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Abstract

Linear genetic programming (LGP) is an effective evolutionary compu-
tation method for searching symbolic solutions. It has been successfully
applied to classification and symbolic regression problems and has shown
superior performance in these problems because of its linear representa-
tion. However, existing studies have not applied LGP to design decision
rules for dynamic combinatorial optimization problems. Designing deci-
sion rules for dynamic combinatorial optimization problems is substan-
tially different from classification and symbolic regression problems (e.g.,
no target outputs and limited training instances), which poses new chal-
lenges to existing LGP studies. This thesis aims to propose advanced LGP
methods and apply them to solve dynamic job shop scheduling (DJSS), a
representative dynamic combinatorial optimization problem. More specif-
ically, the overall goal of this thesis is to design LGP methods as a hyper-
heuristic (GPHH) method for designing decision rules for DJSS. Our con-
tributions focus on six aspects.

First, this thesis develops an LGP-based hyper-heuristic (LGPHH)
framework to effectively train LGP based on DJSS training instances. The
LGPHH framework evolves based on a generational framework and ini-
tializes registers by diverse features. The results show that the proposed
LGPHH method has a superior performance to a basic tree-based GPHH
method and can design more compact decision rules than the tree-based
one.

Second, this thesis designs new graph-based search mechanisms for
enhancing LGP performance. Specifically, we first investigate an effective
way to transform the search information in graphs to LGP instructions.



Based on the designed graph-to-instruction transformation, this thesis fur-
ther proposes a multi-representation GP. The case study of tree-based and
linear-based representation shows that the multi-representation GP frame-
work significantly improves the performance of GP methods for DJSS.

Third, this thesis proposes a grammar-guided LGP method to incor-
porate the domain knowledge of DJSS into LGP search. The grammar-
guided LGP method includes a new grammar system, module context-
free grammar, for defining grammar rules, and a set of grammar-guided
genetic operators for evolving LGP based on the grammar rules. The re-
sults show that the proposed grammar-guided LGP can effectively design
dispatching rules with IF operations to solve complicated DJSS problems.

Fourth, this thesis proposes a fitness landscape optimization method
to automatically optimize the neighborhood structures of LGP solutions
to enhance LGP performance. The analyses on the optimized fitness land-
scape confirm that the proposed method significantly reduces the hard-
ness of LGP fitness landscapes. The empirical results on common DJSS
problems further verify that searching against the optimized fitness land-
scapes has a very competitive performance with advanced methods.

Fifth, this thesis proposes an LGP-based multitask optimization frame-
work based on the multi-output characteristic of LGP to make use of the
interplay among similar DJSS problems. The results show that the pro-
posed LGP-based multitask optimization framework has a superior per-
formance to existing multitask GP methods for DJSS problems.

Finally, this thesis further extends two of the advanced LGP methods
(i.e., the multi-representation GP and the LGP with fitness landscape op-
timization) to symbolic regression problems. The superior performance
for solving symbolic regression problems implies a good generality of the
proposed methods in this thesis to other domains.
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Chapter 1

Introduction

From the first life on the earth, to the towering trees and giant beats, then
to a man taking his first upright steps, Mother Nature has taught us a
vivid lesson of the magical evolution. In artificial intelligence, the power
of evolution helps us explore the unknown, and that is evolutionary com-
putation. From designing spacecraft antennas to synthesizing physical
laws [80,108], evolutionary computation has advanced for decades in arti-
ficial intelligence. In light of these advances, this thesis focuses on apply-
ing an evolutionary computation method, linear genetic programming, to
help human beings design effective decision rules for dynamic combina-
torial optimization problems. Specifically, this thesis proposes advanced
linear genetic programming methods to design decision rules for solving
dynamic job shop scheduling problems.

This chapter begins by introducing the basic idea of genetic program-
ming and dynamic job shop scheduling. Then, this chapter presents the
motivations, research goals, and major contributions of this thesis. Last,

the chapter ends with the organization of this thesis.

1
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1.1 Genetic Programming

Genetic programming (GP) is a big family in evolutionary computation
that directly searches symbolic solution spaces [106]. GP evolves a popu-
lation, which consists of a predefined number of GP individuals. In basic
GP, a GP individual is a computer program represented by a tree-based
structure. GP evolves its individuals to search for competitive computer
programs. The evolution of GP is essentially an iteration that compet-
itive individuals consecutively produce offspring by varying computer
programs to explore the solution space.

GP has shown to be effective in many domains [11]. For example,
GP shows an outstanding performance in designing classifiers for im-
ages [16,54] and documents [63] and synthesizing unknown mathematic
formulas [1,276]. Particularly, GP has shown to be effective in automat-
ically designing decision rules for dynamic combinatorial optimization
problems, which has significantly better performance than the decision
rules designed by human experts [124,273]. In recent years, GP also played
an important role in explainable artificial intelligence [81,134].

There have been many GP methods in existing studies. For example,
cartesian GP [141,142] and other graph-based GP [213,214] represent GP
individuals as graphs. These graph-based GP methods showed an encour-
aging performance in designing circuits [143,144] and searching neural
architectures [146]. Gene expression programming encodes the tree struc-
tures into fixed-length numerical vectors [57,(122]. PushGP [132,219] and
grammar-guided GP [60]61,131,[174] integrate GP algorithms with human
programming languages.

1.1.1 Linear Genetic Programming

This thesis focuses on a prominent GP method, linear genetic program-
ming (LGP) [21]. LGP is a GP variant that encodes computer programs or

mathematical formulas by a sequence of instructions [9)[163]. The term
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R[1] =R[1] +X;
R[0] = R[1] + X,
R[2] = X; X R[3]
R[2] =X, + R[1]
R[3] = R[0] X X
R[1] = R3] + X3
R[0] =R[3] - R[2] XX (X1tXg) —X2/X1

Figure 1.1: An example of LGP programs and its corresponding DAG.

“linear” in LGP has two core meanings. First, an LGP individual is a
sequence of register-based instructions (also known as linear representa-
tion). Second, an LGP individual executes its instructions sequentially to
form a computer program. Fig. is an example of an LGP program
with R[0] as the program output register. It represents a formula that cal-
culates o x (z1 + x9) — x2/x1 by sequentially executing the instructions
and storing the intermediate results into registers. By connecting the in-
put features (i.e., zo to x2) and functions (e.g., + and x) based on registers,
an LGP individual can be represented as a directed acyclic graph (DAG),
as shown on the right of Fig. LGP evolves individuals within a similar
framework to GP but produces offspring in a substantially different way
because of the linear representation.

LGP has some advantages over basic tree-based GP (TGP). First, the
linear representation facilitates LGP to reuse the intermediate results in a
program, which benefits evolving compact computer programs. Second,
the linear representation can define multiple outputs easily. The multi-
ple outputs are necessary for applications such as multi-class classification
and robot control. Third, LGP individuals are closely related to DAGs.
DAGs have a more flexible topology than tree-based structures. Last but
not least, the linear representation represents human computer programs
naturally (i.e., line-by-line), which facilitates our understanding and anal-
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yses of LGP individuals. Nowadays, LGP has been applied to various
domains such as classification [49}[196], symbolic regression [87,212], and
airfoil control [182].

1.2 Dynamic Job Shop Scheduling

Job shop scheduling (JSS) problem is a ubiquitous NP-hard combinatorial
optimization problem [66]. A job shop processes jobs with a set of ma-
chines and outputs products. A job in JSS consists of multiple operations.
The key idea of JSS is to arrange different operations to appropriate ma-
chines with a certain order and timing so that the performance of the job
shop is optimized. The performance of a job shop includes but is not lim-
ited to the makespan of processing all the given jobs, the flowtime of each
job, and the tardiness of processing [156]. Since ]SS is closely interrelated
to manufacturing which is a powerful growth engine of the world [277],
JSS is becoming a hot topic in both academic and practice [36}111,129].

In classic JSS, we know the jobs and machines beforehand. The clas-
sic JSS is thus known as static JSS. However, it is common to have new
coming jobs or have some machines broken down during processing in
real-world production. These cases contribute to a new branch of JSS, dy-
namic JSS (DJSS). DJSS processes jobs in a dynamic environment in which
the information of the scheduling, such as the set of jobs and machines,
will change with the processing. These dynamic events cause DJSS a more
complex problem than static JSS since we have to adjust schedules timely
to improve job shop performance.

1.3 Hyper-heuristics

Hyper-heuristic (HH) methods try to search for suitable scheduling heuris-
tics for a combinatorial optimization problem by selecting or recombining
existing scheduling heuristics [25,44]. Different from heuristic methods
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whose search space consists of solutions (i.e., complete schedules), HH
methods search in a heuristic space given by users. HH methods have
been successfully applied to many applications such as scheduling and
routing [205]. Specifically, the heuristics in JSS are known as dispatch-
ing rules. It has been shown that HH methods can obtain more sophisti-
cated and effective priority dispatching rules than human-designed ones
in many dynamic combinatorial optimization problems such as dynamic
routing [153}239,278], wireless network [5,110,283], and DJSS [3,22,273].

Applying GP as a hyper-heuristic method (denoted by GPHH) is an
important branch of HH methods [205] (i.e., constructive HH methods).
The key idea of GPHH is to apply GP to evolve sophisticated heuristics
based on the given functions and simple heuristics. In DJSS, the evolved
heuristics play the role of dispatching rules to make instant decisions
for dynamic events and construct the final schedule step-by-step. Since
GPHH makes a thorough search on the heuristic space, the automatically
designed heuristics are likely more effective than those manually designed
ones. Furthermore, because of the symbolic representation, the decision
rules evolved by GPHH have a great potential for interpretability. In re-
cent years, GPHH has been extensively applied to DJSS problems and has
shown promising results [53,226,249].

1.4 Motivations

LGP has a number of advantages over basic GP such as easy reuse of in-
termediate results and natural multi-output [50,59], and has shown su-
perior performance in benchmark problems. However, its application to
combinatorial optimization problems is not fully investigated. This the-
sis develops advanced LGP methods from four aspects and applies these
techniques to solve DJSS problems. The detailed motivations of each issue
are introduced below.
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1.4.1 Applying LGP to DJSS

Existing studies hardly apply LGP as HH (denoted by LGPHH) to solve
dynamic combinatorial optimization problems. To consolidate the foun-
dation of the following studies, this thesis first investigates the effective-
ness of basic LGPHH by DJSS. Three reasons motivate the application of
LGPHH for solving DJSS problems.

First, LGP has shown encouraging performance in classification and
symbolic regression. We expect to apply LGP to further improve the ex-
isting GPHH methods for DJSS. Besides, the easy reuse of intermediate
results facilitates LGP to evolve compact rules for DJSS.

Second, the training paradigm of LGPHH for solving DJSS gives in-
sights into the practical application of LGP. The training paradigm of
LGPHH is greatly different from the one in symbolic regression and classi-
fication tasks. For example, the training instances of DJSS are limited and
have no expected outputs or labeled data. Many real-world applications
suffer similar issues and pose challenges to existing LGP studies.

Third, DJSS is closely related to real-world production and can be ex-
tended to many other applications. The wide range of domain knowl-
edge such as the related optimization objectives and their expert-designed
heuristics [189,236] facilitates us to investigate the effectiveness of the
LGP-designed heuristics.

1.4.2 Graph-based Characteristics of LGP

One of the important characteristics of LGP is its graph characteristics. By
connecting primitives based on registers, an LGP individual can be de-
coded into a DAG. Presenting LGP individuals (i.e., programs) by DAGs
has different advantages from a sequence of instructions. Graphs repre-
sent programs in a more compact representation. On the other hand, a se-
quence of instructions enables neutral search in program spaces and mem-

orizes potential building blocks [145/217]. Empirical studies have verified
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that the two LGP representations, graphs and instruction sequences, are
competitive for different tasks [6,[214]. It is valuable to take advantage of
both representations in LGP evolution.

However, existing studies did not fully investigate the LGP graph char-
acteristics. More specifically, the utilization of graphs in LGP is one-way
(i.e., the existing LGP studies mainly consider DAGs as a compact and
intuitive way to depict the programs) [21]. Whether there is an effective
way to use LGP graph characteristics during evolution is unknown yet.
The absence of an effective transformation from DAGs to LGP instructions
precludes LGP from fully utilizing the graph information and cooperating
with other graph-related techniques such as neural networks. To make
full use of LGP graph-based characteristics, this thesis investigates a new
graph-based genetic operator for LGP and develops a two-way transforma-

tion between graphs and LGP programs.

The graph characteristics of LGP further motivate the idea of harness-
ing multiple GP representations during the evolution, in which GP rep-
resentations share knowledge via graphs. Generally speaking, a GP rep-
resentation is expected to be suitable for only a subset of problems. Al-
though some existing studies have investigated the performance of differ-
ent GP representations in solving different problems based on empirical
comparisons [214,244], extending such kind of knowledge to other unseen
domains is difficult, and such investigations are often too time-consuming
and it is hard to cover all different branches and variants of a problem.
When encountering an emerging application or a new problem, users have
scarce domain knowledge in selecting a GP representation. To make full
use of different GP representations and enhance the search performance
of existing GP methods, it would be interesting to investigate whether the

different GP representations can cooperate in solving a single task.
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1.4.3 Incorporating Domain Knowledge in LGPHH

Human experts already have some domain knowledge in both the LGP
and DJSS fields. The domain knowledge consists of both algorithm and
problem sides. On the problem side, domain knowledge can be impor-
tant features for scheduling and the correlation between input features
and decisions. On the algorithm side, LGP particularly, domain knowl-
edge can be the suitable number of registers in different parts of programs
and some known effective sub-programs. The domain knowledge can be

used to shrink the search space and to improve LGP effectiveness.

However, existing studies of LGP and DJSS did not make full use of
the domain knowledge during optimization. Introducing more domain
knowledge in search dispatching rules is a potential topic to enhance
the performance of GPHH methods since it can help reduce the search
space and ensure GPHH methods produce meaningful dispatching rules.
GPHH has a natural advantage in introducing prior knowledge since it di-
rectly constructs a solution by different symbols and these symbols often
have different physical meanings. Developing constraints or search mech-
anisms based on the physical meaning of symbols is a kind of utilization

of domain knowledge.

There have been some advanced techniques to fully utilize such kind
of knowledge in DJSS such as grammar-guided methods [131,151] and
dimensionality aware methods [136]. However, the existing techniques
are mainly designed based on TGP and they cannot be extended to LGP
directly. Although LGP has undergone decades of development and has
been applied successfully to some problems of classification and symbolic
regression [21]], few studies endeavor to develop effective methods to fully
utilize the problem-specific knowledge for LGP rules.
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1.4.4 Fitness Landscape of LGP

A fitness landscape (FL) is a surface that reflects the fitness of all the pos-
sible solutions in a search space [105]. A FL plays a crucial role in genetic
programming search. A smoother FL with less local optima (e.g., an uni-
modal landscape) normally implies an easier search problem.

In recent years, many advanced techniques successfully enhanced GP
search performance by designing better FLs. For example, multitask GP
[267] helps GP jump out from local optima by cooperating with similar
landscapes. Feature selection [30] and frequency-based operators [259]
change the neighborhood structures (e.g., one-hop mutation) so that GP
prefers particular neighbors with a large number of certain features. How-
ever, these manually enhanced fitness landscapes need very specific do-
main knowledge and strong assumptions. For example, in multitask GP,
we have to find two (or more) correlated tasks whose fitness landscapes
are synergic. In frequency-based mutation, we have to assume that the
effective solutions include an effective primitive multiple times, which
might not be the case in some applications (e.g., in program synthesis,
a program repeats a primitive by looping [238])). It is tedious for human
experts to design better FLs. In light of this concern, this thesis intends
to propose an approach to automatically design better FLs for LGP, which
ultimately enhances LGP performance.

1.4.5 Multi-output LGP for Multitask Optimization

Multitask optimization simultaneously optimizes multiple similar tasks
to share the search information [71,246]. The search information among
similar tasks improves the effectiveness of optimization methods. LGP in-
dividuals have a great advantage in defining multiple outputs and reusing
common building blocks, which are useful in multitask optimization.
There have been different multitask optimization techniques developed
for GPHH methods [180,267]. However, many of the existing multitask
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techniques are designed based on tree-like structures that only have one
output. Although these existing multitask techniques can also be applied
to LGP to improve its performance, they cannot fully utilize the advan-
tages of LGP (i.e., the multiple outputs and the easy sharing of common
building blocks inside dispatching rules). For example, existing multitask
GPHH methods set up multiple sub-populations to solve different DJSS
problems and share common building blocks among tasks by duplicat-
ing them in different individuals. Contrarily, LGP dispatching rules easily
have more than one output, and these outputs share common building
blocks within one individual naturally. It is potential for LGP rules to
have a concise representation. To fully utilize the characteristics of LGP,
specific techniques, such as the training paradigm, the genetic operators,
and the chromosome representation, should be re-designed to efficiently

evolve LGP individuals in multitask paradigm.

1.5 Research Goals

The overall goal of this thesis is to develop an effective LGPHH method to
design effective and trustworthy decision rules for DJSS problems. There
are five main research objectives in the thesis which are established respec-
tively based on the motivations mentioned above.

Objective 1: Develop an LGPHH approach based on the training
paradigm of HH methods for solving DJSS problems.

This objective aims to develop an LGPHH algorithm for solving DJSS
problems. Specifically, this LGPHH algorithm applies a generational evo-
lutionary framework to fit with the training paradigm. The LGPHH is
expected to verify the advantages of LGP methods by having a better per-
formance than basic GPHH methods. The LGPHH serves as a baseline for
the following objectives.

Objective 2: Develop new search mechanisms to make full use of the
graph-based characteristics of LGP.
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This objective first proposes a graph-based crossover and mutation to
highlight the effective building blocks in LGP parents based on DAGs. It
is expected that LGPHH can find effective offspring more efficiently by
emphasizing effective building blocks when producing offspring.

Second, this objective proposes a transformation method between graphs
and LGP instructions to convert DAGs into LGP building blocks effec-
tively. Specifically, this objective aims to propose three transformation
ways which are based on the primitive frequency, the adjacency table, and
the adjacency list of a DAG. Then, we investigate these possible transfor-
mations to find an effective one from DAGs to LGP building blocks.

Finally, based on the previous findings in this objective, a multi-
representation evolutionary framework that simultaneously evolves TGP
and LGP individuals is proposed. TGP and LGP have very different pro-
gram representations and are effective for different problems. The pro-
posed evolutionary framework is expected to obtain more diverse build-

ing blocks and have a higher chance of finding better solutions.

Objective 3: Develop LGP-specific grammar-guided techniques for
enhancing LGPHH for DJSS by domain knowledge.

The objective aims to develop a grammar-guided LGPHH algorithm
for incorporating domain knowledge when solving DJSS problems. First,
to extend the grammar-guided techniques to the linear representations of
LGP, the proposed algorithm has a new grammar system to specify “le-
gal” instructions and registers. Second, based on the domain knowledge
of DJSS problems, a new set of grammar rules is designed within the new
grammar system. Third, specific grammar-guided genetic operators are
proposed to produce grammatically correct offspring in the new grammar-
guided LGPHH algorithm. The proposed grammar-guided LGPHH is ex-
pected to have better training efficiency and test performance than the ba-
sic LGPHH.

Based on the grammar-guided LGPHH, this objective intends to fur-
ther introduce flow control operations into LGP primitive sets and apply
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grammar-guided techniques to reduce the search space. Given that simply
introducing flow control operations into LGP primitive sets brings a large
number of redundant solutions, it is necessary to apply grammar-guided
techniques to restrict the search space. The introduction of flow control
operations are expected to enhance the performance of dispatching rules
when solving complicated job shop scenarios, such as the scenarios with

floating energy prices.

Objective 4: Develop a fitness landscape optimization method to au-

tomatically reduce the hardness of LGP fitness landscapes.

This objective aims to develop an algorithm to automatically optimize
FLs of LGP. Specifically, we first index the instructions of LGP and then
optimize the indexes to improve FLs. The optimized FL aggregates good
solutions and separates good and bad solutions. It is expected that the pro-
posed algorithm can reduce the hardness of FLs automatically by making
FLs smoother and reducing their local optima. Based on the optimized
titness landscape, this objective further develops a new search mechanism
for LGP which directly searches LGP solutions against the optimized fit-
ness landscape. The search mechanism is expected to enhance LGP per-

formance.

Objective 5: Develop an LGP-based multitask training paradigm to
improve the effectiveness of LGP rules in solving multiple DJSS tasks.

This objective aims to develop an LGP-based multitask optimization
paradigm based on the multi-output characteristic of LGP for solving mul-
tiple DJSS scenarios simultaneously. Specifically, the proposed multitask
LGPHH algorithm evolves a sub-population of shared individuals among
tasks. The shared individuals among tasks have multiple outputs, each
for a task. By inherently sharing common building blocks within LGP
individuals with multiple outputs, it is expected that the proposed algo-
rithm can automatically adjust the knowledge-sharing rate among tasks
and improve the efficiency of the multitask optimization. To improve the

knowledge-sharing effectiveness, new genetic operators that integrate ef-
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fective building blocks from different tasks are also designed.

1.6 Major Contributions

This thesis makes the following contributions:

1. This thesis has shown that applying LGP as an HH method to de-
sign dispatching rules for DJSS problems has a superior performance
to the basic tree-based GPHH method, in terms of the test perfor-
mance of evolved dispatching rules. The results on program size also
verify that the dispatching rules represented by LGP are more com-
pact than those represented by basic tree-base GP because of reusing
building blocks. The results show great potential for using LGP to
design dispatching rules for DJSS problems.

To improve LGP performance, this thesis gives several important
adaptations of LGP when applying to DJSS problems. First, we ap-
ply a generational evolutionary framework to evolve LGP under the
training paradigm of HH methods. Second, with the same number
of fitness evaluations, we find that a small LGP population and a
large number of generations are more suitable for LGPHH than a
large LGP population and a small number of generations. Third, we
identify a mutation-dominated setting for balancing the genetic op-
erator rates between mutation and crossover to improve the training
efficiency of LGPHH. Fourth, we initialize registers by diverse input
features of DJSS problems to further improve the training efficiency

of LGPHH with the limited number of fitness evaluations.
Part of this contribution has been published in:

Zhixing Huang, Yi Mei, and Mengjie Zhang, “Investigation of Lin-
ear Genetic Programming for Dynamic Job Shop Scheduling,” in Pro-
ceedings of IEEE Symposium Series on Computational Intelligence, 2021,

pp. 1-8.
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Zhixing Huang, Yi Mei, Fangfang Zhang, and Mengjie Zhang, “A
Further Investigation to Improve Linear Genetic Programming in
Dynamic Job Shop Scheduling,” in Proceedings of IEEE Symposium Se-
ries on Computational Intelligence, 2022, pp. 496-503.

. This thesis shows how the use of graph information of LGP can en-

hance DJSS performance, including highlighting effective building
blocks by graph-based crossover and mutation, transforming DAGs
into LGP instructions based on adjacency lists, and harnessing mul-

tiple GP representations based on their graph representations.

The results show that highlighting effective building blocks based
on graphs significantly improves the test performance of LGPHH
and has a better training efficiency. The following investigation on
the possible transformations from DAGs to LGP instructions verifies
that the proposed adjacency list-based crossover is an effective way
to convey the search information from graphs to LGP instructions.
To fulfill the graph-to-instruction transformation, a register assign-
ment algorithm is developed, which has been shown to be effective
in reconstructing the topological structures without significant loss
of program effectiveness. The empirical results on unseen data ver-
ity that the proposed adjacency list-based crossover has a compet-
itive test performance by directly conveying search information in
effective LGP instructions. The investigation also highlights that the
effectiveness of making full use of graph-based information becomes
more significant when there are more flexible topological structures

of graphs (e.g., higher and wider graphs).

Based on the graph-to-instruction transformation, a multi-representation

GP method based on tree-based and linear representation, named
MRGP-TL, is developed. The experimental studies on DJSS prob-
lems show that the proposed MRGP-TL significantly improves the

performance of GP methods without considering the interplay among
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different representations. Further analysis shows that MRGP-TL has
a very competitive performance with state-of-the-art GPHH in solv-
ing DJSS problems. To the best of our knowledge, this work is the
first work highlighting that the interplay among different GP repre-
sentations is useful for improving GP performance.

Part of this contribution has been published in:

Zhixing Huang, Yi Mei, Fangfang Zhang, and Mengjie Zhang, “Graph-
based linear genetic programming: a case study of dynamic schedul-
ing,” in Proceedings of the Genetic and Evolutionary Computation Confer-
ence, 2022, pp. 955-963.

Zhixing Huang, Yi Mei, Fangfang Zhang, Mengjie Zhang, and Wolf-
gang Banzhaf, “Bridging Directed Acyclic Graphs to Linear Repre-
sentations in Linear Genetic Programming: A Case Study of Dy-
namic Scheduling,” Genetic Programming and Evolvable Machines, vol
25, no 1, article number 5, 2024, d0i:10.1007 /s10710-023-09478-8.

Zhixing Huang, Yi Mei, Fangfang Zhang, Mengjie Zhang, and Wolf-
gang Banzhaf, “Multi-Representation Genetic Programming: A Case
Study on Tree-based and Linear Representations,” Submitted to Evo-
lutionary Computation.

3. This thesis develops a grammar-guided LGP algorithm for solving
DJSS problems based on the domain knowledge. Specifically, this
thesis develops a module context-free grammar system for defining
grammar rules for LGP and gives example grammar rules for solv-
ing DJSS problems. A set of grammar-guided genetic operators is

developed accordingly to produce offspring based on the grammar.

The results show that the proposed grammar-guided LGP has better
training efficiency than basic LGP, and can produce solutions with
good interpretability. Further analyses show that grammar-guided
LGP significantly improves the overall test performance when the

search space of LGP becomes larger.
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Based on the proposed grammar-guided LGPHH, this thesis further
introduces flow control operations when designing dispatching rules
for DJSS. Specifically, the thesis proposes a new set of normalized
terminals for DJSS problems and further proposes a set of grammar
rules to restrict the available inputs, the number, and the locations of
IF operations. The results show that IF operations are crucial for dis-
patching rules to solve complex problems and using grammar rules
to restrict the usage of IF operations in LGPHH is an effective way to
harness IF operations.

Part of this contribution has been published in:

Zhixing Huang, Yi Mei, Fangfang Zhang, and Mengjie Zhang, “Grammar-

guided Linear Genetic Programming for Dynamic Job Shop Schedul-
ing,” in Proceedings of the Genetic and Evolutionary Computation Confer-
ence, pp. 1137-1145, 2023. [GP Track Best Paper Award]

Zhixing Huang, Yi Mei, Fangfang Zhang, and Mengjie Zhang, “To-
ward Evolving Dispatching Rules With Flow Control Operations By
Grammar-Guided Linear Genetic Programming,” IEEE Transactions
on Evolutionary Computation, pp. 1-15, 2024,
doi:10.1109/TEVC.2024.3353207.

. This thesis proposes a fitness landscape optimization (FLO) method

for LGP to automatically reduce the hardness of FLs in DJSS. Specifi-
cally, we index the GP symbols and optimize FLs based on the in-
dexes of GP symbols. The symbol indexes define new neighbor-
hood structures of LGP solutions. The proposed method optimizes
three aspects of the landscapes, including minimizing the distance
between good solutions, maximizing the distance between good and
bad solutions, and minimizing the gap between the optimized in-

dexes and the preferred indexes based on domain knowledge.

The thesis applies four common FL metrics to analyze the hardness
of the optimized FLs. The results show that the proposed method
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significantly reduces the hardness of fitness landscapes. Our visual-
ization results further confirm some empirically recommended pa-
rameter settings in existing LGP literature and discover two interest-
ing patterns of the optimized fitness landscapes. The results on DJSS
verify the effectiveness of the FLO method.

To the best of our knowledge, this work is the first attempt to ex-
plicitly optimize the FLs of LGP automatically. The proposed FLO
method is general enough to apply to other GP methods. Our ex-
periments on four common FL metrics also facilitate further inves-
tigations of the correlation of these FL metrics, which is missed by
existing FL analysis studies. The two newly discovered patterns of
FLs give insights into LGP search. Particularly, the insight of in-
struction positions implies a potential genetic operator of LGP, that is
swapping consecutive instructions, which is missed by existing LGP
studies.

Part of this contribution has been published in:

Zhixing Huang, Yi Mei, Fangfang Zhang, Mengjie Zhang, and Wolf-
gang Banzhaf, “Fitness Landscape Optimization Makes Genetic Pro-
gramming Search Easier,” Submitted to IEEE Transactions on Pattern
Analysis and Machine Intelligence.

5. This thesis proposes a multitask LGPHH method for simultaneously
solving multiple DJSS problems. Specifically, the proposed multitask
LGPHH evolves based on a multi-population framework. The first
sub-population integrates solutions for different DJSS problems into
one LGP individual with multiple outputs, each output for one DJSS
problem. The first sub-population evaluates multiple DJSS problems
simultaneously. The integrated solutions in the first sub-population
share common building blocks and transfer knowledge via multi-
output individuals. Based on the newly proposed multitask evolu-

tionary framework, this thesis further proposes a new genetic opera-
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tor to merge effective building blocks from different tasks into a new

one.

The results show that the proposed method has a significantly better
test performance than state-of-the-art multitask GP methods, and the
proposed genetic operator has a crucial effect on improving the test
performance. Further analyses verify that the new knowledge trans-
fer mechanism can adjust the transfer rate automatically during evo-
lution and thus has superior effectiveness to the knowledge trans-
fer mechanisms with fixed transfer rates. The proposed knowledge
transfer mechanism not only enriches the methodologies in trans-
terring knowledge but also provides an effective example of design-
ing graph-based knowledge transfer. The proposed algorithm can be
easily extended to other domains such as classification and symbolic

regression.
Part of this contribution has been published in:

Zhixing Huang, Fangfang Zhang, Yi Mei, and Mengjie Zhang, “An
Investigation of Multitask Linear Genetic Programming for Dynamic
Job Shop Scheduling,” in Proceedings of European Conference on Genetic
Programming, pp. 162-178, 2022. [Best Paper Award]

Zhixing Huang, Yi Mei, Fangfang Zhang, and Mengjie Zhang, “Mul-
titask Linear Genetic Programming with Shared Individuals and its
Application to Dynamic Job Shop Scheduling,” IEEE Transactions on
Evolutionary Computation, pp. 1-15, 2023,

doi: 10.1109/TEVC.2023.3263871.

1.7 Terminology and Abbreviations
Below are the definitions of the terms commonly used in this thesis:

1. A genotype is a sequence of LGP instructions. The genotype of an
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LGP individual is inherited from its parents and is changed by ge-

netic operators.

2. A phenotype is the effective part of an LGP individual, which essen-
tially determines the final output of an LGP program. It is observ-
able. The decoded DAG of an LGP individual, which represents the
core primitives and their connections, is a kind of phenotype.

3. An intron is an LGP instruction that does not contribute to the final
program output of an LGP individual. Removing the introns from
the LGP individual will not affect the outputs.

4. An exon is an LGP instruction that contributes to the final program
output of an LGP individual. Exons are the complementary part of
introns in an LGP individual.

5. A simulation is the process that simulates the working environment
of a DJSS problem. A simulation of DJSS simulates the job processing
in a job shop. The randomly generated jobs come into the job shop
and are processed by the machines in the job shop. The simulation
performance is regarded as the objective value.

6. An instance is a specific simulation instance with a fixed random
seed.

7. A scenario represents a set of simulation instances with the same
problem configuration, e.g., the same objective and utilization level
in DJSS. Different scenarios might have different difficulty levels for
optimization methods.

8. A task is equivalent to a scenario. We use the term “task” to demon-
strate an optimization problem for LGPHH. Solving different scenar-
ios simultaneously is a multitask learning problem.

Table shows the common abbreviations and their full names or
meanings in this thesis.
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Table 1.1: Abbreviations and their meanings
Abbreviations | Full Names or meaning
LGP Linear Genetic Programming
TGP Tree-based Genetic Programming
DJSS Dynamic Job Shop Scheduling
HH Hyper-Heuristics
Tmax Maximum Tardiness
Tmean Mean Tardiness
WTmean Weighted Mean Tardiness
Fmax Maximum Flowtime
Fmean Mean Flowtime
WFmean Weighted Mean Flowtime
PT The processing time of an operation (refer to Table
WKR The total remaining processing time of the job (refer to
Table
DAG Directed Acyclic Graph
ALX Adjacency List-based Crossover
MRGP Multi-Representation Genetic Programming
FL Fitness Landscape
G2LGP Grammar-guided Linear Genetic Programming
MCFG Module Context-Free Grammar
FLO Fitness Landscape Optimization
MTGP Multitask Genetic Programming
RSE Relative Square Error
Avg. Average
std. Standard deviation

1.8 Organization of Thesis

Fig. shows the outline of this thesis, including the main goals (listed
with v') and involved techniques (listed with e) in each chapter, and the
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connections between the chapters in this thesis. The remainder of this
thesis is organized as follows. An overview of each chapter is shown in
Fig. Specifically, the major contribution chapters (i.e., chapters 3 to
7) take advantage of LGP characteristics (e.g., building block reusing and
multi-output) and different levels of search information (i.e., genotype,
phenotype, and fitness landscapes) to enhance GPHH performance.

