-
lutionize salmon farming and conservation strategies, emphasizing the real-world relevance
of this study. Our primary objectives are listed below.

(1) To comprehensively understand and describe the data collection methods, clarify the
criteria for determining King Salmon health, implement preprocessing techniques,
and provide a clear overview of the dataset’s structure. This will set the foundation
for the subsequent stages of analysis, ensuring the data is accurate and primed for
detailed examination.

(2) To employ statistical methods to investigate the data distributions and identify the fea-
tures with statistical differences between health conditions. Find correlations through
Phi-K analysis[7], and visually represent the data using PCA[84] and t-SNE[16]. This
step aims to uncover hidden patterns, relationships, or anomalies that can guide sub-
sequent feature selection and model training processes.

(3) To explore, evaluate, and implement a range of feature selection methods including
filter, wrapper, and embedded methods. The objective here is to identify the most
relevant features that contribute significantly to model performance, optimizing the
predictive models for both accuracy and efficiency.

(4) To compare the features deemed statistically different for healthy and unhealthy con-
ditions with those identified as informative for classifying health conditions by ma-
chine learning methods. This comparison aims to discern the alignment or divergence
between traditional statistical assessments and machine learning evaluations.

1.3 Contributions

This project makes the following contributions:

(1) This study presents a rigorous methodology for King Salmon data collection, setting
a standard that guarantees the precision and trustworthiness of the acquired data. We
have provided an exhaustive description of the data collection methods, elucidated the
criteria for determining fish health, and implemented advanced preprocessing tech-
niques. By establishing a clear structure of the dataset, this research ensures that all
subsequent analyses are grounded on a consistent and solid foundation, primed for
further investigation.

(2) This study delves into the King Salmon dataset using various statistical methods. This
is the first large-scale investigation of statistically significant differences in the fea-
tures of king salmon when it comes to their different health conditions. Beyond sim-
ply exploring data distributions, we’ve identified pivotal features exhibiting statistical
disparities among health conditions. By employing the advanced Phi-K analysis, we
offer a credible view of data interrelationships. Additionally, our illustrative use of
PCA and t-SNE plots paints a comprehensive picture of data trends, paving the way
for an enlightened feature selection process.
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(3) This project addresses the gap in the existing research on the health prediction of King
Salmon using machine learning techniques. Our research innovatively investigates
data extracted from blood biochemistry and hematology, body composition, feeding
metrics, biometric details, growth patterns, sample assessments, histology, and envi-
ronmental factors. By doing so, we have ventured into this field, laying the ground-
work for future research in this domain.

(4) This study shows that we have systematically explored and evaluated a comprehen-
sive range of feature selection methods, including the filter, wrapper, and embedded
techniques. This exhaustive approach ensures that our model incorporates only the
most pivotal features, while maintaining its predictive performance. Our findings in
this domain hold the potential to revolutionize the way machine learning is applied to
marine biology datasets, especially on King Salmon.

(5) This research makes a contribution by juxtaposing features identified through tra-
ditional statistical tests with those deemed critical by machine learning algorithms.
Such a comparison provides invaluable insights, shedding light on the alignment or
discrepancies between conventional methods and advanced machine learning tech-
niques.

Please note that this project is an applied research that aims to leverage both statisti-
cal methods and machine learning techniques for solving real-world application tasks of
King Salmon fish health issues. The King Salmon under study come from the Marlborough
Sound, with trials conducted by the Cawthron Institute in New Zealand. The project faced
challenges due to delayed data arrivals and multiple times of data modifications. Although
navigating these uncertainties is demanding, we manage to surmount these obstacles and
achieve commendable results through diligent efforts.

1.4 Structure

This chapter provides a brief overview of the project. The remaining chapters of the report
are organized as follows.

• Chapter 2 summarizes existing and related research, with different sections demon-
strating different aspects, like statistical methods, machine learning and classification,
and feature selection.

• Chapter 3 contains a detailed description of the data and the preprocessing steps.

• Chapter 4 presents the results of the investigation of the datasets using statistical meth-
ods and visualization.

• Chapter 5 discusses the model performance of the feature selection methods used. As
well as comparisons between statistical methods, and machine learning with feature
selection methods.

• Chapter 6 concludes the project and identifies future work directions.
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Chapter 2

Background and Related Work

This chapter delves into the foundational elements and previous studies underpinning the
broader scope of our research. Initially, we sketch the backdrop of New Zealand’s aquacul-
ture landscape, emphasizing the prominence of the King Salmon industry. As we transi-
tion from general overviews, the chapter illuminates the specific statistical methodologies
previously employed for King Salmon analysis. Furthermore, an exploration of machine
learning’s role, specifically in classification and feature selection, is undertaken. Lastly, the
related work section serves to bridge the gap between existing knowledge and current re-
search avenues, detailing influential factors on King Salmon’s health, statistical techniques,
and the interplay of machine learning in this domain.

2.1 Background

2.1.1 New Zealand Aquaculture and King Salmon Industry

The aquaculture in New Zealand primarily revolves around the production of mussels, Chi-
nook salmon, and Pacific oysters. With an eye on expansion, the industry aspires to augment
its export revenues to 3 billion New Zealand Dollars by the year 2035 [78]. In order to real-
ize this ambition and uphold its reputation for being ’clean and green’, it is imperative for
the industry to ensure the productivity and the sustainability of its practices. Among them,
the Chinook salmon(Oncorhynchus tschawytscha), commonly known as King salmon, holds
a distinguished position in New Zealand as being the only type of salmon cultivated within
the New Zealand region, contributing to more than half of the worldwide production of
this species [58]. King salmon embodies an unparalleled source of high-grade protein and
long-chain omega-3 fatty acids play a crucial role in health enhancement [59]. Besides, New
Zealand farmed salmon has a lower carbon footprint compared to the global average car-
bon footprints published in other animal protein studies, which also be an environmentally
friendly product [65].

However, research indicates that the health of King Salmon has been considerably com-
promised, with instances of fish mortality reported globally [90]. Recent findings reveal that
the New Zealand King Salmon suffered a post-tax net loss of 73 million, a consequence of
farm mortalities [72]. The substantial economic, environmental, and health ramifications
inherent to King salmon aquaculture accentuate the necessity for rigorous, multifaceted re-
search exploring the factors influencing the health, and consequently, the productivity of
this species. This comprehensive understanding will potentially advance the operational
efficiency and yield of King salmon farming, thereby serving the economic objectives tied to
this industry.
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2.1.2 Statistical Methods for King Salmon

In the field of biology, the application of statistical methods plays a pivotal role in the gener-
ation of meaningful insights and the validation of hypotheses[34]. Foundational statistical
techniques, such as hypothesis testing and the calculation of p-values and confidence inter-
vals, have long been at the core of biological research, allowing researchers to rigorously
evaluate whether observed differences or associations are statistically significant[82].

In previous studies, they have employed statistical tests to examine variables concern-
ing the biology area, including King Salmon[5]. A common methodology is observed across
these studies[45]. Initially, all analyzed parameters undergo tests for normality and ho-
mogeneity of variance. If the data conforms to the prerequisites for parametric analysis,
comparisons between different treatments are conducted using the independent t-test [44].
A significance level of P < 0.05 is consistently applied across all statistical tests. In the situa-
tion where the data violates the normality assumption, an appropriate non-parametric test,
such as the Kruskal-Wallis test[63], is employed. If variances are found to be heterogeneous,
results are derived from outputs where the assumption of equal variances is not made. Fur-
thermore, when comparing the model performance of multiple runs, the Wilcoxon rank-sum
test is a common method to use [10].

Principal Component Analysis (PCA) [84] and t-Distributed Stochastic Neighbor Em-
bedding (t-SNE) [16] stand as two leading techniques designed to transform high-dimensional
data into a two-dimensional format. PCA, a linear approach, works by pinpointing orthog-
onal axes, known as principal components, that capture the maximum variance in the data.
This allows for the projection of data into a lower-dimensional space without significant loss
of variance. In contrast, t-SNE, a non-linear technique, prioritizes the maintenance of local
data structures from the high-dimensional space during its transition to low dimensions.
This makes t-SNE especially proficient at visualizing intricate data clusters.

2.1.3 Classification in Machine Learning

Machine learning, a rapidly evolving area, empowers computational systems with the capa-
bility to extract insights from data [39]. This field typically involves the training of models
on data with labels, enabling them to predict future outcomes[29]. Engaging with data that
possesses labels falls under the domain of supervised learning. In this paradigm, given a
new input, the model predicts the most likely class or label for it, a process termed classifi-
cation. The intricacies arise from the challenges of managing real-world data complexities,
the nuances of preprocessing, and the distinct attributes of the problem.

Prior to any machine learning application, it is important to process and prepare the data.
This involves integrating disparate data sources, cleaning noise, normalizing features to a
standard scale, and transforming categorical variables into a format suitable for algorithms
[23]. Data reduction tasks, including instance selection, are pivotal in refining the datasets
[46]. Real-world datasets often come with their inherent complexities such as imbalance
class distribution, noise, missing values, outliers, and non-standardized features[42]. The
issue of imbalanced class distribution, where the number of instances for each class varies
significantly, is a prevalent challenge in real-world datasets. For instance, in medical diag-
nosis datasets, there is often a stark disparity between the number of healthy and unhealthy
samples[53]. Addressing these inconsistencies demands a meticulous preprocessing strat-
egy.

Central to the classification application is the classification algorithm, which learns from
a training dataset and uses the learned model to categorize new data points into specific
classes. The simplest algorithm is k-Nearest Neighbor(KNN) [35]. It is a very simple but
highly efficient and effective algorithm for pattern recognition. The instances are classified
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based on the class of their nearest neighbor [18]. The Support Vector Machine(SVM), is
a well-regarded algorithm for classification tasks that has been widely used in biological
application[76]. SVM uses kernel functions, such as the Radial Basis Function, to transform
intricate problems into simpler ones so that the similarity between pairs of data points can
be computed using a kernel function without the need to explicitly transform the entire
data[28].

2.1.4 Feature Selection Methods

Feature selection refers to the method of selecting a subset of features that are most impor-
tant for specific tasks. In the field of health classification, the identification of important fea-
tures holds great significance. It serves to identify and retain only features that significantly
contribute to the prediction performance of a model. It not only optimizes model training
time and reduces the complexity of a model but also assists in preventing the curse of di-
mensionality and overfitting. The fundamental principle of any feature selection method for
classification are same: to identify the most critical and predictive features from the available
data, thereby enhancing the accuracy and interpretability of the resulting models. Feature
selection techniques can be broadly categorized into three main methods: filter, wrapper,
and embedded.

Filter Methods Among the various techniques adopted for feature selection, filter meth-
ods such as Relief, Mutual Information, and Chi-square have gained prominence due to
their capability to pinpoint significant features related to labels for classification tasks. The
filter methods mainly focus on the properties of data and are independent of any learning
methodology. Thus, they are generally not computationally expensive and have a good
generalization ability according to Chandrashekar and Sahin(2014)[13].

• ReliefF Method: The ReliefF[80] fundamentally ranks features based on their ability to
differentiate between instances in close proximity. It estimates the worth of a feature
by repeatedly sampling an instance and considering the value of the given feature for
the nearest instances of the same and different classes. The score it assigns to each
feature is a measure of how well the feature distinguishes between classes.

• Chi-Squared Method: In the chi-squared method[36], the score for each feature is cal-
culated based on the chi-squared statistic. This score measures the independence of
each feature from the output class. High scores mean the feature and the output are
highly dependent, which typically indicates a valuable feature.

• Mutual Information Method: Mutual information measures the information that fea-
tures and labels share[47]. It measures how much knowing one of these variables
reduces uncertainty about the other. High mutual information between a feature and
the output class suggests that the feature is significant.

Wrapper Methods A wrapper method adopts a more comprehensive approach to feature
selection that assesses subsets of features by training specific models during the feature se-
lection process, using the model’s performance as a selection criterion. The recursive feature
elimination(RFE) [27] is a typical wrapper feature initially used for gene selection. The pri-
mary advantage of wrapper methods is their ability to account for feature interactions, often
leading to better performance. They are more computationally expensive than filter meth-
ods but often provide better results since they consider the interaction between features.
However, they also run the risk of overfitting to the chosen model. The Recursive Feature
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Elimination technique, when paired with algorithms such as Logistic Regression(LR)[51],
Linear Support Vector Classification(LSVC)[32], and Random Forest (RF)[75], exemplifies
this approach.

Embedded Methods Embedded techniques integrate feature subset selection within clas-
sifier construction. Similar to wrapper methods, embedded methods are also specific to a
particular learning algorithm. It considers interactions with the classification model and is,
therefore, less computationally demanding than wrapper methods[70]. Besides, embedded
methods determine the importance of each feature while the model is being trained[48].
They often strike a balance between filter and wrapper methods, considering both feature
relevance and model performance, and are often more efficient than wrapper methods.

A prominent example of this approach can be observed in certain algorithms in the
wrapper method: LR, LSVC, and RF. These algorithms inherently possess mechanisms
to rank or weigh features based on their importance or contribution to the model. For
instance[49], LR and LSVC, when regularized using L1 regularization, tend to push co-
efficients of less important features toward zero, effectively selecting a subset of features.
Similarly, RF[40] provides a feature importance score based on the average decrease in im-
purity brought by a feature across all trees. However, the features selected by one algorithm
might not necessarily be optimal for another. This specificity stems from the fact that each
algorithm has its own criteria for evaluating feature importance.

2.2 Related Work

2.2.1 Influential Factors on the Health of King Salmon

The health of King Salmon is a multifaceted parameter, influenced by numerous factors that
may present tiny or pronounced changes in the fish. The choice of which factors to include
in the dataset, and thus included in a machine learning model, especially when making
predictions about the health of the fish, becomes crucial. In this section, we provide an
overview of the research specifically conducted on King Salmon and delve into a discussion
on several aspects of the features. Drawing from the existing literature shown below that
utilizes King Salmon data from New Zealand, we highlight the identified factors that either
influence or are influenced by the health status of King Salmon.

Genetic factors significantly influence the phenotypic traits of king salmon, encompass-
ing variations in growth rates, size, and overall health among individuals. For example,
the pursuit of breeding for a shorter and deeper body shape in organisms could heighten
the vulnerability to spinal curvature [74]. The abnormal shape of the spine is included in
the Sample assessments collection in the datasets used. Moreover, the administration of
antibiotics and probiotics exerts an influence on the composition of the gut microbiome,
consequently inducing alterations in gene expression and potentially impacting the health
status of Chinook Salmon[69]. Certain genes have demonstrated the capability to enhance
the conversion of protein from feed into body tissue with heightened efficiency, which was
achieved through the augmented expression of the proteasome, lipid, and carbon metabolic
pathways in the liver[21].

Feeding habits significantly impact the physiological development and growth of King
Salmon, making it vital to evaluate the effects of factors like the nutritional composition
and feeding rations on growth rates to optimize feeding practices. In the context of the
current investigation[5], the estimated maintenance demands for protein in King salmon
were found to be nearly two times higher than the corresponding estimate reported for
Atlantic salmon, both species being subjected to the same water temperature conditions.
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Nevertheless, the fish food production process has inherent limitations, necessitating the
addition of starch, which adversely impacts protein utilization in carnivorous fish such as
King Salmon[26].

Moreover, a recent study[5] demonstrates that Chinook salmon reared under satiation
feeding conditions exhibited a significantly higher final body weight at harvest, whereas
those subjected to a restricted ration showed a potential reduction in the incidence of spinal
anomalies among farmed individuals. The feed conversion ratio (FCR) is the ratio of feed
intake (FI) to body weight gain, which worsened as the fish increased in size[74]. That is the
undesired outcome to avoid as feed-efficient fish consume less share of meals and maintain
superior growth rates[20]. Specifically, feeding juvenile King Salmonto satiation did not
yield the anticipated outcomes of efficient, rapid, and consistent growth, both at individual
and cohort levels[37].

The rearing conditions employed in aquaculture settings can substantially affect King
Salmon development. Factors such as water temperature can influence overall health. In the
studies [20, 77], it was observed that both growth and feed intake increased with tempera-
ture and exhibited notable correlations with FCR efficiency. Besides, the study also showed
that the correlation and alteration of fish physiology, health, composition, and gut micro-
biota were notably influenced by water temperature[77]. The related information can be
found in multiple datasets such as the Growth collection.