Chapter 2 presents the literature review, including the basic concepts
of LGP and DJSS problems. Then, this thesis discusses the basic frame-
work of applying LGP-based HH to solve DJSS problems, followed by the
related work of the LGP, the approaches for DJSS, and the four objectives.

Chapter 3 describes the application of basic LGPHH to solve DJSS
problems. Chapter 3 mainly verified the superior performance of basic
LGP based on its advantages. Specifically, chapter 3 first introduces the
algorithm components of basic LGPHH in detail. Then, chapter 3 inves-
tigates the settings of LGP population size and generation numbers, the
variation step size, and the initialization strategies. The results recom-
mend a suit of effective settings of LGP and verify that LGPHH has a bet-
ter test performance and a more compact representation than tree-based
GPHH. This chapter mainly applies the basic LGP and hyper-heuristics
techniques.

Chapter 4 describes advanced search mechanisms based on the graph-
based characteristics of LGP. Specifically, chapter 4 first describes graph-
based genetic operators that highlight the effective building blocks. In
addition, chapter 4 investigates three possible transformations to con-
vert graph information into LGP instructions. Based on the investiga-
tion, chapter 4 further describes the multi-representation GP method. The
results show that making full use of graph-based features improves the
training efficiency and test performance of LGP This chapter mainly con-
siders DAGs and adjacency lists of graphs.

Chapter 5 describes a grammar-guided LGPHH method for solving
DJSS problems. Specifically, chapter 5 first introduces a grammar-guided
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LGPHH with the proposed module context-free grammar system, fol-
lowed by a set of grammar rules for enhancing LGP performance. Based
on the proposed grammar-guided LGPHH, chapter 5 introduces flow con-
trol operations into the LGP primitive set and develops corresponding
grammar to reduce the redundant solutions caused by flow control op-
erations. The results show that the grammar rules designed based on
the domain knowledge of DJSS improve the test effectiveness and train-
ing efficiency of LGPHH. Besides, the proposed method improves the
interpretability of the output rules. The flow control operations signifi-
cantly improve LGPHH performance for solving complex DJSS problems.
This chapter mainly applies grammar-guided techniques and considers
the flow control operations in LGPHH.

Chapter 6 describes a fitness landscape optimization method for ge-
netic programming. Specifically, chapter 6 first introduces a generic fit-
ness landscape optimization algorithm that automatically improves the
neighborhood structures. Second, chapter 6 applies LGP as a case study
to investigate the effectiveness of the proposed method. The results show
that the proposed fitness landscape optimization algorithm significantly
reduces the hardness of fitness landscapes. This chapter mainly applies
stochastic gradient descent for optimization and fitness landscape metrics

for analysis.

Chapter 7 describes an LGP-based multitask optimization method for
DJSS problems. Chapter 7 first describes a multi-population evolutionary
framework for evolving multi-output LGP individuals. Then, chapter 7
proposes a genetic operator that transfers knowledge among tasks. The
empirical results show that the multitask LGPHH significantly improves
the training efficiency and test performance of existing multitask GPHH
methods.

Chapter 8 extends the proposed advanced LGP methods to symbolic
regression problems to investigate their potential generality. Chapter 8 fo-
cuses on the proposed multi-representation GP method in chapter {4/ and
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the fitness landscape optimization method in chapter [f]since the effective-
ness of these two methods is less dependent on domain knowledge of
DJSS. The results suggest that the two proposed advanced LGP methods
have good potential generality to other domains.

Chapter 9 summarizes the achieved objectives and the main conclu-
sions of this thesis. Some discussions and future research directions are

also presented in this chapter.
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Chapter 2
Literature Review

This chapter first introduces the basic concepts in evolutionary algorithms,
LGP, dynamic job shop scheduling, and hyper-heuristics. Second, the
chapter introduces the existing studies of LGP, ]SS, and GPHH for DJSS,
respectively. Last, the chapter discussed the related studies for the re-
search goals in this thesis in detail.

2.1 Basic Concepts

2.1.1 Evolutionary Algorithms

The evolutionary algorithm is a kind of artificial intelligence algorithm
that borrows the idea of biological evolution to search for problem solu-
tions [7,(147]. Fig. shows the overall framework of an evolutionary
algorithm. An evolutionary algorithm first initials a population of indi-
viduals, each representing a problem solution. In each generation, these
individuals are evaluated by a fitness function (i.e., fitness evaluation),
and better individuals have more chances to be parents and produce off-
spring. The production of offspring is based on genetic operators such as
mutation and crossover. The algorithm iterates multiple generations until

stopping criteria (e.g., reaching the maximum number of generations) are

25
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Initialize the Fitness
population evaluation

Parent selection and
offspring production

Output the best
solution

Stopping criteria

Figure 2.1: The overall framework of evolutionary algorithms.

satistied and outputs the best individual. This search mechanism makes
the evolutionary algorithm a gradient-free optimization method, which is
necessary for many real-world problems that hardly have differentiable
mathematical models. It has shown that the evolutionary algorithm is an

effective stochastic search paradigm for a wide range of problems.

The evolutionary algorithm has two main evolutionary frameworks,
generational and steady-state evolutionary algorithms [98]. Generational
evolutionary algorithms produce nearly a whole population of offspring
to replace the old population at every generation. On the contrary, steady-
state evolutionary algorithms produce a small number of offspring each
time and only replace the solutions with worse fitness in the population.
These two evolutionary frameworks have their pros and cons. For exam-
ple, generational evolutionary algorithms usually have a higher diversity,
while steady-state evolutionary algorithms usually have a quicker conver-

gence.

There are four main branches of evolutionary algorithms. They are
genetic algorithm [79], evolution strategy [15], GP [106], and evolutionary
programming [58]. This thesis focuses on LGP, a variant of GP.
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2.1.2 Linear Genetic Programming
Evolutionary Framework

The evolutionary framework of LGP in this thesis is the generational evo-
lutionary algorithm [214]. LGP starts with randomly initializing the LGP
population. If the stopping criteria (e.g., the maximum number of gener-
ations and the maximum running time) are not satisfied, all of the LGP
individuals will be evaluated based on the predefined fitness function and
the training data. To produce offspring, LGP conducts parent selections to
pick up parent individuals from the population and choose different ge-
netic operators (e.g., macro mutation, crossover, and micro mutation) to
variate the parent individuals based on a certain probability distribution.
The distribution is usually predefined manually and the rate of macro mu-
tation and crossover usually take a large proportion. LGP applies these
genetic operators exclusively. After generations of evolution, the best-of-
run individual (i.e., the individual with the best fitness on training data)
will be outputted. The components of the evolutionary framework are
introduced in detail below.

Individual Representation

Every LGP individual f is a sequence of register-based instructions f =
[fo, [1, s fio1], 1 € [lmins lmnaz), Where [ is the number of instructions, and
Lin and [,,,,, are the minimum and maximum number of instructions re-
spectively. Every instruction f has three parts: destination register Ry 4,
function funy(-), and source registers R;,. All of the destination and
source registers come from the same set of registers R. Note that con-
stants (e.g., input features) in LGP programs are treated as a kind of read-
only registers, which only serve as source registers. An instruction reads
the values from source registers, performs the calculation indicated by the
function, and writes the calculation results to the destination registers. Re-

writable registers are known as calculation registers. In every program
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execution, the registers are first initialized by certain values such as “1.0”,
and the instructions are executed one by one, from f; to f;_;, to represent
a complete computer program. The final output of the computer program
is stored in a pre-defined output register, which is normally set to the first
register by default.

However, not all instructions contribute to the final output. When an
instruction is not connected with the program body producing the final
output, or the instruction can be removed without affecting the program
behavior, the instruction becomes ineffective in calculating the final out-
put. The ineffective instructions are also called “introns”. Contrarily, the
instructions that participate in the calculation of the final output are de-
fined as effective instructions, which are also called “exons”. Specifically,
the term “intron” in this thesis mainly denotes the structural intron whose
destination register is not used as source registers by the following instruc-
tiond'} Introns and exons can be identified by an algorithm that reversely
checks each instruction in the program based on the output registers [21].

Fig. shows an example of an LGP program and its corresponding
phenotype in DAG. Specifically, there are eighteen instructions in the pro-
gram, but only eleven of the instructions are effective (i.e., exons). The
introns are highlighted in grey, following a double slash. The final output
is returned by the first register R[0]. All of the instructions manipulate a
register set R with eight registers. There are eight input features (i.e., con-
stant registers), denoted Input[0] to Input[7]. The eight registers are ini-
tialized by the eight input features respectively at the beginning of every
execution.

An LGP program can be represented as a DAG. Specifically, the LGP
program itself and the corresponding DAG are also known as the geno-
type and phenotype of LGP, respectively. The instruction sequence is
transformed into a DAG by connecting functions and constants of exons

'We do not consider semantic introns that is a kind of effective instructions but mainly
perform meaningless calculation such as # = x4-0, which does not affect the final output.
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Ins 3: R[1]=min(Input[5], Input[2])

Ins 6: R[6]= max(R[7], R[1])
Ins 7: RJ[2]=Input[0] + R[1]
Ins 8: R[3]= max(R[6], R[2])
Ins 9: RJ[1]=R][3] + Input[0]

Ins 11: R[6]= Input[0] + R[1]

Ins 13: R[0]= R[6] * R[2]
Ins 14: R[1]=R[3] /R[0]
Ins 15: R[6]= Input[7] - R[1]
Ins 16: R[2]=R[0] + R[1]
Ins 17: R[0]= max(R[6], R[2]) Input[7) | [ Input|S] | | Input|2] || Input|o] |

Figure 2.2: An LGP program example and its corresponding DAG.

“Input[-]” are read-only registers, and “R[-]” are calculation registers.

based on the registers [21] (i.e., connecting “+” to “x” in DAG if “+” uses
the register overwritten by “x” as one of its inputs, see instruction 16 and
instruction 13 in Fig. 2.2]). The indexes “1” and “2” indicate the first and
second arguments of a specific function. As shown in the right part of Fig.
the last instruction of the LGP program that overwrites the output reg-
ister (instruction 17 in this example) is seen as the start node in the DAG.
Since the source registers of instruction 17 store the results of instructions
15 and 16 respectively, the start node has two outgoing edges, directing to
two graph nodes (“—" and “+”) respectively. The indices along the edges
indicate the first and second inputs for “max(-)”.

Initialization

LGP initializes individuals in a random manner. Both of the program
length (i.e., the number of instructions) and the instructions are initialized

randomly. Specifically, it is advisable to define an initial maximum and
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minimum program length to limit the initial program length of LGP indi-
viduals to a certain range. Usually, the initial maximum program length is
much smaller than the actual maximum program length in the evolution
to encourage LGP to have a thorough search from short programs to long

ones.

Fitness Evaluation

Evaluation is a problem-specific step that evaluates the fitness of LGP indi-
viduals based on the given training data. Different from basic GP, LGP has
an additional step to initialize all the registers before execution. There are
several ways for register initialization. For example, the registers can be
initialized as some constant values such as “0” and “1”. They can also be
initialized as different input features. Based on some existing studies, ini-
tializing registers into different input features is useful in solving complex
problems [21]. Besides, it is also necessary to define the output registers
tor LGP. The first register is the output register by default without loss of
generality.

Parent Selection

The evolutionary framework adopts two selections in LGP evolution:
tournament selection and elitism selection. Tournament selection ran-
domly samples a certain number (i.e., tournament size) of individuals
from the existing population and only retains the best one among these
sampled individuals as the selected individual. The tournament selection
is used to select parent individuals for generating offspring in LGP. By this
means, some unsatisfactory individuals can also be selected to maintain
the diversity of the LGP population.

Elitism selection is mainly used to protect the superior individuals
from being eliminated in the evolution. Given an elitism rate such as 1%,

the elitism selection picks the best top 1% individuals and retains them
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Figure 2.3: Linear crossover.

directly to the offspring population at the next generation.

Offspring Production

LGP applies genetic operators to produce offspring (i.e., new solutions).
Genetic operators produce offspring by varying LGP parents. There are
three basic genetic operators for LGP, i.e., crossover, macro mutation, and
micro mutation.

The main idea of crossover in LGP is to exchange the instruction seg-
ments between two parent individuals. Linear crossover (also called two-
point crossover) is a typical implementation of crossover [12]. It has three
parameters to control the variation, which are the segment length, the
length difference of the segments, and the distance between crossover
points. Fig. shows the relationship among these three parameters.
Besides the linear crossover, there are other variants of crossover such as
one-point crossover which divides the LGP individual into two parts by
identifying a crossover point and exchanging one of the two parts with

others, and one-segment crossover which accepts an instruction segment
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Figure 2.4: Macro mutation.

from another individual or remove a segment of instructions from the in-
dividual [21].

The macro mutation mainly updates the parent individual by insert-
ing or deleting the instructions in the LGP individuals. The term “macro”
indicates that macro mutation will change the number of instructions in
an LGP program. Basically, a macro mutation accepts one parent indi-
vidual and produces a new one. There are two parameters, the proba-
bility of insertion and deletion (denoted as p;,s and pq4.; respectively, and
Pins + Paet = 1), to control the behavior of macro mutation (i.e., increas-
ing, maintaining, or reducing the program length). By default, only one
instruction will be inserted or deleted from the individual each time. An
illustrative diagram of macro mutation is shown in Fig. Specifically,
a new instruction is inserted to the fourth position in the offspring (i.e.,
shadow one) or the fifth instruction of the parent individual is removed in
the example. There are other variants for macro mutation. For example,
Banzhaf et al. [10] proposed an effective version of macro mutation which
only inserts or deletes effective instructions into (from) LGP individuals.

The micro mutation only updates the primitives in the instructions
such as operations and registers, but does not change the number of in-

structions directly. To mutate different types of primitives, a probability
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Figure 2.5: Micro mutation.

distribution of different primitive types is designed for micro mutation.
Basically, there are three main primitive types in instructions. They are
operations, registers, and constants. By default, we mutate these three
types of primitives uniformly. Note that the input features and the con-
stant registers are also constants. Fig. [2.5|is an illustrative figure of the mi-
cro mutation. One of the instructions in the parent individual is selected
randomly, and one of the primitives will be mutated. Specifically, one of
the primitives of the fourth instruction (i.e., shadow one) is mutated by
the micro mutation. The micro mutation also has its effective version, in
which the selected and the new mutated instruction must be an effective
instruction [21]. Brameier et al. [21] suggest appending micro mutation

after macro mutation and crossover for solving complex problems.

Difference Between TGP and LGP

LGP is different from basic GP which is based on tree structures [106].
Each TGP individual encodes a computer program as a tree. Every tree
node represents a function or a terminal (i.e., input feature). Function
nodes accept inputs from their sub-trees and deliver results to their parent
nodes. Each tree node has up to one parent node. All intermediate results
from sub-trees are aggregated at the root, with the root outputting the final
result of the program.

A comparison between a linear representation and a tree-based repre-
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f(X1,X2,X3)=X1+X2+(X1-X3)

Tree-based representation Linear representation

l RI0=X, R[1]=X;, R[2]=X; ® O
ONO. CORIEROLX,
@ e | R[2]= X, + R[1] Q @

R[0]= R[0] + R[2]
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Figure 2.6: An example of GP individuals with tree-based and linear rep-
resentations for the same mathematical formula.

sentation for the same mathematical formula “ f (z1, x2, 23) = x4+ 22+ (21—
x3)” is shown in Fig. Specifically, in the linear representation, z; to z3
are read-only input registers, and the calculation registers R[0] to R[2] are
initialized by z; to x3 respectively (e.g., the first instruction is equivalent
to “R[1] = z1 — 23”"). The final output of the instruction sequence is stored
in R[0).

2.1.3 Dynamic Job Shop Scheduling

Since DJSS was first distinguished from static JSS in 1957 [95], it has un-
dergone a prosperous development and nowadays becomes one of the
most popular variants of JSS [150]. Two typical DJSS problems are the
one with new job arrival [90,(137] (i.e., the new arriving jobs can only be
known and scheduled after they come into the job shop) and the one with
machine breakdown [179,(180] (i.e., additional repairing time or redoing
the interrupted operations are required). Besides these two types of DJSS,
there are also many other dynamic events for DJSS, such as order cancel-
lation [198]], due date changes [13]], quality rejected and so on [150]. The
dynamic events cause DJSS a more complex problem than conventional
static JSS. DJSS has a wide range of applications in the real world, such
as cloud computing [129]], car body assembling factory [206], traffic man-
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Figure 2.7: The schematic diagram of DJSS.

agement [111], airport runway scheduling [43]], and railway control [36].
Because of the enormous business value of DJSS, it has attracted great in-
terest from both academia and industry.

This thesis will mainly focus on the DJSS with new job arrivals since
this type of DJSS is representative and quite common in real-world pro-
duction. The schematic diagram of DJSS with new job arrivals is shown in
Fig. A job shop has a finite set of machines M, each with an available
operation queue g(m),m € M. There is a job set J in the job shop. Jobs
come into J during optimization (i.e., new job arrival). Note that the job
shop cannot know or schedule jobs until their arrival. For every job j € ],
it has a sequence of operations O; = {0j1, ..., 0ji, ..., 0jx, } Where k; is the
number of operations in job j. The operation sequence specifies the execu-
tion order of different operations (e.g., 0;; must be executed prior to 0;s).
When an operation oj; is available, it enters the corresponding operation
queue ¢(m) of a certain machine m(o;;) € M and is processed based on a
scheduler of the machine. o;; is removed from the queue when it is pro-
cessed, and its next operation o, ;1, if it exists, will enter the corresponding

machine queue after oj; is finished (e.g., 033 becomes available after o, is
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finished in Fig.[2.7). Every operation is processed with a positive process-
ing time p(o;;). Every job has its own arrival time «;, due date d;, and
weight w; which describes the importance of a job. Besides, for the sake of
simplicity, we simply assume that once an operation starts to be processed
by a machine, the process cannot be interrupted by other events, and each
machine processes at most one operation at any time. The main task in JSS
is to sequence the execution order of operations on each machine so that

the job shop performance can be optimized.

z(0j1) > vy, vViel (2.1)
x(05i) > x(0ji-1) + p(0j,i-1), Vieli=2,.,k (22)
p(0;:) > 0, Vieli=1,..,k  (2.3)
x(05i) > x(on;) + ploni) =V - 2gjn, Vi, hel,j<h,
g =m(0ji) =m(on)  (2.4)
x(oni) > x(04;) +ploj;) =V - (1 — z45n), Vi, hel,j<h,
g =m(o0j:) =m(on) (2.5
2gin € {0, 1}, Vi,hel,geM  (2.6)

Based on these definitions, we formulate the DJSS problems based on a
disjunctive model [109]. Denote the starting time of job j as x(0,1), we have

constraints to[2.6). Constraint (2.I) ensures that all jobs are processed
after arrival. Constraints (2.2) and (2.3) guarantee that the operations will
be processed sequentially. The V is a large enough variable so that

x(0j;) > x(0n;) + ploni) =V
2(0ns) 2 x(05) + ploji) =V
Vi, h € l,j < h,g=m(oj;) =m(op)
It ensures that every machine can process at most one operation at any

time. z,, is an auxiliary variable to describe which jobs are being pro-

cessed by machine g at a time. When ¢ decides to process job h prior to
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job j, z4jn = 0 (so that Eq. is active and Eq. is inactive). When
g decides to process job j prior to h, z4, = 1 (so that Eq. is active
and Eq. is inactive). This DJSS modeling can be extended to many
other variants, such as flexible JSS (i.e., an operation can be processed by
more than one candidate machines) [115]], resource-constrained JSS (i.e.,
the total number of processing jobs at any time is limited) [155], etc.
There are many optimization objectives in JSS, including minimizing
the makespan (i.e., the total processing time of the whole job shop), min-
imizing the tardiness (i.e., the delay from the due date), and minimizing
the flowtime (i.e., the total processing time of a job). Besides, there are
some other objectives in literature such as minimizing workload [274],
minimizing energy consumption [45|(123]], and improving interpretabil-
ity [136], which facilitates the real-world applications of JSS. These objec-
tives often conflict with each other [128] and can be optimized together as
multi-/many-objective problems. This thesis mainly minimizes two pop-

ular objectives in DJSS, i.e., tardiness and flowtime.

Simulation Configuration

In this thesis, we evaluate individual fitness by simulation. A GP indi-
vidual plays the role of dispatching rules in DJSS problems. When a ma-
chine becomes idle, the GP individual decides which operation should be
processed by prioritizing the available operations. The inputs of the indi-
vidual are job-related, machine-related, and job-shop-related information.
The schedule of a simulation is constructed over the simulation. After the
job shop processes a certain number of jobs, the performance of the simu-
lation is output as the fitness of the GP individual.

The configurations of the DJSS simulation are set according to the com-
mon settings of existing studies [77,[136]. Specifically, our job shop con-
tains a total of |M| = 10 machines. An operation o;; € O, of a new
arrival job j is designated to a certain machine m(oj;;) randomly and is

completed by the designated machine with a continuous processing time
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ranging from 1 to 99 (i.e., p(o;;) € [1,99]). Every job has at least 2 op-
erations and at most 10 operations. The new jobs arrive to the job shop
at arrival time «;. The new jobs have different weights based on a pre-
defined probability. Specifically, 20% have a weight of 1, 60% have a
weight of 2, while the rest have a weight of 4. The due date of job j (i.e.,
d;) is defined by a due date factor, which is set as 1.5 in the simulation
(e, dj = a; + 1.5 x 32, o p(0ji)). Our investigation mainly focuses on
the steady-state performance of DJSS simulation, in which there are 1000
warm-up jobs in the experiment and only the subsequent 5000 completed
jobs are counted in optimization objectives.

In the simulation, jobs come into the job shop based on a Poisson dis-
tribution, as shown in Eq. (2.7). t is the time interval before the next job
arrival. )\ is the mean processing time of a job in the job shop, defined by
Eq. (2.8). v is the average number of operations in the jobs, and y is the
average processing time of operations. The utilization level of machines p
defines the arrival rate of jobs. A large p implies that jobs will be processed
by the job shop very quickly (i.e., a small mean actual processing time of
jobs) and that new jobs arrive at the job shop in a shorter time. Thus, a
large p tends to lead to a difficult job shop scenario since a dispatching
rule has to make effective schedules to avoid bottlenecks.

P(t = next job arrival time) ~ exp(—%) (2.7)
Vel
A= 2.8)
p- M| (

To comprehensively verify the performance of the proposed method on
different difficulty levels, this thesis increases the difficulty levels by in-
creasing the utilization levels of the job shop (ie., p in Eq. (2.8)). The
utilization levels p are set as 0.85 or 0.95 respectively in our experiment.
A higher utilization level implies a busier job shop and more difficulty
in finding an effective schedule. To improve the generalizability of LGP-
evolved rules, the training instances have different random seeds in dif-

ferent generations, which is also known as instance rotation [78].
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Design of Scenarios

In this chapter, we verify LGPHH performance on six example scenarios
with different optimization objectives and utilization levels. The six op-
timization objectives are commonly used in existing literature [156]. The
six optimization objectives include maximum tardiness (Tmax), mean tar-
diness (Tmean), weighted mean tardiness (WTmean), maximum flowtime
(Fmax), mean flowtime (Fmean), and weighted mean flowtime (WFmean),
where ¢; is the actual completed time of job j. The six objectives are job-
related objectives rather than job-shop-related objectives because the opti-
mization is an ongoing process during simulation. The job-related objec-

tives would give an insight to the future performance of the job shop.

1. Tmax= max;cj(max(c(j) — d(j),0))

> ey max(c(4)—d(4),0)

2. Tmean= ]

3. WTmean= > ey max(e(j)—d(5),0) xw(j)
' - m

4. Fmax= max;cj(c(j) — a(j))

> jescli)—ald)

5. Fmean= N

6. WFmean— > jei(ei)—ad)) xw(d)
) o ]

The scenarios in this thesis are denoted as “(A, B)” where “A” is the ob-
jective and “B” is the utilization level. For example, (Tmax, 0.95) indicates
a DJSS scenario optimizing the maximum tardiness, and jobs arrive to the
job shop based on a Poisson distribution with p = 0.95. The six exam-
ple scenarios are (Tmax, 0.85), (Tmax, 0.95), (Tmean, 0.85), (Tmean, 0.95),
(WTmean, 0.85), and (WTmean, 0.95).
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2.2 Related Work

2.21 Advances in LGP

LGP is a representative graph-related GP [211},214]. The linear represen-
tations in the GP area showed up as early as the 1980s [38]. After that,
Nordin et al. [163,164] and Wolfgang [9] further developed the linear rep-
resentation into more general approaches to evolve computer programs
in the 1990s. LGP has shown superior performance in symbolic regres-
sion and classification problems [21,164]. For example, Downey and Fo-
gelberg respectively applied LGP to solve multi-class image classification
problems [49,550,59]. Different from tree-like structures which only have
one output (i.e., the root), LGP naturally has multiple outputs if defin-
ing multiple output registers, each for one sub-class classification. Since
these output registers can fully utilize common building blocks for dif-
ferent sub-classes, LGP has advantages over TGP in multi-class classifica-
tion. LGP also shows a superior performance to TGP and artificial neural
network in binary classification [19,(196]. Besides, LGP has undergone a
good development in solving symbolic regression. For example, Huang
et al. [87] proposed an error back-propagation mechanism for LGP to im-
prove its performance in symbolic regression. Gligorovski and Zhong [68]]
extended LGP to vectorial functions in symbolic regression. Dal Piccol
Sotto et al. [41] developed a probability model to learn the distribution of
elite LGP individuals and sample offspring based on the probability model
in symbolic regression problems. These improvements for LGP achieved
very encouraging results. Sotto et al. [212] also verified that LGP has a bet-
ter bloat control than TGP in symbolic regression problems. In addition to
these works, LGP is successfully applied to other domains such as auto-
matical algorithm design [42] and parallel computation [47,48]. LGP has
also been widely applied in a vast range of industrial applications such as
refinery crude oil scheduling [187], objective function synthesis [191]], and

stall control of airfoils [182].
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The genetic operator is an important design issue of LGP. Besides the
conventional genetic operators introduced above, some genetic operators
of LGP were developed in the last two decades. For example, Banzhaf
and Brameier et al. [10,20] made a lot of comparisons on different types
of crossover and mutation operators. They found that ensuring the ef-
fectiveness (i.e., the variation must change at least one LGP effective in-
struction) and neutrality (i.e., locally search different offspring and ensure
that the fitness of offspring must be better or at least equal to the one
of its corresponding parent) of LGP mutation can significantly improve
the performance of LGP in solving classification and symbolic regression.
Besides, based on the domain knowledge, some problem-specific opera-
tors were proposed for LGP. For example, based on multiple output regis-
ters in multi-class classification, Downey et al. [49] designed a class path
crossover operator that swaps the DAGs contributing to the same sub-
class. In genetic improvement, some mutation and crossover operators
were also proposed based on a new linear representation of software re-
pair operations [170]. Though these genetic operators successfully im-
proved LGP performance, they are not efficient enough (e.g., multiple fit-
ness evaluation is required), or cannot be extended to dynamic scheduling
because of the lack of target outputs in DJSS.

2.2.2 Dynamic Job Shop Scheduling Approaches

There are roughly three kinds of approaches for solving DJSS, includ-
ing completely reactive approaches, robust proactive approaches, and
predictive-reactive approaches [199]. This thesis mainly applies LGPHH
for DJSS, which automatically constructs reactive approaches for DJSS by
LGP.
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Completely Reactive Approaches

The completely reactive approaches generate new schedules according to
ongoing dynamic events without considering the possible dynamic events
in the future. In reactive approaches, there have been many heuristic
methods that construct schedules for the optimization problem by one-
pass. Without the iterative improvement of solutions, heuristic methods
can react to dynamic events and make decisions instantly. Specifically, in
DJSS domain, the heuristic methods are some human-designed dispatch-
ing rules which prioritize operations as soon as the machines become
available. There have been many human-designed rules such as earliest
due date [94,189], shortest processing time [210], and weighted apparent
tardiness cost [236].

Some studies apply machine learning models to perform instant de-
cisions for DJSS problems. For example, machine learning models such
as decision trees, support vector machines, and artificial neural networks
are used to learn the behaviors of dispatching rules [152, 169,195} 207].
These machine learning models mainly treat DJSS problems as classifica-
tion problems and need optimal schedules as training data. Reinforce-
ment learning is a machine learning technique that learns the dispatching
behaviors based on simulations and rewards [39,112,178,(197,204,279]. It
mainly contains an action network that decides the reaction to a certain
situation, and a rewarding network that evaluates the value of decisions.
Although reinforcement learning gets rid of the dependence on optimal
schedules, the design of its rewarding network which guides the learning
is tedious.

However, these man-made dispatching rules and machine learning
models are highly dependent on the quality of training data and are less ef-
fective in solving complicated DJSS problems [248]266]]. Contrarily, GPHH
has shown its pros and cons. For example, GPHH discovers effective
dispatching rules unknown to humans and has shown promising perfor-

mance in designing effective dispatching rules for large-scale DJSS prob-
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lems. However, the trial-and-error search mechanisms of GPHH methods
are low efficiency in some cases. Section gives a detailed literature
review of GPHH for DJSS problems. To take advantage of the pros and
cons of different methods, combining GPHH methods and other machine

learning methods would be a promising direction.

Robust Proactive Approaches

The robust proactive approaches take possible dynamic events in the fu-
ture into consideration by making a robust initial schedule that is less
sensitive to any potential disruption. For example, fuzzy logic and fuzzy
arithmetic consider the vague information in the optimization models for
solving DJSS with uncertainty [14]. Meta-heuristics such as the genetic
algorithm [4}218] and particle swarm optimization [64,220,247], produce
robust schedules by simulation optimization methods. They first build
a job shop surrogate model based on the given information. The surro-
gate model imitates the potential dynamic events over simulation. Then
the meta-heuristic methods optimize schedules so that they are robust to
these dynamic events.

Predicting possible dynamic events in DJSS is a key challenge in proac-
tive approaches. To predict the possible dynamic events, existing stud-
ies construct empirical distribution based on historical data to simulate
dynamic events such as new job arrival [117]. Some studies formulated
robust scheduling problems into a multi-objective optimization problem
that optimizes the job shop performance and minimizes the deviation of
the schedules with possible dynamic events [114,166].

Predictive-reactive Approaches

Predictive-reactive approaches perform scheduling within two steps. It
first generates a robust schedule in advance by predicting the possible fu-

ture dynamic events and second repairs the existing schedule triggered by
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dynamic events. For example, Liu et al. [117] proposed to solve a dynamic
flow shop scheduling problem by a predictive-reactive framework. The
predictive-reactive framework includes four meta-heuristics and incorpo-
rates a multi-objective optimization technique to perform post-disruption
rescheduling. Li and Gao [114] proposed a hybrid rescheduling archi-
tecture consisting of the genetic algorithm and tabu search. The hybrid
rescheduling architecture performs rescheduling when dynamic events
occur, or when the periodic rescheduling point is reached. To react the
dynamic events in a short time, Li and Gao proposed to identify the ter-
mination criterion of the rescheduling by tabu lists.

2.2.3 Existing GPHH for DJSS

Applying GPHH to DJSS has undergone a profound development [23,
156]. GPHH evolves dispatching rules to react and make instant reactions
to the dynamic events of DJSS (i.e., a reactive approach). The existing stud-
ies have validated that GPHH can design more effective dispatching rules
than human experts in many DJSS scenarios [96,(148]. However, most of
the existing studies focus on TGP and neglect LGP. Therefore, this sec-
tion mainly reviews the techniques for enhancing TGP-based HH. Briefly
speaking, these techniques cover primitive design, GP representations,

search mechanisms, fitness evaluation, and training instances.

Primitive Design

Primitives compose GP individuals, including terminals and functions.
Effective primitives help GP evolve effective dispatching rules. To im-
prove the effectiveness of the primitive set, feature selection techniques
and new primitives for GPHH are proposed. For example, Mei et al. [135]
and Zhang et al. [261,271] applied feature selection techniques to enhance
the effectiveness of dispatching rules. Specifically, Mei et al. [135] applied

a permutation-based method to identify important features, while Zhang
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et al. [261,271] applied a frequency-based method to adaptively learn the
important features. Sitahong et al. [208] further improved the frequency-
based feature selection method by integrating it into GP evolution and
avoiding redundant features.

Some studies designed new primitives to improve the performance of
GPHH. For example, Hunt et al. [90] proposed to include the state of the
job shop and the stage of jobs” progress into the primitive set to improve
GP rules’ global perspective. To make the rules designed by GPHH less
sensitive to the time of decision situations, Mei et al. [137] proposed to

evolve dispatching rules with time-invariant terminals.

GP Representations

GP representations define the connection ways of primitives. Designing
effective dispatching rule representations is one of the important ways to
enhance the effectiveness of GPHH. A representative work is named “GP-
3” proposed by Jakobovi¢ [96]. There are three rules for different purposes
in GP-3 method. One rule is designed to distinguish bottleneck machines,
and the other two rules are the dispatching rules for bottleneck and non-
bottleneck machines respectively. It is reported that GP-3 can outperform
other human-designed dispatching rules in DJSS. A similar idea of com-
posite rules is also adopted by Nguyen et al. [158]. In [158]], various types
of composite rules are investigated. For example, the tree structure is di-
vided into a decision tree and man-made dispatching rules or divided into
a decision tree and GP-evolved rules. Their computational analysis found
that a GP tree composing a decision tree and GP-evolved rules has the
best performance. To fully utilize the machines with different properties,
Pickardt et al. [190] designed a multi-tree paradigm to evolve a group of
dispatching rules and assign them to different machines.

Some studies also attempt to apply other GP representations to encode
dispatching rules. For example, Nie et al. [161] applied the gene expres-

sion programming for DJSS. Because gene expression programming en-



46 CHAPTER 2. LITERATURE REVIEW

codes tree-based programs into a list of primitives, it has a good control
over the program size without the loss of effectiveness. An investigation
by Durasevi¢ et al. [51] also validates the similar effectiveness and higher
interpretability of gene expression programming compared with conven-
tional TGP.

The suitable representations vary according to the different characteris-
tics of investigated problems. For example, the multi-tree representations
are proposed for solving dynamic flexible JSS problems [161,269]. The
multi-tree representation GP has two trees in each individual, one for a
routing rule and the other for a sequencing rule. Nguyen et al. [158] also
proposed to use different primitives in different parts of the rules to inte-
grate the decision tree and GP-evolved dispatching rules. For example, in
the decision tree part, the thresholds of different percentages are allowed,
while only the job shop attributes and random real values are allowed as
the terminals of GP-evolved heuristics.

To simplify the tree-based dispatching rules and improve their inter-
pretability, Panda et al. [175,/176] and Planini¢ et al. [194] respectively
proposed a simplification method that consists of algebraic reduction and
permutation-based pruning to remove redundant building blocks in the

outputted dispatching rules.

Note that the existing studies of GP representation in GPHH mainly
focus on TGP. The tree-based representation often leads to redundant and
complex rules since it is hard for tree-based representations to reuse inter-
mediate results. They have to duplicate effective building blocks or de-
velop multiple trees for different sub-tasks. This limitation prevents TGP
from evolving effective rules within a compact program. Contrarily, the
easy reuse of intermediate results and the multi-output of LGP potential
address this limitation.
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Search Mechanisms

Search mechanisms in this thesis mainly indicate the offspring production
methods of GP. GPHH produces offspring by genetic operators. The ef-
fectiveness of genetic operators greatly affects the performance of GPHH.
Zhang et al. [259] proposed to measure the importance of sub-trees based
on the feature importance. Important sub-trees have a higher probability
of being shared with other GP individuals. Xu et al. [250] proposed a se-
mantic genetic operator for GPHH in solving flexible DJSS. The semantic
genetic operator encourages GP to produce diverse offspring by consider-
ing semantically different sub-trees, which improves GPHH effectiveness.
To improve the diversity of the population, Planini¢ et al. [193] developed
an e-Lexicase selection for GPHH which successfully improved the solu-
tion diversity and training convergence speed.

Adding search constraints in offspring production is an effective way
to improve the training efficiency and interpretability of dispatching rules.
Designing grammar rules for GPHH is an example of search constraints.
Hunt et al. [91] first applied grammar-based GP to DJSS problems and
designed a set of DJSS-specific grammar rules. They found that the
grammar rules can improve the interpretability of dispatching rules but
with an acceptable compromise of poorer mean testing performance. The
grammar-based GP for DJSS is also compared with other GP methods such
as standard GP and gene expression programming [51]. The investiga-
tion validated the higher interpretability of dispatching rules evolved by
grammar-based GP. Mei et al. [136] also developed a dimension gap to
measure the distance between the physical meaning of DJSS attributes to
improve the interpretability of dispatching rules. Compared with the pre-
vious work [104], Mei et al. additionally introduced a dimension gap and
developed a new fitness function based on the dimension gap to improve
the flexibility of the dimensionally aware GP. The grammatical evolution
is also applied to JSS problems to design dispatching rules. For example,
Teng et al. [222] proposed a hybrid method to utilize the characteristics of
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both grammatical evolution and genetic programming and designed a set
of grammar rules for grammatical evolution to evolve dispatching rules in
intercell scheduling problem (i.e., a variant of JSS problems).

Fitness Evaluation

GPHH methods evaluate the fitness of individuals based on DJSS in-
stances. The fitness essentially guided the GP search. Making full use
of the limited training instances of DJSS problems is critical for improv-
ing GPHH performance. For example, to fully utilize the GP performance
over the simulation, Xu et al. [251] proposed a multi-case fitness evalua-
tion method to evaluate GPHH performance. To improve the efficiency of
titness evaluation, Hildebrandt and Branke [77] and Nguyen et al. [160]
developed two surrogate models for applying GPHH to DJSS problems.

In [77], Hildebrandt and Branke developed a phenotypic characteriza-
tion to describe the decision behaviors of dispatching rules. The pheno-
typic characterization-based surrogate model firstly samples a set of de-
cision situations and sets up a benchmark dispatching rule for reference.
The dispatching rules coming into the surrogate model will make deci-
sions for the given decision situations and compare their decisions with
the ones of the benchmark dispatching rule. The behavior difference from
the benchmark dispatching rule is transformed into a fixed length vector
to represent the behavior of given rules. The phenotypic characterization
estimates the fitness of a GP individual by measuring the phenotypic simi-
larity between the GP individual and the elite individuals. The phenotypic
characteristic-based surrogate model is further utilized and developed by
Zhang et al. [268] and Nguyen et al. [159]. They respectively extended the
phenotypic characteristic-based surrogate model to dynamic flexible JSS
problems and proposed a new selection scheme to balance the exploration
and exploitation.

Nguyen et al. [160] developed a surrogate model based on the simpli-
tied job shop simulation. The similar idea is firstly utilized in 2013 [190].
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The performance in the simplified simulation has a high correlation with
the performance in the full simulation. Nguyen et al. [160] also identify
that the “HalfShop” which has a half number of machines and jobs of
the full simulation has the best estimation performance. The simplified
simulation-based surrogate model is widely applied in DJSS problems.
For example, Mei et al. [135] applied the surrogate model to make the fea-
ture selection in DJSS problems. Zhang et al. [270] and Zhou et al. [286] re-
spectively applied this surrogate model to dynamic flexible JSS problems.
Because the training instances of GPHH are rotated at each generation to
improve the generalization ability, the fitness values in this generation can-
not compare with the fitness in other generations. To tackle this limitation,
Zhang et al. [255] proposed a fitness mapping strategy to make the fitness
across different instances comparable. Zeitrdg et al. [254] applied surro-
gate techniques to improve the training efficiency of multi-objective DJSS
and reduced more than 70% training time. To improve the effectiveness of
DJSS surrogates, Zhu et al. [287] proposed a sampling strategy to sample
effective and diverse GP individuals for constructing the surrogate.
Multitask optimization is another technique to improve the effective-
ness of fitness evaluation. Multitask optimization evaluates the fitness of
individuals on more than one DJSS task. The fitness on multiple tasks
guides GP methods to jump out of local optima and reach better solutions.
For example, Zhang et al. [256] applied multitask optimization techniques
to dynamic flexible JSS which significantly improved the effectiveness and
efficiency of GPHH. Zhang et al. [263,268] further integrated surrogate
models with multitask learning and knowledge transfer to improve the
training efficiency of GPHH. Multitask optimization is also used to en-
hance GPHH methods for solving multi-objective DJSS problems [272].

Training Instances

Training GPHH methods by effective training instances is a promising

method to improve the generalization ability. For example, some investi-
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gations improve the generalization ability of dispatching rules by properly
setting the training scenarios [138]. They found that ensuring the same
number of jobs and machines or at least a similar ratio value of the number
of jobs and machines can improve the effectiveness of GPHH methods on
static JSS problems. Hart et al. [73]] also tried to apply an artificial immune
system network to utilize the relationship between dispatching rules and
static JSS instances. They showed that by training dispatching rules for
different instances and combining them in an ensemble manner, the effec-
tiveness of the proposed methods can be superior to the standard GPHH
method. However, these studies mainly focus on solving static JSS prob-
lems. To balance the exploration and exploitation of GPHH methods in
solving DJSS problems, Karunakaran et al. [103] proposed an active sam-
pling method to evolve specific rules for different instance clusters. They
proposed a metric to measure the similarity of different DJSS instances.
Based on the similarity metric, different DJSS instances are clustered into
different categories. An e-greedy approach was also developed to further
evolve the potential dispatching rules based on certain instance clusters.

2.24 Graphsin LGP
Graph-based LGP

Evolving LGP programs based on graphs has some benefits over evolv-
ing LGP programs based on instruction sequences. First, graphs allow us
to have more precise control over the variation step size of exons. Con-
trarily, the variation in raw genotype might lead to an unexpectedly large
variation step size since it might deactivate and activate different sub-
programs. Second, swapping LGP building blocks based on graphs pro-
tects the useful building blocks from being destroyed. For instance, when
we swap the instruction sub-sequences of two LGP programs to produce
offspring, the exons (and introns) in the sub-sequences are not guaran-

teed to be effective (and ineffective) after swapping since they might be
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deactivated (or activated) in the new LGP program context. The building
blocks in the sub-sequences might be distorted severely, which often leads
to destructive variations (i.e., the fitness of the offspring is worse than the
fitness of their parents) [165]. But swapping sub-graphs of LGP parents
naturally maintains the connections of primitives within sub-graphs and
protects effective building blocks from being deactivated. Third, treating
LGP programs as graphs can further evolve the program by replacing the
introns with effective building blocks, especially when the instruction se-
quence reaches the maximum program size. Fully utilizing the maximum
program size implies a longer effective program length and a better search
performance [216,217]. Last but not least, explicitly considering graph
information in LGP programs encourages LGP to have a more compact

representation and reduce redundancy.

Explicitly employing graphs in LGP has not been well investigated
though it is an effective way to show the program. Brameier and Banzhaf
[21] claimed that using graph representations to evolve LGP program does
not always lead to better performance than conventional LGP in solving
classification and symbolic regression problems, but evolving graph rep-
resentations needs much more complicated genetic operators than imper-
ative representation. However, the conclusions in [21] are only based on
classification and symbolic regression problems where fitness evaluations
are cheap, which is different from DJSS problems where there is only a
limited number of fitness evaluations because of the time-consuming sim-
ulation.  Sotto et al. [213|214] compared a number of graph-based GP
methods, including LGP, in their experiment. However, the graph-based
genetic operators of the compared graph-based GP methods in [213|214]
mainly manipulate genotype by graph-based mutations and miss graph-
based crossover for producing new graphs by swapping sub-graphs. The
absence of graph-based crossover limits the variation step of graph-based
GP methods and precludes useful building blocks from being shared

among the population.
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In short, the explicit use of graphs in LGP has not been well inves-
tigated from the following aspects: 1) the existing literature misses the
graph-based crossover that truly swaps sub-graphs to produce offspring;
2) the existing literature misses the graph-to-instruction transformation.

Relationship among Graphs, Exons, and Instructions

First, fully utilizing graph characteristics of LGP is different from only
evolving exons. Graphs are the phenotype of LGP programs, and LGP in-
structions are the genotype. Exons in LGP instructions are the instructions
that are highly related to the graphs since the graphs are decoded based
on the exons. However, exons cannot fully stand for the phenotype since
graphs carry the essential information of both imperative primitives and
their connections, which is a higher-level representation than the exons,
while exons are highly dependent on the context of an LGP program. Be-
sides, a graph is an abstract representation that is free from specific geno-
type design (e.g., register-based instructions in LGP or Cartesian coordi-
nates in Cartesian GP). Representing GP programs by graphs enables GP
methods to analyze building blocks effectively and to exchange genetic
materials with many other graph-based techniques.

Second, evolving LGP programs based on graphs cannot replace evolv-
ing LGP based on instruction sequences. Some existing studies have pro-
posed to directly represent GP programs by graphs and to evolve GP pro-
grams by manipulating the graphs [6,/133,214]. However, their results
show that different GP representations are suitable to different tasks. For
example, LGP and Cartesian GP have certain advantages in solving the
tested digital circuit design problems because of the reuse of intermedi-
ate results while TGP is good at solving the tested symbolic regression
problems [6,214]]. Evolving programs by genotype instead of graphs also
enables LGP and Cartesian GP individuals to perform neutral search (i.e.,
varying the genotype of an individual but not changing the fitness value)
and retain potential building blocks in the individuals [69}145,217| 224].
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The neutral search and the potential building blocks have been shown to
be helpful for LGP and Cartesian GP programs to jump out of local optima
and improve the population diversity in a wide range of problems. Fur-
ther, existing literature on evolving GP programs by graphs directly only
considered node and edge mutation on graphs in producing offspring and
missed graph-based crossover, which makes these methods inefficient to
exchange useful building blocks.

In a nutshell, a graph is an abstract representation of effective LGP
instructions, while a sequence of LGP instructions represents underlying
codes that include both effective and ineffective instructions. Graphs en-
able LGP programs to cooperate with other graph-based techniques and
explicitly take the topological structures into consideration, while instruc-
tion representations enable the neutral search and the memory of poten-
tial building blocks. Finding an effective way to bridge these two repre-
sentations would be useful for LGP evolution. However, to the best of our
knowledge, there is no existing literature of graph-based genetic program-
ming investigating suitable ways of utilizing the general graph informa-
tion (e.g., adjacency list) and effective transformations from graph to LGP
instructions. The graphs of LGP programs are not fully utilized yet.

Other Graph-based GP

There are some other graph-based genetic programming methods besides
LGP. For example, Cartesian genetic programming [141] is one of the
well-known graph-based genetic programming methods. The genotype of
Cartesian GP is a list of grid nodes. Each node specifies a function, its con-
nections with other nodes, and its Cartesian coordinate in the grid. By exe-
cuting these grid nodes based on the connection, the individuals of Carte-
sian GP can be decoded into DAGs to represent computer programs or
digital circuits (i.e., the phenotype). Cartesian GP has shown some supe-
rior performance in designing digital circuits [143,144], performing image

classification [177]], and neural architecture search [146]. Wilson et al. [244]



54 CHAPTER 2. LITERATURE REVIEW

compared Cartesian GP with LGP and found that the way of restricting the
interconnectivity of nodes is the key difference between these two graph-
based genetic programming methods. Based on the idea of Cartesian GP,
Atkinson et al. [6] proposed the Graph Programming method to evolve
graphs (abbr. EGGP). Different from Cartesian GP which strictly requires
that the connections must go from the right columns to the left columns
(i.e., the levels-back constraint), EGGP allows a graph node A to connect
any other graph node B in the graph, as long as A and B do not form a
cycle in the graph. The EGGP individuals have higher flexibility in topo-
logical structures than the LGP and Cartesian GP individuals. They fur-
ther validated the effectiveness of EGGP on the test problems by compar-
ing it with TGP, Cartesian GP, and LGP [213,214]. The results show that
all the three DAG-based GP methods (i.e., LGP, Cartesian GP, and EGGP)
have a great advantage over TGP in searching multiple-output computer
programs such as digital circuits. However, these studies have not inves-
tigated the graph-based crossover operators that truly swap sub-graphs
and the graph-to-instruction transformations.

2.2.5 Grammar-based Genetic Programming

Grammar is a popular tool to enforce restrictions on GP search space. GP
programs can search for effective solutions faster and get rid of redundant
programs by reducing to a smaller yet effective search space. There have
been many studies about grammar-based genetic programming [131}243]].

Context-free-grammar-based GP is a typical grammar-guided genetic
programming method [243]. A context-free grammar is a set of produc-
tion rules that define the derivation from high-level concepts to low-level
concepts regardless of the program context. To construct a program,
grammar-guided GP recursively derives the concepts based on the pro-
duction rules and forms a tree-based program. A context-free grammar is

regularly defined by Backus Naur Form. Grammar-guided GP is widely
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applied to program synthesis problems [60,62], regression problems [93]],
and automatic algorithm design [89]. Under the umbrella of grammar-
guided GP, grammatical evolution is representative of linear grammar-
guided GP methods [172,202]. Unlike tree-based ones, grammatical evo-
lution searches on bit strings (or integer strings) and maps the bit strings
into computer programs based on a set of grammar rules by a MOD op-
erator. Grammatical evolution has undergone a lot of improvement. For
example, Lourenco et. al. [120}/121] developed a structured grammatical
evolution that improves the locality.

LOGENPRO [113,245] is a tree-based grammar-guided genetic pro-
gramming that uses a context-sensitive grammar, PROLOG Definite Clause
Grammars, to define constraints for GP search space. Due to the context-
sensitive grammar, LOGENPRO is more expressive than context-free-
grammar-basaed GP. Following LOGENPRO, Ross [200] proposed a logic-
based GP system with definite clause translation grammar.

Strongly typed GP is an alternative GP method that imposes data type
constraints on GP search spaces [151]. Strongly typed GP specifies all the
possible data types of arguments and returns for all the non-terminals. The
non-terminals can only have children with specified data types. To make
the data type constraints more flexible, strongly typed GP additionally
introduces generic functions and generic data types which specify a set
of possible data types by algebraic quantities. Due to the flexibility in
handling different data types, existing studies applied strongly typed GP
to different problems, such as classification [17}[186], finance [34,125}140],
and software testing [240].

Although there have been grammar-guided techniques for TGP, it is
difficult to extend these techniques to LGP since LGP has a substantially
different representation. The registers in LGP are also hard to constrain
by existing grammar-guided techniques. An LGP-based grammar-guided
method is needed.
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Grammar-based Genetic Programming in Combinatorial Optimization

Introducing domain bias by grammar is not a new idea to enhance GPHH
for solving JSS problems. Nguyen et. al. [158] used grammar to define
three representation templates for GP individuals, including 1) selecting
simple dispatching rules based on machine attributes, 2) an arithmetic rep-
resentation, and 3) selecting sub-arithmetic representations based on ma-
chine attributes. However, [158] did not show the superior performance
of their grammar-like method in solving JSS problems. Hunt et. al. [91]
used grammar to categorize input features into different types and defined
the available input and output types for each function. However, [91] im-
proved the interpretability of dispatching rules but sacrificed effectiveness

although only slightly.

Grammar-guided GP methods have also been applied to many other
combinatorial optimization problems. For example, Pawlak and O’Neill
[184] used grammatical evolution to synthesize constraints for a diet plan
optimization problem. Fenton et. al. [139] and Saber et. al. [203] applied
grammar-guided GP for network scheduling. Correa et. al. [37] developed
a grammar-guided GPHH method for solving corridor allocation prob-
lems. Pereira et al. [187,188] developed a quantum-inspired grammar-

based linear GP to schedule crude oil refinery.

Although these existing studies have applied grammar to enhance GP
in solving combinatorial optimization problems, the grammar-guided GP
methods for combinatorial optimization are not well investigated. Gram-
mar improves GP interpretability or training efficiency while (not neces-
sarily) sacrificing test effectiveness [92,93]. Furthermore, existing studies
mainly include arithmetic and domain-specific operators in their grammar
rules but ignore flow control operations, which are expected to be impor-

tant primitives for solving many combinatorial optimization problems.
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Flow Control Operations in GPHH for DJSS

Flow control operations decide which parts of a dispatching rule can be
executed based on the input or program context. There are many differ-
ent implementations of flow control operations in existing GPHH meth-
ods for DJSS. For example, GP-3 [96] fixed IF at the output of dispatch-
ing rules and designed an IF-included template to explicitly divide the
dispatching rule into three sub-rules, one for scheduling bottleneck ma-
chines, one for scheduling non-bottleneck machines, and one for detecting
bottleneck machines. If the dispatching rule detects a machine as a bottle-
neck in the job shop, the job shop uses the bottleneck-machine dispatching
rule to make decisions and uses the non-bottleneck-machine dispatching
rule otherwise. Durasevi¢ et. al. [51] used a unary flow control operation
which returns the operand if the operand is larger than 0 and returns 0
otherwise to control program execution flow. Hildebrandt et.al. [78] and
Christopher et al. [67] simultaneously included binary flow control opera-
tions (e.g., maximum and minimum) and a ternary IF operation in evolv-
ing dispatching rules. The ternary IF operation accepts three arguments,
returns the second input argument if the first argument is larger than 0,
and returns the third input argument otherwise.

When DJSS scenarios become more complex, flow control operations
become more important in designing dispatching rules. For example, Ma-
sood et. al. [126-128|] used maximum, minimum, and a ternary IF op-
eration in solving multi-objective JSS. Karunakaran et. al. [101,102] in-
cluded these operations in solving DJSS problems under uncertainty. Park
et. al. [179,181] also included flow control operations in GP primitive set
when solving DJSS with machine breakdown.

In addition to the flow control operations mentioned above, Miyashita
[148] developed a four-argument IF operation, which returns the third ar-
gument if the first argument is less than or equal to the second argument
and returns the fourth argument otherwise. Nguyen et al. [157] showed

that flow control operations are effective in designing due-date estimation
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models.

However, the mentioned studies have not fully investigated flow con-
trol operations. They simply included flow control operations into the
function set and treated them equivalently with other arithmetic opera-
tions, which inevitably leads to a huge search space and a large number
of redundant solutions. Moreover, designing flow control operations for
TGP in existing studies is not straightforward since the tree-based repre-

sentation in TGP is greatly different from human line-by-line programs.

IF Operations in Linear Genetic Programming

The linear representation of LGP programs facilitates the introduction of
IF operations. The IF-included LGP programs have a similar representa-
tion to human programs. For example, LGP programs can indicate the
closure of IF branches (like “{...}” in C language) by defining the number
of instructions in an IF branch or designing additional labels or pointers
(e.g., endif) to specify the end of a branch [21,100]. However, despite the
potential advantages of IF operations in LGP, the studies of applying IF
operations in LGP are very limited, up to the best of our knowledge.

To summarize, existing GP studies have not effectively evolved IF-
included solutions as IF operations inevitably introduce many redundant
solutions into search spaces. Grammar-based techniques are effective in
removing redundant GP solutions from search spaces. However, exist-
ing grammar-based GP methods mainly define the basic format of flow
control operations (e.g., IF operations must be followed by a boolean
operation) but do not address the dimension inconsistency and inactive
and ineffective sub-rules of flow control operations. Moreover, existing
grammar-based GP methods are designed based on tree-based representa-
tions and missed linear representations which can naturally accept human

programming skills.
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2.2.6 Fitness Landscape of GP

Fitness Landscape Analysis in Genetic Programming

An FL of GP is an important perspective to understand the hardness of
GP search. An FL consists of three components: fitness function, solution
space, and the neighborhood structure of solutions [228]]. A fitness func-
tion measures the effectiveness and quality of all the possible solutions,
the possible solutions compose a solution space, and the neighborhood
structure defines the distance among the possible solutions in the solu-
tion space. The existing studies on GP’s FL mainly focus on analyzing
the hardness of FLs and describing FL properties. Many efforts endeav-
ored to develop quantity metrics to measure the hardness and describe FL
properties.

Fitness distance correlation (FDC) is representative of the FL metrics.
FDC measures the problem hardness by estimating the correlation be-
tween the distance and the fitness difference from global optima [99]. On
an easy landscape, solutions are supposed to have better fitness when they
are closer to known global optima, which means the GP fitness has a high
correlation with the distance to the optimal solutions. Otherwise, the land-
scape is misleading. Normally, FDC divides the hardness of a search prob-
lem into three levels (suppose it is a minimizing problem) [234]:

1. An easy (or straightforward) fitness landscape: FDC> 0.15, and
FDC= 1 is the ideal case.

2. A deceptive (or unknown) fitness landscape: 0.15 >FDC> —0.15
3. A misleading fitness landscape: FDC< 0.15.

FDC has been shown a reliable FL. metric in the GP area [35]227,230,231,
233] and an effective way to analyze the parameter configurations [225].
The local optima network is another metric that has to enumerate all pos-

sible solutions in the search space to identify the local optima and their
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transitions [167,(168]. The local optima network visualizes an FL by a
graph, in which vertices represent the local optima in the search space,
and edges represent the transitions (and their probability) between ver-
tices. The characteristics of the graph such as the number of vertices and
edges, and the cliquishness of a cluster (i.e., a connected sub-graph) show
the characteristics of the FL (e.g., the connectivity of local optima and
their distributions). For example, Purasevic et al. [52] used the local op-
tima network to analyze the effectiveness of different configurations of
dimensionally-aware GP, and He and Neri [75] used the local optima to

show the distribution of local optima.

However, it is uneasy to apply the above two metrics to problems with
large search spaces since they need to know global information before-
hand (e.g., global optima and the fitness of all solutions) [223,232]. To
understand the FLs of GP benchmarks with large search spaces, exist-
ing studies developed several metrics that measure the hardness based

on neighborhood information.

The metrics based on neighborhood information measure problem
hardness and describe FLs based on the neighbors of sampled solutions.
For example, negative scope coefficient (NSC) is a metric that measures the
degree of “bad evolvability” (i.e., moving from good solutions to poor so-
lutions) [229]. NSC first identifies the fitness cloud based on the fitness of
sampled solutions and their neighbors [237]. The abscissas of the fitness
cloud are the fitnesses of sampled solutions, and the ordinates of the fit-
ness cloud are the fitnesses of their neighbors. Then, NSC partitions the
fitness cloud into segments [235]. NSC gets the negative scopes among
the mean values of segment abscissas and ordinates as its result. Nor-
mally, NSC is less than zero, and its absolute value indicates the degree of
hardness.

Hu et al. [82,83,85]/86] analyzed FLs of GP based on robustness, evolv-
ability, and accessibility of three levels: genotypes, phenotypes, and fitness.
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Specifically, genotypic robustness indicates the fraction of neutral movesﬂ
caused by point mutations for a given genotype, genotypic evolvability in-
dicates the proportion of non-neutral moves from a given genotype (or a
phenotype), and phenotypic accessibility indicates the propensity of mu-
tating into a certain phenotype. Their results imply that robustness and
evolvability are negatively correlated at the genotypic level. Robust geno-
types are normally hard to move into genotypes with another phenotype
by a point mutation. Galvan-Lopez et al. [65] proposed to use locality [201]
to measure the consistency between genotypic and phenotypic neighbor-
hood structures. They assume that an FL with better consistency between
genotypic and phenotypic neighborhood structures is easier for GP to
search for good solutions.

To sample solutions from FLs, several metrics perform a random walk
on FLs. For example, Kinnear [105] used a landscape autocorrelation to mea-
sure the correlation of fithess over the random walk on an FL. Slany and
Sekanina [209] proposed two quantity metrics for ruggedness and smooth-
ness based on the entropy of fitness over the random walk. However,
these random walk-based metrics are not accurate enough to predict algo-
rithm performance since they are highly dependent on the starting point
of walking in many problems and they are hard to perform importance sam-
pling (more weight to sample good solutions) [228]].

Improving Fitness Landscapes by Fitness Function

Although few studies explicitly optimize GP’s FLs, many existing GP
studies are essentially improving the FLs. Designing better fitness func-
tions is a method that improves FLs. For example, in symbolic regres-
sion problems, Haut et al. [74] proposed to use R-square, a measure of the
correlation coefficient, as the fitness function to encourage GP to produce

more concise and less overfit formulas. Chen et al. [28] further verified the

2 A neutral move is a movement between two solutions with the same fitness on FLs.
A non-neutral move is a movement between two solutions with different fitnesses.
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effectiveness of applying linear scaling with R-square in GP for symbolic
regression tasks.

However, designing better fitness functions for a specific domain is
non-trivial and tedious. To construct potentially better fitness functions,
multitask optimization [173]] proposes to simultaneously optimize several
similar tasks, expecting that these similar tasks have synergistic fitness
functions. Multitask optimization mutually exchanges the search infor-
mation among the fitness landscapes with similar fitness functions to en-

hance search performance. A detailed review of multitask optimization is

given in section[2.2.7]

Simultaneously optimizing several alternative formulations for a sin-
gle problem is another way to build up similar fitness landscapes, so-
called multiform optimization. For example, Da et al. [40] formulated a
traveling salesman problem into a single-objective and a multi-objective
optimization problem respectively, and solved the two optimization prob-
lems via a multitask optimization method. Since multi-objective formula-
tions often introduce plateaus into fitness landscapes, it is expected that
the multi-objective optimization task can remove some local optima from
the single-objective formulation. Additional formulations can also be con-
structed by adding or relaxing constraints on the optimization problem
[97], which is equivalent to constructing different search spaces (and hence
different fitness landscapes) for solving a single task.

Sharing the GP search information among similar tasks is helpful to GP
evolution. Existing studies of multitask GP have shown great potential in
combinatorial optimization problems [257,265], symbolic regression [281],
and classification problems [17,242]. A more detailed literature review on
multitask GP is given in section From a broader view, since fitness
functions exert evolution pressure on GP by selection operators, advanc-
ing selection operators is an alternative way to improve fitness functions
of GP [76,275].
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Improving Fitness Landscapes by Solution Spaces

Each GP individual is a solution of the GP search, and GP representa-
tions directly determine the solution space of the GP search. There have
been many GP representations [57,141}214]. For example, with the same
primitive set, tree-based and linear representations have very different
solution spaces because of the different topological structures of primi-
tives [21,106]. These representations have pros and cons for different prob-
lems. TGP is good at paralleling building block computation, while LGP
is good at reusing building blocks. To reduce redundant solutions from
solution spaces, existing studies also apply feature selection [30,262] and
grammar-guided techniques [61}188]] to GP solution spaces.

Using different GP solution representations to construct related fitness
landscapes is a potential method to make use of the advantages of solution
representations. However, this research direction is not well investigated.
Although some studies of evolutionary multitask optimization have coop-
erated with different solution representations [55,56], their solution rep-
resentations are mainly designed based on decision variables. The sym-
bolic representations of GP are much more complex than the numerical
representations in existing evolutionary multitask optimization methods,

which are non-trivial to share directly.

Improving Fitness Landscapes by Neighborhood Structures

Neighborhood structures define the neighborhood relationship among so-
lutions. Changing neighborhood functions to reshape the fitness land-
scape can construct related fitness landscapes in the search for effective
solutions. One representative example is variable neighborhood search
[149], which switches neighborhood functions in the course of the search.
By searching within different neighborhoods, variable neighborhood search
can reach distant solutions via local search and has a better chance to jump

out from a local optimum. Variable neighborhood search is an effective
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strategy to enhance other search techniques [26].

The neighborhood structures of existing GP methods are essentially
genetic operators. Two neighboring GP solutions can reach each other
by performing the genetic operator once. There are a huge number of
existing studies proposing various genetic operators for GP in different
domains, such as the genotype-based [259], phenotype-based [84,215], and
semantics-based [[183,(185]], and so on.

To conclude the three sub-sections above, although there have been
many studies analyzing and improving the FL of GP, the analyses of FLs
of GP are mainly based on TGP and the domains excluding combinato-
rial optimization problems. Besides, the improvements for FLs all need
a lot of domain knowledge and manual tuning (e.g., replacing root mean
square error with R-square in symbolic regression and designing new ge-
netic operators). It is hard and expensive to refine FLs and extend these
improvements to other domains. This thesis will apply existing FL met-
rics to analyze the FLs of LGP for DJSS and propose an FLO method to
automatically improve the FLs of LGP.