Furthermore, fish diseases represent a significant threat to global aquaculture, resulting
in considerable production losses annually [6]. A recent study conducted on King Salmon
has revealed a noteworthy prevalence of Aeromonas spp. in individuals exhibiting fluid
accumulation in their swim bladders. This finding is of particular concern due to the well-
known association of various Aeromonas species with fatal outcomes, leading to substantial
financial losses and increased expenses in the fish production sector within the aquaculture
industry [91]. Furthermore, For instance, chronic elevation of corticosteroids in King Salmon
has been suggested to increase the presence of pathogens, consequently impacting their
health condition [17].

2.2.2 Statistical Methods for King Salmon

In recent research, a variety of statistical tests have been utilized to analyze the data of King
Salmon. During data collection, prior studies have examined the presence of significant
differences between two capture methods for sampling. This was achieved using either an
analysis of variance (ANOVA) approach [67] or the Kruskal-Wallis rank sum test [11]. When
analyzing experimental results, a study investigating the impact of varying rations on the
spinal anomalies of King Salmon employed a similar methodology as described above. This
encompassed preliminary assumption tests followed by tests to discern group differences
[5]. Additionally, the ANOVA and Tukey’s HSD test [56] were harnessed to contrast phe-
notypes across diverse traits of King Salmon. From these studies, it becomes evident that
employing statistical tests to discern differences between conditions is a standard practice
in the field. However, it is noteworthy that none of the prior research has endeavored to
comprehensively apply statistical tests to King Salmon measurements for the purpose of
determining key features. Furthermore, there has been a lack of in-depth analysis concern-
ing potential health effects, indicating a gap in the existing literature that warrants further
exploration.

The area of biology has long recognized the invaluable contributions of visualization
techniques such as PCA and t-SNE in deciphering intricate datasets. In the context of Nu-
tritional Epidemiology, PCA stands as a cornerstone, elucidating patterns and reducing di-
mensionality while preserving as much variance as possible. The comprehensive method-
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ology documented by Santos et al. [73] is a testament to the robustness and applicability of
PCA in this domain. On the other hand, t-SNE has carved a niche for itself in transcriptional
analyses. As elucidated by Cieslak et al. [16], this technique adeptly maps high-dimensional
transcriptional states into a lower-dimensional space, highlighting clusters and underlying
structures. Such insights gleaned from t-SNE can be pivotal, offering a clear lens to discern
relationships and aiding in subsequent analytical processes.

2.2.3 Classification in Machine Learning for King Salmon

Under the machine learning context, the core problem we aim to address in this study is a
binary classification question: distinguishing King Salmon between healthy and unhealthy
conditions. However, this task is quite challenging as the intricacies of our problem arise
from the challenges of managing real-world data complexities, the nuances of preprocess-
ing, and the distinct biological attributes of the species.A recent study employed a combi-
nation of King Salmon features to predict feed efficiency[88]. However, this study did not
focus on health prediction and did not consider the factors and intricacies associated with
the health status of the species, underscoring the novelty and significance of our research.

Biological datasets, especially those derived from real-world systems, are inherently
complex. They often exhibit characteristics such as noise, missing values, outliers, and non-
standardized features. Addressing these challenges necessitates a rigorous preprocessing
approach. For instance, taking into account the phenomenon of reproductive death is crucial
during data cleaning [25]. Regarding imputation techniques, a study involving 12 medical
datasets indicated that KNN interpolation might be the most effective method for handling
missing values, outperforming deletion, mean interpolation, and median interpolation in
terms of error rate [2].

In terms of classification algorithms, the SVM, particularly with a radial-based kernel,
has demonstrated superior performance. It emerged as the best classifier when compared
to Random Forest, Logistic Regression, and KNN in terms of correct classification rate[68].
Besides, SVM has consistently exhibited state-of-the-art results in various diagnostic tasks
involving biological data[1]. Moreover, previous research has concluded that the SVM clas-
sifier is predominantly employed across the majority of the studies they analyzed[3]. Ad-
ditionally, the F-measure like the F1 score is recognized as a more robust evaluation metric
compared to accuracy for considering both precision and recall, especially when dealing
with imbalanced datasets [38].

2.2.4 Feature Selection

Due to the lack of research specifically pertaining to King salmon, for this section, we mainly
reviewed studies related to biology and medical application, aligning with the research
strategies adopted in previous scholarly works [25]. This approach is predicated on the
assumption that not only the physiological and biological processes in King Salmon may
exhibit similarities with other species, but also similar data structures, thereby rendering
the application of these feature selection methods both relevant and appropriate in the con-
text of the present study.

Filter Methods Within the discourse on feature selection for health-focused investigations,
filter methods such as Relief, Mutual Information, and Chi-square are frequently employed
by researchers. These methodologies are widely used for their capability to identify fea-
tures that are instrumental for classification tasks. Urbanowicz et al. (2018)[80] proffered an
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in-depth analysis of Relief-based algorithms, emphasizing the increasing significance of fea-
ture selection in biomedical data mining. This attention stems from the mounting challenges
posed by escalating feature dimensionality, coupled with the demand for computationally
streamlined methodologies capable of modeling intricate associations. On a similar note,
Dissanayake and Johar (2021) [19] harnessed an array of feature selection techniques, such as
Chi-square, mutual information, and ReliefF, to process the Cleveland heart disease dataset.
Their results affirmed the efficacy of these methods in enhancing heart disease prediction.
Building on this paradigm, Huda et al. (2017) [33] unveiled a novel approach, utilizing the
filter method, tailored to tackle the intricate dynamics of imbalanced medical data, partic-
ularly in brain tumor diagnoses. This underscores the adaptability and robustness of filter
methods.

Wrapper Methods To date, rare studies have employed the REF wrapper feature selection
method specifically on King Salmon health analysis. Although the REF method has been
recognized as a potent tool in the field of biology. Its efficacy has been demonstrated in
diagnosing diseases such as Alzheimer’s and cancer, as evidenced by recent studies [66,
85]. In a notable instance concerning the prediction of Parkinson’s Disease Depression, the
REFCV method reduced the feature number from 35 to 10, achieving even greater accuracy
in the process [61]. The growing utilization of the REF method in pivotal medical research
domains underscores its credibility and precision.

Embedded Methods While there hasn’t been any previous research specifically employ-
ing embedded feature selection methods on King Salmon data, the use of embedded meth-
ods is pervasive in the broader field of biology. Numerous studies have highlighted the
efficacy and robustness of embedded techniques in extracting relevant features from biolog-
ical datasets. For instance, Kang et al. [41] demonstrated the utility of embedded methods
in identifying significant genetic markers, while Khanji et al. [43] employed LASSO, an em-
bedded method, to effectively select features in cardiovascular studies. The success of these
methods in diverse biological contexts suggests their potential applicability and value in
analyzing King Salmon data.

2.3 Chapter Summary

Existing literature prominently demonstrates a reliance on conventional statistical tests to
understand relationships between specific features within King Salmon health datasets.
While these approaches have their advantages, there’s a marked deficit in studies that ex-
ploit comprehensive data preprocessing methods, exploratory data analysis, and advanced
feature selection techniques tailored to fish health. This shortcoming emphasizes a signifi-
cant void in contemporary research, underscoring the need for studies that utilize the full
scope of data-driven methodologies to address the intricate challenges of fish health.
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Chapter 3

Data and Preprocessing

In this chapter, the content is segmented into four primary sections. Initially, the materials
and methods deployed for data collection and analysis are elucidated, laying the ground-
work for the research. This is followed by a detailed exploration of the criteria used to
evaluate the health of fish, ensuring a comprehensive understanding of the health metrics.
The subsequent section delves deep into the preprocessing techniques applied, emphasizing
the importance of refining raw data to derive meaningful insights. Lastly, detailed informa-
tion on the datasets used in the study, including their source, composition, and relevance, is
presented. Throughout the chapter, the meticulous processes and considerations adopted to
ensure data reliability and relevance in assessing fish health are emphasized. Of particular
note is the initial state of the data, which is primarily raw and sourced directly recorded in
the laboratory. This real-world data is characterized by its inherent inconsistencies and rich,
unfiltered information that needs a detailed process.

3.1 Materials and Data Collection

All King Salmon used in this study were procured from the commercial hatchery, Sanford’s
Kaitangata, and subsequently reared in freshwater by Salmon Smolt New Zealand, located
in Kaiapoi. Following this phase, the King Salmon were transferred to the Finfish Research
Centre (FRC) at Cawthron Aquaculture Park (CAP) in New Zealand.

The primary objective of this research, conducted by the Cawthron Institute, was to
gather comprehensive data on various aspects of the King Salmon. These aspects include:

• Blood biochemistry and hematology

• Body chemical composition

• Feeding and feed conversion ratio (FCR)

• Biometrics

• Growth

• Sample assessments

• Histological evaluations

• Trial conditions

• Health classifications
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Trial Event Salinity
Ration(s) at 

the event

Temperature(s) 

at the event 

(°C)

Start date End Date Comments

Arrival in the FRC 21-Aug-18 21-Aug-18

WT2 FW 100 15 11-Sep-18 14-Sep-18 Assessment before temperature change

WT4 FW 60,80,100 13,17 15-Oct-16 23-Oct-18

WT7 FW 60,80,100 13,17 26-Nov-18 06-Dec-18

WT10 FW 60,80,100 17 21-Jan-19 23-Jan-19 WT7-WT10 = 17 °C only

WT14 FW 60,80,100 17 12-Mar-19 28-Mar-19 WT10-WT14 = 17 °C only

Arrival in the FRC 17-Dec-18 18-Dec-18

WT2 SW 100 17 31-Jan-19 01-Feb-19

WT3 SW 100 17 12-Feb-19 13-Feb-19

WT4 SW 100 17 15-Apr-19 18-Apr-19

WT5 SW 100 17 10-Jun-19 27-Jun-19

WT6 SW 100 17 29-Jul-19 12-Aug-19

WT7 SW 100 17 30-Sep-19 22-Oct-19

WT9 SW 100 17 18-Nov-19 03-Dec-19

WT11 SW 100 17, 19 17-Feb-20 27-Feb-20 WT9-WT11 = temperature challenge and controls

Arrival in the FRC NA 06-May-20 25-May-20

WT2 FW 100 14 08-Jun-20 10-Jun-20

WT3 FW 100 14 15-Jun-20 17-Jun-20

WT4 FW 100 8,12,16,20 06-Jul-20 16-Jul-20

WT5 FW 100 8,12,16,20 05-Aug-20 18-Aug-20 End of 100 % ration

WT6 FW 25 8,12,16,20 26-Aug-20 08-Sep-20 WT5-WT6 = 25 % ration

WT7 FW 25 8,12,16,20 16-Sep-20 29-Sep-20 WT6-WT7 = 25 % ration 

WT8 FW 0 8,12,16,20 14-Oct-20 28-Oct-20 WT7-WT8 = fasting (0 % ration)

1

2

3

Figure 3.1: FRC trial information and details for each event in three trials.

Each aspect represents a distinct data collection, with several observables assessing dif-
ferent facets within each collection. To illustrate, the growth collection includes three observ-
ables: fork length, girth, and weight. Meanwhile, the trial information collection provides
insights into the aquaculture tank environment for all sampled fish, detailing parameters
like temperature (in ◦C) and feeding satiation ration (e.g., a 0 satiation ration indicates fast-
ing treatment). Observables in the health classification category denote the binary health
status of the fish, either in its entirety body or of specific body parts, classified as ”healthy”
or ”unhealthy”. It’s worth noting that the comments collection, comprised mainly of exper-
imenter remarks, was not utilized here. The comments collection predominantly comprises
textual annotations provided by various experimenters, and the majority of information
embedded within these comments is already incorporated and represented in the primary
dataset discussed earlier.

The experimental design was structured into three distinct trials. Each trial consisted of a
series of experimental events spaced at varied intervals, during which different observables
and environmental parameters were assessed. Figure 3.1 provides a detailed overview of
the conditions for each event across all trials. In terms of salinity references, ’FW’ indicates
freshwater, while ’SW’ stands for seawater. Moreover, the ’Ration’ value designates the
percentage of the satiation ration.

3.2 Fish Health Criteria

The overarching health status of the fish serves as the primary indicator in this study, grounded
in criteria established by researchers from the Cawthron Institute. As mentioned above, the
observable general health classification in health classification collection informs the
final health classification for a given fish (healthy or unhealthy). This is the final health clas-
sification for the fish whose health was accessed, which was determined based on factors
encompassing growth performance, general health assessments conducted during the tri-
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als, necropsy observations, and haematology appearance. For fish deemed unhealthy, they
did not satisfy one or more of the criteria delineated in Table 3.1.

Over time, the Cawthron Institute has undergone several modifications in this criteria.
In collaboration with these modifications, we collectively reviewed and adjusted these cri-
teria, ultimately opting to emphasize those anchored on blood-related features. If one fish
has multiple records, we choose to label the fish using the record having blood data. This
decision was made considering such criteria furnished the most comprehensive and illumi-
nating information pertaining to the fish’s health. This cooperative approach ensured the
research’s robustness and alignment with contemporary standards. However, this decision
might change as more investigation progresses.

The Condition Factor(CF) in the Table 3.1 was calculated with the following equation:

CF =
w × 100, 000

L

where CF is Fulton’s condition factor (mm) [22], w is the weight (g) and L is the fork length.
The observables described in Table 3.1, such as Condition Factor and Leucocyte appear-

ance, have been omitted from the datasets when training the machine learning models as
they directly classify fish as healthy or not. However, derived features like ’Weight loss’, as
well as the foundational features used in their computation, such as the weight utilized to
determine weight loss, are retained.

3.3 Preprocessing

Each trial is organized into distinct collections, with each collection forming an individual
dataset. In this research, primary attention is centered on the following datasets: blood bio-
chemistry and hematology (referred to as ”blood”), body chemical composition (”composi-
tion”), feeding and feed conversion ratio (”FCR”), biometrics, growth, sample assessments
(”assessments”), and histology.

1. Feature Engineering One of the critical stages in this analysis is the meticulous forma-
tion of explicit features for the datasets. Certain datasets contain not just observables but
also specific information like which body part is analyzed. Take the histology dataset as an
example: it would be an oversimplification to merely consider ’inflammation’ as a distinct
feature. Rather, a more nuanced approach would recognize ’inflammation of the heart’ as a
unique feature. This is particularly pertinent because the dataset evaluates the inflammation
scores of various other organs such as the liver, stomach, and so forth. Hence, combining the
observable with its associated body part offers a more granular and accurate representation
of the data, ensuring more robust analytical outcomes. Upon completion, we obtain struc-
tured tabular datasets where each row signifies an individual fish record, and every column
corresponds to a distinct feature or label.

2. Data Integration When endeavoring to amalgamate columns from one collection to an-
other, it is imperative to utilize both the fish ID and the event concurrently, treating this
combination as a unique identifier. The event could be considered as a timestamp that rep-
resents different experiments. This procedural necessity arises due to the existence of sce-
narios where a single fish might be assessed during different events. Consequently, multiple
records might exist for a singular fish, each documenting varying environmental conditions
and feeding practices to which the fish was subjected. Thus, it may have different values
for the same feature in different events. Hence, the amalgamation process must be executed
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Criteria Collection Details
Weight loss or abnormal CF growth measurement (1) Weight loss;

(2) Low Condition Factor, exclude if Condition
Factor < 1.1 (except at tagging when there is no
lower limit)

haematology appearance blood analyses Leucocyte appearance, Erythrocyte appearance,
Thrombocyte appearance not normal

Abnormal white cells blood analyses (1) Reduced % lymphocyte < 87%;
(2) Increased % neutrophils > 10%;
(3) Increased % of monocytes > 2%

Abnormal stomach, swim
bladder

health assessment (1) Abnormal stomach = Y – based on visual as-
sessment;
(2) Abnormal volume of swim bladder fluid:

• weight < 500 g, abnormal volume > 1
mL;

• weight > 500 g, abnormal volume > 2
mL

(3) Abnormal stomach width:

• weight < 500 g, stomach width > 20 mm;

• weight> 500 g, stomach width > 35 mm

Abnormal kidney, liver, fae-
ces

health assessment (1) Kidney - nephrocalcinosis score ≥ 3;

(2) High faecal appearance score, 3 and above;
(3) Low liver index: < 0.75

Low condition factor, exclude if CF < 1.1 (ex-
cept at tagging when there is no lower limit)

Abnormal histology scores histology analyses High total histology score based on sum of all
individual tissues > 12

High inflammation histology analyses (1) High GI tract inflammation score > 5;
(2) High histology inflammation score > 10

Abnormal spinal curvature health assessment Presence of spinal curvature (moderate or se-
vere) or present (if visual)
Note: We only consider this a health sign if the
fish has other issues.