2.2.7 GP in Multitask Optimization
Evolutionary Multitask Optimization

Evolutionary multitask optimization is an emerging topic that enhances
the performance of evolutionary computation methods by simultaneously
optimizing multiple similar tasks [71]. Existing evolutionary multitask
methods can be categorized into two paradigms, implicit and explicit ge-
netic transfer [56]241]. Methods with implicit genetic transfer exchange
knowledge among tasks by applying a suite of genetic operators to per-
form implicit genetic mating (e.g., applying crossover operators on two
parents from different tasks). One of the most typical methods with the im-
plicit genetic transfer is the multifactorial evolutionary algorithm (MFEA)

[71]. MFEA designs four new concepts: factorial cost, factorial rank, skill
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factor, and scalar fitness. The first two terms are vectors for multiple tasks,
denoting the fitness and rank in corresponding tasks. The scalar fitness is
the minimum factorial rank among tasks. The skill factor indicates the task
with the minimum factorial rank. An assortative mating and a vertical cul-
tural transmission are also proposed in [71] to facilitate knowledge trans-
fer. MFEA integrates multiple solutions into one individual based on the
skill factor. However, most MFEA methods are designed based on numer-
ical representation. The idea of integrating multiple numerical solutions
in MFEA cannot be easily extended to GP methods whose search space
is symbolic. Based on MFEA, many studies developed new techniques
to enhance its performance. For example, Bali et al. [8] proposed a lin-
ear transformation strategy to transform the decision space among tasks.
Ding et al. [46] developed a decision variable translation strategy and de-
cision variable shuffling strategy for MFEA to improve the effectiveness of
knowledge sharing. Zheng et al. [280] proposed a self-regulated method
to perform knowledge sharing based on the relatedness among tasks. Be-
sides, MFEA has been applied to many applications, such as capacitated
vehicle routing problems [285], robot path planning problem [253], and
bi-level optimization [70]. Gupta et al. [72] also extended MFEA to multi-

objective optimization.

However, the implicit genetic transfer has a key limitation. It unnec-
essarily limits the information exchange within genetic mating [56]. In
practice, genetic mating might not be effective enough to transfer knowl-
edge among different tasks. To address this issue, the explicit genetic
transfer methods are proposed to explicitly consider different represen-
tations and search mechanisms among tasks in knowledge transfer. For
example, Feng et al. [31,56] proposed to use an artificial neural network
(e.g., denoising autoencoder) to perform knowledge transfer among dif-
ferent tasks. The artificial neural network is trained beforehand on uni-
formly sampled data. When performing knowledge transfer, solutions

from one task are mapped to another space by the artificial neural net-
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work. This method demonstrates the superior performance of explicit
genetic transfer over implicit genetic transfer in the investigated single-
and multi-objective optimization problems. To capture the essential fea-
tures of different tasks, Tang et al. [221] transformed the distribution of
sub-populations into task-specific low-dimension spaces, and made pair-
wise mapping among tasks by well-trained alignment matrices. When the
mapping discrepancies among tasks are minimized, individuals from dif-
ferent tasks can be transferred to another task based on low-dimension
spaces and alignment matrices. Chen et al. [33] treated decision spaces of
different tasks as manifolds and projected the decision spaces of tasks to a
joint manifold to represent the task relationship. The knowledge transfer
among tasks is performed based on the latent task relationship. Kullback-
Leibler divergence [32] and Naive Bayes classifier [116] are also extended
as methods of selective knowledge transfer. Nowadays, multitask opti-
mization techniques with explicit genetic transfer have been applied to
some real-world applications, such as time series prediction [27] and ca-
pacitated vehicle routing problem [55].

Multitask GP

Multitask techniques have shown encouraging results in enhancing the
performance of GP methods. For example, Zhong et al. [282] and Wei et
al. [242] applied multitask techniques to gene expression programming
for solving symbolic regression and multi-class classification. Bi et al. [18]]
proposed to use multitask techniques to encourage GP to construct effec-
tive features for image classification. These GP-constructed features from
different tasks are concatenated together based on an ensemble method.
Bi et al. [17] proposed to use a common tree structure to construct shared
features in similar classification tasks.

Multitask GP has been applied to DJSS. Zhang et al. [257,260] proposed
a multi-population-based multitask GP method, each sub-population for a

task. These sub-populations share the search information by swapping the
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building blocks of individuals. Their results verified the effectiveness of
the explicit genetic transfer. To further improve the training convergency,
surrogate models are also introduced in the multitask framework to selec-
tively share effective knowledge of ]SS [267]. The tasks in [267] only accept
individuals that are effective in corresponding surrogate models.

Based on the review, we found that existing multitask GP methods are
mostly designed based on TGP. Knowledge is transferred mainly by du-
plicating elite individuals or sub-trees from one task to another, which is
inefficient. On the contrary, the multiple outputs in LGP and the common
building blocks shared by these outputs provide another potential way to
effectively share knowledge. This thesis will develop an LGP-based multi-
task method to further enhance the performance of existing multitask GP
methods.

2.3 Chapter Summary

This chapter introduces the basic concepts of evolutionary computation,
LGP, DJSS problems, and heuristics and hyper-heuristics which are fun-
damental knowledge of this thesis. The details of LGP and DJSS are pro-
vided, and how to apply LGP to learn heuristic rules for DJSS is given
with examples. Meanwhile, this chapter reviews the existing advances
in the LGP area and the approaches for JSS. The existing studies that use
GPHH to evolve scheduling heuristics for DJSS are discussed. Based on
the research objectives of this thesis, the related studies are summarized.

The limitations of the existing studies are highlighted as follows.

1. LGP is a prominent GP variant. However, existing studies miss an
important application of LGP that applies LGP as a hyper-heuristics
method. With limited training resources and without labeled data,
applying LGP as a hyper-heuristic method is greatly different from
existing studies of LGP.
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. Graph-related characteristics of LGP are not fully investigated and

utilized. In other words, existing studies of LGP miss the graph-to-
instruction transformation and the cooperation among GP represen-

tations.

. Existing LGP studies lack an effective way to incorporate domain

knowledge (e.g., the dimensions of problem features and the pre-
tferred combinations of primitives) into LGP search. This prevents
LGP from evolving sophisticated and interpretable dispatching rules
for DJSS.

. The improvement of LGP fitness landscapes brings performance

gain, but existing studies have to manually manipulate the fitness
landscapes, which is tedious and uneasy to extend.

. LGP naturally has multiple outputs that share common building

blocks. Although this feature is useful for multitask optimization,
existing studies miss the investigation of LGP with multitask opti-

mization.

In the following chapters (3|to[8), we will develop advanced LGP meth-

ods to address these limitations.



Chapter 3

Preliminary Investigation of

Linear Genetic Programming for
DJSS

This chapter develops an LGP-based hyper-heuristics (LGPHH) method
for DJSS problems. Based on the LGPHH method, we perform a compre-
hensive investigation of the design details of LGP on DJSS. This chapter is

a fundamental chapter for the following chapters.

3.1 Introduction

Although there have been many GPHH methods for DJSS problems [156)
273|], most of the existing studies of GPHH for DJSS are based on TGP.
It is non-trivial to extend the existing TGP-based studies to LGP because
of the linear representation and corresponding genetic operators in LGP.
There are three research questions in designing LGPHH methods for DJSS.
First, The proper settings for evolving LGP in the generational evolution-
ary framework and with limited fitness evaluations are unknown. The
recommended evolutionary framework in DJSS is the generational evo-

lutionary framework because of the limited training resources in DJSS

69
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problems [78]. However, most of the existing LGP studies evolve within
a steady-state evolutionary framework and set a large number of fitness
evaluations. The inconsistent evolutionary frameworks and the number
of fitness evaluations likely lead to different suitable settings. Second, the
effective register initialization strategy for LGPHH is unknown. The reg-
ister initialization is a unique step for applying LGP, but existing GPHH
studies did not investigate the register initialization strategies for LGPHH.
Third, how different performance LGP can achieve compared to existing
methods is unknown. The advantages of LGP need to be verified by the

comparison with existing tree-based GPHH methods.

To answer the three research questions, we investigate the following
four aspects of basic LGPHH. First, we investigate the proper settings of
the population size and the number of generations for an LGPHH based
on the generational evolutionary framework, given the same total number
of fitness evaluations. Since the number of generations has a high corre-
lation with variation step size (i.e., a small number of generations might
need a large variation step size), we perform a grid search on the proper
settings between variation step size and the number of generations.

Second, we investigate the initialization strategy of registers. Brameier
et al. [21] have shown that initializing registers by valuable input features
significantly improves LGP performance in classification and symbolic re-
gression problems. However, DJSS problems have a large number of in-
put features such as the processing time of an operation and the remaining
workload in a certain machine. It is still an open question how to set the
initial value of the registers which are much fewer than the number of

features.

Third, we verify the performance of LGPHH by comparing it with ba-
sic TGP [106,/107]. Specifically, we verify the effectiveness, efficiency, and
training time of LGPHH. To ensure the fairness of the comparison between
LGP and TGP, we also carefully tune the parameters of TGP.

Finally, we analyze the interpretability of LGP output rules by com-
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paring the dispatching rules evolved by LGP and TGP, respectively. We
analyze the interpretability based on the program size and example rules.

3.1.1 Chapter Goals

The goal of this chapter is to investigate and identify effective settings for
LGPHH methods for solving DJSS problems by answering the three research
questions mentioned above. The LGPHH with well-tuned settings is ex-
pected to have better effectiveness and efficiency than the tree-based
GPHH. Specifically, this chapter has the following research objectives:

1. Apply a basic LGPHH method to DJSS problems based on a genera-
tional evolutionary framework.

2. Investigate the proper parameter settings of the variation step size
and the number of generations of LGPHH.

3. Investigate the register initialization strategies of LGPHH for solving
DJSS problems

4. Verify the performance of LGPHH by comparison with tree-based
GPHH.

5. Analyze the interpretability of the evolved dispatching rules.

3.1.2 Chapter Organization

The rest of this chapter is organized as follows. Section applies an
LGPHH method to DJSS problems. Sections [3.3] and [3.4] give the experi-
ment design and the empirical results, respectively. We mainly investigate
the detailed design of LGPHH in sections 3.3 and Section [3.5] further
analyzes the interpretability of output dispatching rules. Finally, section
concludes this chapter.
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Figure 3.1: The schematic diagram of applying LGPHH to DJSS problem:s.

3.2 LGPHH for DJSS

3.2.1 Algorithm Description

The overall procedure of applying LGPHH for solving DJSS problems is
shown in Fig. There are two sets of DJSS instances, one for training
and the other for testing. These DJSS instances are generated by unique
random seeds of the simulation. LGP evolves dispatching rules based on
the training instances. A DJSS instance is a series of jobs that come into
the job shop by sampling from a certain distribution. A unique random
seed of the distribution ensures the unique DJSS instances. The attributes
of these jobs will also follow the settings of the DJSS scenario. The LGP-
evolved dispatching rules schedule operations in DJSS instances and treat
the overall performance of the job shop as the fitness of LGP individu-
als. For example, the maximum tardiness and mean flowtime are com-
mon job shop performance and fitness functions of LGP individuals in
DJSS problems. The best LGP individual after evolution is obtained, and
its performance is evaluated on test instances. LGP cannot know the test
instances during training, and the test instances are different from training
instances.

The pseudo-code of LGPHH based on a generational evolutionary
framework for solving DJSS is shown in Alg. Eﬂ First, an LGP popula-

'Uniform(a,b) and UniformInt(a,b) return a random floating point number or a
random integer between [a, b), respectively. The notations are used in the rest of this
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Algorithm 1: The pseudo-code of LGPHH for DJSS

Input: The settings of the DJSS simulation (objective, utilization level, number

of machines, and number of jobs and operations.), the parameters of
LGPHH (population size, crossover rate, macro mutation rate, micro
mutation rate, and tournament selection size).

Output: The best-of-run LGP individual f*.
1 Initialize the population P with a given size;

2 Generate a DJSS instance I based on the settings of the simulation;

3 Evaluate every individual f on I by a DJSS simulation;

4 while The stopping criteria are not satisfied do

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

Parent individuals f1, f> < 0, offspring f], f5 < 0;
The new population P’ < elite individuals of P;
while size of P’ < size of P do
fi,f; + TournamentSelection(P);
p < uniform(0,1);
if p < crossover rate then

t Offspring f{,f} < Crossover(fy, f2);

else if p < crossover rate+macro mutation rate then
t f] + MacroMutation(f);

else if p < macro mutation rate+crossover rate+micro mutation rate then
t f; « MicroMutation(f;);

else
| ff £
P« P'Uf] (or P’ < P'U{f{,1}});

P+ P;

Evaluate every individual f € P on I by a DJSS simulation;
Update f* € P;

Rotate the random seed of 1.

23 Return f*.

tion P is initialized. The fitness of LGP individuals is evaluated by a DJSS

simulation. Then based on the fitness, an elitism selection is used to retain

elite individuals to the next generation. In breeding, LGP parent individ-

thesis.
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uals are selected by a tournament selection. These parents are varied to
produce offspring by micro mutation, macro mutation, and crossover re-
spectively based on the given probability. These genetic operators follow
the basic operators introduced in Chapter2.1.2l The offspring form the
new population and the best-of-run individual is updated. To improve
the generalization ability of dispatching rules, DJSS instances are also ro-
tated for every generation (i.e., altering the random seed of the simulation
instance). After generations of evolution, the best individual of the popu-
lation is outputted.

An LGP individual is evaluated by a DJSS simulation. In the simula-
tion, the LGP individual is regarded as a dispatching rule. The dispatching
rule is used to prioritize available jobs or machines for making decisions.
Specifically, for LGP-based dispatching rules, the registers in LGP indi-
viduals are re-initialized before every execution. Then, the instructions
in LGP individuals are executed sequentially, and the final output is seen
as the priority of a certain candidate decision. Without loss of generality,
smaller priority values indicate better priority in this thesis. The decision
with the best priority is then executed. After all the decisions have been
made, the performance of the generated schedule is measured by a prede-
fined objective function. The value of the objective function is regarded as
the fitness of the LGP individual.

3.3 Experiment Design

3.3.1 Parameter Settings

We define the default settings for LGP parameters based on the recom-
mended settings in [21]. Specifically, every LGP individual initially has
1 to 10 instruction(s) and can have at most 64 instructions and at least 1
instruction during evolution. For micro mutation, the mutation rates of

different primitive types (i.e., function, constant, destination and source



3.3. EXPERIMENT DESIGN 75

Table 3.1: The DJSS attributes.

Name Description

NIQ the number of operations in the queue

WIQ the total processing time of operations in the queue

MWT | the waiting time of the machine

PT the processing time of the operation

NPT the processing time of the next operation

OWT | the waiting time of the operation

NWT | the waiting time of the next operation

WKR | the total remaining processing time of the job

NOR | the number of remaining operations of the job

WINQ | total processing time of operations in the queue of the machine
which specializes in the next operation of the job

NINQ | number of operations in the queue of the machine which special-
izes in the next operation of the job

rFDD | relative flow due date from the current time

rDD relative due date from the current time
\ the weight of the job

TIS time in the system since the arrival

SL slack

registers) are set as fun : destin : cons : source = 50% : 25% : 12.5% : 12.5%.
For macro mutation, the insertion and deletion rate are set as 67% and
33% respectively. For the linear crossover, the maximal length of the two
crossover segments is 30, the maximal length difference of the two seg-
ments is 5, and the maximal distance of the two crossover points is 30.
The reproduction rate is set to 10%. The tournament size is set as 7 and the
elitism rate is 1%. There are a total of 51200 simulations (i.e., fitness evalua-
tion) by default. The function set includes {+, —, x, =, max, min} where +
returns 1.0 if divided by 0.0, and have six calculation registers and sixteen
DJSS attributes (i.e., constant registers) as the terminal set. The DJSS at-
tributes are defined based on the existing study [137], as shown in table[3.1}
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Every DJSS scenario has 30 independent runs. In the training phase, the in-
dividuals in one generation are evaluated by one simulation instance. The
simulation instance changes over generations. The outputted dispatching
rules from different runs are tested on 50 unseen instances to get the test

performance [78].

3.4 Experiment Results

3.4.1 Variation Step Size and Generations

To investigate the correlation between the variation step size and the num-
ber of generations, we conduct a grid search on these two settings. In-
tuitively, when the number of generations is large, the LGP population
can have a more thorough search in the neighbor region of existing so-
lutions by small variation step sizes. In this case, elite solutions can be
further elaborated by small changes. On the other hand, when there are
a small number of generations, LGP population can search more differ-
ent regions in solution space by large variation step sizes and thus has a
high degree of exploration. Here, we select two settings of generations,
50 and 400, to represent small and large numbers of generations, respec-
tively. To retain the same number of total simulations, the population size
of LGP is adjusted accordingly, i.e., the total number of simulations di-
vided by the number of generations. To fulfill the different variation step
sizes, we design two crossover-dominated and mutation-dominated set-
tings. The crossover-dominated evolution has a large variation step size
since the crossover operator changes more than one LGP instruction to
produce offspring. Contrarily, the mutation-dominated evolution has a
small variation step size since the mutation operator changes at most one
instruction each time. Denoting micro mutation rate as 6,,,;.,,, macro muta-
tion rate as 0,400, and crossover rate as 0,,.ss, we set the genetic operator

rate Onicro : Omacro : Oeross = 10% : 10% : 70% for crossover-dominated
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settings, and set O,icro © Omacro © Oeross = 30% : 30% : 30% for mutation-
dominated settings.

The results of the grid search are shown in table A Wilcoxon rank-
sum test with a significance level of 0.05 is also applied to these results.
The notation “+”, “—", and “~” respectively denote the compared al-
gorithm is significantly better than, significantly worse than, or similar
to the baseline (i.e., generation=50 and crossover-dominated in this ex-
periment). It can be observed that LGP has a significant improvement
when exploitation is highlighted. When generations equal to 400 and LGP
adopts mutation-dominated evolution, LGP is significantly better than
“(crossover-dominated, generations=50)" in four of the six scenarios. Be-
sides, if looking at the “crossover-dominated” row and “generations=50"
column respectively, we can see that increasing exploitation, no matter by
increasing generations to allocate more training resources for the conver-
gent phase or letting mutation dominate evolution, is helpful to LGP. They

significantly improve one or two scenarios respectively.

To identify a proper setting of generations for LGP, we make a further
investigation on the number of generations. We conduct two more gen-
eration settings, 200 and 800, based on the mutation-dominated setting.
Table shows that when the number of generations equals to 200 or 400,
LGP is significantly better than the baseline setting (i.e., “generations=50")
in four of the six scenarios. On the other hand, extremely increasing the
number of generations of LGP has a negative impact on the performance.
LGP with 800 generations only has a superior performance to the base-
line in the two T'max scenarios. Thus, the number of generations of LGP is
suggested to set as 200 or 400 to strike a good exploration-and-exploitation
balance.

However, increasing generations increases the training time. As shown
in table the training time grows up consistently from “generation=50"
to “generation=800". The main reason of the increasing training time is the

increase in program size. When LGP evolves a large population for a small
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Table 3.2: Mean (standard deviation) test performance of LGP with differ-
ent generations and genetic operator rates.

. generations=50 | generations=400
Scenarios
popsize=1024 popsize=128
(Tmax, 0.85) 2026.2(86.61) | 1928.61(41.68)+
(Tmax, 0.95) 4179.05(231.24) |4003.52(119.78)+
(Tmean, 0.85) | crossover- | 419.14(3.22) 419.91(6.11)~
(Tmean, 0.95) |dominated| 1120.39(9.18) 1115.7(8.62)~
(WTmean, 0.85) 728.94(7.26) 727.55(7.1)~
(WTmean, 0.95) 1746.12(24.47) | 1735.12(32.14)~
(Tmax, 0.85) 1987.46(60.36)+ | 1953.52(59.54)+
(Tmax, 0.95) 4109.88(150.49)= | 3999.86(158.62)+
(Tmean, 0.85) | mutation- | 418.15(2.43)~ 417.16(2.95)+
(Tmean, 0.95) |dominated | 1117.89(6.24)~ | 1116.51(10.76)~
(WTmean, 0.85) 730.6(7.03)~ | 726.32(8.02)~
(WTmean, 0.95) 1753.39(28.34)~ | 1725.95(26.13)+

Table 3.3: Mean (standard deviation) test performance of different genera-

tion settings with mutation-dominated LGP.

Scenarios

generations=50
popsize=1024

generations=200
popsize=256

generations=400
popsize=128

generations=800
popsize=64

(Tmax, 0.85)
(Tmax, 0.95)
(Tmean, 0.85)
(Tmean, 0.95)
(WTmean, 0.85)
(WTmean, 0.95)

2026.2(86.61)
4179.05(231.24)
419.14(3.22)
1120.39(9.18)
728.94(7.26)
1746.12(24.47)

1918.58(39.69)+

3995.55(173.69)+
418.14(4.58)+
1116.5(11.7)~
727.13(6.78)~

1733.26(26.61)+

1953.52(59.54)+
3999.86(158.62)+
417.16(2.95)+
1116.51(10.76)~
726.32(8.02)~
1725.95(26.13)+

1943.39(54.17)+
3977.28(120.35)+
419.89(5.16)~
1120.11(16.63)~
728.02(11.15)~
1735.83(31.43)~

number of generations, there are few long individuals in the LGP popu-

lation because of the limited number of generations and limited variation

step size. Contrarily, LGP individuals grow long enough after generations

of evolution. Long dispatching rules inevitably increase decision time and

make DJSS simulation more time-consuming.
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Table 3.4: Mean (standard deviation) training time of different generations

with mutation-dominated LGP (seconds).

Scenarios generations=50 | generations=200 | generations=400 | generations=800
popsize=1024 | popsize=256 popsize=128 popsize=64
(Tmax, 0.85) 2483.7(65) 4129.9(115.8) 4360.1(67.8) 4449.9(55.6)
(Tmax, 0.95) | 5641.9(209.9) | 10089.4(228.1) | 11311.3(246.3) | 11710.7(234.2)
(Tmean, 0.85) | 2262.8(41.1) 3870.1(117.3) 4050.2(75.7) 4081.6(73.8)
(Tmean, 0.95) | 4782.7(121.2) 9391.6(341) 9792.1(366.2) | 10580.6(443.6)
(WTmean, 0.85) | 2289.9(58.8) 4341.6(138.7) 4258.4(74.3) 4478.2(113)
(WTmean, 0.95) | 4928.4(174.4) | 9087.3(310.6) 9550.9(238.8) 9758.1(297)

To verify the program size increase, we compare the average program
size of the LGP population over generations with different generation set-
tings. Specifically, we denote the number of effective instructions in an
individual as the program size of LGP and use “mut-X", “mut” denoting
mutation and “X” for generation settings, to denote evolution settings. As
shown in Fig. the curves of small generations climb up much slower
than the ones of large generations. Based on the results, it is recommended
to set the number of generations as 200 and use mutation-dominated set-
tings to balance the training efficiency and test performance.

3.4.2 Register Initialization Strategy

This section investigates the effectiveness of different register initialization
strategies. By default, we initialize the six registers by the first six DJSS
attributes in table However, the first three attributes are machine-
related. They are the same for the operations in the same machine, which
is helpless in prioritizing operations in the same machine queue. To find
an effective register initialization strategy, we compare three strategies in
this section. First, the default initialization strategy acts as the baseline.
For the second strategy, we use diverse job-related attributes to initialize

registers. This strategy encourages dispatching rules to consider differ-
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mut—50==== mut—200== mut—400 mut—800
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Simulations Simulations

Figure 3.2: Average program sizes of different settings over generations.

ent information about available jobs and ensures that the initial values are
at least helpful in distinguishing operations. We identify the diverse at-
tributes based on the domain knowledge. The attribute pairs such as WKR
and NOR, rFDD and rDD, WINQ and NINQ, are respectively regarded as
similar attributes. So, we simply put one of the attributes in these pairs at
the front of the list and leave the other to the end part. The attributes listed
in table [3.1|are thus rearranged into

{PT,NPT, WINQ, WKR, rTFDD, OWT, NOR, NINQ,
W, DD, NWT, TIS, SL, NIQ, WIQ, MWT}.

The first k attributes are used to initialize k registers respectively. This di-
verse job-related attribute initialization is denoted as “Div]Job”. Third, we
initialize all registers as “1”, which is the simplest way for initialization.
Other experiment settings follow section and mutation-dominated
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Table 3.5: Mean (standard deviation) test performance of different register

initialization strategies.

Scenarios Default Div]Job All-ones
(Tmax, 0.85) | 1953.52(59.54) |1914.35(34.99)+1952.21(45.28)~
(Tmax, 0.95) [3999.86(158.62)| 3973(135.48)~ |3963.31(81.94)~
(Tmean, 0.85) | 417.16(2.95) | 418.04(3.88)~ | 418.01(4.03)~
(Tmean, 0.95) | 1116.51(10.76) | 1112.16(8.65)~ |1117.18(13.95)~

(WTmean, 0.85)| 726.32(8.02) | 727.72(6.04)~ | 728.45(8.47)~
(WTmean, 0.95) | 1725.95(26.13) |1737.68(39.06)~|1725.63(27.92)~

settings, evolving 400 generations.

The test performance of the three initialization strategies is shown in ta-
ble Generally speaking, the test performance of the three strategies is
very similar, which means LGP is relatively robust to register initialization
in terms of test performance. Nevertheless, Div]ob still significantly out-
performs the other two initialization strategies in one scenario. Besides,
Div]Job also has a better mean performance than the default initialization

on two of the three scenarios with high utilization levels.

To further investigate the effectiveness of initialization strategies, the
training performance is also compared. Fig. shows the test perfor-
mance of the best dispatching rule of every generation. As shown in Fig.
DivJob (i.e., the red curves) averagely drops down faster and deeper
than the other two initialization strategies in the two T'max scenarios. Be-
sides, for the two T'mean scenarios, DivJob has a relatively fast conver-
gence speed at the beginning and has a more stable performance (i.e.,
narrower bias range) at the final stage of evolution. Though in WT'mean
scenarios, Div]Job has a slower convergence speed than the others at the
beginning of evolution, DivJob can still converge to a similar level with
other initialization strategies before half of the evolution. Based on these
results, we find that initializing registers as various job-related attributes

is helpful for LGP in terms of both training and test performance.
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Figure 3.3: Test performance over generations.

Given that the number of registers is often smaller than the number
of DJSS attributes, we conduct an investigation on the suitable number
of registers based on the newly recommended initialization strategy (i.e.,
DivJob). The comparison of average test performance and standard devi-
ation is shown in table The default setting (i.e., 6 registers) is regarded
as the baseline. The test performance of different numbers of registers

is similar in most cases. However, when the number of registers is set
as 8, LGP outperforms the default setting in (WTmean, 0.85). Besides,
LGP with 8 registers can also have relatively small mean test performance
in most high-utilization-level scenarios. Based on the results, we recom-
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Table 3.6: Mean (standard deviation) test performance of different number

of registers.

#registers 4 8 10 12

Scenarios
(Tmax, 0.85) | 1918.65(29.99)~ |1927.03(50.67)~=| 1944.89(53.67)— | 1943.65(63.67)~
(Tmax, 0.95) |3974.87(154.94)~|3938.6(117.75)~2|3975.27(102.66)~2|3993.53(168.22)~
(Tmean, 0.85) | 418.63(3.98)~ | 418.06(4.27)~ | 416.43(3.18)~ | 417.84(2.26)~
(Tmean, 0.95) | 1115.59(9.97)~ | 1115.77(9.37)~ | 1115.55(11.13)~ | 1116.11(9.92)~

(WTmean, 0.85)| 724.42(7.1)~ 721.59(6.02)+ | 726.69(6.51)~ | 726.75(6.95)~

(WTmean, 0.95)| 1725.07(22.07)~ | 1729.49(22.2)~ | 1731.1(20.1)~ |1742.57(30.17)~

*The test performance of 6 registers with new register initialization strategy
is referred to Div]Job in table

mended to set the number of registers as 8.

3.4.3 Comparison with TGP

As it is the very beginning of applying LGP in DJSS, we verify the effec-
tiveness of LGPHH by a comparison between basic TGP [137] and LGP in
terms of test performance and training efficiency, to show the potential of
LGP. The parameters of TGP and LGP are shown in table The param-
eters of TGP and LGP are different because they have their best perfor-
mance in different settings. We apply their own fine-tuned parameters to
ensure a fair comparison. We verify the effectiveness of LGPHH with the
recommended settings of generations (i.e., 200) and register initialization
strategy (i.e., DivJob and 8 registers). We reduce the maximum program
length to 50 in this section and use a smaller variation step size in linear
crossover. The parameters of TGP are set based on the recommended pa-
rameters of [[136]]. To retain the same total number of simulations, TGP in
the experiment has a population of 1024 individuals and evolves 50 gen-
erations.

The results are shown in table It can be observed that LGP is sig-
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Table 3.7: Default parameter settings of all the compared methods.

Parameters TGP LGP
population size 1024 256
generations 50 200

genetic operator rates

crossover 80%,mutation 15%,
reproduction 5%

crossover 30%, macro mutation 30%,

micro mutation 30%, reproduction 10%

crossover parameters

inner node 90%,
leaf node 10%

segment length<30,
segment length difference<5,
crossover point distance<30

mutation parameters

inner node 90%,
leaf node 10%

macro(insertion 67%, deletion 33%),
micro (0un = 50%, Ocon, = 12.5%
Odes = 25%, Oson, = 12.5%, )

L. . min depth=2, min instruction=1,
initial program size ) .
max depth=6 max instruction=10
maximum program size max depth=8 max instruction=50
register number None 8

Table 3.8: Mean (standard deviation) test performance and training time
(in seconds) of TGP and LGP.

. TGP LGP
Scenarios - — - - — -

Fitness Training time Fitness Training time

(Tmax, 0.85) | 1931.04(44.39) | 3036.1(81.9) |1931.14(37.22)~| 3483.5(52.4)
(Tmax, 0.95) |4105.46(193.07)| 6386.1(209.4) | 3974.2(112)+ | 8759.4(205.4)
(Tmean, 0.85) | 417.34(2.95) 2398.6(67) 417.3(2.15)~ | 3480.7(104.9)

(Tmean, 0.95) | 1115.64(10.99) | 4543.8(131.1) | 1115.53(9.45)~ | 7727.3(252)

(WTmean, 0.85)| 727.93(9.14) | 2544.7(80.9) | 723.96(6.35)~ | 3273.6(72.4)
(WTmean, 0.95) | 1745.24(25.5) | 4687.7(116) | 1728.6(24.1)+ | 8132.6(279.9)

nificantly better than TGP in two scenarios, in terms of test performance.

Besides, LGP has better mean performance than TGP in most of the other

scenarios. However, the results show that the training time of LGP is much

longer than the ones of TGP. To be more convincing, we make a further

comparison to investigate the performance difference between TGP and
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LGP within a similar training time. Specifically, we respectively evolve
TGP with 70 and 100 generations. Table shows the comparison in
terms of test performance and training time. TGP with 70 and 100 gen-
erations are denoted as “TGP70” and “TGP100” respectively. Table
shows that increasing the number of generations of TGP can improve the
performance of TGP. However, the performance of TGP70 and TGP100 is
still similar to the one of LGP. Besides, increasing the number of genera-
tions also increases the training time of TGP. The two versions of TGP both
have longer training time than LGP in most scenarios.

To verify the training efficiency of LGP, we compare the test perfor-
mance over generations of TGP, TGP70, TGP100, and LGP. As shown in
Fig. LGP (i.e., red curves) has a very competitive performance with
the other three compared methods. Besides, LGP also drops down much
faster than its adversaries in (Tmax, 0.95).

The results verify that within the same number of simulations, LGP
has a significantly better learning ability than TGP (i.e., better effectiveness
and efficiency). Given the same training resources, the training efficiency
and test performance of LGP are still very competitive with TGP.

3.5 Rule Interpretability

3.5.1 Program Size

We analyze the interpretability of the output dispatching rules by the pro-
gram size and example rules. Program size of dispatching rules is a com-
mon metric to analyze the interpretability. A shorter dispatching rule often
has better interpretability. Fig. compares the program sizes of output
dispatching rules from the compared methods in all the independent runs.
The number of tree nodes after simplification is denoted as the program
size of TGP rules, and the number of effective instructions multiplied by a
factor of 2.0 is denoted as the size of LGP rules. We see that LGP (i.e., the
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Table 3.9: Mean (standard deviation) test performance and training time
of TGP with 70 and 100 generations and LGP.