Abnormalities(comments) comments Based on comments at sampling or during as-
sessments

Table 3.1: Health Criteria for King Salmon
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Trial Tag WT2 WT3 WT4 WT5 WT6 WT7 WT8 WT9 WT10 WT11 WT14
Trial 1 0 - - 2 - - 3 - - 4 - 5
Trial 2 6 7 8 9 10 11 12 - 13 - 14 -
Trial 3 15 16 17 18 19 20 21 22 - - - -

Table 3.2: Event values across different trials.

with meticulous attention to these nuances to ensure the integrity and accuracy of the con-
solidated data.

Considering that both the environmental condition and feeding satiation ration influ-
ence every sample at all events, it is imperative to amalgamate these two factors from the
trial conditions collection into the other collection datasets, with the exception of the health
classification dataset. Furthermore, the integration of overall health status into the preced-
ing datasets is requisite to create a new dataset. This newly constructed dataset will only
preserve fish with a health condition label.

3. Data Cleaning The next step in the pre-processing of the constructed data is to discard
any columns in the data that contain no values, thereby reducing redundancy and saving
computational resources. Additionally, the ID column is dropped from the features as it
probably represents identifiers that do not contribute to the model’s learning.

Upon conducting a meticulous examination of the data, an anomaly was identified within
the biometrics collection: three fish were labeled as male. This finding is anomalous, par-
ticularly considering the unique reproductive characteristics of king salmon, which un-
dergo a phenomenon known as ’Reproductive Suicide” as mentioned in the previous chap-
ter. King Salmon, belonging to the Pacific salmon genus, exhibit a biological phenomenon
wherein their immune defenses are notably compromised upon reaching reproductive ma-
turity, resulting in post-reproductive mortality [25, 81]. Consequently, given that male fish
die shortly after reaching maturity and females do not die unless they mate, any instances
labeled as ’male’ within the datasets should be regarded as noise. Given this biological
reality, the presence of male fish within the dataset that does not align with expected post-
reproductive mortality patterns raises questions about the accuracy and reliability of these
instances. Thus, these records are removed from the datasets.

4. Converting Non-Numerics The next step is to convert non-numeric feature values into
numeric counterparts as machine learning algorithms predominantly operate on numeric
values. A recurring non-numeric feature across datasets is the ”event” feature. The map-
pings for this feature are delineated in Table 3.2. Specifically, the ”tag” denotes king salmon
cultivated on the farm, while events prefixed with ”WT” signify the sampling periods, indi-
cating that the king salmon were raised at the Cawthron Aquaculture Park.

In terms of labeling, unhealthy king salmon are represented by the value 0, whereas
healthy king salmon are denoted by the value 1. Post-transformation, every feature is nu-
merically represented. The categorization of a feature as either continuous or discrete is
predicated upon its intrinsic significance.

5. Incorporating New Blood Features As advised by the Cawthron Institute, three new
features are incorporated into the Blood collection for all three trials. However, due to the
absence of the functional feature, Hematocrit, in the Trial 3 dataset, only the first two features
were integrated. The three new features are computed as follows:
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• Albumin:globulin ratio:

Blood plasma Albumin(g/L)
Blood plasma Globulin(g/L)

• Neutrophil:lymphocyte ratio:

Blood Haematology NeutrophilsAbs(109/L)
Blood Haematology LymphocytesAbs(109/L)

• Mean corpuscular haemoglobin concentration(meanCorHaeCon):(
Blood Haemoglobin(g/L)

10
× 100

)
÷ Hematocrit%

When calculating new values that are derived from the ratio of two variables, the presence
of missing data in either the numerator or the denominator necessitates careful handling
to ensure the validity of the resulting value. Specifically, if a variable in the numerator or
denominator is missing, the calculated value should be designated as missing or empty as
well. Furthermore, in cases where the denominator is zero, the calculated value will be
designated as missing.

6. Data Splitting and Normalization Then data is split into a training set and a test set.
The split is stratified, ensuring that each set contains a representative distribution of the
target variable classes. The training set contained 80% of instances and the test set contained
20%. This approach ensures that the test set is sufficiently representative of the minority
class, thereby making the evaluation metrics more reliable. After splitting the data, the train
and test data are then scaled, which is done by scaling each feature to a given range [0, 1].
It achieves this by subtracting the minimum value in the feature and then dividing by the
range of the feature like Equation 3.1. This step is to bring all features to a similar scale. This
improves the performance of some machine learning models and ensures fair weight across
all features.

Xnorm =
Xi − Xmin

Xmax − Xmin
(3.1)

7. Handling Missing Data Addressing missing values is imperative for robust analysis.
The presence of these gaps can be attributed, in part, to the intricacies of the eigenvalues.
For instance, the Feed Conversion Ratio (FCR) is an interval measure necessitating two
columns for capturing associated events - the start event and the end event. Conversely,
the rest features demand an extra column to document their measurement events. This dis-
crepancy causes a null value in the FCR’s dual-event columns whenever another feature is
populated. To mitigate such disparities, we segregated the instances with FCR into an in-
dependent dataset named feeding-FCR. The rest instances formed another dataset named
feeding-meal for the main feature is share of meal, which is the daily food intake of an
individual divided by the sum of the whole tank.

Additionally, the disparity in event timings for different measurements further exacer-
bates the missing data challenge. Specifically, some measurements, which entail fish dis-
section, render subsequent feature measurements infeasible. Compounding this, feature
reconstruction, as detailed earlier, also contributes to missing data. A salient example can
be found in the ”assessments” collection of Trial 1, where the fluid volume in the swim blad-
der was cataloged using two distinct units: percentage and milliliters (mL). Consequently, if
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Trial1 Trial2 Trial3
Dataset Rows Columns Ratio Rows Columns Ratio Rows Columns Ratio
blood 213 39 0.82 459 40 3.54 392 38 0.77
composition 104 117 1.54 277 117 4.65 392 128 0.77
Feeding-FCR 208 6 0.81 126 6 1.74 118 6 0.69
Feeding-ShareMeals 212 5 0.83 209 5 2.03 317 5 0.7
growth 213 6 0.52 459 5 3.54 392 6 0.77
assessment 213 8 0.82 459 15 3.54 392 12 0.77
histology 213 37 0.82 459 37 3.54 387 37 0.74
biometrics 213 17 0.82 458 16 3.58 392 10 0.77

Table 3.3: Sizes of datasets represented by the number of samples and features, and the
imbalance ratio of unhealthy class and healthy class for different trials.

the volume is recorded as a percentage, its equivalent in mL remains unrecorded. To man-
age these missing values and ensure data integrity, we employed the K-nearest neighbor
algorithm, setting k at 5, to extrapolate and fill the missing values effectively. The K-Nearest
Neighbors imputation strategy is then applied to fill any remaining missing values in the
data based on the 5 nearest neighbors, measured using Euclidean distance as the distance
metric. This process helps to retain valuable information that would otherwise be lost if
rows with missing data were dropped. We have 8 different datasets and some of the fea-
tures have a high percentage of missing values. If we delete the features or all instances
contain missing values, there is a high likelihood that it will compromise the integrity of the
entire dataset.

Lastly, any feature in the dataset that has zero variance (i.e., all instances have the same
value) is dropped. These features provide no discriminating information for the learning
model and hence can be disregarded.

3.4 Datasets Information

The basic information of the datasets after pre-processing is shown in Table 3.3. It’s evi-
dent that the datasets differ notably across the three trials in terms of size and imbalance
ratios(represented by the ”Ratio” column). Taking the blood dataset in Trial 1 as an ex-
ample, the dataset comprises 213 fish samples and 39 features. The class imbalance ratio
is computed by dividing the number of unhealthy fish by the number of healthy fish for
each trial. In trials 1 and 3, the number of unhealthy king salmon is generally fewer than the
healthy ones, with the exception of the composition dataset in Trial 1. In contrast, Trial 2 pre-
dominantly features a greater number of unhealthy king salmon compared to their healthy
counterparts.

3.5 Chapter Summary

In Chapter 3, we delved deeply into the data and its preprocessing, beginning with the ma-
terials and methods adopted to collect the data, followed by a comprehensive overview of
the fish health criteria. The chapter further emphasized the preprocessing techniques im-
plemented to refine the data and presented detailed information on the datasets’ structure.
These foundational steps ensure that the data is primed for rigorous analysis, which will be
extensively covered in the subsequent Chapter 4, encompassing exploratory data analysis
methodologies and visualizations.
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Chapter 4

Exploratory Data Analysis

In this chapter, we embark on a systematic exploration to sift through the King Salmon
dataset. Our goal is to reveal underlying structures, patterns, and potential anomalies. This
initial deep dive serves a dual purpose: first, to provide a qualitative grasp of the data’s
characteristics, and second, to inform subsequent analytical stages by highlighting any per-
tinent trends or disparities. EDA employs a suite of visual and quantitative techniques,
ranging from descriptive statistics to intricate data visualizations.

4.1 Data Distributions

As discussed in Chapter 2, we use statistical methods to find the features that have differ-
ences between the two health groups. The Shapiro-Wilk test is used to check the normality
of the distribution. When the p-value > 0.05, it implies that the distribution of the data is
not significantly different from the normal distribution. In other words, we can assume the
normality. Levene’s test is an inferential statistic used to check if the variances of a variable
obtained for two groups are equal or not when data comes from a non-normal distribution.
It tests the null hypothesis that the population variances are equal or not, It is known as
homoscedasticity.

In this section, we use the blood collection dataset as a representative example to show-
case the results. Table 4.1 elucidates the results of the initial blood collection trial. This
table systematically presents the variables, their respective p-values for normality and ho-
mogeneity, and a categorical determination of whether they meet the criteria for normality
and homogeneity. When the data adhered to a normal distribution (as evidenced by the
Shapiro-Wilk test of normality with p > 0.05) and exhibited homogeneity of variance (con-
firmed by a variance chi-squared test with p > 0.05), a t-test was employed for data anal-
ysis. Like the alkaline phosphatase in the Table 4.1 below. Conversely, when the data were
normally distributed (as indicated by a normality test with p > 0.05) but demonstrated het-
erogeneous variance (as shown by a variance chi-squared test with p ≤ 0.05), Welch’s t-test,
a non-isotropic variant, was utilized. For data that did not conform to a normal distribution
(as determined by a normality test with p ≤ 0.05), the Wilcoxon rank-sum test was applied
as a non-parametric alternative.

The significance of these features underscores their potential relevance in differentiating
between health groups in the trial. There are 18 features that show statistically significant
differences between the two health conditions in the blood collection of Trial 1. The same
process was reiterated to evaluate the features across all datasets. The objective was to dis-
cern the number of features that exhibited statistically significant differences between health
groups across different trials. Such an analysis is pivotal in understanding the consistency
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variable normality pvalue is normal homogeneity pvalue is homogeneous
alanine aminotransferase 0 No 0.1583 Yes
albumin 0 No 0.73 Yes
alkaline phosphatase 0.3078 Yes 0.916 Yes
aspartate aminotransferase 0 No 0.0259 No
c-reactive protein 0 No 0.9043 Yes
calcium 0 No 0.8361 Yes
chloride 0 No 0.0189 No
cholesterol 0 No 0.0029 No
colour 0 No 0 No
cortisol 0 No 0.1475 Yes

Table 4.1: The assumptions check of the blood collection for Trial 1(part).

Collection Trial 1 Trial 2 Trial 3
blood 18 21 10
composition 40 11 8
FCR 3 0 0
SharedMeals 1 2 1
growth 4 1 2
assessment 3 2 2
histology 7 13 14
biometrics 6 4 2

Table 4.2: The number of features that are statistically different for two health condition
groups on all datasets.

and variability of the data across different collection points and trials.
Table 4.2 provides a comprehensive overview of the number of significant features across

three trials for various data collections. From the table, it is evident that the ’composition’
collection in Trial 1 has the highest number of significant features, amounting to 40. In
contrast, the ’FCR’ collection in Trial 2 did not yield any significant features. Such variations
across trials and collections underscore the complex nature of the data and the potential
influences of external factors on the results.

Furthermore, a comparative analysis of the trials reveals that Trial 1 generally has a
higher number of significant features across most collections, with the exception of histol-
ogy, where Trial 3 leads with 14 significant features. This observation suggests that while
Trial 1 might have had conditions conducive to yielding a higher number of significant re-
sults for most collections, the histology data in Trial 3 is distinct.

Based on the tests conducted, some features have emerged as significant. These features
can serve as a foundation for deeper analysis. For instance, in the blood collection of Trial 1,
the significant features can be classified under categories such as Enzymes, Blood Biochem-
istry, Blood Cell Related, and Others. These classifications are detailed in Table 4.3. The
prominence of these features may highlight their potential utility in distinguishing between
the health groups within the trial.

We take a deeper analysis of the enzymes and blood biochemistry categories. From Fig-
ure 4.1, the first two subplots are the alkaline phosphatase and creatine phosphokinase,
which were relatively downregulated in the Unhealthy group. Alkaline phosphatase is
widely found in the liver, bones, and bile ducts, and its downregulation could mean low
liver or bone function [62]. Creatine kinase is primarily associated with muscle damage,
and its downregulation may imply less muscle activity. In on latest study on fish, creatine
has been shown to stimulate muscle growth and increase body mass [86]. Additionally, it
has the potential to improve feed utilization, especially in the context of plant-based diets.
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Enzymes alkaline phosphatase, creatine phosphokinase

Blood Biochemistry chloride, potassium, cholesterol, urea, c-reactive protein,
cortisol, prostaglandin e2

Blood Cell Related haematocrit, lymphocytes abs, monocytes abs, white blood cell count,
neutrophil lymphocyte ratio, thick buffy coat

Other event, temperature celsius, satiation ration

Table 4.3: Features with significant differences between health groups in Trial 1 for health
classification.
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Figure 4.1: The boxplot of Enzymes and Blood Biochemistry for blood dataset of the Trial 1.

Furthermore, upon examining Figure 4.2, it’s evident that the downregulation of alkaline
phosphatase persists across all three trials. This consistent pattern suggests that it might be
a crucial indicator.

The rest subplots in Figure 4.1 are features related to blood biochemistry. In the Un-
healthy group, there was a relative downregulation of C-reactive protein, cholesterol, and
cortisol when compared to the Healthy group. Conversely, chloride and urea showed up-
regulation. These biomarkers are typically linked to inflammation and stress[31, 83, 50]. The
observed downregulation might suggest a subdued inflammatory response and diminished
metabolic activity in the Unhealthy group. Meanwhile, the elevated levels of chloride and
urea could hint at potential kidney issues or an electrolyte imbalance[64, 52]. Prostaglandin
E2 was lower than in the Healthy group. Prostaglandin E2 is commonly associated with in-
flammation and pain, and its down-regulation may suggest decreased immune function[8].

4.2 Correlation Heatmaps: Phi-K (Phik) Analysis

Figure4.3 shows the heatmap, which provides a comprehensive visualization of the corre-
lation matrix using the phik correlation coefficient[7], elucidating the relationships between
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Figure 4.2: The boxplots of alkaline phosphatase on three trials.

different fish features for the biometrics collection on Trial 3. The visualization presented
is a heatmap that represents a correlation matrix of various fish attributes. Each cell in the
heatmap corresponds to the correlation coefficient between two attributes. The color inten-
sity of each cell is indicative of the strength of the correlation, with darker red indicating
stronger relationships. The diagonal elements, naturally, have a correlation coefficient of
1, signifying a perfect correlation of an attribute with itself. To enhance interpretability,
the heatmap is annotated with specific symbols based on the magnitude of the correlation.
Cells with correlation values having a value greater than 0.7 are annotated with ***, those
with values between 0.3 and 0.7 are marked with **, and cells with values below 0.3 are
denoted by *. The lower half of the heatmap displays the actual correlation coefficients,
while the upper half provides these symbolic annotations. The term empty within a feature
name indicates the absence of any specific body part during measurement, signifying that
the observable is distinct or measured on the whole body.