Test performance

Scenarios TGP70 TGP100 LGP
(Tmax, 0.85) | 1918.87(41.5)~ |1920.31(50.86)~|1931.14(37.22)
(Tmax, 0.95) [4012.22(88.63)~|3985.49(85.69)~| 3974.2(112)

(Tmean, 0.85) | 416.8(3.18)~ | 416.03(3.04)~ | 417.3(2.15)

(Tmean, 0.95) |1112.65(11.19)~|1114.02(15.64)~| 1115.53(9.45)
(WTmean, 0.85)| 726.09(5.52)~ | 725.21(6.58)~ | 723.96(6.35)
(WTmean, 0.95)|1730.11(27.46)~|1726.83(27.84)~| 1728.6(24.1)

Training time (seconds)

(Tmax, 0.85) 4868.7(185) 7714.2(260.7) | 3483.5(52.4)

(Tmax, 0.95) | 10356.5(313.4) | 15809.1(514.5) | 8759.4(205.4)

(Tmean, 0.85) | 4014.8(80.9) | 5698.9(156.5) | 3480.7(104.9)

(Tmean, 0.95) | 7695.1(280.9) | 11653.8(391) | 7727.3(252)
(WTmean, 0.85)| 3948.5(90.5) | 5507.1(124.6) | 3273.6(72.4)
(WTmean, 0.95)| 7692.7(294.5) | 11637.7(386.3) | 8132.6(279.9)

red boxes) has smaller means and medians than the TGP70 and TGP100
(i.e., the yellow and blue boxes) which has similar effectiveness. Although
TGP (green boxes) has a similar program size distribution to LGP, the ef-
fectiveness of TGP with 50 generations is inferior to LGP. It means that

LGP is more likely to evolve more compact and effective programs than
TGP methods

3.5.2 Example Rules

To further analyze the interpretability, we analyze an example program
of LGP. Fig. (and Fig. shows an LGP-evolved rule for (Tmax,
0.85), after some manual simplification. We can see that the rule reuses
a building block A, which tries to minimize “SL”, “PT”, and “NIQ”. It

implies that the operations that are going to be late or have a short pro-



3.5. RULE INTERPRETABILITY

2400+

— TGP

<Tmax, 0.85>

|
I

2200

2100+

Fitness

2000

1900

1800

5000

50000 100000

Simulations
<Tmax, 0.95>

4800+

4600+

w

& 44001

£

= 4200/
4000

3800

0

50000 100000

Simulations

Fitness

500

480

TGP70—— TGP100——LGP

<Tmean, 0.85>

420

400

1400

0 50000 100000
Simulations
<Tmean, 0.95>

1300

1200

1100

0 50000 100000

Simulations

1100

87

<WTmean, 0.85>

1000

900

Fitness

800 -

700

0 50000 100000

Simulations
<WTmean, 0.95>

0 60000 120000

Simulations

Figure 3.4: Test performance over generations of TGP and LGP.

cessing time will be scheduled first. Besides, the building block tries to
maximize the remaining processing time of the job so that the jobs with
a large amount of uncompleted work will have a high priority in reduc-
ing the maximum tardiness. The building block is reused in a maximum
comparison. However, these two terms in the maximum comparison still
show favor to “—WKR” and “PT”, which is consistent with the building
block. Given that “—WKR” is always non-positive and “PT—2" is positive
in most cases, the dispatching rule can be further simplified to the latter

element of the maximum comparison.
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Figure 3.5: Scaled program sizes of TGP with different generations and
LGP.

A=SL-WKR-+3PT+NIQ
rule= max(A—WKR, A+PT-2)

Figure 3.6: Example program of LGP.

3.6 Chapter Summary

The goal of this chapter is to develop an LGPHH method for DJSS prob-
lems. This goal is fulfilled by an LGPHH based on a generational evolu-
tionary framework. To answer the research questions, we make a com-
prehensive investigation on the variation step size, the number of gener-
ations, and the register initialization strategies. Finally, we verify the per-
formance of the LGPHH method by comparison with a tree-based GPHH
method.
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Figure 3.7: The corresponding DAG of the example program in Fig.

For the first research question, the results recommend that a large
number of generations and a small variation step size (i.e., mutation-
dominated evolution) are helpful for LGPHH to evolve dispatching rules.
For the second research question, it is advisable to use diverse job-related
attributes to initialize LGP registers. For the third research question, the
LGPHH with the recommended parameter settings has better effective-
ness and training efficiency than the tree-based GPHH method within the
same number of simulations. The analysis of output dispatching rules
from LGPHH verifies that the LGP-evolved dispatching rules are more
compact than those tree-based rules. The example rule further implies
that the dispatching rules of LGPHH successfully reuse effective building
blocks, which is essential for evolving compact dispatching rules. The in-
vestigation of basic LGPHH shows the superiority of LGP, which shares
a similar conclusion in other LGP applications such as classification and
regression. It is likely that the superiority of LGP is extendable to other
domains. This chapter makes a foundation (i.e., an effective framework
for basic LGPHH for solving DJSS) for the following chapters. In the fol-

lowing chapters, we will develop advanced LGP methods based on this
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chapter and apply the advanced methods to solve DJSS problems.



Chapter 4

Graph-based LGP Search
Mechanisms for DJSS

LGP is a typical graph-based GP method. However, its graph-based char-
acteristics are not fully investigated. In this chapter, we will develop ad-
vanced graph-based search mechanisms for LGP to make full use of the

search information of graphs and the synergy between GP representations.

41 Introduction

One of the important features of LGP is its graph characteristics. By con-
necting primitives based on registers, an LGP individual can be decoded
into a directed acyclic graph (DAG). Primitives are the basic functions and
terminals that compose GP programs. Presenting LGP individuals (i.e.,
programs) by DAGs has different advantages from a genotype (i.e., a se-
quence of register-based instructions). For example, graphs represent pro-
grams in a more compact representation. On the other hand, a genotype
enables neutral search in program spaces and memorizes potential build-
ing blocks [145,217]. Empirical studies verified that graphs and LGP geno-
types are competitive for different tasks [6,214]. It is valuable to make full
use of the graph characteristics of LGP.

91
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There are some studies about utilizing graph information in the course
of LGP evolution [6}21,214]], but they miss three potential improvements
based on the LGP graph characteristics. First, due to the linear represen-
tation, many instructions in an LGP individual may have no effect on the
program output. An LGP instruction can be redundant. For example, in
the program (R1 = z + 2; R1 = xz x 3;), the latter instruction makes the
former one redundant. Besides, a block of code can be irrelevant to the pro-
gram output (i.e., introns). For example, given the program (R3 = R1 + 1;
R3 = R3 + R2; RO = R1 * 2;), where R0 is the program output register,
the first two instructions are irrelevant to the program output. If we see
an LGP program as a DAG, then the DAG can have multiple connected
sub-graphs, and the introns are in the sub-graphs that are isolated from
the main DAG that contains the final program output. The traditional lin-
ear genetic operators directly modify the sequence of instructions without
considering whether the modified parts have effect to the program output
or not [21]. Though some variants of genetic operators ensure that at least
one effective instruction is modified in breeding, they often destruct use-
ful building blocks (i.e., topological structures of effective instructions). In
this case, they may have a too large variation step size, and cannot strike
a good balance between exploration and exploitation.

Second, the utilization of graphs in LGP is one-way (i.e., the existing
LGP studies mainly consider DAGs as a compact and intuitive way to de-
pict the programs). Whether there is an effective way to bridge graphs (i.e.,
phenotype) and LGP instructions (i.e., genotype) is unknown yet. The ab-
sence of an effective transformation from DAGs to instructions precludes
LGP from fully utilizing the graph information and cooperating with other
graph-related techniques such as neural networks. To have a better un-
derstanding of LGP graph-based characteristics, a two-way transformation

between graphs and LGP programs is necessary.

Third, graphs is an effective medium for conveying search information

in different GP representations since most of the GP representations can
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be represented as graphs. Existing studies have shown that different GP
representations have different pros and cons for solving different prob-
lems [214,244]. However, extending such kind of knowledge to unseen
domains is difficult, and such investigations are often too time-consuming
and it is hard to cover all different branches and variants of a problem.
When encountering an emerging application or a new problem, users have
scarce domain knowledge in selecting a GP representation. To make full
use of different GP representations and enhance the search performance
of existing GP methods, it would be interesting to investigate whether the

different GP representations can cooperate in solving a single task.

To fulfill these three improvements, this chapter first proposes four
genetic operators for LGP based on its graph-based characteristics and
comprehensively investigates the effectiveness of these genetic operators.
Then, this chapter further proposes a Multi-Representation GP (MRGP)
based on the achievement in the first step. Specifically, we propose a
graph-based crossover operator for the first improvement. This new oper-
ator takes the relationship (links in the DAG) between the instructions into
account and selects only the instructions contributing to the final program

output to modify.

To fulfill the two-way transformation between graphs and LGP pro-
grams, we design graph-to-instruction transformations for LGP individu-
als to accept the graph information of DAGs in evolution. The main chal-
lenge lies in the fact that DAGs do not contain register information, but
LGP individuals are register-based instruction sequences. To overcome
this challenge, this chapter proposes two strategies to address the register
issue in a graph-to-instruction transformation. In the first transformation
strategy, LGP individuals accept graph information without considering
the topological information that is represented by registers. We assume
that if topological information is not that important, ignoring the register
identification is a simple and effective way to convey graph information.

In the second strategy, LGP individuals identify the registers (by guess-
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ing) for the instructions to reconstruct topological information. However,
it is hard to perfectly reconstruct the topological structures by registers be-
cause of the absence of register information in DAGs. Specifically, we
develop three new genetic operators based on graph node frequency, ad-
jacency matrix, and adjacency list, to fulfill the two transformation strate-
gies.

To make full use of the synergy between different GP representations,
this chapter proposes a new MRGP algorithm that simultaneously evolves
individuals with more than one representation. This section focuses on
the MRGP with two typical GP representations, TGP and LGP, denoted as
MRGP-TL. Fig. 4.1)is an example to show the possible impact of switching
tree-based and linear GP representations. Given the inputs X; =3, X, =5
and the target output 1.5, we apply TGP and LGP to synthesize a math-
ematical formula. Each pair of TGP and LGP programs with the same
fitness represents the same program. Suppose TGP and LGP can only
apply mutation operators to produce offspring and start from the same
formula f(X) = X; x X, whose fitness (defined as absolute error) is 13.5
(13 x 5—1.5| = 13.5). The initial values of LGP registers in Fig. [4.1]are 0. To
move on to the second step, LGP only needs to mutate the second prim-
itive in the first instruction, but TGP has to perform a subtree mutation.
Subtree mutation is a relatively large variation that leads to a large neigh-
borhood. It is more likely (i.e., easier) for LGP to sample the offspring
from a small neighborhood (i.e., by one-primitive mutation) than for TGP
to sample the exact offspring from the large neighborhood (i.e., by subtree
mutation). However, from the second to the third step, TGP only needs
to mutate a tree node, while LGP has to mutate a new instruction. Fig.
shows that switching solutions between LGP and TGP representations
can share the search information in TGP and LGP. It is potential for GP
individuals to reach better fitness via fewer and smaller variations.
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Input Target
X;=3 [fitness=13.5] [fitness=4.5] [fitness=0.0]
X,=5 1.5
Subtree Node
TGP e mutation N mutation
e LN e R
<) )
X2 (Xy

Switch T
Primitvive representation Instruction
R[l] _ Xz _ R[O] mutation R[l] — Xz . Xl mutation R[l] = X2 - Xl
R[0] =R[1] X X, R[0]=R[1] X X, R[0] =X; + R[1]

LGP

Figure 4.1: Potential impact of switching GP representations. The light
green arrow shows a potential easy search trajectory for the LGP individ-

ual to reach the target model.

4.1.1 Chapter Goals

The goal of this chapter is to develop advanced graph-based search mech-
anisms for LGP for DJSS. This chapter proposes and investigates several
potential ways of making use of graph-based information. Based on the
investigation, this chapter further proposes an MRGP that share search in-
formation between GP representations based on graphs. Specifically, this
chapter has the following research objectives.

1. Develop a graph-based crossover operator for LGP to highlight the
effective building blocks during evolution.

2. Develop three graph-to-instruction genetic operators to enable LGP
to accept graph information.

3. Analyze the effectiveness of the four proposed graph-based genetic
operators.

4. Based on the investigation of the proposed graph-based operators,
propose an MRGP method to make full use of the synergy of different GP
representations. Specifically, we take TGP and LGP as examples to verify
the effectiveness of the MRGP.

5. Analyze the effectiveness of the proposed MRGP method for solving
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DJSS problems.

4.1.2 Chapter Organization

The rest of this chapter is organized as follows. Section |4.2| first proposes
the four graph-based genetic operators. Then, section 4.3l makes a com-
prehensive investigation of the proposed genetic operators. Based on the
investigation, section further proposes an MRGP method and takes
TGP and LGP as examples. Section {4.5) verifies the effectiveness of the
MRGP method for solving DJSS problems. Finally, section {4.6| concludes
this chapter.

4.2 Proposed Graph-based Operators

This section proposes four graph-based genetic operators. Specifically,
we first propose a graph-based crossover (GC) to highlight the effective
building blocks in LGP individuals, which are highly related to the corre-
sponding DAGs of the individuals. Second, we propose three graph-to-
instruction genetic operators, which are frequency-based crossover (FX),
adjacency matrix-based crossover (AMX), and adjacency list-based crossover
(ALX). These three operators convey three different types of graph infor-
mation (i.e., primitive frequency, adjacency matrix, and adjacency list).
To investigate the effectiveness of the three graph-to-instruction transfor-
mation methods, we explicitly transform LGP instruction segments into
DAGs [21], and graph-based genetic operators accept the DAGs as ge-
netic materials to produce offspring. The schematic diagram of conveying
graph information to LGP instructions is shown in Fig. We apply the
three graph-to-instruction genetic operators in the dashed arrow with a
question mark. We assume that all the four graph-based genetic operators
should effectively evolve LGP programs if they are effective in conveying
building block information.
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LGP DAG LGP
Parent 1 Parent 2

?

Figure 4.2: The schematic diagram of accepting graphs as LGP genetic
materials. The program-to-DAG transformation (i.e., grey solid arrows) is
fulfilled by [21]. The DAG-to-program transformation (i.e., dashed arrow)
with a question mark is the focus of this section.

4.2.1 Graph-based Crossover

The proposed graph-based crossover for LGP aims to swap LGP instruc-
tions based on their topological structures, rather than their raw genome.
This way, the topological structures of building blocks are not easily de-
structed by recombination. Briefly speaking, it first decodes the raw LGP
parents into corresponding DAGs. Then, it selects a sub-graph in the main
DAGs (producing the final output) in each of the two parents and swaps
them. The swapping is done on the sequences of the instructions directly
to ignore adjusting the links in the resultant DAG.

Algorithm 2| shows the pseudo-code of the graph-based crossover op-
erator, where || - || indicates the cardinality (number of elements) of a
set/list. Given two LGP parents f; and f;, a set of registers R, as well
as three crossover parameters, i.e., the maximal size of sub-graphs S,
the maximal size differences of sub-graphs Ag and maximal distance of
crossover points D...ss, the graph-based crossover first extracts the lists
of effective instructions (i.e., the main DAG with the final output) f| and
f;. Then, it selects a sub-graph from each parent subject to the following
constraints: (1) the number of effective instructions in both offspring after
the swapping is within the graph size range [L, ], and (2) the gap between
the two sub-graph sizes do not exceed Ag. Then, it swaps the two sub-
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Algorithm 2: GraphCrossover(f, f2, R, S, As, Deross)

10

11

12

13

Input: Two LGP parents f; and f5, register set R, maximal size of sub-graphs S,
size gap limit Ag, maximal distance of crossover points D yoss.
Output: Two LGP offspring c; and c».
Extract the list of effective instructions f] C f;, £ C f5;
/* Select sub-graphs x/
repeat
Randomly select two registers 1,72 € R;
repeat
Randomly sample an instruction index i; < UniformInt(1,||f]|| + 1)
and iy + UniformInt(1,||f}|] +1);
until |i; — is]| < Deposs;
Randomly sample S; + UniformInt(1l,S+1),
S < UniformInt(1,S +1);
G1  GetSubGraph(f], {r1},i1,51);
G2 + GetSubGraph(f}, {ra},i2, S2);
until [[f{]| — ||G1| + [|G2| € [1,1] and ||f3]| — ||Ga|| + [|G1]| € [,1] and
1G]] = |Gl < As;
/+ Swap the sub-graphs */
¢y < GraphSwap(fy, f2, G1,G2);
cy + GraphSwap(fy, f1, G2, G1);

return cq, co;

graphs to generate two offspring. Note that the swapping is asymmetric,

and there is a recipient parent and a donator parent.

The sub-graph of an individual is obtained by backtracking the effec-

tive instructions from the selected crossover point. If the current instruc-

tion contributes to the target instruction at the crossover point (there is a

path from its destination register to the target instruction), then the current

instruction is added to the sub-graph. The pseudo-code is shown in Algo-

rithm 3, where the fringe of the paths pointing to the target instruction is

stored in T.

The pseudo-code of the sub-graph swapping is shown in Algorithm

It generates an offspring by replacing the instructions in sub-graph
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Algorithm 3: GetSubGraph(f, T, i, S)

Input: An LGP individual f, a set of target register T, crossover point i, graph

size S.
Output: A sub-graph G, represented as a list of instructions.
G [;
for j + ito0do

=

N

3 if des(f;) € T then

4 G+ [£,G];

5 if ||G|| = S then break;

6 T < T\ des(f;);

7 for src € src(f;) do

8 t if srcis a register then T <— T U src;
9 return G|

Algorithm 4: GraphSwap(fy, f2, G1, G2)
Input: A recipient LGP parent f;, a donator LGP parent f5, sub-graphs (lists of

instructions) Gy, G»
Output: An LGP offspring c
1 ¢« fy;
2 Replace G1[||G1|| — 1] in ¢ with Gg;
3 Remove G1[0: ||G1|| — 2] from c;
4 while ||c|| > [ do Randomly remove an intron from c;

5 return c;

G of the recipient parent f; with the sub-graph G, of the donator par-
ent f;. Specifically, it replaces the last instruction G4[||G;|| — 1] in G; with
(5. Then, it removes all the other instructions in ; from the offspring.
Note that the swapping does not replace the instructions at their original
positions, but only retains the position of the last instruction of the sub-
graphs. This way, we can retain the topological structure of the sub-graph
G5 of the donator parent, which would increase the effectiveness of the
swapping/replacement.

An example of the graph-based crossover is shown in Fig. The
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recipient donor
R2=R1+R5 R5=R3+Rl1
R1=R4-R3 R0=R2+R2
R3=R4 *R5 R3=R1/R2
RO=R1+R2 |[R4] RO =R3 * RS

Selected sub graphs

R1=R4-R3 R3=R1/R2
RO =R1+R2 RO =R3 * R5
offspring replace

R2=R1+R5
R3=R4 * RS
R3 =R1/R2
RO=R3 * RS

Figure 4.3: Example of graph-based crossover.

parent on the left is the recipient and the one on the right is the donator. We
can see that the third instruction R3 = R4 * R5 on the left and the second
instruction R0 = R2 + R2 are introns and do not appear in the DAGs. The
instructions in the selected sub-graphs are highlighted in gray. Finally,
we replace the instruction R0 = R1 + R2 on the left with the sub-graph
(R3 = R1/R2; R0 = R3 * Rb;) on the right, and remove the remaining
instruction R1 = R4 — R3 from the left. From this example, we can see
that the offspring inherits some building blocks from both the left parent
(e.g., R1+ R5) and the right parent (e.g., R0 = #1/#2 X #3, where #; to #3
can be any value). This demonstrates the effectiveness of the graph-based
crossover.

4.2.2 Frequency-based Crossover

The frequency of primitives is a simple high-level feature of a graph.

The frequency of primitives implies the importance of different primi-
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tives. Frequency has been widely applied in GP to identify important fea-
tures [88,258]. In the FX operator, we utilize the primitive frequency in
LGP crossover by seeing the primitive frequency as a kind of distribution.

FX accepts two parent individuals and produces one offspring. The
offspring is produced by varying one of the primitives in an instruction
of the first parent. When varying the primitive, the old primitive is re-
placed by a new one based on the frequency of the primitives in the
second parent. We hope that varying the primitive based on the fre-
quency of another individual stimulates more useful building blocks. The
pseudo-code of FX is shown in Alg. (-) following a set or a list de-
notes getting an element based on the index. The frequency vector is
defined as F = [funy, funs, ..., fung,ing,ins,...,in,] where g is the num-
ber of functions and % is the number of input features. The function
funy is sampled by a roulette wheel selection on the function frequency
(i.e., F[funy, fung, ..., fung]). A higher frequency implies a larger proba-
bility to be selected. If varying constant is triggered (i.e., Uniform(0,1) <
O fun + Ocon in line 8 of Alg. , one of the source registers is replaced by an
input feature which is sampled by a roulette wheel selection on the input
feature frequency F[in;,ino, ...,ins]. To ensure that every primitive has a
small probability of being selected, we add 1.0 on all the elements of F.
The destination register R, 4, and the source registers R, ; of the instruc-

tion f’ are sampled uniformly.

Fig. shows an example of producing offspring by FX. First, FX
transforms the second parent into a DAG and obtains the frequency of
the primitives. Note that the frequency of primitives in a DAG is different
from the frequency of primitives in raw effective instructions, as the effec-
tive instructions contain register primitives but the DAG does not. Since
the DAG merges all the duplicated constants (i.e., input feature x;;—¢,1,2))
into one graph node, FX treats the incoming degree as the frequency of
constant graph nodes. FX normalizes the frequency of primitives and gets

the distribution which further biases the variation on the first parent. We
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Algorithm 5: Frequency-based crossover

Input: The two parents f; and f5, function rate 6., constant rate ..y,
destination register rate 4.5, source register rate 6,
Output: An offspring c
1 F <« get the primitive frequency from fy;
2 ¢+ fj;
3 | < UniformInt(0,|c|);
4 [+ c(l);
5 1< Uniform(0,1);
6 if r < 04y, then
// sample functions

7 funy < Roulette-wheel selection based on F[funi, funs, ..., fung]

8 elseif r < Ofyy + Ocon then

9 if None of Ry 1 and Ry 5 o are constant registers then
10 t i < UniformInt(1,3);
1 else

12 t i < the index of the constant register;

// sample constants

13 Ry i < Roulette-wheel selection based on F[iny, ing, ..., ing];

14 elseif r < 05y + Ocon + Oges then

15 t Ry 4 < sample a random destination register uniformly;
16 else

17 L i+ UniformInt(1,3);

18 Ry i < sample a random source register uniformly;

19 c(l) « f’

20 Return c;

can see that the R[2] in the third instruction of Parent 1 is changed to
based on the distribution.

4.2.3 Adjacency Matrix-based Crossover

The adjacency matrix conveys more graph information than the primitive

frequency by highlighting the neighboring relationship of graph nodes.
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Parent 1

R3] =Xp - X4
Distribution
R[2] =R[1] X X;

@ R[1] = R[2]+R[3]
R[0] = R[1] + X4

Offspring

Parent 2

R[1] =X +X;

R[0] = R[1] + X
R[2] =X; = R[1]
R[3] =R[0] X X
R[0] =R[3] - R[2]

Frequency
3

R3]=Xp - X3

1111 R[2] =R[1] X X
,,,,,,, R[1] = Xy +R]3]
R[0] = R[1] + X;

Figure 4.4: An example of FX operator.

The elements in an adjacency matrix are the frequency of a primitive con-
necting to another primitive in a DAG. We treat the elements in an adja-
cency matrix as a kind of distribution by normalizing the elements in each

row. To this end, we utilize the adjacency matrix in LGP crossover (i.e.,
AMX).

Similar to FX, AMX accepts two parents and produces one offspring by
varying one primitive in one of the instructions. Different from FX, AMX
varies functions and constants by a roulette wheel selection based on the
adjacency matrix of the graph from the other parent. The pseudo-code of
varying a function or constant based on an adjacency matrix is shown in

Alg. [f[] where the adjacency matrix is defined as

I(x,:)and (: ,x) following a matrix denote getting the z*" row or the 2" column of
elements respectively.
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Algorithm 6: Varying a function or a constant based on the adja-

cency matrix
Input: Adjacnecy matrix M, to-be-varied individual f, index of the to-be-varied

instruction I*, function-and-constant flag I'
Output: A new primitive node n
1 if I' =function then

2 out + a random function;

3 for fo,: + £(I* — 1) to £(0) do

4 if fout is an exon and 3Ry, , <i = Re+),q,1 € 1,2 then
5 L L out « funy,,, break;

6 n < Roulette-wheel selection based on M ¢,,,, (out, :);

7 else if I' =constant then

8 out < fumngg-y;

9 n < Roulette-wheel selection based on M;,, (out, :);

10 Return n;

fung 1 fung.g g iNf b
D function — out
| .
I IR P e L R LY
|
| _
0 | 0 } constant — out
func;gn—in const?zjzt—in
fungao-oo fung g linga oo ing
‘ . .
funf971 e funfgvg 1 ang71 e ang’h

Since the constants (i.e., input features) have no outgoing edge in the
graph, the two blocks of “constant-out” are two zero matrices. M is further
simplified as [M¢,,, M;,,] where M ¢,,, denotes the neighboring relationship
from function primitives pointing to function primitives, and M;,, denotes
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Parent 1

R3] =X¢— X3
Distribution RI2] =R[1] X X;

@ R[1] = R[2]+R[3]
R[0] = R[1] + X;

Offspring

Parent 2

R[1] =X + X1

R[0] = R[1] + X
R[2] = X3 = R[]
R[3] =R[0] X X
R[0] =R[3] - R[2]

Adjacency matrix
+= X+ X9 X1 X RB]=Xo— X1

B R[2] =R[1] X X;
1 ' RI[1] = R2]+R[3]

ox 1+

R[0] = R[1] + X3

Figure 4.5: An example of AMX operator.

the neighboring relationship from function primitives pointing to input
features. When varying the function of the [*th instruction, AMX first
finds the function out that points to the to-be-varied function. From the
perspective of LGP genotype, it is equivalent to checking the instructions
reversely from f(/* — 1) and finding the instruction whose destination reg-
ister is accepted as inputs of f(*). Then AMX applies the Roulette-wheel
selection on My,,, and samples a new primitive based on out. To ensure
that every primitive has a small probability of being selected, we add 1.0
on all the elements of M = [My,,, M;,] in the Roulette-wheel selection.
When varying the constant of an instruction, AMX applies Roulette-wheel

selection based on the function of the instruction and M,,,.

Fig. shows an example of producing offspring by AMX operator.
AMX gets a distribution based on the adjacency matrix from the second
parent and performs variation based on the distribution. In Fig. the

“+" in the third instruction of the first parent is varied into “+”.
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4.2.4 Adjacency List-based Crossover

An adjacency list is a graph representation that conveys the connection
among graph nodes. To fully utilize the topological information carried
by the adjacency list, we design an adjacency list-based crossover to vary
instruction segments in the parent individuals. The adjacency list in this

thesis is denoted as

L:([funl,Al] [fung, Ag] --- [funlL\vA\Ld>

where each item [fun;, A;] specifies the function fun; and the list of its
neighboring graph nodes A;. Specifically, A; contains one or two nodes
in this chapter since we only consider unary and binary functions. For
example, we convert the left tree in Fig. as

L= [ fon 4] oo )] [ o)) )

It is worth noting that the adjacency list in this chapter uses primitive sym-
bols (i.e., functions or terminals) to specify graph nodes to highlight build-
ing blocks, which is different from conventional adjacency lists which dis-
tinguish graph nodes by the indexes. Based on the adjacency list, this
section proposes ALX.

ALX accepts two parent individuals (one as recipient and the other as
donor) to produce one offspring. Rather than swapping the instruction
sequences like basic linear crossover [12], the donor parent first selects a
sub-graph from the DAG (by selecting a sub-sequence of instructions) and
obtains the corresponding adjacency list L. The recipient accepts the adja-
cency list and constructs the new instruction sequence based on the adja-
cency list. The newly constructed instruction sequence is used to replace
another sub-sequence of instructions in the recipient. The pseudo-code of
transforming an adjacency list into an instruction sequence is shown in
Alg. |7l First, ALX selects a crossover point from the recipient parent and
removes a sub-sequence of instructions from the recipient. Based on the



4.2. PROPOSED GRAPH-BASED OPERATORS 107

Algorithm 7: Transforming an adjacency list to an instruction se-
quence

Input: An LGP recipient individual f, an adjacency list L
Output: An offspring c
1 c<+f;
2 $ < UniformInt(0,|f|) // randomly select a crossover point
3 Randomly remove a sub-sequence of instructions from c based on s;
4 forj+ 1to|L| do
5 [fun, A] < L(j);
6 f < randomly generate an instruction whose function is fun;
7 Insert f to c(s);

8 ¢ + RegisterAssignment(c,L,s);
9 if |c| exceeds the maximum and minimum program length then
10 t c<+f;

11 Return c;

adjacency list, ALX randomly generates a sequence of instructions. Specif-
ically, the functions in the newly generated instructions are coincident
with the adjacency list. Since the adjacency list does not convey the in-
formation of registers, we propose a register assignment method for ALX
to identify the registers in those newly generated instructions, as shown
in Alg.

In general, Alg. |8 checks the instruction sequence reversely based on
the adjacency list to assign the registers in all the new instructions. There
are two main steps in Alg. 8| assigning destination registers and assigning
source registers. From the perspective of topological structures, assigning
destination registers is equivalent to providing the results of the sub-graph
to the upper part of the DAG, while assigning the source registers is equiv-
alent to taking the results from the lower part of the DAG as the inputs of
the sub-graph. When assigning destination registers, Alg. |8 ensures the
effectiveness of all the newly generated instructions. On the other hand,
Alg. [8|assigns source registers based on the neighboring graph nodes (i.e.,
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Algorithm 8: RegisterAssignment

Input: An LGP individual f, an adjacency list L, crossover point s

Output: An offspring c

1 forj <« s+ |L|—1tosdo

2

10

11

12

13

14

15

16

17

(0, A] < L(s + [L| - j);
// assigning destination registers
if c(4§) is not an exon then
t Randomly mutate R.; 4 until c(j) is effective;

// assigning source registers
for g+ 1to|A|do
b« A(g);
if b is a function then
L’ < collect the entity indices from [j, s] where L(k). fun = b and
k€ lj,s];
if L’ # () then
[+ UniformInt(l,|L/|+1);
| Re(),s.g < Beqy,as
else
if j > 0and UniformInt(0,j+ 1) — 1> 0then
L l+ UniformInt(l,j+1);
Re(j)s,9 < Be),ai

else if b is a constant then
t Re(j),s,9 < b

18 Return c;

functions or constants) specified by the adjacency list. Specifically, if the

neighboring graph node is a function, Alg. |8|collects the possible instruc-

tions whose functions are coincident with the neighboring function in the

adjacency list and randomly assigns the destination register from one of

the possible instructions as the source register.

Fig. shows an example of producing an offspring by ALX. First,

ALX selects a sub-graph from the second parent, consisting of “—, x, +”,

and gets the corresponding adjacency list. Then ALX generates a new in-
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Parent 2
New instruction segment
R[1] = XO + Xl . . (functions are consistent with the
R[O] _ R[l] + XO Adjacency ll'St adjacency list)
R[2 = R[1 ~ %=l R[0] = R[1] + X;
=Xy ~—

2] =X, 1 X = [+, xo] R[3] = R[2] XR[1]
R[3] =R[0] X X, = [+, Xo] R[2] =R[0] - R[1]
R[0] =R[3] - R[2]

. Swap into
Offspring
Y &k Parent 1
R[3]=X¢— X R[3]=Xp~ X
Register R[3]=Xp— X
RIOI=R21+X0 | sesignment | RIOI=RI1]+X; BI=%o~ Xy
R[3] =R[0] XX, R[3] =R[2] XR[1] Ri2] = RI1] X Xy
R[1] =R|[2]+R]3
R[1] =R[3] - R[1] R[2] =R[0] - R[1] 1= REZI> RIS
R[0]=R[1] +X
RI0] = R[1] + X R[0] = R[1] + X 191 = RiAT* %4

Figure 4.6: An example of ALX operator. The selected graph nodes, the
newly generated instructions, and the newly updated primitives are high-
lighted in gray color.

struction segment based on the adjacency list and swaps it into the first
parent (i.e., the 2"¢ to 4'" instructions in the new instruction sequence).
To maintain the topological structures among newly inserted instructions,
ALX applies the register assignment method (i.e., Alg. |8) to update the
registers. Alg. [8 replaces the destination register of the 4" instruction
to R[1] to ensure the three swapped-in instructions are effective. Then,
based on the adjacency list, Alg. |8 update the source registers in the three
swapped-in instructions so that “—" accepts the results from “x” and “x”
accepts the results from “+” and the constant x,. We can see that “—, x, +”
are connected together, and the 2"¢ and 4" instructions manipulate sug-

gested constants by the adjacency list in the offspring.
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Table 4.1: Summary on the pros and cons of different graph information

representations.
Graph in-
i pros cons
formation
Frequency only considers func-
tions and constants and does
Frequency | They can bypass the not consider topological infor-
puzzle of identifying mation at all, which is suscep-
registers for tible to the number of registers.
instructions. Adjacency matrices of LGP
Adjacency programs are sparse in many
matrix cases, which cannot provide
enough search bias for LGP.
Adjacency list conveys
) 4 > | The effectiveness of adjacency
both frequency and | . . . i
Adi topolosical  struct list information might be lim-
acenc opological  structures
] . Y 'p & .| ited by the effectiveness of re-
list simultaneously and is ) .
) constructing topological struc-
less susceptible to graph )
. tures based on registers.
width.
Effective  instructions
) convey all necessary in- | Effective instructions cannot
Effective . . .
nstructi formation of sub-graphs | transform a graph into an in-
instruction
and is less susceptible | struction segment.
to graph width

4.2.5 Summary

We summarize the pros and cons of the four graph information represen-
tations, as shown in table Transforming graphs into LGP instructions
based on graph node frequency and adjacency matrix is a good alterna-
tive solution to bypass the puzzle of identifying registers for new instruc-
tions. However, frequency-based and adjacency matrix-based information

do not explicitly consider the topological information, which might be sus-
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ceptible to the number of registers (i.e., graph width). Besides, adjacency
matrices of LGP graphs might be often too sparse to effectively guide the
search. Adjacency list can convey graph node frequency and their topolog-
ical structures simultaneously but is dependent on a register assignment
method to reconstruct the topological structures. The effectiveness of the
register assignment method might limit the effectiveness of adjacency list
information. Swapping effective instructions can straightforwardly con-
vey all the necessary search information. However, it cannot fulfill the
DAG-to-program transformation since it only manipulates LGP programs.

4.3 Comparison among Graph-based Operators

To verify the effectiveness of the four graph-based genetic operators, this
section applies LGP with these four operators to solve DJSS [24,150,277].
Specifically, we apply LGP to solve DJSS problems with maximum tardi-
ness, mean tardiness, and weighted mean tardiness with two utilization
levels 0.85 and 0.95. The configurations of the simulation follow the ones
in chapter 3, Each compared method has 50 independent runs on each

scenario.

4.3.1 Comparison Design

To investigate the effectiveness of the graph-based operators, we design
seven compared methods. The first two methods are the basic TGP [107]
and LGP [21] which are seen as the baseline. We apply these two ba-
sic GP methods as baselines to investigate the three graph-based genetic
operators. These two basic GP methods are common baselines in exist-
ing GPHH for DJSS studies, which help us straightforwardly investigate
the effectiveness of the three graph-based operators. The third to sixth
methods respectively verify the four newly designed graph-based genetic

operators. We replace the micro mutation of the basic LGP with FX and
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Table 4.2: Mean test performance (Std.) of all the compared methods.

Sce. TGP LGP LGP+FX LGP+AMX | LGP+ALX LGP+GC LGP+FA
A 1928.4 (40.4) ~ | 1956.3 (53.8) | 1941.6 (59.4) ~| 1953.1 (115) ~ | 1923 (54.3) ~ |1925.9 (55.4) ~| 1920.1 (46) ~
B 4060.6 (116) — |3999.2 (90.9) | 3948.7 (72.9) ~|3957.2 (81.7) ~|3920.7 (86.5) +| 3967 (119) ~ | 3901 (88.4) +
C 4173 25)~ | 4179 (23) | 417 6)~ | 417.6 37)~ | 416.6 24~ | 4174 ()~ | 4183 43)~
D 1116.2 (10) ~ |1118.2 (10.7)| 1112.5@8)~ | 1114.2 (9.6) ~ |1115.5 (125) ~| 1113.6 (9)~ | 1112.2 (8.9) +
E 7275 (6.5) - | 7243 (54) | 724 (58)~ 724 (6) ~ 724 (5.7) ~ 722 (63)+ | 723.8 (6.2) ~
F 1747.4 (29.6) — |1729.6 (27.7)| 1721.4 (31) ~ [1722.2 (29.8) ~[1730.8 (25.7) ~| 1718 (21.3) ~ |1725.6 (24.5) ~
mean rank 6.67 4.67 3.33 4.67 3 2.83 2.83

A: (T'maz,0.85), B: (T'max,0.95), C: (T'mean, 0.85), D: (T'mean, 0.95), E: (WTmean,0.85), F: (WT'mean,0.95)

AMX in the third and fourth compared methods respectively because the
variation step sizes of FX and AMX are similar to LGP micro mutation
(i.e., only varying one or a few primitives in the parent but not chang-
ing the total number of instructions). The third and fourth methods are
denoted as LGP+FX and LGP+AMX respectively. The fifth compared
method is denoted as LGP+ALX, in which the linear crossover in the basic
LGP is replaced by ALX. The sixth compared method is the LGP with an
existing graph-based crossover, denoted as LGP+GC. The other settings
in LGP+FX, LGP+AMX, LGP+ALX, and LGP+GC are kept the same as
the basic LGP. Finally, we investigate the effectiveness of the cooperation
of multiple graph-based genetic operators. Since our prior investigation
shows that LGP+FX has better average performance than LGP+AMX, we
replace the micro mutation and linear crossover in the basic LGP with
FX and ALX simultaneously. The LGP with FX and ALX is denoted as
LGP+FA.

The parameters of basic TGP and LGP are defined based on chapter
All the compared methods start the search from a small initial program
size. All the LGP methods manipulate a register set with 8 registers. The
other parameters of LGP methods follow the recommended settings in

chapter
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4.3.2 Test Performance

The mean test performance of all the compared methods in solving the
six DJSS scenarios is shown in table We conduct a Friedman test with
a significance level of 0.05 on the test performance of all the compared
methods. The p-value of the Friedman test is 0.016 which implies there is
a significant difference among the compared methods. The notation “+”,
“—”,and “~” in table denote a method is significantly better than,
significantly worse than, or statistically similar to the basic LGP based on
Wilcoxon rank-sum test with a significant level of 0.05. The best mean
values are highlighted in bold.

As shown in table first, three newly proposed graph-based genetic
operators (except LGP+AMX) improve the overall performance of basic
LGP since the mean ranks of most LGP methods with graph-based genetic
operators are better than basic LGP (i.e., smaller is better). Second, the
performance of LGP is improved with the amount of graph information
overall. Specifically, LGP+FX and LGP+AMX (i.e., distribution and local
topological structures) have worse mean ranks than LGP+ALX (i.e., topo-
logical structures of sub-graphs), and LGP+ALX has a worse mean rank
than LGP+GC which conveys topological structures and register informa-
tion in exchanging genetic materials. LGP+FA which conveys more graph
information by using multiple graph-based genetic operators has the same
mean rank as LGP+GC. Table 4.2| also shows that the best mean test per-
formance is mainly achieved by LGP+ALX, LGP+GC, and LGP+FA, which
verifies that conveying more graph information (e.g., primitive frequency
and topological structures) in the course of exchanging genetic materials
is effective in improving LGP performance. Note that although the adja-
cency matrix is supposed to convey more graph information than graph
node frequency, the adjacency matrix does not help LGP+AMX perform
better than LGP+FX since adjacency matrices of LGP graphs are often too
sparse to provide search bias (i.e., most elements in the adjacency matrix

are zero which degenerates AMX to uniform variation). In short, all the



114 CHAPTER 4. GRAPH-BASED SEARCH MECHANISMS

four newly proposed graph-based genetic operators have very competi-
tive performance with basic LGP, which implies the proposed graph-based
genetic operators effectively convey the graph information from one par-
ent individual to the other. The improvement in mean ranks implies the

potential of utilizing graph information.

4.3.3 Training Performance

This section compares the training performance of different graph-based
genetic operators, as shown in Fig. Specifically, we compare the
test performance of the best individuals from all the compared methods
at every generation. Overall, all compared methods perform quite simi-
larly in most problems. But in some problems, we can see gaps among
the curves. For example, LGP+FA converges faster than the others in
(I'max,0.85) and (T'max,0.95), and LGP+GC converges faster than the
others in (IWT'mean,0.95) in the first 20000 simulations. Further, if we
look at the lowest convergence curves at different stages, we find that
LGP+ALX, LGP+GC, and LGP+FA alternatively take the leading positions
in training. For example, in (T'mean, 0.85), LGP+ALX is slightly lower
than the others in most simulations but is caught up by LGP+GC from
20000 to 40000 simulations. Based on the results, we confirm that convey-
ing as much graph information as possible (e.g., LGP+ALX, LGP+GC, and
LGP+FA) can improve LGP performance to some extent.

To conclude, the proposed graph-based genetic operators successfully
carry the information from LGP instructions to graph and back to instruc-
tions since the training and test performance of the proposed graph-based
genetic operators are similar to or better than the performance of conven-
tional genetic operators that directly exchange instructions. We also see
that the performance gain of graph-based genetic operators increases with
the amount of graph information overall. Furthermore, if we look back at
the pros and cons of the graph information (table 4.T), we find that 1) by-
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Figure 4.7: The convergence of different graph-based genetic operators on

test instances.

passing the issue of identifying registers (i.e., LGP+FX and LGP+AMX) is
a feasible way to transform graphs to instructions, but it is not as effective
as LGP+ALX because of the loss of graph information 2) LGP+ALX per-
forms as competitively as swapping effective instructions directly, which

implies that the register assignment method in LGP+ALX reconstructs the

topological structures quite well without much deterioration on effective-

ness.
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4.3.4 Component Analyses on ALX

Section verifies that ALX is an effective method for LGP to ac-
cept graph information. To investigate the reasons of the superior per-
formance, this section conducts an ablation study on ALX. Given that
an adjacency list can convey two kinds of graph information, the fre-
quency of graph nodes and their topological connection, we verify the
effectiveness of different graph information separately by four ALX-based
methods. We use basic LGP and LGP+ALX as the baseline methods
in this section. We develop “ALX/noRegAss” in which we remove the
RegisterAssignment(-) from LGP+ALX. In this case, LGP+ALX gen-
erates the instruction segment only based on each item of the adjacency
list and does not further connect these generated instructions by registers.
The newly generated instruction segment has a similar graph node fre-
quency to the adjacency list but has very different topological structures,
and the effectiveness of the instruction segment cannot be ensured (i.e.,
might contain a lot of introns after swapping into a parent). Besides, we
develop “ALX/randSrc” in which we do not assign source registers for
the newly generated instruction in ALX (i.e., removing lines 5-15 in Alg.
but ensuring that each newly generated instruction is effective in the
offspring). By comparing with ALX/noRegAss, ALX/randSrc eliminates
the performance bias caused by the epistases of instructions (i.e., to-be-
swapped graph nodes are likely not connected with the parent graph in
ALX/noRegAss). Nevertheless, ALX/randSrc does not maintain the topo-
logical structures based on the adjacency list either. Note that since all of
the parameters in the compared methods follow the settings of the basic
LGP which does not maintain the topological structures in its evolution,
the compared methods with different components do not show significant
performance discrepancy in our prior investigation. Therefore, to high-
light the performance discrepancy, we also compare the four compared
methods with 12 registers. Other parameters in this section are set the
same as section
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Table shows the results of the compared methods. We apply the
Friedman test and Wilcoxon test to analyze the test performance of the
compared methods. The p-values of the Friedman test are 0.284 and
0.012 for 8 and 12 registers respectively, which means there is a signifi-
cant difference in the test performance with 12 registers. In the compar-
ison with 8 registers, the p-values from a pair-wise Friedman test show
that all compared methods are similar. However, the mean ranks and
the mean test performance of ALX/noRegAss and ALX/randSrc show
that only conveying frequency information of graphs is averagely infe-
rior to conveying both frequency and topological information based on
the adjacency list. The results with 12 registers also show a performance
reduction when ALX does not maintain topological structures. The ba-
sic LGP and ALX/noRegAss have significantly worse performance than
LGP+ALX, and ALX/randSrc has a larger (worse) mean rank and worse
mean test performance than LGP+ALX in most scenarios.

In summary, the results confirm that ALX effectively uses both fre-
quency and topological information to improve LGP performance. Specif-
ically, first, graph node frequency improves LGP performance since ALX/
noRegAss and ALX/randSrc have better test performance than basic LGP
overall. Second, connecting every to-be-swapped graph node with the
parent graph (i.e., ALX/randSrc and LGP+ALX) and connecting the newly
generated instructions among themselves (i.e., LGP+ALX) both enhance

LGP performance.

4.4 MRGP Based on Graphs

Section shows that ALX is an effective operator for performing the
graph-to-instruction transformation. The graph-to-instruction transfor-
mation allows us to cooperate with different GP representations based on
graphs, that is, MRGP.

The major challenge of designing MRGP is that different GP represen-
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Table 4.3: The mean test performance (std.) of LGP with different ALX
components. The best mean values and significant p-values are high-
lighted in bold.

# Reg Scenario LGP ALX/noRegAss| ALX/randSrc| LGP+ALX
(T'mazx,0.85) |1956.3 (53.8) ~| 1925.2 (56.5) ~ | 1922.1 (48) ~ | 1923 (54.3)
2 (T'mazx,0.95) [3999.2 (90.9) —| 3937.4 (127) =~ [3967.1 (133.6) ~|3920.7 (86.5)
fg (T'mean,0.85) | 4179 23)~ | 417.6 (32) ~ 417.7 3) — | 416.6 (2.4)
§° (T'mean,0.95) |1118.2 (10.7) ~| 1117.1 (14.6) ~ |1115.2 (10.8) ~|1115.5 (12.5)
® (WTmean,0.85)| 724.3 5.4)~ | 724.1 (6.6) ~ 7249 62)~ | 724 (5.7)
(WTmean,0.95)(1729.6 (27.7) ~| 1741 (34.8)~ | 1726.8 (23)~ (1730.8 (25.7)
mean rank 3 2.83 2.5 1.67
pair-wise p-value 0.442 0.705 1
(T'mazx,0.85) (1940.8 (49.9) ~| 1939.3 (52.5)~ |1936.6 (56.9) ~ |1932.1 (48.5)
g (T'maz,0.95) {3999 (111.8) —| 3989.6 (98.3) — |4006.4 (136.3) —|3941.9 (73.8)
'?o (T'mean,0.85) | 417.8 27)~ | 418.1 (28) ~ 418.3 (3.5)~ | 417.5 (2.4)
i (T'mean,0.95) |1118.3 (10.8) ~| 1118.5 (10.2)~ |1117.9 (10.4) ~|1115.9 (9.3)
= (WTmean,0.85) 726.7 (6.9~ | 727.1 (7.9)~ 726.8 9.1)~ | 725.2 (5.8)
(WTmean,0.95)[1743.9 (32.5) ~| 1739.8 (29.9) ~ | 1737.8 (30.9) ~ (1737.7 (30.8)
mean rank 3 3.17 2.83 1
pair-wise p-value 0.044 0.022 0.083

tations cannot be exchanged building blocks directly. For example, tree-
based representations in TGP do not contain information about registers
in LGP. Furthermore, even within the LGP framework, individuals with
different maximum numbers of registers cannot exchange instruction seg-
ments directly since it likely produces instructions with invalid registers.
In addition, instruction outputs (register values) in LGP individuals can
be reused by more than one subsequent instruction because of the graph-
based structure, but tree nodes in standard TGP can only be used once.
Thus, directly exchanging building blocks from different representations
might not always produce valid offspring. To address the above issue,
here we propose to unify the building blocks of different GP representa-
tions into adjacency lists to effectively exchange building blocks between
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Figure 4.8: Evolutionary framework of MRGP. The novel components are
highlighted by the dark boxes.

tree-based and linear GP representations.

Note that although adjacency lists can be an intermediate represen-
tation for tree-based and linear representations, this does not mean that
an adjacency list is a more effective GP representation than tree-based or
linear representations for the two following reasons. First, existing lit-
erature shows that evolving computer programs based on graph-based
structures are not always better than tree-based and linear representa-
tions [214]. Different representations have their own pros and cons for
different tasks. Second, a conventional adjacency list relies on graph node
indices to distinguish graph nodes. But different graphs (i.e., GP indi-
viduals) likely have different indices for the same building blocks (e.g.,
a three-node building block “z; + x,” might be indexed as “A — [B,C]”
and “D — [€, F]” in two different GP individuals). The indexing mecha-
nisms for adjacency list representations might be too complicated to show

obvious advantages.
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Algorithm 9: MRGP-TL

Input: cross-representation crossover rate 6;, tournament selection size s,

maximum depth of the tree d, maximum number of instructions L,
minimum number of instruction L
Output: best individual h
1 Initialize two sub-populations, S; for the tree-based representation and S, for
the linear representation.
2 while stopping criteria are not satisfied do
// Evaluation
3 Evaluate fitness of individuals Vf € S; |JSs.
4 Update the best individuals h in S; |JSs;
5 forj «+ 1to2do

6 S} < 0;
7 Clone top-1% individuals of S; into §;
8 while [S}[ < [S;| do
9 rnd < Uniform(0,1);
10 if rnd < 6; then
11 p1 < TournamentSelection(S;,s);
12 i< UniformInt(l,3); // randomly pick “1” or “2”.
13 p2 + TournamentSelection(S;,s);
14 ¢ + CALX(p1,p2,d, L, L);
15 else
16 Apply corresponding (i.e., TGP or LGP) basic genetic operators
| onS; to produce offspring c (or c; and cy);
17 L Si « S U{c} (or S « S} U{c1, ca});
18 S; « S

19 Return h.

4.4.1 Overall Framework

We propose an overall framework of the MRGP, as shown in Fig.
(with the new components highlighted in grey). In contrast to the evo-
lutionary framework of basic GP methods, MRGP evolves multiple sub-
populations, each for a unique GP representation. When breeding off-

spring, MRGP selects parents from all the representations and also ap-
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plies cross-representation genetic operators to produce offspring. Off-
spring of a certain representation fill the corresponding sub-population
of the next generation. After generations of evolution, the best solution
among the sub-populations is output. For example, when there are two
sub-populations, one for the tree-based representation and the other for
the linear representation, the best solution from the two sub-populations
is returned.

This chapter studies MRGP based on the TGP and LGP, denoted as
MRGP-TL. The pseudo-code of MRGP-TL is shown in Alg. @ H First,
MRGP-TL initializes two sub-populations, one for evolving tree-based GP
individuals and the other for evolving LGP individuals. All individu-
als in these two sub-populations evolve simultaneously. For each sub-
population, we perform elitism selection to retain elite individuals for the
next generation (line 7). To fill the sub-population of the next genera-
tion, we use tournament selection (i.e., TournamentSelection(+)) to se-
lect individuals as parents and apply different genetic operators based on
predefined rates. Specifically, MRGP-TL triggers the cross-representation
adjacency-list based crossover (CALX(-)) based on a predefined rate 6, (line
10). If the cross-representation adjacency-list-based crossover is triggered,
MRGP-TL selects a parent from the current sub-population and selects the
other parent from one of the two sub-populations. CALX(-) accepts the two
parents and produces an offspring. If the operator is not triggered, MRGP-
TL applies basic TGP or LGP genetic operators to evolve tree-based and
linear representations separately (lines 15-16). The newly generated off-
spring form the new populations with different representations (line 17).
The evolution continues until a stopping criterion is met. The best individ-
ual among all the sub-populations with different representations is output
as the final result.

2| . | denotes the cardinality of a container (e.g., set or list). (-) following a container

denotes getting an element from the container based on the index.
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Figure 4.9: The schematic diagram of CALX between trees and instruction

sequences.

4.4.2 Cross-representation Adjacency List-based Crossover

Knowledge transfer among representations is implemented by the cross-
representation adjacency list-based crossover (CALX), as shown in Fig.
To swap genetic materials, a tree or an instruction sequence first se-
lects a sub-tree or an instruction segment. The instruction segment is es-
sentially a sub-DAG (or multiple disconnected sub-DAGs). The sub-tree
and sub-DAGs are further converted into adjacency list Based on the
representation of the recipient, a new sub-tree or instruction segment is

constructed based on the adjacency list and swapped into the recipient.
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Algorithm 10: CALX

Input: Parent individuals p; and py, maximum depth of the tree d, maximum

number of instructions L, minimum number of instruction L

Output: An offspring c

1 Clone p; as ¢;
2 if py is a TGP individual then

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

// breeding trees based on adjacency lists
Randomly pick an inner tree node ¢, from c;
if po is a TGP individual then
Randomly pick an inner tree node ¢ from po;
L <« get the adjacency list of the sub-tree in p; whose root is ts;

else if p, is an LGP individual then
Randomly select a crossover point ¢; and select an instruction segment

F’ C [pa(t2), p2(|p2]);
| L « get the adjacency list of the sub-graph from F’;

t < GrowTreeBasedAL(L, the depth of ¢ in ¢, 1, d);
Replace the sub-tree with the root of ¢; as the sub-tree with the root of ¢/ in

C;

else if p; is an LGP individual then

// breeding instructions based on adjacency lists
if po is a TGP individual then
Randomly select a crossover point ¢; and select an instruction segment
Fi C le(1),e(t));
L; « get the adjacency list of the sub-graph from F};
Randomly pick an inner tree node ¢ from po;
L, < get the adjacency list of the sub-tree in p, whose root is t5;

else if ps is an LGP individual then
Randomly select a crossover point ¢; and select an instruction segment
F) C [e(t1), c(lc])];
L, < get the adjacency list of the sub-graph from F/;
Randomly select a crossover point ¢, and select an instruction segment
F5 C [p2(t2), p2(IpP2)));
Ly < get the adjacency list of the sub-graph from F;

c < GrowInstructionBasedAL(pi, L1, Lo, t1,m1)
if |c| ¢ [L, L] then
L C < P1,

26 Return c;
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Algorithm 11: GrowTreeBasedAL
Input: Adjacency list L, current depth d, index of L I, maximum depth of the

tree d
Output: A tree root r
1 if |L| = 0 or d = d then
2 t Return r < a random sub-tree whose depth < d—d+1;
3 [r,A] < L(I);
4 if r is a function then

5 forj < 1to|A|do

6 '+ A(j);

7 if ¢ is a function then

8 L’ < collect the entities from L(k), k € [I, |L|] with L(k). fun = ¢/;

9 if L' # () then

10 t ¢ + GrowTreeBasedAL(L,d + 1,UniformInt (1, |L/| + 1),d);
11 else

12 L ¢’ < arandom sub-tree whose depth < d—d—1;
13 Append ¢’ as r’s child;

14 Return r;

Breeding Trees Based on Adjacency Lists

The pseudo-code of CALX(-) is shown in AlglI0} If the first and second
parents are both TGP individuals, an inner tree node ¢, is randomly se-
lected from the second parent, and an adjacency list L is generated based
on the sub-tree under ¢, (lines 3-6). If the first parent is a TGP individ-
ual and the second parent is an LGP individual, we randomly select an
instruction segment F’ (lines 7-8) and convert it to sub-DAGs. L is fur-
ther constructed based on the selected sub-graphs (line 9). Then, we apply
GrowTreeBasedAL(:) to build a sub-tree based on L, as shown in Alg.

GrowTreeBasedAL(-) is a recursive function to construct tree nodes

based on L. Specifically, if GrowTreeBasedAL(:) accepts an empty L or

Disconnected graph nodes are converted into adjacency lists with empty adjacent
nodes A
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© (1)
[+, [ xi] @ (-) (=)
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L
(}_1) (ﬁ)

Figure 4.10: An example of constructing a tree by GrowTreeBasedAL().

The dashed tree nodes are randomly generated.

has reached the maximum depth, it returns a random sub-tree to ensure
the validity (lines 1-2). Otherwise, GrowTreeBasedAL(:) grows a tree
node r based on L (line 3). If r is a function, GrowTreeBasedAL(-) checks
the adjacency list and recursively applies GrowTreeBasedAL(:) to grow
the sub-trees of 7 (lines 4-13). Random sub-trees are constructed if there
are no consistent entities in L (lines 11-12).

Fig. is an example of constructing a tree based on an adjacency
list. The first item in the adjacency list is “[+, [—, 1]]”, and hence the root
node of the new sub-tree is “+”. Since the adjacent nodes of “+” are “—" (a
function) and “z;,” (a terminal), we append “z;,” to the “+” and recursively
apply GrowIreeBasedAL(-) with the second item (i.e., [—, [x, max]]) in
the adjacency list to grow the sub-tree since the function of the second
item “—" is coincident with the function adjacent node in the first item.
Since the adjacent nodes of “—" (i.e., “x” and “max”) are not included as

items in the adjacency list, we randomly generate the sub-trees under “—".

Breeding Instructions Based on Adjacency Lists

In cALX(:), if the first parent p; is an LGP individual, sub-tree and sub-
DAGs are respectively selected based on parents’” representation, a sub-
tree for TGP parent and sub-DAGs for LGP parent (lines 14, 16, 19, and
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Algorithm 12: GrowInstructionBasedAL
Input: An LGP individual ¢, adjacency list of the first parent L;, adjacency list

of the second parent Ly, crossover point ¢, instruction range nq

Output: The LGP offspring c
1 Randomly remove |L;| instructions from [c(¢1), c(t1 + n1));
2 $4t; +UniformInt(ny — |Li| + 1);

// Construct an instruction list
3 forj « 1to|Lso| do
4 [a, A] < Lo (5);
5 f « randomly generate an instruction whose function is a;

// Swap into the program context

6 Insert f to c(s);

// Assign registers
7 forj < s+ |Lg| —1to s do
8 [a, A] + Lo(s + Lo — j);
// Assign destination registers
9 if c(j) is not effective to the final output then
10 t Randomly mutate c(j)q until c(j) is effective;

// Assign source registers
11 forg < 1to|A|do

12 b+« A(g);

13 if b is a function then

14 L’ < collect the entity indices from [j, s] where Ly(k). fun = b and
kelj, sl

15 if L' # () then

16 | c(i)ag ¢ e(l/(UnifornInt (1, L] +1)))a;

17 else

18 if j > 0and UniformInt(0,j+ 1) — 1> 0then

19 L | ¢()ag ¢ c(UniformInt(l,j+1))u

20 else if b is a constant then

21 t c(j)sg < b;

22 Return c;
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21). Specifically, the sub-DAGs are selected by selecting an instruction seg-
ment from the LGP parent. Then, adjacency lists L; and L, are constructed
respectively based on the selected sub-tree and sub-graphs (lines 15, 17, 20
and 22). A new instruction sequence is constructed and swapped into p,
to produce offspring by GrowInstructionBasedAL(:) (line 23).

CALX applies GrowInstructionBasedAL(-) to construct a new in-
struction segment for LGP, as shown in Alg. |12 First, |L,| instructions are
randomly removed (line 1). Then an insertion point s is selected for insert-
ing the new instruction segment (line 2). Instructions are sequentially con-
structed based on L, and swapped into the program context (lines 3-6). To
connect the functions and maintain the topological structure of the func-
tions based on Ly, we check the instruction sequence reversely (i.e., from
the top of the graph to the bottom) (lines 7-21) so that every newly gener-
ated instruction 1) is effective to the final output by altering the destination
registers c(j), (lines 9-10), and 2) accepts the inputs from corresponding
functions and constants based on L, by altering the source registers c(j)s 4
(lines 11-21). Specifically, the effectiveness of an instruction is checked by
an O(n) algorithm [21] (line 9). If the selected instruction is not effective,
we randomly mutate the destination register of the instruction until it is
effective. GrowInstructionBasedAL(:) assigns source registers based
on the adjacent node b (line 12). If b is a function, we set the source regis-
ter of the selected instruction c(j) as the destination register of a random
instruction whose function is coincident with b (lines 14-16). If there is no
such an instruction, we set the source register as the destination register of
a random instruction precedent to c(j) (lines 18-19). The constant adjacent

nodes replace the source registers directly (lines 20-21).

Fig. shows an example of constructing an instruction list based
on the adjacency list. First, we construct an instruction list in which the
functions (i.e., “+” and “—") are specified by the adjacency list. Note that
the order of functions in the instruction list is reversed to the order in the

adjacency list since LGP programs output final results from the bottom.
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Construct Swap into the program context Assign
instruction list registers
[+, [, xll R[2]=R[1]-R[2] R[2]=R[0]-R[3]
R|2]=R[1]-R]2
o x,max])  RBIRIOFRI |prsiTiofiiy RI1J-RI21%y
Figure 4.11: An example of constructing instructions by

GrowInstructionBasedAL(-). Shadowed primitives are the focus

of each step.

Second, we swap the newly constructed instruction list into the program
context. Third, we adjust the registers in the newly constructed instruction
list to maintain the adjacency relationship in the offspring. In this exam-
ple, we change the destination register R[3] into R[1] to ensure the new
instruction list to be effective in the offspring, change R[0] in the second
instruction into R[2] and change R[1] into z; to fulfill the adjacency rela-
tionship “+ — [—, x;]”. To connect the newly constructed instruction list
with the precedent instructions in existing programs, the source registers

in the first instruction are also updated.

4.5 Experimental Studies on MRGP for DJSS

4.5.1 Comparison Design

To verify the effectiveness of MRGP-TL, we compare MRGP-TL with three
baseline methods. The first two are the basic TGP and LGP. Then, a base-
line GP method with two independent sub-populations is developed (de-
noted as “TLGP”). The two sub-populations independently evolve tree-
based and linear representations by the basic genetic operators for each

representation and do not exchange genetic materials among representa-
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tions. We set the parameters of the compared GP methods based on chap-
ter[3

For the two algorithms with multiple representations (i.e., TLGP and
MRGP-TL), each sub-population has 128 individuals and evolves 200 gen-
erations. The parameters of the MRGP-TL are defined based on the base-
line method. Specifically, the knowledge transfer rate is defined as 30%
by default, without out loss of generality. Since the proposed adjacency
list-based operators which are used to transfer knowledge among sub-
populations can also exchange the genetic materials for the same rep-
resentation, the LGP sub-population in MRGP-TL does not apply linear
crossover operator, and the TGP sub-population in MRGP-TL reduces
the crossover rate from 80% to 50%. The other parameters of TLGP and
MRGP-TL are kept the same as in the basic TGP and LGP methods in
chapter[3|

We verify the effectiveness of MRGP-TL by twelve DJSS scenarios. The
twelve scenarios are (7,4.,0.85), (Thax,0.95), (Thnean, 0.85), (Tean,0.95),
(WThnean, 0.85), (WTean, 0.95), (Fiaz, 0.85), (Fnaw, 0.95), (Fean, 0.85),
(Finean,0.95), (W Fean, 0.85), and (W Feqn, 0.95).

4.5.2 Experiment Results
Test Performance

Table 4.4 shows the average test performance of the compared methods
in solving DJSS problems. We perform a Friedman test (o« = 0.05) with a
Bonferroni correction on the test performance of the compared methods.
The null hypothesis of the Friedman test is that there is no significant dif-
ference in the test performance of the compared methods.

The p-value of the Friedman test is 0.009, which indicates a signifi-
cant difference (i.e., alternative hypothesis) among the compared meth-
ods. Moreover, MRGP-TL has the best (i.e., smallest) mean rank of test

performance among all the compared methods, with very promising pair-
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Table 4.4: The mean test performance (std.) of the compared methods.

Datasets or TLGP TGP LGP MRGP-TL

scenarios

(Tmaz,0.85) |1939.8 (50.4) ~|1928.4 (40.4) ~ | 1956.3 (53.8) — | 1926.9 (79.3)
(Tmaz,0.95) |4009.2 (98.9) — | 4060.6 (116) — | 3999.2 (90.9) ~ | 3964.2 (89)
(Tmean,0.85) | 417.0 3.2) ~ | 4173 (25)~ | 4179 (23)~ | 417.2(3.4)
(Tmean,0.95) | 11163 (9.3) ~ | 11162 (10) ~ | 1118.2 (10.7) ~ | 1116.5 (10.6)
(WTmean,0.85) | 7258 (61) ~ | 727.5(6.5) — | 7243 (5.4)~ | 724.0 (5.7)
(WTmean, 0.95) | 1730.4 (23.6) ~| 1747.4 (29.6) — | 1729.6 (27.7) ~ | 1723.5 (19.4)
(Fmaz,0.85) |2506.6 (50.3) ~| 2494.3 (30) ~ | 2509.8 (58.8) ~ | 2493.0 (33.3)
(Fmaz,0.95) |4544.3 (98.5) ~| 4572.3 (96.5) ~ | 4585.4 (126.1) ~ | 4553.0 (110.8)
(Fmean,0.85) | 864.0(32)~ | 8632(42)~ | 8647 (@4)~ | 862.8(2.9)
(Fmean,0.95) |1564.9 (10.3) ~| 1565.4 (8.5) ~ | 1566.8 (10.8) ~ | 1565.3 (10.6)
(W Fmean, 0.85) | 1704.0 (10.2) ~| 17054 (7.5) ~ | 1702.6 (7) ~ | 1702.8 (5.6)
(W Fmean, 0.95) | 2718.4 (26.4) ~|2730.1 (29.3) — | 2715.8 (16.4) ~ | 2711.0 (20.5)
win-draw-lose 0-11-1 0-8-4 0-11-1

Mean rank 242 3.0 3.08 1.5

p-value 0.492 0.026 0.016

(vs. MRGP-TL)

wise comparison p-values with other compared methods. The results and
statistical analyses confirm that the proposed MRGP-TL has a significantly
better overall performance than the other three compared methods.