It is evident from the data that only two features, event and weight liver, are signifi-
cantly associated with health status, as indicated by the ** notation. This suggests that these
features might play a more pivotal role in health classification compared to others. As pre-
sented in Table 4.2, two features exhibit statistically significant differences between health
groups. However, the features pinpointed by the tests are girth empty and temperature celsius,
which deviate from the previously mentioned features. It’s crucial to mention here that cor-
relation does not imply causation. This discrepancy necessitates a more in-depth analysis to
determine the most influential features for health classification.

Besides, the attribute girth empty emerges as a significant predictor, manifesting strong
correlations with several other attributes, implying potential multicollinearity. Specifically,
its correlation coefficients with weight fillet, weight viscera , weight heart, and weight liver

are three stars. This implies that the gonad’s weight might be intrinsically linked to these
attributes, possibly due to shared biological processes or developmental stages.

Additionally, the attribute satiation ration exhibits a perfect correlation of 1 with the
event, denoting a direct and unwavering relationship. A glance at Figure 3.1 reveals that as
events progress, the feeding satiation ration diminishes from 100 to 0, an expected trend. In
stark contrast, its correlation with weight viscera stands at 0, signifying a complete lack
of association between the two attributes. This might suggest that fasting does not exert
a significant impact on the viscera. Such a pronounced discrepancy necessitates a deeper
exploration to understand the underlying causes driving this phenomenon.
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Figure 4.3: The heatmap of biometrics dataset on trial 3, which visualizes the correlation
matrix of various fish attributes. The color intensity and annotations represent the strength
and direction of the correlation between the attributes

4.3 PCA and t-SNE for Dataset Visualization

As mentioned in Chapter 2, PCA and t-SNE are powerful tools for dimension reduction. We
utilize their ability to visualize the data. In the context of classification, we generally look
for clear separations between different classes. A dataset with well-separated clusters in the
t-SNE plot often suggests that a classifier would have an easier time distinguishing between
classes, leading to better performance. The purple dots always refer to the unhealthy group
and the yellow dots refer to the healthy group.

4.3.1 PCA Plots and Analysis

Figure 4.4 provides a visual representation of the data distribution across the three trials
using PCA. For Trial 1, the data is segmented into roughly four distinct clusters along di-
mension 1. Multiple separate clusters hint at possible sub-groups within the healthy and
unhealthy categories. While the rightmost cluster seems challenging to differentiate due to
the close proximity of the data points, the other clusters have regions that predominantly
contain only one class or a few noise dots. This suggests that these clusters might repre-
sent distinct groups within the data. The presence of a few data points of a different color
within these predominantly single-colored clusters might indicate outliers or instances that
are harder to classify.

The data distribution in Trial 2 is characterized by clusters where the right region is
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Figure 4.4: The PCA plots for the blood collection across the three trials.
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Figure 4.5: The PCA plots for the histology collection across the three trials

predominantly populated by unhealthy instances. This clear demarcation on one side of
the clusters suggests a pattern or trend specific to the unhealthy class in this trial. The left
side of these clusters, however, seems to be more mixed, indicating that while the unhealthy
instances have a distinct pattern, the healthy ones might be more dispersed.

Trial 3 presents the most challenging scenario. The data points, irrespective of their class,
are intermingled, making it difficult to discern any clear clusters or groups. The lack of clear
separation between the two classes suggests that the features might not be as discriminative
in this trial, or there might be other underlying factors causing this overlap. This might
imply a low accuracy of classification.

In summary, the PCA plots for the three trials highlight the variability in data distri-
bution and class separability across trials. While Trial 1 and Trial 2 offer some degree of
separability (with Trial 1 being more distinct), Trial 3 underscores the challenges in distin-
guishing between the two classes. The nature of the data or the underlying biology under
different conditions of three trials might contribute to these differences.

The comparison between the PCA plots of the blood collection (4.4) and the histology
collection (4.5) reveals distinct differences in the data structure and distribution of the two
collections. The histology PCA plot exhibits different cluster shapes compared to the blood
PCA plot. This change in shape indicates that the underlying features and their relation-
ships in the histology dataset are different from those in the blood dataset. The distinct
cluster shapes in the histology plot suggest that the data points in this collection might be
influenced by different sets of features or interactions between features, leading to unique
data distributions.

Despite the differences in cluster shapes between the two collections, a consistent pattern
is observed across the three trials for both collections. Specifically, Trial 3 consistently ap-
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Figure 4.6: The t-SNE plots for the blood collection across the three trials
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Figure 4.7: The t-SNE plots for the histology collection across the three trials

pears to be the most challenging in terms of class separability for both blood and histology
datasets. This consistency suggests that while the specific features and their relationships
might differ between the two collections, certain overarching trends or factors affect the data
in a similar manner across trials.

The distinct data structures in the histology collection, as visualized in the PCA plot,
imply that machine learning models might perform differently on this dataset compared to
the blood dataset. The lack of clear class separability in Trial 3 for both collections indicates
that models might face challenges in achieving high classification accuracy for this trial,
irrespective of the collection.

4.3.2 t-SNE Plots and Analysis

The t-SNE visualizations provide a more intricate view of the data distribution compared to
PCA, focusing on preserving local structures.

The t-SNE plots for both blood (shown in Figure 4.6) and histology (shown in Figure
4.7) collections show a higher number of clusters compared to their PCA counterparts. This
is expected, as t-SNE is designed to capture local structures, leading to the formation of
smaller, more defined clusters. The presence of more clusters in the histology collection
for Trial 1 suggests that there might be sub-groups within the main classes, which could be
indicative of finer-grained patterns or sub-types within the data.

In both t-SNE plots, Trial 1 and Trial 2 exhibit regions where clusters are relatively pure,
meaning they predominantly contain data points from one class. This suggests that there are
regions in the data where instances of one class are densely packed. Trial 3, however, shows
more mixed clusters, indicating a higher degree of overlap between classes. The spread
is relatively even, with many clusters where both categories intermingle. There’s no clear
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separation between the two categories. This aligns with previous observations that Trial 3
is more challenging in terms of class separability. However, the presence of almost pure
clusters(regions) in Trial 1 and Trial 2 indicates that there are distinct sub-groups within the
data that are well-separated.

4.4 Chapter Summary

In this chapter, we delve deep into the King Salmon dataset to identify underlying pat-
terns and trends. By employing a mix of visualization tools and quantitative methods, the
data’s complex nature is understood, and key trends are highlighted. Techniques like the
Shapiro-Wilk test evaluate data normality, guiding the choice of further tests. Results in-
dicate variations between health groups, with certain biochemical markers playing pivotal
roles. However, discrepancies between trials underscore the dataset’s complexity. Visual-
ization tools like PCA shed light on the data distribution, revealing challenges and insights
for potential health classification strategies.
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Chapter 5

Feature Selection

In this chapter, we delve deeply into the realm of feature selection, a critical process in re-
fining machine learning models. The chapter commences by shedding light on the chosen
methodologies, setting the stage for further discussions. Subsequent sections pivot to the
nuances of classification and its evaluation, ensuring a holistic understanding of the meth-
ods employed. The key of this chapter is the detailed exploration of the results yielded by
different approaches: filter methods, wrapper methods, and embedded methods. The main
goal is to reduce the number of features without reducing or even improving the perfor-
mance. Finally, we present and compare the results obtained from machine learning with
feature selection against those derived from statistical methods.

5.1 Choice of Methods

Feature selection methodologies can be broadly classified into three categories: filter meth-
ods, wrapper methods, and embedded methods.

• Filter methods we used here include the ReliefF, Chi-Squared, and Mutual Informa-
tion, which evaluate the relevance of features to target variables independently of any
learning algorithms. These methods are the common methods worked effectively as
discussed in Chapter 2. Additionally, an intersection method is employed to eliminate
redundancy, selecting features that are universally significant across different criteria.
Alternatively, a union of features selected through three distinct methods is utilized,
thereby furnishing a comprehensive set of features for the construction of predictive
models. Such advancements could further enhance the effectiveness of feature se-
lection to identify the important features, potentially leading to more accurate and
efficient health classifications for king salmon.

• Wrapper methods, represented by techniques like RFECV, evaluate subsets of features
by training models on each subset and using the resultant performance as a criterion
for feature selection. The main difference between REF and RFECV is that the REF
performs cross-validation on the reduced feature set to evaluate the model’s perfor-
mance.

• Embedded methods amalgamate the strengths of both filter and wrapper methods by
integrating feature selection into the process of model training. Algorithms such as
LR, Linear Support Vector Classification[32](named SVM in the tables below), and RF
algorithms were used for the wrapper and embedded methods. However, it is crucial
to note that the features selected through these algorithms may not be universally
optimal due to the different criteria used for evaluation across various algorithms.
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5.2 Classification and Evaluation

To evaluate the efficacy of feature selection, we employ SVM as the classifier for classification
purposes. Each SVM that is trained on a distinct dataset is regarded as an individual model.
In order to evaluate the performance of models on the test set, the F1 score is chosen as the
evaluation metric, a widely acknowledged measure for unbalanced classification tasks. This
score is computed using the confusion matrix, which tabulates the instances of predicted
versus actual labels for both positive and negative classes. This process yields four distinct
outcomes: true positive (TP), false positive (FP), false negative (FN), and true negative (TN).
Here we mainly focus on detecting unhealthy king salmon and thus consider the unhealthy
class as the positive class. The real meaning of the four outcomes is listed below:

• True Positives (TP): These are the unhealthy instances correctly classified as unhealthy.

• False Positives (FP): These are the healthy instances incorrectly classified as unhealthy.

• True Negatives (TN): These are the healthy instances correctly classified as healthy.

• False Negatives (FN): These are the unhealthy instances incorrectly classified as healthy.

The formulas for the evaluation metrics employed are provided below. Regardless of whether
it’s the F1 score, precision, or recall, a higher value consistently signifies better performance.

F1 =
2 × TP

2 × TP + FP + FN
=

2 × precision × recall
precision + recall

precision =
TP

TP + FP

recall =
TP

TP + FN

When shown in tables, the average F1 scores are expressed in percentages and the stan-
dard deviation, which is encapsulated in parentheses. In our experiments, each feature se-
lection method was executed to 30 independent runs, each corresponding to a distinct data
split. For each run, the data is split into training and test sets with a consistent ratio of 8:2.
The observed variability in the results across these runs can be attributed to the inherent
characteristics of our dataset. Specifically, the limited size of the dataset, coupled with the
presence of outliers, can introduce significant variability in the training and test sets during
each split. Such variability can lead to different feature subsets being deemed important in
different runs, thereby affecting the consistency of the feature selection process.

The performance of the feature selection methods based on the 30 independent runs is
compared using the Wilcoxon rank-sum test with a significance level of 0.05. Performance
indicators were symbolically represented to facilitate interpretation. Specifically, the nota-
tion (–) was used to denote scenarios where the performance diminished in comparison to
models utilizing the full feature set. Conversely, the symbol (≈) is indicative of performance
metrics that remained comparable to those achieved with the complete feature repertoire.

Our primary objective in this chapter is to identify salient features instrumental in dis-
cerning health conditions. The ideal outcome would be models that leverage a reduced
number of features yet deliver performance metrics either equivalent to or even surpass-
ing those of models trained on the entire feature set. Given this goal, our analysis placed a
heightened emphasis on the statistical difference in performance(i.e. significantly similar is
notated using the symbol (≈) ) rather than the performance scores, as these symbols provide
a more intuitive understanding of how feature selection impacts model efficacy.
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Datasets Allfeatures Relief chisquare mutualinfo intersection union
blood 71.86(2.60) 75.52(1.54)(+) 75.12(1.95)(+) 75.19(1.78)(+) 74.22(2.05)(+) 73.82(1.87)(+)

composition 80.88(3.29) 83.61(2.80)(+) 84.28(2.81)(+) 84.14(2.85)(+) 80.30(4.85)(≈) 81.91(2.87)(≈)
FCR 67.54(1.41) 66.82(2.93)(≈) 67.99(1.53)(≈) 67.56(2.44)(≈) 66.85(2.97)(≈) 68.12(1.48)(≈)

SharedMeal 69.41(1.40) 70.28(1.72)(≈) 67.80(3.38)(≈) 69.44(1.45)(≈) 65.59(5.76)(–) 69.84(1.48)(≈)
growth 69.09(1.71) 69.74(1.97)(≈) 68.81(2.56)(≈) 69.35(1.59)(≈) 66.98(5.51)(≈) 69.34(1.74)(≈)

assessment 69.97(2.18) 70.48(1.73)(≈) 67.99(3.82)(≈) 70.32(1.85)(≈) 67.73(4.00)(≈) 70.06(2.05)(≈)
histology 78.26(1.91) 78.99(1.79)(≈) 78.95(1.97)(≈) 79.10(1.79)(≈) 77.50(2.09)(≈) 78.47(1.79)(≈)

biometrics 71.68(1.86) 73.56(1.56)(+) 75.07(2.59)(+) 72.19(1.75)(≈) 72.17(3.79)(≈) 71.82(1.79)(≈)

Table 5.1: Filter method - Training F1 score - Trial 1

Datasets Allfeatures RelifF mutualinfo chisquare intersection union
blood 61.01(6.39) 62.32(5.82)(≈) 61.75(7.33)(≈) 63.65(6.67)(≈) 63.08(6.96)(≈) 61.96(6.55)(≈)

composition 66.36(9.79) 67.50(9.64)(≈) 65.69(9.50)(≈) 66.20(8.62)(≈) 67.11(8.14)(≈) 66.10(9.87)(≈)
FCR 64.47(6.92) 64.61(6.94)(≈) 65.03(6.15)(≈) 65.00(6.65)(≈) 65.00(6.24)(≈) 65.37(5.54)(≈)

SharedMeal 63.40(6.11) 64.21(6.77)(≈) 62.68(7.43)(≈) 65.11(6.26)(≈) 61.21(8.85)(≈) 63.33(6.59)(≈)
growth 64.57(6.04) 64.73(5.39)(≈) 63.77(5.54)(≈) 65.14(5.87)(≈) 62.55(7.43)(≈) 64.19(6.07)(≈)

assessment 62.99(7.94) 63.55(7.43)(≈) 63.19(6.55)(≈) 64.17(6.96)(≈) 63.58(6.03)(≈) 63.26(7.79)(≈)
histology 59.88(7.19) 60.09(7.45)(≈) 60.07(6.23)(≈) 60.31(7.84)(≈) 60.96(6.64)(≈) 60.08(7.28)(≈)

biometrics 62.98(5.90) 64.65(7.65)(≈) 64.59(7.85)(≈) 62.79(6.70)(≈) 63.60(9.21)(≈) 63.01(6.34)(≈)

Table 5.2: Filter method - Test F1 score - Trial 1

5.3 Results of Filter Methods

For each trial, we will mainly utilize the results presented in three tables for analysis. For the
tables below, the term ”Collections” refers to different datasets that have been used in this
study. Each collection, such as blood, composition, FCR, etc., represents a unique dataset
with its specific features and instances. The values under each column present the results of
the SVM model’s performance employing diverse feature selection techniques. The ”Allfea-
tures” method incorporates every feature present in the dataset without resorting to any
form of selection or reduction, which is our baseline. In contrast, ”RelifF,” ”chisquare,”
and ”mutualinfo” are filter feature selection techniques correspondingly, each harnessing
its unique criteria to cherry-pick features. The ”intersection” technique adopts a consensus-
driven strategy, preserving only those features that multiple individual methods simulta-
neously deem pivotal. On the other hand, the union approach maintains any feature high-
lighted by at least one of the individual methods.

Filter Methods Results on Trial 1 Observing the training F1 scores in Table 5.1, it is ev-
ident that for most datasets, employing filter feature selection methods generally leads to
an improvement in performance compared to using all features. Notably, the ”blood” and
”biometrics” datasets exhibit a marked enhancement in performance with the application
of these methods. On the other hand, the test F1 scores in Table 5.2 tend to be slightly lower,
indicating that the performance improvements in the training phase do not always translate
to the test phase and a potential overfitting scenario during training. However, it is worth
noting that the disparities between training and test scores are not extremely high, suggest-
ing that the model has a reasonable generalization capability. The increase in the standard
deviation may caused by the limited test size due to the data splits, which could be seen that
the composition dataset has the largest standard deviation.

Besides, the average count of features selected is depicted in Table 5.3. It enumerates the
mean tally of features that remain after the application of each feature selection technique
across diverse collections. This table is instrumental in underlining the extent of dimension-
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number of features All features RelifF chisquare mutualinfo intersection union
blood 39 25 23 26 16 33

composition 117 50 65 50 29 82
FCR 6 4 4 4 3 5

SharedMeal 5 4 3 4 2 5
growth 6 5 3 5 3 6

assessment 8 5 4 5 3 6
histology 37 29 32 31 22 36

biometrics 17 11 11 10 6 14

Table 5.3: Results comparison table - number of feature selected(AVG) -Trial 1
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Figure 5.1: Comparison of filter feature selection methods and their impact on model per-
formance (test F1 Score) across different datasets on Trial 1.

ality reduction attained by every method. What is worth noticing is that the intersection
usually selects the smallest number of features. A cursory glance at Tables 5.1 and 5.2 re-
veals that the intersection method outperforms or is on par with the models using a full
feature set. This may indicate the intersection method potentially could be a preferable
method in terms of model simplicity and performance trade-offs.

Lastly, the bubble plot, Figure 5.1, offers a visual representation of the outcomes of apply-
ing diverse feature selection techniques across multiple datasets in discerning the efficacy of
each method and its implications on model performance. The x-axis of the plot delineates
eight distinct datasets: blood, composition, FCR, SharedMeal, growth, assessment, histol-
ogy, and biometrics. The y-axis represents the percentage of features excluded during the
feature selection phase, formulated as 1-(number of selected features/total initial features).
An integral aspect of the plot is the portrayal of five feature selection methodologies, each
denoted by a unique color: RelifF, chi-square, mutual information method, intersection, and
union. The dispersion of colors across the plot intimates that the efficiency of a feature selec-
tion technique is not universally consistent but is contingent upon the specific dataset under
consideration. Another pivotal element of the visualization is the use of bubble sizes to sig-
nify the Test F1 Score, a metric indicative of model performance. This dimensionality allows
for an intricate understanding of the trade-off between the extent of feature reduction and
the subsequent model performance. In certain scenarios, a substantial reduction in features
does not invariably precipitate a decline in the test F1 score. This phenomenon is indicative
of the removed features being superfluous or non-contributory to model performance.

32



Datasets Allfeatures Relief chisquare mutualinfo intersection union
blood 79.68(2.15) 80.75(2.48)(≈) 82.28(1.84)(+) 82.72(1.85)(+) 81.36(2.56)(+) 81.03(2.13)(≈)

composition 80.27(3.34) 83.58(2.58)(+) 82.79(2.54)(+) 80.79(3.04)(≈) 81.75(3.64)(+) 80.68(3.18)(≈)
FCR 57.19(5.54) 60.71(5.21)(+) 60.75(3.93)(+) 60.88(5.02)(+) 61.46(4.98)(+) 59.01(5.23)(≈)

SharedMeal 73.32(5.66) 77.35(1.73)(+) 74.70(6.62)(+) 70.26(7.08)(≈) 77.30(1.68)(+) 70.01(7.18)(≈)
growth 61.12(5.74) 71.66(3.22)(+) 71.30(3.27)(+) 62.57(7.90)(≈) 70.51(5.25)(+) 62.13(7.08)(≈)

assessment 61.07(3.24) 75.58(6.40)(+) 72.70(6.05)(+) 67.05(3.20)(+) 75.75(8.32)(+) 61.65(4.72)(≈)
histology 78.43(1.87) 80.84(1.53)(+) 79.51(2.33)(+) 79.14(1.90)(≈) 79.32(2.58)(≈) 78.40(1.89)(≈)

biometrics 74.03(5.08) 78.73(4.56)(+) 75.30(5.12)(≈) 76.89(6.47)(+) 74.43(7.68)(≈) 75.19(5.24)(≈)

Table 5.4: Filter method - Training F1 score - Trial 2

Datasets Allfeatures RelifF mutualinfo chisquare intersection union
blood 72.91(3.77) 73.61(4.07)(≈) 75.75(3.56)(+) 76.39(3.91)(+) 75.32(4.35)(+) 74.28(4.22)(≈)

composition 70.48(7.77) 74.71(6.11)(+) 72.60(7.33)(≈) 71.19(5.92)(≈) 74.27(5.97)(≈) 70.55(7.18)(≈)
FCR 52.30(9.37) 54.91(9.81)(≈) 55.29(11.46)(≈) 55.85(9.53)(≈) 55.28(11.48)(≈) 53.68(9.11)(≈)

SharedMeal 69.63(9.38) 73.56(6.11)(≈) 70.88(10.70)(≈) 65.62(10.56)(–) 73.28(6.66)(≈) 65.06(9.96)(–)
growth 59.37(7.06) 70.64(4.87)(+) 69.70(4.63)(+) 60.43(9.54)(≈) 69.57(7.22)(+) 60.17(8.77)(≈)

assessment 57.97(5.58) 72.93(9.64)(+) 69.97(8.74)(+) 63.18(6.55)(+) 74.27(10.66)(+) 58.18(6.90)(≈)
histology 71.76(4.26) 72.97(4.40)(≈) 72.44(5.02)(≈) 71.80(5.23)(≈) 73.71(4.48)(≈) 71.85(4.63)(≈)

biometrics 68.20(5.49) 74.98(4.80)(+) 70.15(5.68)(≈) 71.33(6.99)(+) 71.28(7.22)(+) 69.58(6.23)(≈)

Table 5.5: Filter method - Test F1 score - Trial 2

As illustrated in the bubble plot Figure 5.1, the purple dots, symbolizing the intersection
method, consistently occupy the uppermost positions, denoting the maximum percentage
of feature elimination. Furthermore, within the same column, the size of the purple bubbles
remains relatively consistent across the majority of datasets. This uniformity in bubble size
suggests that the excised features are likely redundant or do not significantly enhance the
model’s performance. Conversely, the union of the filter methods is the worst one that
sometimes takes the whole feature sets.

The intersection method, which takes the common features selected by the three afore-
mentioned filter methods, generally demonstrates competitive performance. The intersec-
tion method’s strength lies in its ability to harness the collective wisdom of multiple filter
methods. Moreover, real-world datasets, such as the ones used in this study, often contain a
plethora of features, some of which might be noisy, redundant, or irrelevant. By focusing on
the commonalities among the three filter methods, the intersection method effectively filters
out such extraneous features, leading to a more robust and accurate model. This approach
inherently reduces the risk of including noisy or irrelevant features, which can degrade
model performance. This reduction in dimensionality can lead to more efficient models
that are less prone to overfitting. However, it’s worth noting that the intersection method’s
performance is dataset-dependent, especially for our datasets that use a real-world dataset
that has more complex characteristics.

When comparing the same method across various datasets, a consistent observation
emerges: the size of the dots corresponding to the ’histology’ dataset is invariably the small-
est. This suggests that the model’s performance on this dataset is suboptimal, likely at-
tributable to its inherent data structure.

Filter Methods Results on Trial 2 In the second trial, as illustrated in Table 5.4, the in-
tersection results reveal a notable pattern. For most datasets in Trial 2, there appears to be
a statistically significant improvement with fewer features. Overall, the training F1 scores
exhibit a similar trend as observed in the first trial. The application of filter feature selection
methods, in general, leads to an enhancement in performance compared to the utilization of
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number of features All features RelifF chisquare mutualinfo intersection union
blood 40 31 28 29 19 37

composition 117 48 75 34 18 84
fcr 6 2 2 2 2 3

SharedMeal 5 2 2 2 2 3
growth 6 2 4 3 2 5

assessment 15 3 8 3 2 10
histology 37 19 27 26 12 33

biometrics 16 5 9 9 3 13

Table 5.6: Results comparison table - number of feature selected(AVG) - Trial 2.
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Figure 5.2: Comparison of filter feature selection methods and their impact on model per-
formance (test F1 Score) across different datasets on Trial 2.

all features. For example, when filter methods are applied to the ”growth” dataset, there is
a notable enhancement in performance, registering an increase of approximately 10.44% at
its peak.

When we transition to the test phase, as illustrated in Table 5.5,the intersection method
also improved 4 datasets performance with less features. Overall, while most datasets main-
tain similar performance levels, more datasets in Trial 2 exhibit improved performance com-
pared to those in the same collection in Trial 1. These results echo findings from the first trial,
hinting at potential overfitting during training. However, the modest discrepancies between
training and test scores suggest that the model retains a commendable ability to generalize.
The increased standard deviation, especially in datasets like ”composition”, could be at-
tributed to the limited test size due to data splits. However, there are more models that
showed statistically significant improvement.

The average count of features selected for the second trial is presented in Table 5.6. This
table accentuates the dimensionality reduction achieved by each method. Similar to the first
trial, the intersection method typically selects the fewest features. A closer inspection of
Tables 5.4 and 5.5 reveals that the intersection method, in many cases, either outperforms
or is competitive with models using the full feature set. This underscores the potential of
the intersection method as a viable choice, striking a balance between model simplicity and
performance. As evidenced by 5.2, the purple dots, representing the intersection method,
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Datasets Allfeatures Relief chisquare mutualinfo intersection union
blood 66.70(2.39) 67.73(2.08)(+) 68.63(2.06)(+) 68.12(2.07)(+) 67.00(3.41)(≈) 67.24(2.36)(≈)

composition 66.50(2.62) 68.96(2.53)(+) 67.82(2.46)(≈) 68.46(2.09)(+) 67.49(2.92)(≈) 66.72(2.40)(≈)
FCR 66.28(2.58) 56.59(3.06)(–) 55.72(5.00)(–) 56.57(3.10)(–) 56.90(3.10)(–) 59.69(5.34)(–)

SharedMeal 54.31(4.17) 55.87(2.26)(≈) 55.96(2.74)(≈) 54.30(3.05)(≈) 55.29(4.43)(≈) 54.04(4.35)(≈)
growth 59.85(2.76) 60.77(1.73)(≈) 61.76(1.69)(+) 60.92(1.46)(≈) 58.98(2.74)(≈) 59.75(2.81)(≈)

assessment 60.38(2.17) 61.37(1.93)(≈) 61.18(1.94)(≈) 61.23(2.21)(≈) 59.14(4.13)(≈) 60.36(2.39)(≈)
histology 75.95(1.95) 76.87(1.90)(≈) 76.17(1.54)(≈) 77.51(1.52)(+) 75.58(2.09)(≈) 75.95(1.95)(≈)

biometrics 62.89(2.35) 63.88(1.64)(≈) 63.72(2.16)(≈) 63.40(2.21)(≈) 56.34(6.50)(–) 62.92(2.29)(≈)

Table 5.7: Filter method - Training F1 score - Trial 3.

Datasets Allfeatures RelifF mutualinfo chisquare intersection union
blood 51.92(8.19) 52.55(7.56)(≈) 51.74(7.98)(≈) 52.04(8.30)(≈) 52.26(6.98)(≈) 51.88(7.91)(≈)

composition 52.21(7.40) 52.91(7.11)(≈) 51.74(6.77)(≈) 51.94(8.39)(≈) 52.95(7.16)(≈) 52.68(7.53)(≈)
FCR 54.98(11.14) 53.17(12.43)(≈) 50.45(13.37)(≈) 51.94(12.02)(≈) 52.45(12.87)(≈) 53.51(12.58)(≈)

SharedMeal 47.81(9.37) 54.97(6.74)(+) 50.22(7.17)(≈) 47.81(7.16)(≈) 53.38(6.88)(+) 47.47(8.51)(≈)
growth 54.87(6.13) 55.99(5.62)(≈) 56.73(5.94)(≈) 55.23(6.12)(≈) 55.08(6.24)(≈) 54.71(6.14)(≈)

assessment 54.81(7.53) 56.02(5.65)(≈) 55.29(6.39)(≈) 54.97(5.88)(≈) 54.99(6.30)(≈) 54.89(7.36)(≈)
histology 55.89(4.52) 55.68(4.47)(≈) 55.42(5.18)(≈) 56.24(4.90)(≈) 54.01(4.82)(≈) 55.86(4.56)(≈)

biometrics 57.48(6.60) 57.41(6.03)(≈) 57.40(6.93)(≈) 56.93(6.67)(≈) 51.19(7.22)(–) 57.59(6.54)(≈)

Table 5.8: Filter method - Test F1 score - Trial 3

consistently maintain their position at the top of the plot. Moreover, their size remains
comparable to the dots situated below them. This observation reinforces the notion that
the intersection method surpasses other methods in performance, effectively eliminating
redundant features.

The unbalanced ratio in Trial 2 is notably higher than in Trial 1, with datasets such as
”composition” having a ratio as high as 4.65. This could introduce challenges in model
training, as the model might be biased towards the majority class. However, the filter fea-
ture selection methods, especially the intersection method, still manage to deliver compet-
itive performance, underscoring their resilience and effectiveness even in the face of class
imbalances. In conclusion, the second trial reaffirms the observations from the first trial
regarding the potential benefits of filter feature selection methods, especially the intersec-
tion method. The real-world datasets used in this study, with their inherent complexities,
highlight the robustness and adaptability of these methods.

Filter Methods Results on Trial 3 In the third trial, as delineated in Table 5.7, the training
F1 scores for most datasets are noticeably lower than those observed in the first two trials.
This is particularly evident in datasets such as ”FCR”, where the F1 score has seen a sig-
nificant decline. The application of filter feature selection methods still tends to enhance
performance compared to using all features, but the magnitude of this enhancement is less
pronounced than in previous trials.

Transitioning to the testing phase, as depicted in Table 5.8, the enhancements in perfor-
mance that were evident during the training phase do not translate as robustly. The majority
of the datasets exhibit a marked decline in performance when juxtaposed against the out-
comes from the first two trials. For the ”SharedMeal” collection dataset, the performance
with all features was subpar, even falling below random guessing. This downturn in perfor-
mance during the testing phase for Trial 3 is anticipated. As visualized in the PCA plot 4.4, it
becomes evident that the data from Trial 3 presents a more challenging landscape for classi-
fication. The overlap or lack of clear distinction between data points in the PCA plot for Trial
3 suggests that the underlying patterns or features that differentiate the classes are less pro-
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number of features All features RelifF chisquare mutualinfo intersection union
blood 38 34 32 30 22 38

composition 128 78 63 87 40 103
fcr 6 1 1 1 1 2

SharedMeal 5 3 3 3 2 5
growth 6 4 5 4 2 6

assessment 12 7 8 8 4 11
histology 37 29 32 35 24 37

biometrics 10 6 6 7 3 9

Table 5.9: Results comparison table - number of feature selected(AVG) - Trial 3.
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Figure 5.3: Comparison of filter feature selection methods and their impact on model per-
formance (test F1 Score) across different datasets on Trial 3

nounced in this trial. This could be attributed to various factors, including changes in data
collection, inherent variability in the samples, or other external influences that affected Trial
3 differently than the previous trials. However, after eliminating certain features, there was
a marked improvement in the ”SharedMeals” dataset, with results now exceeding those of
random predictions. This indicates that the intersection method can effectively handle and
enhance results for intricate datasets.

The average count of features selected for the third trial, presented in Table 5.9, indicates
a varied dimensionality reduction across datasets. As with the previous trials, the inter-
section method typically selects the fewest features. Additionally, for the ’FCR’ collection,
nearly every method opted for a singular feature. However, only two models, including
the intersection method, exhibited an improvement in performance. A closer inspection of
Tables 5.7 and 5.8 reveals that the intersection method, except the ’biometrics’, either out-
performs or is competitive with models using the full feature set.