To further investigate the effectiveness of the compared methods on
different datasets, table shows the results of the Wilcoxon rank-sum
test with Bonferroni correction and an « of 0.05 over the test performance
of the compared methods. +, —, and ~ denote that a certain compared
method is significantly better than, worse than, or performs similarly to
the proposed MRGP-TL respectively, based on the Wilcoxon rank-sum
test. The best mean performance is highlighted in bold font. We see that
in most datasets and scenarios, MRGP-TL has a very competitive perfor-
mance with the compared methods. More specifically, MRGP-TL has the
best mean performance on 7 of 12 datasets and scenarios. The results con-

tirm that sharing knowledge between tree-based and linear representation
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Figure 4.12: Test performance of the compared methods over generations
in the four example DJSS problems. X-axis: fitness evaluations. Y-axis:
average test objective values for DJSS problems.

successfully improves the effectiveness of GP methods.

Training Performance

To analyze the learning ability of the compared methods, Fig. shows
the test performance of the compared methods over generations in four
example problems. Specifically, we select four DJSS scenarios with a high
utilization level (i.e., 0.95) as the example problems since the DJSS scenar-
ios with a high utilization level have better real-world practical value.
MRGP-TL (i.e., red curves) has smaller test performances within fewer
fitness evaluations than the others in many cases, such as (I'max,0.95).
In some other cases, though MRGP-TL levels off at a similar test perfor-
mance with the other compared methods, MRGP-TL achieves the test per-
formance earlier than the compared methods at the early stage of the evo-
lution. The results imply that MRGP-TL has a very competitive training
performance with other compared methods in DJSS problems and can find

solutions with better effectiveness within fewer simulation times in some
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specific cases.

Program Size

To further understand the evolution of MRGP-TL, we analyze the average
program size of the population in all the compared methods for solving
four example problems, as shown in Fig. Specifically, we show the
program size of tree-based and linear programs respectively in TLGP and
MRGP-TL, denoted by “-T” and “-L” (e.g., tree-based programs in TLGP
are denoted as “TLGP-T”). We use the tree nodes to denote the program
size of tree-based programs and use the number of effective instructions
multiplied by a factor of 2.0 to denote the program size of linear programs.
We can see that the average program size from the same representation
grows similarly in all the tested problems. For example, TLGP-L, LGP, and
MRGP-L all grow from about 20 to about 50. The similar growing curves
of the same representation confirm that the proposed cross-representation
adjacency list-based crossover operator has a similar variation step size
with basic genetic operators and does not significantly change the average
program size of the population. Fully utilizing the interplay between tree-
based and linear representations improves the effectiveness of solutions

without enlarging the program size of the solutions.

Parameter Sensitivity Analyses

The knowledge transfer rate among representations ¢, is a newly intro-
duced parameter. To investigate the influence of #, on performance,
MRGP-TL with different transfer rates are compared in this section. Specif-
ically, we investigate the performance of MRGP-TL with a 6; of 0%, 10%,
30%, 50%, and 70% respectively, which are denoted as TLO (i.e., TLGP),
TL10, TL30, TL50, and TL70.

The test performances of MRGP-TL with different ;s are shown in Fig.
We see that MRGP-TL methods with 6; > 0 on average have smaller
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Figure 4.13: The average program size of the population from the com-
pared methods over generations over 50 independent runs. X-axis: fitness

evaluations, Y-axis: the average program size of the population.
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Figure 4.14: The box plots on the test performance of MRGP-TL with dif-
ferent 0, values over 50 independent runs.

(i.e., better) objective values than MRGP without any knowledge sharing
(i.e., TLO or TLGP). Besides, TL10, TL30, TL50, and TL70 have statisti-

cally similar test performance in most cases. But in some cases such as

(Tnaz, 0.95) and (F,q,, 0.95), the increase of # value improves the perfor-
mance of MRGP-TL on average. To conclude, ¢;, the knowledge transfer
rate among representations shows robust performance in principle, but

tuning on specific scenarios has the potential to further improve MRGP-
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Table 4.5: The average test performance (std.) of exchanging search infor-

mation by basic crossover operators and CALX.

Datasets and scenarios MP-TGP MP-LGP MRGP-TL
(Tmean,0.85) 418 (4.8) ~ 4172 (3.5)~ 417.2 (3.4)
(Tmean,0.95) 1118 (8.6) ~ 1115.3 (9.6) ~ 1116.5 (10.6)

(WTmean,0.85) 727.3 (6) — 7244 (6.2) =~ 724 (5.7)
(WTmean,0.95) 17379 (25.2) — 1724.1 (21.6) ~ 1723.5 (19.4)
(WFmean,0.85) 1706.5 (6.4) — 1702.4 (6.5) ~ 1702.8 (5.6)
(WFmean,0.95) 2722.9 (30.2) =~ 2717.6 (23.9) ~ 2711 (20.5)
mean rank 2.92 1.67 1.42
p-values 0.024 1.0

TL performance.

Effectiveness of CALX

The superior performance of MRGP-TL stems from the proposed CALX
operator that exchanges building blocks between the two GP represen-
tations. To further verify the effectiveness of CALX, we implement two
multi-population GP methods.

Specifically, each of the two multi-population GP methods has two sub-
populations using the same GP representation (i.e., tree-based or linear
representations), denoted as MP-TGP and MP-LGP respectively. The two
sub-populations exchange building blocks via basic crossover operators
with the same exchanging rate (i.e., 8, = 30%). Comparing the effective-
ness of MP-T(L)GP and MRGP-TL validates the performance gain caused
by the proposed crossover operator.

Table 4.5/ shows the test performance of the three compared methods
for solving six example problems. We apply the Friedman test (v = 0.05)
with a Bonferroni correction to analyze the overall performance. The p-
value of the Friedman test is 0.018, indicating a significant difference in the

test performance of the compared methods (i.e., alternative hypothesis).
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Figure 4.15: Test performance of different population ratios in MRGP-TL.
X-axis: LGP population proportion. Y-axis: test performance of MRGP-
TL.

The mean ranks given by the Friedman test verify that MRGP-TL has the
best test performance among the three compared methods. Specifically,
based on the p-values of a pair-wise comparison, we know that MRGP-
TL is significantly better than MP-TGP. Although the performance gain of
MRGP-TL is not significant compared with MP-LGP, MRGP-TL has bet-
ter mean performance than MP-LGP on four of the six problems. We be-
lieve that the proposed CALX effectively improves the performance of GP
methods.

Representations With Various Computation Budgets

Different problems often have their own suitable GP representations, im-
plying that allocating different computation resources to different repre-
sentations in MRGP-TL might be helpful to the performance of MRGP-TL.
To investigate the impact of computation budgets on different GP repre-
sentations, we adjust the allocation of computation resources by increasing
the LGP population proportion from 0% to 100% (and decreasing the TGP

population proportion from 100% to 0%). Specifically, we investigate five
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settings of LGP proportions, which are 0%, 25%, 50%, 75%, and 100%. The
average test performance and standard deviation of MRGP-TL are shown
in Fig. [4.15

In the four example problems, we can see a “V” shape roughly on the
mean test performance. It implies that MRGP-TL achieves a relatively
good mean test performance and standard deviation when LGP and TGP
share a similar proportion of computation resources (i.e., similarly large
sub-populations). Although the performance of MRGP-TL can be further
improved by adjusting the proportion of TGP and LGP population for a
certain problem, uniformly allocating the training resources to different

representations is a relatively good and robust setting for MRGP-TL.

Benefit of Cross-representation Knowledge Sharing

To verify that the knowledge sharing among representations is effective in
MRGP-TL evolution, this section investigates the ratio that each GP rep-
resentation produces the best-of-run individuals at every generation over
50 independent runs. Fig. shows the average ratio of tree-based and
linear representations producing the best-of-run individuals over genera-
tions in MRGP-TL. For comparison, Fig. shows the ratio that different
representations produce the best-of-run individuals without knowledge
sharing (i.e., tree-based and linear representations in TLGP).

The two figures show that the two representations in MRGP are much
less sensitive than in TLGP. In MRGP (i.e., Fig. both tree-based and
linear representations produce the best-of-run individuals with a similar
ratio (i.e., 0.4~0.6) in all the selected problems. But in TLGP (i.e., Fig.
4.17), the two representations produce the best-of-run individuals with an
imbalanced ratio (e.g., linear representation produces the best-of-run in-
dividuals with nearly 90% of runs in the course of evolution in Tower). It
confirms that the superior representation in MRGP (e.g., linear represen-
tation in Tower benchmark) successfully improves the effectiveness of the
other representation (e.g., tree-based representation), which might reduce
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Figure 4.16: The average ratio of tree-based and linear representations pro-
ducing the best-of-run individuals over generations in MRGP-TL. X-axis:
generations, Y-axis: ratio of producing the best-of-run individuals. The
green (i.e., upper) area denotes the ratio of linear representation, and the
yellow (i.e., lower) area denotes the ratio of tree-based representation.

the dependency on the domain knowledge of GP representations. Fur-
thermore, the improvement of the inferior representation confirms that
the knowledge sharing between representations effectively helps both GP
representations to find more effective solutions.

MRGP effectively shares search information between representations.
When a representation finds better solutions, the other representation in
MRGP can be efficiently improved. For example, in (F'max,0.95), LGP
has better solutions at the beginning of evolution. We can see that the tree-
based representation finds more effective solutions with the help of LGP
search information from generations 10 to 60. After 60 generations, effec-

tive solutions in the tree-based representation in turn help the linear rep-
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Figure 4.17: The average ratio of tree-based and linear representations pro-
ducing the best-of-run individuals over generations in TLGP (i.e., without
knowledge sharing). X-axis: generations, Y-axis: ratio of producing the
best-of-run individuals.

resentation find effective solutions and catch up with the tree-based repre-
sentation at about generation 80. However, in TLGP for (F'max,0.95), the
best-of-run individuals are mainly produced by the linear representation
during most of the evolution (i.e., the green area covers over 60% at each
generation). Although we see a wave of the ratio between the tree-based
and linear representation in (Fmax,0.95) of TLGP, the linear representa-
tion cannot help tree-based representation to find more effective solutions
in the latter evolution. The results confirm that knowledge sharing be-
tween tree-based and linear representations improves the performance of
both tree-based and linear GP.
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Figure 4.18: The adjacency lists of the outputted TGP and LGP heuristics
from a run in (F'mean, 0.95). The dark shadow highlights the shared adja-
cency of primitives between the two adjacency lists.

Example Analyses on Adjacency Lists

The proposed adjacency list-based crossover shares the search information
between tree-based and linear representations by the adjacency of primi-
tives. To have a better understanding of knowledge sharing via adjacency
lists, this section analyzes the shared knowledge (i.e., primitive adjacency)
in two example adjacency lists, where each item in the adjacency lists con-
tains two pairs of primitive connections. Fig. shows two adjacency
lists of the best-of-run individuals from the two representations, respec-
tively, of the same run for solving the (Fmean,0.95) DJSS problem. If a
primitive connection can be seen in both of the adjacency lists, we high-
light the connection with a dark shadow. For example, as the first shad-
owed item in Ly p shows the adjacency from “x” to “max”, the adjacency
items with the same connection in L;;p are shadowed (e.g., the last item at
the second line of L;¢p). We can see that the adjacency lists of the output
heuristics with tree-based and linear representations have a large number
of shared members. For example, both of them prefer concatenating “PT”,
“NPT”, and “NINQ” with “x” and “+”, which further form the shared
building blocks such as “[+, [x, PT1]” and “[x, [NPT, NINQ]]".
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Furthermore, the adjacency lists from different representations have
distinct characteristics. Because of short and wide tree structures, the ad-
jacency list of the tree-based representation considers more distinct input
teatures, such as “WKR” and “rFDD”. In contrast, the adjacency list of the
linear representation uses a large number of “max” and “min” to assemble
the final result.

Overall, by exchanging adjacency lists, tree-based and linear represen-
tations can 1) learn the shared adjacency of effective solutions and 2) learn
the distinct characteristics of the other representation.

4.6 Chapter Summary

The main goal of this chapter is to develop graph-based search mecha-
nisms based on the graph characteristics of LGP. We first developed and
investigated four possible graph-based operators, including frequency-
based, adjacency matrix-based, adjacency list-based, and effective instruction-
based operators. The results show that adjacency lists are effective repre-
sentations of the graph characteristics since they can represent both prim-
itive frequency and topological information.

In light of this finding, we propose to utilize the interplay of different
GP representations to automatically identify the most suitable representa-
tion for the problem at hand, that is, the multi-representation GP method.
We implemented a multi-representation GP method based on tree-based
and linear GP representations, denoted as MRGP-TL. The MRGP-TL in-
cludes a novel cross-representation adjacency list-based crossover opera-
tor to exchange building blocks between tree-based and linear GP repre-
sentations. To the best of our knowledge, it is the first work highlighting
that the interplay among different GP representations is useful for improv-
ing GP performance.

The experimental studies on DJSS problems show that the proposed
MRGP-TL significantly improves the performance of baseline GP meth-
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ods without considering the interplay among different representations.
MRGP-TL can take advantage of a suitable GP representation in solving a
certain problem, leading to a wider application spectrum. The results also
confirm that the performance gain of MRGP-TL stems from the proposed
crossover operator which makes full use of the interplay between GP rep-
resentations. Fully utilizing different GP representations to enhance the
search on a single task is a potential direction, that is worthy to be further
investigated in other domains as well.

This chapter shows the potential of developing more effective search
mechanisms (i.e., graph-based search mechanisms) to enhance LGPHH
performance. However, the graph-based search mechanisms do not make
full use of the domain knowledge of DJSS. To further improve the effec-
tiveness of LGP search for DJSS, the next chapter will incorporate domain
knowledge into the LGP search via grammar-guided techniques.
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Chapter 5

Grammar-guided LGPHH for
DJSS

Incorporating domain knowledge into LGP search is a potential way to
improve the effectiveness and efficiency of LGPHH. However, existing
LGPHH studies do not make full use of the domain knowledge. With-
out the help of domain knowledge, LGP might have to explore the entire
search space, which is inefficient. To incorporate the domain knowledge
in LGPHH methods for DJSS problems, this chapter proposes a grammar-
guided LGPHH method. Specifically, we design grammar rules based on
the domain knowledge to reduce redundant building blocks and less ef-
fective LGP programs.

5.1 Introduction

DJSS has undergone years of development, and we have accumulated
some domain knowledge. For example, the priority of jobs is likely corre-
lated to their processing time (e.g., the heuristic rule of shortest process-
ing time first). In different scenarios, it is also advisable to apply differ-
ent heuristics (e.g., applying energy efficiency heuristics when the energy
price is high.). However, existing LGPHH studies do not make full use

143
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of the domain knowledge of DJSS. LGPHH has to search the entire search
space which includes a large number of redundant solutions.

In this chapter, we propose to use grammar rules to constrain LGP
search space based on domain knowledge. Grammar rules are used to
describe the potential effective structures of all possible dispatching rules.
Rather than searching in the entire search space defined by the primitive
set, LGP with grammar rules searches dispatching rules within a much
smaller search space restricted by grammar rules. With proper grammar
rules, we can improve LGP training and test performance. It is easier
for humans to make a more detailed analysis based on the corresponding

grammar rules.

Incorporating grammar rules with LGP is non-trivial. To the best of our
knowledge, there is no existing literature investigating grammar-guided
LGP. There are three main challenges in designing grammar-guided LGP.
First, LGP individuals are lists of register-based instructions, which are
greatly different from the representations of existing grammar-guided GP
methods. It is necessary to design an LGP-based grammar system that
allows humans to describe their constraints in grammar and that can im-
pose constraints on LGP evolution. Second, existing LGP genetic oper-
ators mainly produce offspring by manipulating instruction lists. How-
ever, it is hard to maintain the “legitimacy” of offspring if we arbitrarily
modify the instruction list. We need grammar-guided genetic operators
to maintain the grammar rules in breeding. Last but not least, we need
to carefully design proper grammar rules for DJSS problems based on our
domain knowledge to reduce the search space as much as possible without

losing promising solutions.

This chapter focuses on incorporating the domain knowledge of flow
control operations into LGP search. Flow control operations are important
in designing dispatching rules [96,/158,236]. For example, DJSS problems
need IF operations to prioritize energy-efficient jobs if the power cost rate
is high and prioritize other jobs otherwise. Moreover, many human pro-
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grams and expertise knowledge need flow control operations to describe
their complex procedure. Finding an effective way to evolve flow control
operations in dispatching rules facilitates humans to make use of domain
knowledge and improve the flexibility of dispatching rules.

However, existing studies of LGPHH for DJSS did not effectively
evolve flow control operations, mainly due to the following three chal-

lenges.

1. Dimension inconsistency: flow control operations likely use input fea-
tures with different physical dimensions (e.g., if “3 meters” is larger
than “2 seconds”). The inconsistent dimension makes dispatching
rules difficult to be understood.

2. Inactive sub-rules: flow control operations easily lead to inactive sub-
rules (i.e., introns [21]). For example, the contradictory conditions
(i.e., conditions that are always false) of IF operations easily skip a
large number of instructions, which makes a dispatching rule quite
naive. The variation on flow control operations also likely makes a
huge difference in the behaviors of dispatching rules since the varia-
tion often substantially changes the data flow in dispatching rules.

3. Ineffective sub-rules: the effectiveness of flow control operations is
highly dependent on their sub-rules. A flow control operation is
useful only when their sub-rules are effective. To ensure the effec-
tiveness of flow control operations, we have to take the effectiveness
of sub-rules into consideration.

Existing studies of LGP do not fully consider these three challenges
when evolving flow control operations. They simply introduce flow con-
trol operations into their primitive set and neglect the characteristics of
flow control operations. This inevitably leads to many redundant and ob-
scure solutions in the LGP search space, which impairs the search effec-

tiveness and efficiency of LGP.
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5.1.1 Chapter Goals

The goal of this chapter is to develop an effective grammar-guided LGPHH
and design effective grammar rules based on domain knowledge for DJSS prob-
lems. First, we design a grammar system to enable users to define their
own grammar flexibly by extending the Backus-Naur Form (BNF) [130].
Different from basic BNF, the proposed grammar system allows users to
1) see their constraints as modules and reuse them in the definition and
2) have a more precise restriction (e.g., program length) on different pro-
gram parts. Second, we propose three grammar-guided genetic operators
for LGP to evolve based on grammar rules. Third, we design a set of LGP-
based grammar rules to introduce an example of flow control operations,
IF operations, for solving DJSS problems. Specifically, this chapter has the
following research objectives:

1. Develop an LGP-based grammar system to define constraints on
LGP search spaces based on the domain knowledge.

2. Develop grammar-guided genetic operators to search for LGP solu-
tions based on the defined grammar rules.

3. Incorporate domain knowledge of DJSS to evolve flow control oper-
ations in the grammar-guided LGPHH. More specifically, we focus on IF
operations as a step towards evolving flow control operations in dispatch-
ing rules. IF operations are the basis of many other flow control opera-
tions.

4. Verify the effectiveness of the grammar-guided LGPHH with IF op-
erations for solving different DJSS scenarios.

5. Analyse the interpretability of the output rules of grammar-guided
LGPHH with IF operations.

5.1.2 Chapter Organization

The rest of this chapter is organized as follows. Section first pro-
poses the grammar-guided LGP in detail. Based on the framework of the
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grammar-guided LGP, we incorporate the domain knowledge of IF opera-
tions in LGP search by designing grammar rules based on three principles
in section Section [5.4] introduces the experiment design in this chap-
ter. Section [5.5/analyzes the performance of the proposed method, includ-
ing the test effectiveness, training efficiency, and program interpretability.
Section 5.6 further performs an ablation analysis and analyzes the termi-
nal patterns with IF operations. Finally, section 5.7|draws the conclusions
of this chapter.

5.2 Proposed Method

This chapter proposes a new grammar-guided LGP (G2LGP) for DJSS
problems. Specifically, we first propose an LGP-specific grammar system
(i.e., module context-free grammar (MCFG)) to introduce DJSS knowledge
to the LGP system. Second, we propose a suite of grammar-guided genetic
operators for G2LGP. The proposed MCFG and the grammar-guided ge-

netic operators are introduced as follows.

5.2.1 Module Context-free Grammar

The main idea of MCFG is to introduce LGP instructions as the basic el-
ements in grammar definition. Specifically, MCFG defines LGP instruc-
tions by instruction modules, specified by a pair of “<” and “>". The in-
struction modules compose higher-level constraints and finally form a set
of constraints on a program. An instruction module defines the feasible
primitive sets of the destination register, the function, and the two source
registers of an LGP instruction. By giving an instruction module different
primitive sets on different positions, MCFG imposes different constraints
on LGP programs.

To fulfill the main idea, MCFG has two main extensions from BNF.

First, MCFG allows users to define primitive sets and supports set oper-
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Table 5.1: Keywords in MCFG.

PROGRAM The starting point when producing programs based on grammar.
defset Specify the definition of a set.
“{” and “}” A pair of brackets that define the elements in a set.

n= Define the possible derivations from a module.
Indicate a sequential execution order between two sub-modules.

“<”and “>" | A pair of brackets that define an LGP instruction module. The
instruction module is a predefined module in MCFG.

* Define the maximum repeating times of the precedent module.
The default value of * is 50.

| Indicate the “OR” relationship in module derivations.

~ Set assignment. Assign the primitive set on the right to the left.
\ Separate the assignment of different primitive sets.
; Termination of a line of grammar.

ations like union and intersection on the primitive sets. Second, MCFG
allows derivation rules to accept primitive sets as input arguments. The
derivation rule specifies the derivations from a specific module to sub-
modules and passes the primitive sets to sub-modules, and finally to in-
struction modules.

Table illustrates the keywords in MCFG and their corresponding
meaning, and Fig. is an example of MCFG that restricts the search
space of synthesizing an LGP program to calculate the values of three ba-
sic statistical metrics (i.e., sum, average, and Variance)ﬂ In the beginning,
Fig. 5.1/ defines four primitive sets by a keyword “defset”. For instance,
the first line defines the function set including addition, subtraction, mul-
tiplication, and division, named “FUNS”.

'Note that the example here mainly defines the key primitives in produced programs
in order to reduce the search space. LGP still needs to search for a list of instructions to
calculate the values of the three metrics.
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defset FUNS {add,sub,mul,div};
defset REG {RO,R1,R2,R3,R4};
defset INPUT {x0, x1, x2};
defset CONSTANTS {1,2,3,4,5};

getSum(I\O) ::= <O\{sub}\O\O0>::<0\{add}\I\O>*5;
getAverage(I\O) ::= getSum(I~I\O~0)::<0\{div}\O\{CONSTANTS}>;

getVariance(I\O) ::=getAverage(I~I\O~{R4})::(<{R1,R2,R3}I\{sub}\{INPUT}\{R4}>
::<{R1,R2,R3}\{muT}\{R1,R2,R3}\{R1,R2,R3}>)*3::getAverage(I~{R1,R2,R3}\0~0);

PROGRAM ::= getSum(I~{INPUT}\O~{R0O}) | getAverage(I~{INPUT}\O~{R0O})
| getVariance(I~{INPUT}\0~{R0});

Figure 5.1: A complete example of MCFG. “add, sub, mul, div” denote the
four basic arithmetic operations.

Each derivation rule follows a template
module name (input arguments) :=derivationi|---|derivationy;

The module name is defined by users and must be unique. Each deriva-
tion consists of at least one sub-module and specifies the argument assign-
ment to the sub-modules. Sub-modules can be instruction modules or the
modules defined before.

There are four derivation rules in Fig. The first three deriva-
tion rules respectively define the grammar for the three statistical met-
rics. The last derivation rule defines that the whole LGP program is one
of the three metrics. Here, we take getSum as an illustrative example.
The getSum derivation rule has two input arguments “I” and “0”. The
module get Sum can derive to two instruction modules. The first instruc-
tion module maximally repeats 1 time, and the second instruction module
maximally repeats 5 times (i.e., “x5”). In the second instruction module,
the four arguments separated by “\” in the instruction module sequen-
tially define the possible primitives of 1) destination register as “O” from

the parent module get Sum, 2) function as “add”, 3) the first source register




150 CHAPTER 5. GRAMMAR-GUIDED LGPHH

as “I” from the parent module get Sum, and 4) the second source register
as IIOII.

< O \ {add}\ I \ ) > *5
destination function Istsource  2nd source maximum

register set set register set  register set repeating time

In short, the two instruction modules derived from get Sum first clear the
output register “O”, then use addition to sum up input primitives “I”, and
finally store the results into the output register.

Furthermore, MCFG supports using brackets “(” and “)” to implicitly
define composite modules. For instance, in Fig. themodule getvariance
defines the two instruction modules, < {R0, R1,R2}\
{sub}\{INPUT}\{R3}>and <{RO,R1,R2}\{mul}\{RO,R1,R2}\{
RO, R1,R2}>, as a composite module by a pair of “(” and “)” and that the

composite module maximally repeats three times.

5.2.2 Evolutionary Framework

The evolutionary framework of G2LGP follows the evolutionary frame-
work of basic LGP for solving DJSS problems in chapter 3, But with gram-
mar, G2LGP has a different program initialization process and applies a
suite of grammar-based genetic operators to produce offspring, as shown
in Fig. In initialization, G2LGP constructs a population of LGP indi-
viduals based on predefined grammar. In offspring breeding, G2LGP ap-
plies grammar-guided micro mutation, grammar-guided macro mutation,
and grammar-guided crossover to produce offspring. These grammar-
guided genetic operators are necessary to produce offspring conforming
the given grammar constraints. These new components are introduced in

detail as follows.
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newly proposed steps.

LGP Program Initialization

Based on the grammar rules, we generate LGP individuals by first con-
structing a derivation tree and second stochastically generating a list of
instructions based on the leaf nodes of the derivation tree. Fig. shows
an example of the initialization of an LGP individual based on the gram-
mar rules in Fig.

We construct the derivation tree in a top-down way. PROGRAM is the
starting symbol in the derivation. Each tree node is a module, remember-
ing the input arguments specified in the grammar rules and specifying the
repeating time of sub-modules. The input arguments are actually feasible
primitives in different positions of the program. We derive the tree nodes
to sub-trees based on the grammar rules in a recursive manner and finally
end up with instruction modules (abbreviated as “instr<...>" in Fig. [5.3).
All the leaf nodes of derivation trees must be instruction modules. Each in-
struction module specifies the feasible primitives for its four components,
including a destination register, a function, the first source register, and the
second source register. For example, the leftmost leaf node specifies that
1) the destination register is one of the eight registers (i.e., {REG}), 2) the
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PROGRAM

condition

(I~{INPUT}P\O~{REG}\R~{REG})*1

uncondition(I~{rawINPUT}\
O~{REG}\R~{REG})*2

instr instr instr instr
<{REG}\{FUNS <{REG}\{FUNS | | <{REGN{FUNS}\{ || <{REG}\{FUNSI\{
I {REG,INPUT} m I{REG,INPUT} | | REG,rawINPUT}\{ || REG,rawINPUT}\{
\{REG IE\IPUT}> \{REG H‘\IPUT}> REG. raw%NPUT}> REG raw'INPUT}>
: instr \ “ :
i | <{RO}\{FLOWCTRL}\{co \ \ N
: nditionINPUT}\{constant}> “ \\ :

Stochastic generation
\ Y X A\ \
R2=R0add PT IF>#1 WIQR0.5 R1=ROsubNPT RI1=RImulW RO=RIaddR2

Figure 5.3: An example of initializing an LGP individual based on the
proposed grammar rules. The upper part is the derivation tree, and the
lower part is the LGP individual.

function is one of the six arithmetic functions (i.e., {FUNS }), and 3) the two
source registers are registers, normalized terminals, or raw job shop fea-
tures (i.e., {REG, INPUT}). We generate one instruction for each leaf node
by randomly selecting one of the primitives given by each component to
form an LGP instruction. Specifically, there are five leaf nodes in Fig.
which leads to an LGP individual with five instructions. The LGP individ-
ual is obtained by sequentially arranging generated instructions from the
left to the right.

Grammar-guided Micro Mutation

The grammar-guided micro mutation changes one of the primitives in one
of the instructions. Specifically, the grammar-guided micro mutation ac-
cepts one parent and produces one offspring. It first randomly selects one
of the instructions in the program and selects one of the four components
(i.e., destination register, function, and two source registers). Based on

the feasible primitive set at that component, the grammar-guided micro
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mutation mutates the primitive.

Take the program in Fig. 5.3/as an example. If the grammar-guided mi-
cro mutation wants to change the first source register of the first instruc-
tion, it checks the related instruction module and finds that the instruction
module is fulfilled as

<{REG}\{FUNS}\{REG, INPUT}\ {REG, INPUT}>.

Thus, the RO is likely changed to other registers and input features.

Grammar-guided Macro Mutation

Grammar-guided macro mutation has three main operations, i.e., add in-
structions, remove instructions, and replace instructions. All the three op-
erations change the program by 1) changing the derivation tree and 2)
constructing the sub-program based on the new derivation tree. Suppose
that an LGP individual f consists of a derivation tree Ty and a list of in-
structions Iz. Each derivation tree node m has a list of child nodes (i.e.,
fulfilled derivations), denoted as D(m). D(m) cannot be empty, except if
m is an instruction module (i.e., leaf nodes in derivation trees). The max-
imum repeating time of m is denoted as |D(m)|. The pseudo-code of the
grammar-guided macro mutation is shown in Alg.

When grammar-guided macro mutation accepts an individual f, the
macro mutation randomly selects one of the three operations (i.e., adding,
or removing, or replacing instructions) to produce offspring. If grammar-
guided macro mutation decides to add or remove instructions, it first ran-
domly selects a derivation tree node m that has a maximum repeating time
larger than 1 and a derivation d from the child nodes of m (lines 5 and 6).
Selecting a derivation tree node that can repeat more than one time encour-

%s.t. is the abbreviation of “so that”, imposing constraints on precedent statement. | - |
denotes the cardinality of a list or a set. @ and a denote the maximum and minimum
value of a respectively.
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Algorithm 13: Grammar-guided macro mutation

Input: An LGP individual f, add instruction rate 6,, growing node rate 6,

Output: An offspring f’
1 £« f;
2 forj < 1to50do
3 C <+ clone f;
4 if Uniform(0,1) < 64 then
5 m < randomly pick a tree node from T'¢, s.t. |[D(m)| > 1;

6 d <+ randomly pick a derivation from D(m);
7 if (Uniform(0,1) < 64 and |D(m)| < |D(m)|) or |D(m)| = 1 then
8

Grow a new derivation d’ from m and recursively derive d’ if d’ does not only
contains instruction modules;
9 Add d’' to D(m) right before d;
10 I’ < construct instructions based on d’ and its derivation;
11 Add I to I, right before the first instruction derived from d;
12 else if |D(m)| = [D(m)| or [D(m)| > 1 then
13 Remove the instructions derived from d from I¢;
14 Remove d from D(m);
15 else
16 m < randomly pick a tree node from Tc;
17 d < randomly pick a derivation from D(m);
18 Grow a new derivation d’ from m and recursively derive d’ if d’ does not only contains
instruction modules;
19 Add d’ to D(m) right before d;
20 I’ <+ construct instructions based on d’ and its derivation;
21 Add I to I, right before the first instruction derived from d;
22 Remove the instructions derived from d from Ic;
23 Remove d from D(m);
24 for i’ < reversely read from I’ do
25 if i’ is an intron in C then
26 L Alter the destination register of ¢’ and try to make i’ effective.

f|Ic| € [[Ic|, [Ic]] then

-

27

28 f' + C;
29 break;
30 Return f/;

ages grammar-guided genetic operators to produce offspring by changing
the total number of instructions.

If the mutation operator decides to add instructions, it grows a new

derivation d' from m and recursively derives d’' until the sub-derivation
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tree under d’ reaches instruction modulesﬂ d’ is added to D(m) right be-
fore d. The mutation operator constructs the instruction list I' based on
section and insert I' to Iy right before the first instruction derived
from d. If grammar-guided macro mutation decides to remove instruc-
tions, the mutation operator removes all the instructions derived from d
and removes d from D(m) (lines 12-14).

If grammar-guided macro mutation decides to replace instructions, it
simultaneously performs adding and removing instructions within one
breeding (lines 16-23). Allowing the macro mutation to replace instruc-
tions enables LGP to jump out local optimum. For example, in Fig.
LGP programs can turn to search getAverage from searching getSum
by replacing the derivation tree under PROGRAM.