Figure 5.3 reveals the distinct pattern associated with the intersection method, repre-
sented by the purple dots. Irrespective of the test F1 score, the intersection method consis-
tently achieves the highest percentage of feature removal. This is further accentuated by a
pronounced vertical gap distinguishing it from other methods. This reiterates that the in-
tersection method’s ability to select a reduced set of features while maintaining competitive
performance remains evident.

The unbalanced ratio in Trial 3 stands at approximately 0.77 for all datasets, which is a
stark contrast to the previous trials. This lower ratio indicates a less balanced distribution
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Datasets Allfeatures LR SVM RF
blood 71.86(2.60) 69.99(5.20)(≈) 68.60(6.32)(≈) 69.42(5.10)(≈)

composition 80.88(3.29) 83.49(5.81)(+) 82.68(6.36)(≈) 80.27(4.59)(≈)
FCR 67.54(1.41) 67.35(2.25)(≈) 67.07(2.90)(≈) 58.53(13.62)(≈)

SharedMeal 69.41(1.40) 68.92(2.99)(≈) 69.06(2.78)(≈) 68.50(3.89)(≈)
growth 69.09(1.71) 67.05(3.46)(≈) 67.49(2.98)(≈) 65.99(4.05)(–)

assessment 69.97(2.18) 68.64(2.57)(≈) 69.48(1.93)(≈) 66.01(14.39)(≈)
histology 78.26(1.91) 71.16(2.68)(–) 71.53(5.44)(–) 67.18(5.22)(–)

biometrics 71.68(1.86) 73.61(1.77)(+) 73.82(2.59)(+) 72.30(5.25)(+)

Table 5.10: Wrapper method - Training F1 score - Trial 1.

Datasets Allfeatures LR SVM RF
blood 61.01(6.39) 59.39(7.36)(≈) 58.91(7.17)(≈) 55.11(8.50)(–)

composition 66.36(9.79) 68.97(10.00)(≈) 66.03(10.80)(≈) 64.87(11.07)(≈)
FCR 64.47(6.92) 64.20(7.13)(≈) 63.75(8.08)(≈) 53.11(15.85)(–)

SharedMeal 63.40(6.11) 62.46(7.83)(≈) 63.15(6.79)(≈) 62.61(5.95)(≈)
growth 64.57(6.04) 62.56(6.93)(≈) 62.48(7.47)(≈) 60.91(7.06)(–)

assessment 62.99(7.94) 62.16(7.90)(≈) 62.50(8.39)(≈) 58.61(17.35)(≈)
histology 59.88(7.19) 60.84(7.12)(≈) 58.62(4.85)(≈) 59.20(7.84)(≈)

biometrics 62.98(5.90) 66.36(6.80)(≈) 66.14(6.93)(≈) 62.78(7.97)(≈)

Table 5.11: Wrapper method - Test F1 score - Trial 1.

between unhealthy and healthy instances compared with Trial 1. Thus, we are not surprised
that the F1 scores in Trial 3 are generally lower. This could be attributed to the inherent
complexities and characteristics of the real-world datasets used in this study. Real-world
datasets often come with their unique challenges, and the results from Trial 3 underscore
the importance of robust feature selection and model training techniques to handle such
complexities.

Summary By analysing the results obtained by of filter feature selection methods, it is ob-
served that these methods often enhance the training performance across almost all datasets.
However, these training benefits do not always extend to the testing phase, hinting at po-
tential overfitting. Notably, the disparity between training and test scores is not large, sug-
gesting the model’s satisfactory generalization. Despite its simple approach, the intersection
method often performs competitively, if not better than models with all features, indicating
its potential preference for balancing simplicity and performance. Overall, the intersection
method’s ability to get feature reduction and maintain performance stands out across trials.

5.4 Results of Wrapper Methods

Wrapper Methods Results on Trial 1 In Trial 1, utilizing the wrapper method, as depicted
in Table 5.10, the training F1 scores for datasets such as ”histology” show an improve-
ment when the LR algorithm is employed, as compared to using all features. However,
for datasets like ”biometrics”, there is a noticeable decline in performance when using the
RF algorithm. This suggests that while the wrapper method can enhance performance for
some datasets, it might not be universally beneficial across all datasets and algorithms.

Moving to the testing phase, as detailed in Table 5.11, there is a discernible decline in
performance across all datasets when the RF algorithm is employed, even if some of these
reductions are not statistically significant. In contrast, the performance remains statistically
consistent across all datasets when utilizing the SVM and LR algorithms. This observation
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Datasets Allfeatures LR SVM RF
blood 39 11 15 20

composition 117 24 20 63
FCR 6 5 5 4

SharedMeal 5 4 4 5
growth 6 4 5 4

assessment 8 5 5 5
histology 37 7 12 4

biometrics 17 7 10 9

Table 5.12: Wrapper method - number of feature selected(AVG) - Trial 1.
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Figure 5.4: Comparison of wrapper feature selection methods and their impact on model
performance (test F1 Score) across different datasets on Trial 1

highlights the critical interplay between algorithm selection and the wrapper method. Com-
paring the results of the wrapper method in Trial 1 with the intersection filter method in the
previous trial, it is evident that the wrapper method, especially when paired with the LR al-
gorithm, tends to select fewer features. This suggests that the wrapper method might offer
a more aggressive dimensionality reduction. The chosen algorithm can profoundly impact
the resultant performance, emphasizing the need for judicious algorithm selection in the
context of the wrapper method.

The average count of features selected using the wrapper method for Trial 1 is presented
in Table 5.12. This table accentuates the dimensionality reduction achieved by each algo-
rithm. For instance, for the ”blood” dataset, the LR algorithm selects only 11 features, a
significant reduction from the original 39 features. This reduction in feature dimensionality
can be advantageous in terms of computational efficiency and model interpretability. What
stands out is that the wrapper method employing RF not only exhibits a decline in the Test
F1 score but also retains over 50 percent of the features. This suggests that this approach
may not be a good choice for these datasets.

Upon examining the bubble plot Figure 5.4, a distinct pattern emerges, contrasting with
what is observed in 5.1. Notably, none of the three methods consistently dominates in per-
formance. The size of the top two bubbles is generally comparable, with the exception of the
’FCR’ dataset. In this particular dataset, while the wrapper method employing the RF algo-
rithm exhibits a larger bubble size than the other two methods, its Test F1 score is markedly
low, rendering it less significant for consideration. Additionally, it is imperative to high-
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Datasets Allfeatures LR SVM RF
blood 79.68(2.15) 77.09(5.23)(≈) 80.25(2.89)(≈) 81.45(2.50)(+)

composition 80.27(3.34) 80.12(5.53)(≈) 81.09(4.29)(≈) 82.00(3.65)(+)
FCR 57.19(5.54) 59.28(7.98)(≈) 58.89(7.78)(≈) 55.09(7.47)(≈)

SharedMeal 73.32(5.66) 68.10(7.02)(–) 69.30(7.92)(≈) 71.74(5.40)(–)
growth 61.12(5.74) 58.78(5.48)(≈) 59.55(7.16)(≈) 62.73(6.74)(≈)

assessment 61.07(3.24) 59.07(5.46)(–) 58.75(3.09)(–) 67.54(5.75)(+)
histology 78.43(1.87) 76.02(2.74)(–) 72.92(8.09)(–) 79.27(2.32)(≈)

biometrics 74.03(5.08) 76.02(5.87)(≈) 74.53(5.46)(≈) 75.43(4.55)(≈)

Table 5.13: Wrapper method - Training F1 score - Trial 2.

Datasets Allfeatures LR SVM RF
blood 72.91(3.77) 73.54(4.77)(≈) 74.68(3.79)(≈) 75.19(5.06)(+)

composition 70.48(7.77) 71.16(8.44)(≈) 72.32(7.04)(≈) 72.30(8.98)(≈)
FCR 52.30(9.37) 49.10(13.56)(≈) 48.16(13.80)(≈) 50.66(13.03)(≈)

SharedMeal 69.63(9.38) 63.48(9.08)(–) 64.91(10.09)(–) 67.56(8.96)(≈)
growth 59.37(7.06) 57.38(7.47)(≈) 58.41(8.02)(≈) 60.79(8.09)(≈)

assessment 57.97(5.58) 56.92(7.06)(≈) 57.12(4.35)(≈) 64.85(7.34)(+)
histology 71.76(4.26) 70.50(4.33)(≈) 67.74(7.40)(–) 71.94(4.37)(≈)

biometrics 68.20(5.49) 71.34(6.43)(+) 68.92(5.79)(≈) 68.54(5.36)(≈)

Table 5.14: Wrapper method - Test F1 score - Trial 2.

light certain collections, namely ’fcr’, ’SharedMeal’, and ’growth’. These collections exhibit
a notably low feature removal percentage, often well below the 0.5 mark, even for the top-
performing methods. This is in stark contrast to the intersection of filter methods, which
consistently achieves a removal percentage above 0.5 for these datasets. Intrinsically, these
collections start with a limited feature set. When subjected to wrapper methods, the feature
reduction is minimal, with the process either eliminating a mere single feature or, in cer-
tain cases, making no eliminations at all. Given that these datasets yield comparable test F1
scores, the wrapper method using LR or SVM might be a good option.

Wrapper Methods Results on Trial 2 An examination of Table 5.13, detailing the training
F1 scores for Trial 2, reveals a departure from the patterns observed in Trial 1. Notably,
the wrapper method employing RF enhances performance on several datasets. In contrast,
the LR and SVM algorithms either maintain their performance or exhibit a decline on cer-
tain datasets. This underscores the variability in data structure across trials for the same
collection. Furthermore, it emphasizes that the choice of algorithm can profoundly impact
performance outcomes, contingent on the specific characteristics of the data.

Moving to the testing phase, as depicted in Table 5.14, both the ”blood” and ”assess-
ment” datasets demonstrate enhanced performance when subjected to the RF algorithm,
marking a distinct improvement over their performance in Trial 1. However, it’s worth
noting that the test F1 scores of the three models lag behind the scores achieved by the in-
tersection methods in Trial 2, as presented in Table 5.5.

Table 5.15 delineates the average count of features chosen when employing the wrapper
method for Trial 2. Intriguingly, for certain datasets, the number of features selected sur-
passes that of the intersection filter method, as observed with the ”composition” dataset.
Moreover, despite the inclusion of a greater number of features, the performance of models
on these datasets, when trained using the wrapper method, is diminished. This suggests
that, for the data in Trial 2, the wrapper method may not be the best selection strategy.

Upon examining the plot 5.5, a consistent pattern emerges where no single method dom-
inates across all datasets. Notably, the bubbles corresponding to the ”FCR” dataset are
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Datasets Allfeatures LR SVM RF
blood 40 13 17 34

composition 117 37 29 55
FCR 6 2 2 2

SharedMeal 5 3 2 4
growth 6 4 4 5

assessment 15 7 3 7
histology 37 22 19 26

biometrics 16 7 9 13

Table 5.15: Wrapper method - number of feature selected(AVG) - Trial 2
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Figure 5.5: Comparison of wrapper feature selection methods and their impact on model
performance (test F1 Score) across different datasets on Trial 2.

markedly smaller than those of other datasets. This suggests that the FCR dataset may
possess limited informative value for health classification. This observation aligns with the
trends seen in 5.2, where the bubbles for the FCR dataset are also notably smaller compared
to others.

Wrapper Methods Results on Trial 3 From Table 5.16, which showcases the training F1
scores for Trial 3, several observations emerge. Only for the ”SharedMeal” dataset, the per-
formance of all algorithms, when compared to using all features, indicates a similar per-
formance. This suggests that the wrapper method’s aggressive feature selection might not
always yield optimal results. Similarly, for the ”composition” and ”FCR” datasets, all three
algorithms—LR, SVM, and RF—demonstrate a decrease in performance compared to using
all features. This trend is consistent across multiple datasets, such as ”FCR” and ”histology”,
highlighting the challenges of feature selection in real-world scenarios.

Transitioning to the test phase, as depicted in Table 5.17, the ”SharedMeal” dataset
presents an interesting outcome. The SVM algorithm, despite its suboptimal performance
in the training phase, outperforms the other algorithms in the test phase. This underscores
the importance of validating model performance on unseen data, as training performance
might not always be indicative of real-world applicability.

In Table 5.18, the average count of features chosen using the wrapper method for Trial 3 is
detailed. For the ”composition” dataset, the LR algorithm selects a mere 22 features, mark-
ing a substantial reduction from the 40 features chosen by the intersection filter method.
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Datasets Allfeatures LR SVM RF
blood 66.70(2.39) 59.00(4.82)(–) 61.67(3.30)(–) 62.80(8.17)(≈)

composition 66.50(2.62) 65.36(3.34)(≈) 63.22(5.19)(–) 60.00(6.37)(–)
FCR 66.28(2.58) 60.80(5.71)(–) 61.89(5.65)(–) 63.15(4.62)(–)

SharedMeal 54.31(4.17) 55.31(3.70)(≈) 55.65(2.21)(≈) 52.56(4.66)(≈)
growth 59.85(2.76) 57.07(3.13)(–) 57.84(3.19)(–) 59.74(2.75)(≈)

assessment 60.38(2.17) 58.63(3.21)(–) 58.38(3.44)(–) 60.77(2.83)(≈)
histology 75.95(1.95) 71.14(3.97)(–) 70.51(4.25)(–) 71.99(7.84)(≈)

biometrics 62.89(2.35) 58.14(6.18)(–) 59.39(4.44)(–) 61.75(3.22)(≈)

Table 5.16: Wrapper method - Training F1 score - Trial 3.

Datasets Allfeatures LR SVM RF
blood 51.92(8.19) 53.61(6.40)(≈) 55.99(6.05)(≈) 51.50(8.15)(≈)

composition 52.21(7.40) 52.05(6.47)(≈) 51.22(7.79)(≈) 48.77(8.67)(≈)
FCR 54.98(11.14) 51.74(12.28)(≈) 51.39(11.79)(≈) 52.12(15.43)(≈)

SharedMeal 47.81(9.37) 50.88(8.15)(≈) 55.57(5.96)(+) 47.44(6.59)(≈)
growth 54.87(6.13) 51.50(6.75)(–) 52.50(6.16)(≈) 55.75(6.33)(≈)

assessment 54.81(7.53) 52.98(6.20)(≈) 52.12(7.02)(≈) 55.21(6.48)(≈)
histology 55.89(4.52) 54.98(6.12)(≈) 55.53(5.02)(≈) 53.37(5.44)(≈)

biometrics 57.48(6.60) 53.45(8.47)(≈) 53.54(7.09)(–) 56.82(7.54)(≈)

Table 5.17: Wrapper method - Test F1 score - Trial 3.

Such a decrease in feature dimensionality can be beneficial, enhancing computational ef-
ficiency and facilitating model interpretability. However, it’s essential to note that a pro-
nounced reduction in features does not invariably lead to superior performance. For in-
stance, with the ”biometrics” dataset, while the intersection filter method opted for only
3 features, it yielded a performance that is statistically inferior. In contrast, the wrapper
method employing LR achieved comparable results, albeit with 5 features. This suggests
that the filter method might overlook feature interactions. It underscores the notion that
there isn’t a universally optimal method, emphasizing the need for a more comprehensive
consideration of features.

An analysis of 5.6 reveals intriguing patterns. Specifically, for the ’blood’ dataset, all
bubbles are positioned higher than those in 5.3. Yet, their sizes remain comparable. This
suggests that the wrapper method, for this dataset, manages to select fewer features while
achieving enhanced performance. In contrast, for the majority of the other datasets, the
bubbles corresponding to the filter method tend to occupy higher positions, indicating their
relative superiority in those contexts.

Summary Across three trials, the efficacy of the wrapper method for feature selection var-
ied depending on the dataset and algorithm used. In Trial 1, the wrapper method, especially
with the LR algorithm, demonstrated the potential for aggressive dimensionality reduction.
However, its performance benefits were not universally observed. Trial 2 highlighted the
impact of data structure differences on results. While the RF algorithm showed promise in
some datasets, LR and SVM often remained consistent or declined. Interestingly, the wrap-
per method sometimes surpassed the intersection filter method in feature selection but did
not consistently improve performance. In Trial 3, the challenges of real-world feature selec-
tion became evident, with the wrapper method not always ensuring optimal results despite
aggressive feature selection. Overall, these trials underscore the need for careful algorithm
selection, the intricacies of individual datasets, and the absence of a universally optimal
feature selection method.
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Datasets Allfeatures LR SVM RF
blood 38 4 6 12

composition 128 22 18 20
FCR 6 2 2 4

SharedMeal 5 4 4 3
growth 6 4 5 5

assessment 12 6 7 7
histology 37 20 25 19

biometrics 10 5 6 8

Table 5.18: Wrapper method - number of feature selected(AVG) - Trial 3
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Figure 5.6: Comparison of wrapper feature selection methods and their impact on model
performance (test F1 Score) across different datasets on Trial 3.

5.5 Results of Embedded Methods

Embedded Methods Results on Trial 1 By making feature selection an intrinsic part of the
model training process, embedded methods provide a more holistic view of feature impor-
tance than the filter, and more generality to different classifiers.

From Table 5.19, which presents the training F1 scores for Trial 1 using the embedded
method, several observations can be discerned. The ”composition” dataset, exhibits a sig-
nificant improvement in performance compared to using all features. This underscores the
capability of embedded methods, particularly when regularized using L1 regularization, to
effectively select a subset of features that contribute most to the model’s performance. A
similar trend is observed for the ”biometrics” dataset, where both LR and SVM algorithms
outperform the all-features baseline. However, it’s worth noting that for some datasets,
such as ”FCR”, the embedded method results in a decline in performance, suggesting that
the method’s efficacy is contingent on the nature of the dataset and the underlying relation-
ships between features.

Transitioning to the test phase, as depicted in Table 5.20, the results are more varied.
Overall, the embedded method using LR or SVM could get comparable performance to the
all-features baseline, while the RF algorithm exhibits a slight decline. This suggests that
while embedded methods can be effective in feature selection during the training phase,
their performance on unseen data can be influenced by various factors, including the algo-
rithm’s inherent criteria for evaluating feature importance.
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Datasets Allfeatures LR SVM RF
blood 71.86(2.60) 73.96(1.71)(+) 70.48(3.68)(≈) 71.38(3.16)(≈)

composition 80.88(3.29) 86.52(2.69)(+) 85.45(2.90)(+) 83.40(4.11)(+)
FCR 67.54(1.41) 53.96(5.19)(–) 54.46(3.88)(–) 41.09(5.24)(–)

SharedMeal 69.41(1.40) 69.31(2.26)(≈) 67.01(3.69)(≈) 61.03(2.54)(–)
growth 69.09(1.71) 69.19(1.68)(≈) 63.40(1.94)(–) 63.47(3.11)(–)

assessment 69.97(2.18) 69.69(1.40)(≈) 68.42(2.94)(≈) 43.38(6.45)(–)
histology 78.26(1.91) 75.27(1.93)(–) 74.32(1.73)(–) 77.14(2.38)(–)

biometrics 71.68(1.86) 73.72(1.66)(+) 75.23(2.42)(+) 71.43(4.43)(≈)

Table 5.19: Embedded method - Training F1 score - Trial 1.

Datasets Allfeatures LR SVM RF
blood 61.01(6.39) 60.92(7.77)(≈) 59.06(7.36)(≈) 57.16(6.10)(–)

composition 66.36(9.79) 68.24(9.72)(≈) 65.85(10.77)(≈) 64.98(9.17)(≈)
FCR 64.47(6.92) 51.99(9.48)(–) 52.67(8.57)(–) 34.82(10.09)(–)

SharedMeal 63.40(6.11) 64.78(6.40)(≈) 61.80(8.30)(≈) 55.79(7.97)(–)
growth 64.57(6.04) 65.25(5.90)(≈) 61.47(7.12)(≈) 57.75(7.70)(–)

assessment 62.99(7.94) 64.62(5.74)(≈) 63.47(7.39)(≈) 38.31(10.27)(–)
histology 59.88(7.19) 61.35(6.36)(≈) 61.49(6.55)(≈) 61.32(7.03)(≈)

biometrics 62.98(5.90) 66.93(7.19)(+) 66.91(6.94)(+) 62.13(7.37)(≈)

Table 5.20: Embedded method - Test F1 score - Trial 1.

In Table 5.21, the average count of features chosen using the embedded method for Trial
1 is detailed. It becomes apparent that the embedded method often opts for a more concise
feature set compared to the intersection of the filter method, as observed in datasets like
’histology’. However, the reduction is not as pronounced as that achieved by the wrapper
methods. Given the comparable test performance, the wrapper method seems to be the most
favorable choice for this dataset. In terms of feature selection, the wrapper method offers an
edge in model interpretability over the intersection filter method, though it doesn’t surpass
the embedded method in this regard.

Upon analyzing Figure 5.7, it’s evident that the embedded method, when employing
the RF algorithm for the ’assessment’ collection, occupies a higher position compared to
both Figure 5.1 and Figure 5.4. However, given its test F1 score of approximately 38.32, this
method is not the most suitable choice. For datasets characterized by a limited number of
features, the intersection of the filter method tends to be positioned higher. Conversely, for
more extensive datasets (i.e., those with a greater number of features), the wrapper method
demonstrates its efficacy by removing a larger proportion of features while maintaining
comparable test performance.

Embedded Methods Results on Trial 2 From Table 5.22, which delineates the training F1
scores for Trial 2. It’s noteworthy that certain datasets, such as ”SharedMeal”, witness a
decline in performance with the embedded method, particularly with the SVM algorithm.
Besides, the embedded method using the RF algorithm performs better than the baseline on
6 out of 8 datasets. This underscores the method’s sensitivity to the nature of the dataset
and the relationships between features.

Transitioning to the test phase, as depicted in Table 5.23, the results are nuanced. The
”blood” dataset, across all three algorithms (LR, SVM, and RF), demonstrates an improve-
ment over the all-features baseline. This suggests that the embedded method’s feature selec-
tion during the training phase translates effectively to unseen data. However, for datasets
like ”SharedMeal”, the performance decline observed in the training phase is also mirrored
in the test phase, particularly with the SVM algorithm. This reiterates the importance of al-
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Datasets Allfeatures LR SVM RF
blood 29 18 17 20

composition 117 46 47 53
FCR 6 2 2 1

SharedMeal 5 3 3 2
growth 6 4 3 3

assessment 8 3 4 2
histology 37 14 15 17

biometrics 17 6 7 5

Table 5.21: Embedded method - number of feature selected(AVG) - Trial 1.
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Figure 5.7: Comparison of embedded feature selection methods and their impact on model
performance (test F1 Score) across different datasets on Trial 1

gorithm selection in conjunction with the embedded method. From this table, the embedded
method using RF seems the best one.

In Table 5.24, the average count of features chosen using the embedded method for Trial
2 is detailed. Across the board, the embedded method demonstrates a propensity to opt for
a more concise feature set for all datasets. Notably, for the ’FCR’ dataset, the application of
the embedded method with the RF algorithm remarkably manages to achieve comparable
performance using just a single feature.

Upon examining the Figure 5.8, it becomes clear that the ’FCR’ dataset occupies a posi-
tion higher than both Figure 5.1 and Figure 5.4. However, for the remaining datasets, either
the intersection of the filter method or the wrapper method appears to be more advanta-
geous.

Embedded Methods Results on Trial 3 The training F1 scores, as presented in Table 5.25,
offer a mixed bag of results. For instance, the ”blood” dataset shows a modest improvement
when processed through the RF algorithm, reinforcing the embedded method’s ability to
discern feature importance intrinsically. However, the ”composition” dataset experiences a
decline in performance with the RF algorithm, which could be attributed to the algorithm’s
sensitivity to feature interdependencies. The ”SharedMeal” dataset, interestingly, shows
an improvement with the SVM algorithm, suggesting that the embedded method’s perfor-
mance can vary depending on the algorithm and dataset in question.

Moving to the testing phase, as depicted in Table 5.26, the outcomes are multifaceted.
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Datasets Allfeatures LR SVM RF
blood 79.68(2.15) 80.35(1.29)(≈) 80.90(2.00)(+) 81.74(2.12)(+)

composition 80.27(3.34) 81.54(2.98)(≈) 83.23(3.03)(+) 83.23(2.30)(+)
FCR 57.19(5.54) 60.19(8.19)(≈) 60.39(8.41)(≈) 60.39(8.41)(≈)

SharedMeal 73.32(5.66) 69.50(7.13)(–) 65.54(8.58)(–) 69.78(6.85)(–)
growth 61.12(5.74) 58.98(7.31)(≈) 59.83(7.22)(≈) 67.53(3.34)(+)

assessment 61.07(3.24) 55.35(5.27)(–) 54.91(4.91)(–) 71.37(2.56)(+)
histology 78.43(1.87) 74.70(2.27)(–) 73.28(3.00)(–) 80.32(1.73)(+)

biometrics 74.03(5.08) 75.32(5.56)(≈) 75.11(4.76)(≈) 76.84(3.48)(+)

Table 5.22: Embedded method - Training F1 score - Trial 2.

Datasets Allfeatures LR SVM RF
blood 72.91(3.77) 75.33(3.24)(+) 75.78(3.36)(+) 76.62(3.45)(+)

composition 70.48(7.77) 71.19(7.89)(≈) 72.40(6.67)(≈) 74.17(5.95)(+)
FCR 52.30(9.37) 50.55(12.58)(≈) 50.06(13.36)(≈) 50.06(13.36)(≈)

SharedMeal 69.63(9.38) 64.60(10.46)(–) 61.46(11.10)(–) 65.00(9.94)(–)
growth 59.37(7.06) 57.56(8.81)(≈) 58.69(8.64)(≈) 65.13(5.32)(+)

assessment 57.97(5.58) 53.08(7.88)(–) 53.03(6.81)(–) 69.13(4.84)(+)
histology 71.76(4.26) 68.64(5.42)(–) 68.22(5.24)(–) 73.44(3.57)(≈)

biometrics 68.20(5.49) 70.28(6.02)(≈) 69.63(6.34)(≈) 69.33(5.50)(≈)

Table 5.23: Embedded method - Test F1 score - Trial 2.

For the ”SharedMeal” dataset, the application of the SVM algorithm under the embedded
method yields a slight performance enhancement, akin to the results achieved by the wrap-
per method using SVM. However, the embedded method distinguishes itself by selecting
only 2 features shown in Table 5.27, as opposed to the 4 chosen by the wrapper method,
showcasing its efficiency. Furthermore, the embedded method, when employing the RF al-
gorithm, manages to significantly boost model performance with just one additional feature
compared to the filter method on the ’growth’ dataset. Analyzing the remaining datasets,
a pattern emerges: the embedded methods tend to opt for fewer features in datasets with
a smaller feature set, while gravitating towards a more extensive feature selection in larger
datasets, especially when compared to wrapper methods using the same algorithm.

Upon analyzing Figure 5.9, it’s evident that the embedded method, when employing the
RF algorithm for the ’assessment’ collection, occupies a higher position compared to both
Figure 5.1 and Figure 5.4 like in Trial 1. Besides, given its performance is similar to the model
with all features, this should be considered as the most suitable choice for this dataset. For
the remaining datasets, either the intersection of the filter method or the wrapper method
appears to be more advantageous.

Summary Embedded methods incorporate feature selection within the model training
process, offering an approach to discerning feature importance. Across three trials, the
results highlight the potential and challenges of the embedded method. In Trial 1, while
datasets like ”composition” benefited, others such as ”FCR” saw diminished performance.
The embedded method typically favored a concise feature set, yet not as aggressively as
the wrapper method. By Trial 2, it became evident that the method’s performance was
closely tied to the nature of the dataset and the algorithm used. Some datasets improved,
while others, like ”SharedMeal”, declined when using certain algorithms. The RF algo-
rithm emerged as a prominent choice in embedded methods. In Trial 3, results were mixed;
the ”SharedMeal” dataset saw improvements with the SVM algorithm, whereas ”composi-
tion” underperformed with RF. An observable trend was the method’s inclination towards
fewer features for smaller datasets and a larger feature subsets for larger datasets. This pat-
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Datasets Allfeatures LR SVM RF
blood 40 15 15 16

composition 117 48 47 57
FCR 6 2 1 1

SharedMeal 5 2 2 2
growth 6 3 4 3

assessment 15 5 5 4
histology 37 15 14 17

biometrics 16 7 6 10

Table 5.24: Embedded method - number of feature selected(AVG) - Trial 2
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Figure 5.8: Comparison of embedded feature selection methods and their impact on model
performance (test F1 Score) across different datasets on Trial 2

tern contrasted with the wrapper method, which consistently pursued aggressive feature
reduction. Comparatively, while embedded methods show promise, the wrapper method
outperformed several datasets in terms of feature reduction and comparable performance,
underlining the importance of dataset-specific and algorithm-specific considerations.

5.6 Discussions and Conclusions

The results presented in Table 5.28 offer a comprehensive overview of the best feature se-
lection methods we investigated above across three trials for our 24 datasets. The selec-
tion of the most suitable feature selection method for each dataset is based on the perfor-
mance(the average F1 score) and the number of features removed. All methods mentioned
here achieved our goal of selecting fewer features while maintaining similar performance
compared with using all features. The selection of the most suitable feature selection method
for each dataset is rooted in a multifaceted criterion.

For the blood dataset, the filter method with intersection is deemed the best method in
Trial 1, selecting 16 out of the 39 features. However, in subsequent trials, the Embedded and
Wrapper methods, specifically with SVM, were favored, reflecting their ability to achieve
comparable or superior performance with a reduced feature set.

The composition dataset exhibited a preference for the Wrapper method using SVM in
Trials 1 and 3, while the Filter method with intersection is the best method in Trial 2. This
suggests that while the Wrapper method might be more computationally intensive, its abil-
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Datasets Allfeatures LR SVM RF
blood 66.70(2.39) 67.46(3.12)(≈) 65.50(3.03)(≈) 69.31(2.58)(+)

composition 66.50(2.62) 67.95(2.18)(≈) 67.53(3.00)(≈) 64.24(3.21)(–)
FCR 66.28(2.58) 63.66(4.49)(–) 63.95(4.49)(≈) 53.62(6.60)(–)

SharedMeal 54.31(4.17) 55.20(2.72)(≈) 57.00(1.79)(+) 56.60(2.45)(+)
growth 59.85(2.76) 56.14(3.17)(–) 54.62(5.62)(–) 60.73(1.29)(≈)

assessment 60.38(2.17) 59.15(3.19)(≈) 58.32(3.11)(–) 54.69(3.48)(–)
histology 75.95(1.95) 69.87(2.09)(–) 66.19(2.89)(–) 75.48(1.93)(≈)

biometrics 62.89(2.35) 60.85(1.94)(–) 55.61(5.62)(–) 60.43(2.56)(–)

Table 5.25: Embedded method - Training F1 score - Trial 3.

Datasets Allfeatures LR SVM RF
blood 51.92(8.19) 53.24(6.50)(≈) 54.18(5.04)(≈) 54.00(7.72)(≈)

composition 52.21(7.40) 52.67(7.83)(≈) 52.36(6.99)(≈) 48.08(7.04)(–)
FCR 54.98(11.14) 53.72(11.73)(≈) 54.07(11.57)(≈) 41.25(12.70)(–)

SharedMeal 47.81(9.37) 49.58(8.53)(≈) 54.04(6.70)(+) 50.93(5.85)(≈)
growth 54.87(6.13) 50.60(5.72)(–) 50.97(6.50)(–) 58.20(5.37)(+)

assessment 54.81(7.53) 52.52(6.63)(≈) 51.41(7.43)(≈) 51.19(6.43)(≈)
histology 55.89(4.52) 55.04(5.85)(≈) 53.81(4.94)(≈) 55.54(3.91)(≈)

biometrics 57.48(6.60) 55.67(7.37)(≈) 51.31(6.68)(–) 54.80(6.02)(≈)

Table 5.26: Embedded method - Test F1 score - Trial 3.

ity to select a subset of features (20 out of 117 in Trial 1 and 18 out of 128 in Trial 3) without
compromising on performance makes it a viable choice.

For datasets like FCR and ShareMeals, the filter method with intersection consistently
emerged as a preferred choice in multiple trials, indicating its effectiveness in these specific
contexts.

The ”growth” dataset displayed a shift in preference from the Filter method in Trials 1
and 2 to the Embedded method with RF in Trial 3. This transition underscores the dynamic
nature of feature selection, where the best method method can vary based on the specific
trial or dataset nuances.

In the ”assessment” dataset, the Embedded method, particularly with LR and RF, is
favored in Trials 1 and 3. In contrast, the Filter method with intersection is the method of
choice in Trial 2. This dataset serves as a testament to the adaptability of the Embedded
method in selecting a minimal feature set while maintaining robust performance.

The ”histology” and ”biometrics” datasets further accentuate the versatility of the Em-
bedded method, especially with LR, in selecting a concise set of features without sacrificing
model accuracy.

Compare with the statistical methods Upon examination of Tables 4.3 and 5.29, repre-
senting features with significant differences between health groups and those identified by
their average feature importance score respectively, some notable observations emerge. Pri-
marily, there exists a convergence on a subset of six shared features across the two tables.
For each category, they are listed as the first or second feature in Table 5.29. The overlapping
features, including ”alkaline phosphatase” from the Enzymes category and ”chloride” and
”urea” from Blood Biochemistry, among others, underscore their pivotal role in discerning
health conditions, as both statistical analysis and machine learning feature selection meth-
ods independently identified them. However, the divergence in the remaining features be-
tween the two tables suggests that while certain parameters are significant in distinguishing
health conditions, they may not necessarily possess the highest predictive importance when
implementing machine learning models. Conversely, some features that aren’t statistically
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Datasets Allfeatures LR SVM RF
blood 38 15 16 21

composition 128 52 54 70
FCR 6 2 2 2

SharedMeal 5 3 2 2
growth 6 3 4 3

assessment 12 5 7 2
histology 37 16 17 18

biometrics 10 5 5 6

Table 5.27: Embedded method - number of feature selected(AVG) - Trial 3.
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Figure 5.9: Comparison of embedded feature selection methods and their impact on model
performance (test F1 Score) across different datasets on Trial 3.

divergent might still carry substantial weight in a machine learning context.
Comparing Table 5.28 with Table 4.2, it becomes evident that the presence of statistically

significant differences in features for each health group doesn’t necessarily translate to their
utility in classification tasks. For the blood dataset, Table 4.2 shows a decrease in significant
features across trials, while Table 5.28 indicates a more pronounced reduction in features
selected by the best feature selection method. This suggests that as the number of statisti-
cally significant features diminishes, the feature selection methods become more selective.
The FCR datasets present a scenario where significant features decrease to none in the latter
trials in Table 4.2. However, the best feature selection methods continue selecting features,
suggesting that certain non-significant features still hold predictive information.

Upon a comparison of Table 5.30 and Table 5.31, it becomes evident that the Machine
Learning Feature Selection (MLFS) method consistently outperforms the traditional statisti-
cal (STAT) methods in feature selection across various collections and trials.

In most collections, the MLFS method either demonstrates a marked improvement or
maintains comparable performance to the entire feature set. This is particularly evident in
the Blood, Composition, and Biometrics collections, where the MLFS method consistently
achieves higher or nearly equivalent F1 scores compared to the STAT methods on the test
set. The MLFS method’s ability to discern and prioritize features that contribute most to
predictive power is evident.

Conversely, the STAT methods, while occasionally achieving comparable results, often
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Trial1 Trial2 Trial3
Dataset Method Feature Method Feature Method Feature
blood Filter(intersection) 39 - 16 Embedded(SVM) 38 - 15 Wrapper(SVM) 38 - 6
composition Wrapper(SVM) 117 - 20 Filter(intersection) 117 - 18 Wrapper(SVM) 128 - 18
FCR Filter(intersection) 6 - 3 Embedded(LR) 6 - 1 Filter(intersection) 6 - 1
ShareMeals Filter(intersection) 5 - 2 Filter(intersection) 5 - 2 Embedded(SVM) 5 - 2
growth Filter(intersection) 6 - 3 Filter(intersection) 6 - 2 Embedded(RF) 6 - 3
assessment Embedded(LR) 12 - 3 Filter(intersection) 15 - 2 Embedded(RF) 12 - 2
histology Wrapper(RF) 37 - 4 Filter(intersection) 37 - 12 Embedded(LR) 37 - 16
biometrics Embedded(LR) 17 - 6 Filter(intersection) 16 - 3 Embedded(LR) 10 - 5

Table 5.28: The best feature selection methods across three trials for various datasets. Each
entry in the ”Feature” column represents the total number of features in the dataset followed
by the number of features selected by the method.

Enzymes alkaline phosphatase

Blood Biochemistry chloride, urea, cortisol, sodium, cholesterol,
colour, magnesium, phosphate, cortisol, calcium

Blood Cell Related monocytes abs, haptoglobin, Albumin globulin ratio, buffy coat thickness
Other event, temperature celsius, satiation ration

Table 5.29: Important features identified by feature selection method on blood collection in
trial 01 for health classification.

fall short in certain collections, such as SharedMeals, Growth, and Histology. In these in-
stances, the F1 scores using STAT methods are notably lower, indicating a potential limita-
tion in relying solely on traditional statistical tests for feature selection in these datasets.

In summary, while both methods have their merits, the MLFS method demonstrates a
more consistent and often superior performance across the board. This suggests that lever-
aging machine learning algorithms for feature selection can offer a more robust and adaptive
approach, especially when dealing with complex real-world datasets.
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Datasets Trial 1 Trial 2 Trial 3
All MLFS All MLFS All MLFS

blood 61.01(6.39) 66.03(10.80)(≈) 72.91(3.77) 75.78(3.36)(+) 51.92(8.19) 55.99(6.05)(≈)
composition 66.36(9.79) 68.34(9.21)(≈) 70.48(7.77) 74.27(5.97)(≈) 52.21(7.40) 51.22(7.79)(≈)

FCR 64.47(6.92) 65.00(6.24)(≈) 52.30(9.37) 50.06(13.36)(≈) 54.98(11.14) 52.45(12.87)(≈)
SharedMeals 63.40(6.11) 61.21(8.85)(≈) 69.63(9.38) 73.28(6.66)(≈) 47.81(9.37) 54.04(6.70)(+)

growth 64.57(6.04) 62.55(7.43)(≈) 59.37(7.06) 69.57(7.22)(+) 54.87(6.13) 58.20(5.37)(+)
assessment 62.99(7.94) 64.62(5.74)(≈) 57.97(5.58) 74.27(10.66)(+) 54.81(7.53) 51.19(6.43)(≈)
histology 59.88(7.19) 59.20(7.84)(≈) 71.76(4.26) 73.71(4.48)(≈) 55.89(4.52) 55.04(5.85)(≈)

biometrics 62.98(5.90) 66.93(7.19)(+) 68.20(5.49) 71.28(7.22)(+) 57.48(6.60) 55.67(7.37)(≈)

Table 5.30: The test F1 score of all three trials using the features that have statistical differ-
ences between two health groups.

Datasets Trial 1 Trial 2 Trial 3
All STAT All STAT All STAT

blood 61.01(6.39) 62.90(6.15)(≈) 72.91(3.77) 75.69(3.52)(+) 51.92(8.19) 52.02(6.29)(≈)
composition 66.36(9.79) 68.34(9.21)(≈) 70.48(7.77) 67.92(6.65)(≈) 52.21(7.40) 52.98(6.21)(≈)

FCR 64.47(6.92) 65.80(7.32)(≈) 52.30(9.37) 52.30(9.37)(≈) 54.98(11.14) 54.98(11.14)(≈)
SharedMeals 63.40(6.11) 52.08(8.72)(–) 69.63(9.38) 65.26(10.02)(–) 47.81(9.37) 50.01(6.81)(≈)

growth 64.57(6.04) 63.38(6.41)(≈) 59.37(7.06) 39.18(5.88)(–) 54.87(6.13) 54.59(5.60)(≈)
assessment 62.99(7.94) 62.08(7.64)(≈) 57.97(5.58) 51.80(6.78)(–) 54.81(7.53) 54.52(5.80)(≈)
histology 59.88(7.19) 61.73(8.08)(≈) 71.76(4.26) 63.16(5.84)(–) 55.89(4.52) 56.50(5.00)(≈)

biometrics 62.98(5.90) 55.78(7.37)(–) 68.20(5.49) 57.33(4.61)(–) 57.48(6.60) 54.59(5.60)(≈)

Table 5.31: The test F1 score of all three trials using the features that have statistical differ-
ences between two health groups.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

The project embarked on an in-depth exploration across multiple datasets, starting from
the data preprocessing step until machine learning with feature selection step. The over-
arching goals shown below, including enhancing feature selection for improved predictive
outcomes were successfully achieved, cementing the project’s significance in the realm of
data analytics and machine learning.

Initially, the extensive datasets collected provided a rich foundation for analysis. Critical
to the success of subsequent exploration was the meticulous preprocessing undertaken. The
quality of the data was enhanced, ensuring noise reduction and normalization of feature
scales. Through a comprehensive cleansing process, missing values were effectively man-
aged, and potential outliers were addressed, thus optimizing the data for subsequent ana-
lytical stages. This rigorous data processing stage set the stage for meaningful insights and
highlighted the importance of clean and prepared datasets in the machine learning pipeline.

The EDA phase provided invaluable insights into the underlying structure and patterns
within the data. By visualizing the distributions, correlations, and potential relationships
among features, a deeper understanding of the datasets was established. Through tech-
niques like scatter plots, histograms, and heatmaps, intrinsic characteristics, and anomalies
were identified. This chapter was not just about revealing patterns but also about identi-
fying potential pitfalls and challenges that might arise during modeling. By investigating
datasets, the EDA set the stage for a more informed approach to feature selection, empha-
sizing the necessity to approach each dataset with a tailored strategy.

Building upon the insights from EDA, the feature selection phase delved into optimizing
models by identifying the most influential variables. Through multiple trials, the efficacy of
various methods - filter, wrapper, and embedded - was applied. While certain datasets flour-
ished under one method, others presented challenges, revealing the method’s sensitivity to
dataset characteristics and algorithm choices. The intersection of filter methods appears to
possess a broad generalization capability, as it can effectively select important features in
approximately half of the datasets. The embedded method’s integrated approach to feature
selection within model training showcased its potential but also revealed its sensitivity to
dataset nature and algorithm choice. Notably, the wrapper method often emerged as the
most adept at aggressive feature reduction while maintaining performance. In summary,
we successfully identified the important features of all datasets and achieved a superior or
statistically equal F1 score with these features. Through our efforts, it became clear that
while traditional statistical methods hold value in specific contexts, the machine learning
feature selection methods present a more adaptive and often superior alternative in most
scenarios.

51



A general observation reveals that the accuracy, as indicated by the F1 scores, remains
commendably high across the datasets and trials. Notably, values such as 75.78 in the
”blood” dataset during Trial 2 and 74.27 in both the ”composition” and ”assessment” datasets
are particularly striking. The overarching trend indicates that the application of machine
learning feature selection often leads to competitive, if not superior, F1 scores compared to
using all features across the trials. This pattern indicates the efficacy and potential of ma-
chine learning with feature selection methods in discerning and utilizing influential features
to achieve optimal classification outcomes.

6.2 Future Work

We have identified the following list of tasks for future work.

Pre-processing Process For the preprocessing phase, there exist several methodologies
that have not been explored in this study but may potentially enhance model performance.
Future work may consider implementing these additional preprocessing techniques to as-
certain their impact on improving the predictive accuracy and robustness of the model.

Data Integration In preceding chapters, various methods have been applied to individ-
ual datasets without exploring the possibility of integrating these datasets into fewer or a
singular consolidated dataset. Two viable approaches for future investigation include: (1)
merging features within the same collection, and (2) merging instances within the same trial.
Additionally, with another trial currently underway and yielding more data, the endeavor
of integrating datasets post-collection of new data is a worthwhile pursuit that promises to
offer valuable insights and enhance the robustness of the model’s predictive capabilities.

Feature Engineering There is a potential for exploring feature engineering to either cre-
ate new features or modify existing ones, thereby enhancing their information content[57].
However, caution should be exercised to avoid being overly stringent in feature selection.
Over-aggressive trimming of features may lead to the omission of those that are crucial for
interpreting complex datasets, undermining the model’s predictive prowess in the process.
A viable approach entails presenting the selected significant features to domain experts and
soliciting their insights regarding the potential relationships and interdependencies among
these features.

Resampling Techniques Resampling is a crucial technique that is worth further explo-
ration, specifically focusing on the oversampling of minority classes and undersampling
of majority classes [14]. This approach aims to address class imbalance, which is a com-
mon issue in dataset preparation. By creating a balanced dataset, standard classification
approaches can shatter all classes adequately, thereby improving the model’s predictive ac-
curacy. This method has already been applied in the biology area[24].

However, such techniques are not utilized in this study. Techniques such as the over-
sampling, while useful, have the potential to introduce bias into the model due to their
alteration of the class distribution within the dataset[89]. To the best of our knowledge, part
of the data employed in this study represents the inaugural collection of data pertaining to
King Salmon. This data is not only pivotal for the current analysis but also invaluable as
a reference for future studies seeking to understand the baseline levels of various features
in King Salmon. Consequently, each data instance is of paramount importance. Techniques
that under-sample the majority class by removing instances can inadvertently lead to the
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loss of crucial information. Similarly, methods that generate synthetic samples, exemplified
by SMOTE[55], may precipitate overfitting, as the model becomes excessively tailored to the
training data. Given that our preliminary results indicate a tendency towards overfitting
in more than half of the datasets analyzed, the selection of appropriate methods warrants
careful consideration and deliberation.

Anomaly Detection Anomaly detection[12] is another area that necessitates deeper inves-
tigation. Outliers, while ostensibly deviating from the norm, may encapsulate crucial, albeit
infrequent, information instrumental in refining the predictive accuracy of the model. In
this study, we do not remove any outliers. The main reason is that the absence of established
reference levels impedes the effective identification of outliers, rendering traditional statis-
tical methods, such as the Interquartile Range (IQR), somewhat constrained and limited in
their applicability [54]. Consequently, a collaborative discourse with researchers affiliated
with the Cawthron Institution is imperative to facilitate a more nuanced understanding and
treatment of outliers within the dataset.

High dimensional Visualization Currently, the 2 dimension visualization seems not enough
for our datasets like Figure 4.4, which could not separate the two classes well. The visual-
ization techniques not only offer intuitive insights into intricate datasets but also facilitate
the identification of patterns, clusters, and anomalies that might be obscured in higher di-
mensions. Thus, we should seek for high dimensional visualization methods.

Ensemble Feature Selection Methods Ensemble feature selection methods adeptly ad-
dress the constraints inherent to individual feature selection algorithms that rely on dis-
parate selection criteria, thereby generating feature subsets through the amalgamation of
various feature selection outcomes. These ensemble techniques, which incorporate filter,
wrapper, and embedded feature selection methodologies, have demonstrated superior per-
formance compared to singular methods when applied to medical datasets[15, 4]. By har-
nessing the strengths of multiple selection criteria, ensemble feature selection methods offer
a robust and comprehensive approach to identifying pivotal features, thereby enhancing the
reliability and efficacy of the resultant predictive models.

Ensemble Evaluation The application of ensemble methods, specifically bagging and boost-
ing, can be explored further to improve the imbalance in the dataset. These techniques,
known for their ability to enhance model performance, can be particularly useful in ad-
dressing the challenges posed by complex datasets. For instance, Random Forests (RF), a
prominent ensemble method, has garnered widespread application in the fields of biology
and bioinformatics for tasks encompassing feature selection and classification[9]. Besides,
the evolutionary computation approaches, such as the GA-based feature selection method
for ensemble classifiers also worth trying[87].

These techniques offer promising potential for enhancing the robustness and accuracy of
health prediction models for King Salmon, warranting further investigation and application
in future research endeavors.
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