To mimic the effective mutation in basic LGP, the grammar-guided
macro mutation checks the effectiveness of all newly generated instruc-
tions and tries to make them effective if their corresponding instruction
module contains effective destination registers (lines 24-26). To ensure
that the program size of the newly generated offspring is in the prede-
fined range (i.e., [|Ic|, |Ic]]), we iterate the mutation process for multiple
times (e.g., 50 time_s)until the program size of the offspring satisfies the
predefined range (lines 27-29).

Fig. is an example of the grammar-guided macro mutation. First,
the grammar-guided macro mutation selects get Sum derivation tree node
(i.e., the red node in Fig. and its second derivation (i.e., the blue child
nodes). To add instructions, the grammar-guided macro mutation derives
the get Sum node based on the grammar. In this example, the grammar-
guided macro mutation grows one new instruction module and inserts it
into the derivation list of getSum (i.e., the green node has three instruc-
tion modules). Then, based on the fulfilled instruction modules, the macro

mutation operator constructs a new instruction and inserts it into the pro-

%if m is a composite module which has no module name in the predefined grammar,
the mutation operator simply clones one of the existing child nodes of m as d'.
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PROGRAM*1 PROGRAM*1
! v RO = RO sub RO
getAverage*1 getAverage*1 RO = x0 add RO
S T~ @ /\ () RO = x2 add RO
getSum*1 instr*1 getSum*1 instr*1 ‘RO = x2 add RO
/T~ O~ RO = RO div 4
instr*1 instr*2 instr*1 instr*3

Figure 5.4: An example of adding instructions by the grammar-guided
macro mutation. The macro mutation operator first modifies the deriva-

tion tree and second mutates the instruction list.

gram, as shown on the right of Fig.

Grammar-guided crossover

The main idea of the grammar-guided crossover is to swap the instruc-
tions belonging to the same type of derivation nodes. The pseudo-code
of grammar-guided crossover is shown in Alg. To avoid the varia-
tion step size is limited by poorly defined grammars (e.g., every pair of
the same type of derivation nodes, i.e., crossover points, only have one
instruction, which makes the crossover operator only swap one instruc-
tion each time.), the grammar-guided crossover selects more than one
crossover point for each breeding.

First, the grammar-guided crossover selects several pairs of crossover
points with the same type from the derivation trees of the two LGP parents
(i.e., m, = my at line 10). The = means that 1) m, and m, have the same
module name, 2) m, and m, have the same maximum repeating number
|D(m)|, and 3) m, and m, have the same input argument list (e.g., prede-
fined parameter values). For example, the two get Average in the deriva-
tion rule of getVariance in Fig. 5.I]are not the same type. They have the
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Algorithm 14: Grammar-guided crossover

Input: An LGP individual donor f;, an LGP individual receiver f;., the maximum number of

crossover points N, growing node rate 6,
Output: An LGP offspring f,.

1 Lg < 0,L, < 0;
2 n < UniformInt (1,N+1);
3 forj < 1to50do
4 mg, my < null;
5 if Uniform(0,1) < 04 then
6 mg < randomly pick a tree node from Tt s.t. D(mg)| > 1;

7 else
8 L mg < randomly pick a tree node from T¢,;
9 if mq # null then
10 L m, < randomly pick a tree node from T, , s.t. m, = mg;
11 if m;, # null then
12 if mg does not overlap with any elements in L4 and m,. does not overlap with any elements in L.
then
13 Add mg into Ly;
14 Add m, into L,-;
15 if |[L4| > n then
16 L break;

17 forj + 0to|Ly| —1do

18 mq < Lg[j], mr < Ly[j];

19 [dg, I4] < randomly pick a sub-list of derivations and their corresponding instructions from
D(myg);

20 [dr, I;] < randomly pick a sub-list of derivations and their corresponding instructions from
D(m.);

2 if |It,| - |I+| + 14| € [|Ic], [Ic]] then

22 Replace d;- and I, with the clone of d4 and I respectively.

23 Update argument assignment to d,- and update I if the primitives are not consistent with

the derivation tree node.

24 Return f,;

same module name and the same maximum repeating time but different
input argument lists. If the selected crossover points do not overlap with
the existing crossover points in the list, the grammar-guided crossover col-
lects the pair of crossover points into the lists L; and L, respectively (lines
12 to 16). The term “overlap” implies that A overlaps with B if and only if
Ais B or A is in the sub-tree of B or B is in the sub-tree of A.
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Parent 1 Parent 2
RO = RO sub RO RO = RO sub RO
RO = x0 add RO RO = x2 add RO
tA ]
RO = x2 add RO RO = x1 add RO

RO = RO div 4

RO = x0 add RO

instr*1 instr*1

instr#2
Offspring 1 l>< l Offspring 2

RO = RO sub RO | PROGRAM*1 | PROGRAM*1 RO = RO sub RO

- sul

RO 2 add RO RO = x0 add RO
= X< a

RO = x1 add RO getSum*1 RO = x2 add RO
= X1l a

RO = x0 add RO

RO = RO div 4 getSum*1 instr*1 instr*1 instr*2

Figure 5.5: An example of the grammar-guided crossover. The blue and
green derivation tree nodes and instructions are swapped by the crossover
operator.

Second, for each pair of crossover points, the grammar-guided crossover
picks a sub-list of derivations from D(m,) and D(m,) respectively (lines
18-20). If the program size of the offspring is consistent with the prede-
tined minimum and maximum LGP program size, the crossover operator
replaces the selected derivation tree nodes and corresponding instructions
in the receiver individual with the selected derivation tree nodes and re-
lated instructions in the donor individual. Because the input arguments
might have different assignments from different roots after swapping, the
crossover operator updates the input arguments of the newly replaced
sub-derivation tree and instructions accordingly in the receiver individ-
ual.

Fig. is an example of the grammar-guided crossover. First, the

derivation tree selects two derivation tree nodes with the same type (e.g.,
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getSumin Fig. from the two parent individuals. Based on the deriva-
tion tree nodes, the crossover operator selects the related instructions. The
crossover operator only selects one crossover point because there are no
other non-overlapping nodes. Second, the crossover operator replaces the
sub-derivation tree and the instruction list in the receiver and gets off-
spring. Note that the grammar-guided crossover operator produces two
offspring each time by exchanging the role of donor and receiver individ-
uals.

5.3 Evolving Dispatching Rules with Branch Flow
Control Operations by G2LGP

To evolve effective and interpretable dispatching rules with branch flow
control operations (IF operations particularly), this section proposes three
main principles, each for a main challenge mentioned in section for in-
corporating the domain knowledge of IF operations. The three principles
are listed below.

1. To address the dimension inconsistency, we first design a set of nor-
malized terminals for DJSS and restrict that IF operations can only
compare the proposed normalized terminals with constants. By this
means, information in all different dimensions is used in a normal-

ized form, which is easier for humans to understand.

2. To address the inactive sub-rules of IF operations, we design a set of
grammar rules to constrain the number and possible positions of IF
operations. We restrict dispatching rules to only use IF operations at
the beginning of rules with a limited number. This limits the nega-
tive impact caused by inactive sub-rules of IF operations.

3. To address the ineffective sub-rules, we coordinate the grammar

rules for different parts of a dispatching rule, including IF-included
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parts and the rest of it. By designing grammar rules for different
parts in a coordinating manner, we improve the effectiveness of flow

control operations.

5.3.1 Normalized Terminals

The newly proposed normalized terminal set transforms the existing ter-
minals into a normalized form. Based on the terminal sets of GPHH for

solving DJSS problems (see chapter [3), we design twenty normalized ter-

minals (four of them are introduced in sections [5.4.1|and |5.4.2), as shown

below. We mainly normalized terminals by their maximum values at cor-
responding decision situations. For example, we normalize the process-
ing time of the operations on a machine by dividing the processing time
of operations over the maximum processing time on the current machine.
|| - ||o denotes the cardinality of a set or a list (e.g., the number of available
operations in the queue of machine m). || - ||; denotes 1-norm regulariza-
tion of a set or a list (e.g., ||¢(m)||1 denotes the workload of a machine m,

equivalent to > (m) P(0)). 0(0) denotes the waiting time of an operation

o€q
o, equivalent to the difference between the system time and the ready time
of the operation o. ¢,.:(0) denotes the corresponding machine queue that
processes the next operation of o. 7(0;;) denotes the list of remaining oper-

ations in job j after finishing o;;.

To facilitate understanding, we categorize these proposed terminals
into three groups: job-related, machine-related, and job shop-related ter-
minals, as shown in table [5.2| to These twenty normalized terminals
depict various information in making decisions, which is supposed to be
comprehensive enough to let IF-included dispatching rules understand
decision situations.
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Table 5.2: Proposed normalized terminals - Job-related normalized termi-

nals.
Name Formula Description
Processing  time|PTR(0j;,m) = — p("(f")) o) The processing time of an available operation in
o' eq(m
ratio machine m over the maximum processing time
in the current queue.
The number of NORR(o;;,m) = — ”T((U]; 1“5 [The number of remaining operations of job
o' eq(m) 1T
remaining opera- j after processing o;;, divided by the maxi-
tions ratio mum number of remaining operations among all
available operations in g(m).
The remaining| WKRR (0;;,m) = — ”T(("J)’)‘}“(o,ml The remaining workload of job j after processing
o' eq(m) 1T
workload ratio 0ji, divided by the maximum remaining work-
load among all available operations in g(m).
_ ||lgneat(0ji)llo

The ratio of the
number of opera-
tions in the next
machine

The ratio of the
workload of the
next machine
The

waiting time ratio

operation

The weight ratio

The relative flow
due date ratio

The ratio of energy
cost rate of a job

NNQR(o;;, m)

—_ Manesr(oglls
max g/ e q(m) [|dnext (o)1

WNQR(0;, m)

6(044)

max /¢ q(m) 9(0")

O‘/\ITR(Oﬁ7 TT?) =

B —_ wloj)
WR(Oszm) T max o eq(m) w(0)

a;j+3°6 ploji)—t
a4+ P(O;w)*t

I'FDI{(O]'Z'7 m)

max
D(JLE‘I("")

re(5)
max re

JERO(j) =

The number of operations in ¢,e.(0;;), divided
by the maximum number of operations in

qnezt(o)vvo € q(m)

The total workload of ¢e.:(0;:), divided by the
maximum workload in gne,+(0), Vo € g(m).

The waiting time of 0;;, divided by the maximum
waiting time among all operations in the current
queue g(m).

The weight value of 0;; divided by the maximum
weight value among all operations in ¢(m)

The relative flow due date of o;;, divided by the
maximum relative flow due date among all op-
erations in ¢(m), where ¢ is the system time [137].
re(j) denotes the energy cost rate of a job j.
maxr., = 3 in our simulation. Refer to Sections

4.Tland 5.4.2]

In our experiment, the data ranges are: PTRe [0.01, 1], WRe [0.25, 1], rFDRe (—o0, o0), JERO€ [0.4, 1],
NIQRe (0,1], WIQRe (0,1], DPTe [0.01,1], DNPTe [0.01,1], MERe [0.236,1], BWRe (0,1], EPRe
[0.33,1], and SFRe [0.087, 1]. The data ranges of the other normalized terminals (i.e., NORR, WKRR,
NNQR, WNQR, OWTR, DOWT, DNNQ, and DWNQ) are [0, 1].
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Table 5.3: Proposed normalized terminals - Machine-related normalized

terminals.

Name Formula Description

The number of op-|NIQR(m) = % It indicates the burden of machine m by com-

erations in the ma- paring the number of operations in the machine

chine queue ratio queue ¢(m) with the overall number of available
operations in the job shop.

The workload in|WIQR(m) = % It indicates the burden of machine m by compar-

the machine queue ing the total workload of in the machine queue

ratio q(m) with the overall workload in the job shop.

Deviation of pro-DPT(m) = % A simple index to show the processing time dis-

cessing time crepancy of the available operations in machine
m by comparing minimum processing time with
maximum processing time among available op-
erations in g(m).

Deviation of oper- DOWT(m) = % A simple index to show the waiting time discrep-

ation waiting time ancy of the available operations in machine m
by comparing minimum waiting time with max-
imum wait time among available operations in
q(m).

Deviation of the DNPT(m) = %% A simple index to show the discrepancy of one-

processing time of P step-further decision situations of available op-

the next operation erations in ¢(m) by comparing the minimum
processing time of the next operation and the
maximum processing time of the next operation.

Deviation of the DNNQ(m) = % A simple index to show the discrepancy of one-

number of opera- step-further decision situations of available op-

tions in the next erations in ¢(m) by comparing the minimum

machine number of available operations in the next ma-
chine with the maximum number of available
operations in the next machine.

Deviation of the DWNQ(m) = % A simple index to show the discrepancy of one-

workload of the step-further decision situations of available op-

next machine erations in ¢(m) by comparing the minimum
workload in the next machine with the maxi-
mum workload in the next machine.

The idle energy MER(m)= —t=— The normalized energy consumption rate of an

consumption rate

max rm

idle machine over time. maxr,, = 7500 in our
simulation. Refer to Sections[5.4.1|and 5.4.2]

In our experiment, the data ranges are: PTRe [0.01, 1], WRe [0.25, 1], rFFDRe (—o0, o0), JERO€ [0.4, 1],
NIQRe (0,1], WIQRe (0,1], DPTe [0.01, 1], DNPTe [0.01,1], MER€ [0.236, 1], BWRe (0, 1], EPRe
[0.33,1], and SFRe [0.087, 1]. The data ranges of the other normalized terminals (i.e., NORR, WKRR,
NNQR, WNQR, OWTR, DOWT, DNNQ, and DWNQ) are [0, 1].
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Table 5.4: Proposed normalized terminals - Job shop-related normalized

terminals.

Name Formula Description

Bottleneck work-|BWR= max,,eyy WIQR(m) An index of bottleneck by comparing the work-

load ratio [158] load of bottleneck machines with overall work-
load. Bottleneck machines are the machines with
the largest workload at a particular time [158].

Energy price rate |[EPR= L= The normalized job shop-wide energy price.
maxp, = 0.015 in our simulation. Refer to Sec-
tions and

The response cost|SFR= -£— The normalized job shop-wide cost rate for job

rate ratio response time. maxy = 2.3 in our simulation.
Refer to Sections[5.4.T|and 5.4.2|

In our experiment, the data ranges are: PTRe [0.01, 1], WRe [0.25, 1], rFDRe (—o0, 00), JERO€ [0.4, 1],
NIQRe (0,1], WIQRe (0,1], DPTe [0.01,1], DNPTe [0.01,1], MER€ [0.236, 1], BWRe (0, 1], EPRe
[0.33, 1], and SFRe [0.087,1]. The data ranges of the other normalized terminals (i.e., NORR, WKRR,
NNQR, WNQR, OWTR, DOWT, DNNQ, and DWNQ) are [0, 1].

5.3.2 Proposed Grammar Rules

Based on the normalized terminals, we design a set of grammar rules to
restrict the use of these normalized terminals in IF operations. To improve
the effectiveness and interpretability of IF-included dispatching rules, the
proposed grammar rules fulfill three main restrictions of IF operations:

1. Input restriction: IF operations should use normalized terminals and

constants as inputs to improve the interpretability of IF conditions.

2. Location restriction: IF branches should locate in the beginning of
programs and disjoint with each other (i.e., no nested IF branches) to

avoid meaningless program output caused by IF conditions.

3. Number restriction: Dispatching rules should only use a limited

number of IF operations to reduce redundant IF branches.

Fig. is an example to illustrate the three restrictions. The raw and
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Raw rule Restricted rule Comments
Line 0 | R0O=R1=R2=0 R0=R1=R2=0 //nitialize registers.
Line 1 | R2=PT + NPT R2=PT + NPT
Line2 | IF>#1 WIQ WINQ | IF>#1 WIQR 0.5 | /If the machine is busy
Line 3 R0O=R2 - NPT R1=R2 - NPT //Shortest processing time
Line4 | IF<#1 rFDD R1 IF<#1 rFDR 0.1 | //Lines 4-7: If an operation
Line5 | IF>#2 W 2 R1=R2 + rFDD | delays from a due date,
Line 6 R1=R2 + rFDD IF>#1 WR 0.6 prioritize it by “+rFDD” .
Line 7 R0=R1/W RI=R2 /W If a job is important,
Line 8 RO=R2 +R1 prioritize it by “/W” .

Figure 5.6: Examples of non-restricted and restricted dispatching rules in
the LGP representation. The meanings of PT, WIQ, WINQ, rFDD, and W
refer to table

restricted LGP-based dispatching rules both manipulate three registers,
RO, R1, and R2. The final outputs of dispatching rules are stored in the
tirst register RO. Each dispatching rule in Fig. 5.6/ contains three IF condi-
tions. “IF> #N a b” denotes that if a is larger than b, the program executes
N subsequent instructions. Otherwise, the program skips the next NV in-
structions.

The two dispatching rules show a similar scheduling pattern. When
the workload in a machine queue is heavy (Line 2 for both rules), the two
dispatching rules encourage the machine to finish its operations as soon
as possible to improve the pipeline level of the job shop, that is, prior-
itizing operations mainly based on their processing time (i.e., shortest-
processing-time-first rule). If an operation is already delayed from its
given due date, we prioritize it by adding rFDD (rFDD<Q0 if an operation is
delayed). If a job (and its operations) is important (i.e., with a high weight
value), we prioritize the operations by dividing them by W. In summary,
when the machine is busy, the operation is delayed, and the job is im-
portant, the corresponding decision will be most preferred (i.e., smallest
dispatching rule value).

However, the two dispatching rules have different interpretability and
effectiveness. With the input restriction, the restricted rule uses a normal-
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(defset FUNS {add, sub,mul,div,max,min}; A
defset FLOWCTRL {IfLargel,IfLessEql};

defset rawINPUT

{PT,NPT,WINQ,NINQ, rFDD, rDD,SL,W,OWT,NWT,TIS,WKR,NOR};

defset conditionINPUT {NIQR,WIQR,DPT,DOWT,DNNQ,DWNQ,DNPT,BWR,
PTR, NORR ,WKRR, NNQR,WNQR, OWTR ,WR, 'FDR} ;

defset INPUT {conditionINPUT,rawINPUT};

defset REG {RO,R1,R2,R3,R4,R5,R6,R7};

defset constant {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9};

begin modulec_0

uncondition(I\O\R) ::= <O\{FUNS}\R+I\R+I>;

branch ::= <{RO}\{FLOWCTRL}\{conditionINPUT}\{constant}>;
condition(I\O\R) ::= <O\{FUNS}\R+I\R+I> :: branch :: <O\{FUNS}\
R+I\R+I>;

PROGRAM ::= condition(I~{INPUT}\O~{REG}\

R~{REG})*5: :uncondition (I~{rawINPUT}\O~{REG}\R~{REG})*;

\end modulec_0 Y,

Figure 5.7: The proposed grammar rules for evolving IF-included dis-
patching rules for DJSS.

ized terminal WIQR to indicate the workload burden of a machine and
uses a constant 0.5 to define that the workload is heavy if the workload
of this machine accounts for more than half of the overall workload. Con-
trarily, the raw rule has to compare the features with different physical
meanings (i.e., WIQ and WINQ) to approximate the heavy workload (i.e.,
large enough WIQ), which is not comprehensive enough. With the loca-
tion restriction, the restricted rule adds one unconditional instruction (i.e.,
line 8) to assemble register values. But the raw rule overwrites the out-
put register RO in IF branches, which might lead to meaningless RO (i.e.,
returning the initial value of RO0) if all the branches are skipped (i.e., all
the IF conditions are not satisfied). The nested IF conditions in the raw
rule (i.e., lines 4 and 5) also increase the probability that the raw rule skips
lines 6 and 7. Although the two rules in Fig. [5.6|use the same number of IF
branches, we advocate that unlimited IF conditions easily lead to redun-
dant or contradictory building blocks.

Based on the three restrictions and the domain knowledge of DJSS
problems, we design the following grammar rules based on MCFG, as
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shown in Fig. We first categorize the input features into different con-
cepts (i.e., primitive sets), including arithmetic functions (FUNS), IF oper-
ations (FLOWCTRL), raw job shop features (rawINPUT), normalized termi-
nals (conditionINPUT), registers (REG), and constants (constant). We
denote the IF operations (“IF> #1” and “IF<= #1”) by IfLargel and
IfLessEql respectively. The settings of the primitive set follow chapter

Bl

Then, we define the derivation rules to divide LGP programs into sub-
programs. We divide an LGP program into conditional (i.e., condition
(I\O\R) ) and non-conditional sub programs (i.e., uncondition (I\O\R)),
defined by PROGRAM. The conditional sub-program accepts normalized
terminals and raw job shop features as inputs (i.e., I~ {INPUT}) and out-
puts the results to any of the eight registers (i.e., O~{REG}). The con-
ditional subprogram includes three instructions, two for arithmetic in-
structions (i.e., <O\{FUNS}\R+I\R+I>) and one for logical instruction
(i.e., branch). To implement the IF-ELSE structure, the conditional sub-
program simply first executes an arithmetic instruction unconditionally
and then executes the other arithmetic instruction based on the IF condi-

tion.

To fulfill the three proposed restrictions, we have three designs in
Fig. 1) The IF condition (branch) only uses normalized terminals
(conditionINPUT) and constants as inputs based on the input restric-
tion. Note that the predefined output register RO in the IF condition is use-
less since IF operations do not overwrite registers. 2) Based on the num-
ber restriction, the conditional sub program repeats at most five times (i.e.,
“%5” after condition (I~ {INPUT}\O~{REG}\R~{REG}) in PROGRAM)
to limit the number of logical operations. 3) The unconditional sub-
program is executed after the conditional sub-program to fulfill the loca-
tion restriction. For the sake of simplicity, the unconditional sub-program
only accepts raw job shop features as inputs and outputs the results to any
of the eight registers. Note that the design details in Fig. [5.7|are based on
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our preliminary investigation and existing studies [21]]. For example, the
compared method without limiting the number of conditional sub pro-
grams averagely has five conditional sub programs. Thus, we limit the
conditional sub programs to at most repeating five times in Fig. to
further reduce the search space.

5.4 Experiment Design

To verify the effectiveness of IF-included dispatching rules and G2LGP,
we design three scenario sets with different complexities. Specifically, the
first scenario set is the basic one, only optimizing the tardiness or flow-
time. The second scenario set increases the complexity of the first scenario
set by additionally considering energy cost in the optimization. The third
scenario set further increases the complexity by additionally considering
energy cost and the response time of operations.

5.4.1 Simulation Design
Basic Scenario Set

The basic scenario set follows the settings in chapter 3| Specifically, the
basic scenario set mainly optimizes tardiness or flowtime. the basic sce-
nario set totally contains twelve DJSS scenarios, which are (7,,,,,0.85),
(Tmaz,0.95), (Thnean, 0.85), (Thnean, 0.95), (W Thnean, 0.85), (W T hean, 0.95),
(Frnaw, 0.85), (Faz, 0.95), (Fmean; 0.85), (Fiean,0.95), (W Ecan,0.85), and
(W Frnean, 0.95).

Second Scenario Set

To increase the complexity of the problems, we introduce energy cost into
optimization objectives of the second scenario set. The energy cost model
and the energy price follow [119]. Specifically, each job in the second sce-
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nario set has an energy cost rate . ~ U(1.2,3). The machines consume
energy in both idle and working time. Each machine has an idle energy
consumption rate r,, and a working energy consumption rate r,,, x . (7.
is the energy cost rate of on-going jobs). The settings of r,, follow [119]
(i.e., machines have different energy consumption rates). To simulate the
floating power prices in daily life, the energy price rate p. in our simula-
tion changes every 10 arrival jobs. The energy price is sampled from three
values 0.005, 0.01, and 0.015, based on a uniform distribution. The average

energy consumption per job per machine F is obtained as follows.

= ZmeM E(m)
M| x |J|

E(m) =Y (Tie(t) X rm X pe(t))

t
+ 30 ) Tuwork(t) X i X () X pe(t)
t jEO(m)
where E(m) is the total energy consumption of machine m. 7;q.(t) and
Twork(t) are the idle and working running time for a machine in a time
period ¢ respectively. ©(m) is all the processed jobs by machine m.

Based on E, we extend the six tardiness and flowtime optimization
objectives by simply averaging F and tardiness and flowtime objective
values. For example, T}, is transformed to TE = 0.5T e + 0.5E, and
= 0.5Tean + 0.5E, etc. Note that the two

objective values in the linear combination have a similar magnitude based

T ean is transformed to 7%

mean

on our preliminary investigation. Together with the two utilization level

settings, the second scenario set also has twelve scenarios.

Third Scenario Set

The third scenario set further increases the complexity of DJSS problems
by additionally considering job response time in the second scenario.

The design of the job response time in this thesis borrows the idea from
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[118,/162]. Job response time is an important performance metric in many
controlling systems, such as real-time operating systems on computers. To
optimize the job response time, we define a response cost R by multiplying
the job response time R; with a response cost rate ¢. The response time in
this thesis is equivalent to the difference between the start-to-be-processed
time and the arrival time of a particular job. There are three levels of ¢, 0.2,
1, and 2.3. We reset ¢ values among the three values every 10 arrival jobs
based on a probability of 40%:40%:20%. The average response cost R is
obtained by
2_je1 0)

R = )
|J]

R(j) =) Rilo) x o(t)
t 0c0,
where R(j) is the response cost of job j, R;(0) is the response time for oper-
ations, and ¢(t) is the response cost rate during the waiting time of the op-
eration o. We integrate the response cost R with tardiness, flowtime, and
energy cost by the same linear combination to develop six optimization
objectives TEE  TER ~WTEE W FER CEFEE Cand WFEELE . For example,

max’ mean’ mean’ max’ mean’ mean*

TEE — 04T, + 0.3E + 0.3R, and TEE = 0.4T,,can + 0.3E + 0.3R. The

maxr mean

three objective values here also have similar magnitudes.

5.4.2 Comparison Design

We use five compared methods to verify the effectiveness of the proposed
grammar rules. 1) The first algorithm is the grammar-guided LGPHH
without IF operations. It applies grammar rules to constrain the search
space in chapter 3| This compared method has shown promising perfor-
mance for solving DJSS problems in our prior investigation, denoted as
G2LGP. 2) The second compared algorithm extends the basic LGPHH by
including IF operations and the proposed normalized terminals into its
primitive set directly but without grammar-guided evolutionary frame-

work and the proposed grammar rules, denoted as LGP+. 3) and 4)
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The third and fourth compared methods are variants of the proposed
method which extend the proposed grammar rules by removing some
restrictions from Fig. Specifically, the third compared method (de-
noted as G2LGP/input) removes the input restriction and evolves based
on a set of grammar rules shown in Fig. The source registers of
IF operations can be any of the terminals, including all the input fea-
tures, registers, and constants. The fourth compared method (denoted as
G2LGP/locnum) removes the location restriction and the number restric-
tion and evolves based on a set of grammar rules shown in Fig. The
“x” after the PROGRAM derivation indicates that there can be any num-
ber of conditional sub-programs (condition). The condition sub-
program can derive to either one logical instruction (branch) and one
arithmetic instruction (<O\{FUNS}\R+I\R+I>), or unconditional sub-
programs (uncondition (I~I\O~0\R~R)) whose input arguments are
the same as the parent of the derivation. Thus, there can be a large num-
ber of IF operations in a program, and the IF operations can also be used at
any position in a program. The last compared method is the proposed al-
gorithm, which evolves G2LGP based on the normalized terminals and the
proposed grammar rules, denoted as G2ZLGP-IF. The primitive set of all the
compared methods includes the raw input features, which are designed
based on chapter [3l Except for G2LGP, the rest of the compared meth-
ods also include the proposed normalized terminals in their primitive
sets. The function set for G2LGP is {+, —, X, =, max, min}, and the func-
tion set for the other four compared methods is {+, —, X, +, max, min, IF >
#1,IF <= #1}. The rest of the settings for the compared methods are set
as those in chapter
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- /* other rules are the same as the proposed rules */

y
<{RO}\{FLOWCTRL}\{INPUT,REG, constant}\{INPUT,REG, constant}>;

branch

- /* other rules are the same as the proposed rules */

Figure 5.8: The grammar rules of G2LGP/input.

-
- /* other rules are the same as the proposed rules */

condition(T\O\R) ::= branch :: <O\{FUNS}\R+I\R+I> |
uncondition(I~I\O~O\R~R);

PROGRAM : := condition(I~{rawINPUT}\O~{REG}\R~{REG})*:
\end modulec_0 )

Figure 5.9: The grammar rules of G2LGP /locnum.

Table 5.5: Average test objective values (std.) in the basic scenario set.

Scenarios G2LGP LGP+ G2LGP/input|G2LGP/locnum| G2LGP-IF
(Tmax,0.85) [1922.1 (42.9) ~|1978.1 (162.1) — | 1927.5 (52) ~ | 1939.2 (51.4) ~ | 1931 (44.6)
(Tmax,0.95) | 3943.1 (84) ~ | 4040.5 (218.9) — (3946.7 (79.5) ~=| 4045.6 (123.3) — [3968.8 (112.3)

(Tmean,0.85) | 417.7 2.6) ~ | 4288 (40)~ | 4169(22)~ | 418(28)— | 416.8(2.9)
(Tmean,0.95) |1116.7 (8.7) ~ | 1195.6 (167.4) ~ |1116.4 (11.2) ~| 1122.2 (12.1) ~ | 1116.3 (12.1)
(WTmean,0.85) | 723.6 (7.5) ~ | 7704 (112.7) ~ | 7231 (5.4) ~ | 7284 (73)~ | 726.5(7.3)

(WTmean,0.95) |1724.4 (2

.
(26.6) ~|2103.9 (1739.3) —|1722.1 (25.5) ~| 1740.2 (27.7) ~ | 1733 (33.9)
(Fmax,0.85) |2534.6 (7
8
@G
(10

6.6

4.1) —| 2529.2 (63.8) — | 2490 (65.2) ~ | 2535.7 (53.1) — | 2503.1 (79.7)
0.6) —| 4760.9 (623.5) — |4505.6 (73.4) ~| 4638.4 (120) — | 4501 (74.8)

(Fmean,0.85) | 864.6 (3.2)~ | 910(193.4)~ | 862.4(2.6) ~ | 865.1(3.5) — 863.7 (2.6)
(Fmean,0.95) (1565.3 (10.9) ~| 1649 (245.8) ~ |1561.7 (9.3) ~ | 1571.3 (16.5) ~ | 1565.9 (12.6)
(WFmean,0.85) | 1701.7 (6.1) ~ | 1826.4 (661) =~ |1701.4 (6.5) ~ | 1706.5(7)~ | 1703.4(7.5)
(WFmean,0.95) |2722.8 (25.4) ~|3610.6 (3943.9) —| 2708 (24.7) = | 2724.1 (24.5) — | 2711.7 (21.5)
win/draw/lose 0-10-2 0-6-6 0-12-0 0-6-6
mean rank 2.46 4.25 1.5 4.58 2.21
p-values 1.000 0.015 1.000 0.002

(Fmax,0.95) |4599.7
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Table 5.6: Average test objective values (std.) in the second scenario set.

G2LGP LGP+ G2LGP/input |G2LGP/locnum| G2LGP-IF
(TmaxE,0.85) |2093.8 (24.1) —| 2106.1 (38) — |2082.9 (26.5) ~| 2096 (25.4) — [2078.4 (23.1)
(TmaxE,0.95) |3207.8 (86.1) —|3231.4 (302.8) —|3153.2 (63.5) ~| 3233 (128.6) — |3152.8 (65.9)
(TmeanE,0.85) | 1331.1 (2.2) ~ | 1342.7 (44.8) ~ | 1330 (1.3) ~ | 1330.6 (1.8) ~ | 1330.4 (1.5)
(TmeanE,0.95) | 1651 (6.4) ~ | 1676.6 (67.5) ~ |1652.9 (10.6) ~| 1652.9 (7.9) ~ | 1651.7 (9.6)
(WTmeanE,0.85)| 1487.2 (3.6) ~ | 1526.4 (82.3) — | 1485.6 (3.1) + | 1486.8 (3.6) ~ | 1487.6 (3.7)
(WTmeanE,0.95)|1985.8 (17.3) | 2196 (828) — | 1982 (15.3) ~ | 1993.7 (17.1) ~ |1987.2 (15.2)
(FmaxE,0.85) (2385.3 (26.2) —|2513.3 (895.8) —(2378.6 (53.8) ~| 2397.7 (45.5) — |2369.7 (23.1)
(FmaxE,0.95) |3465.3 (54.9) ~| 3474.5 (77) — |3431.8 (42.4) ~| 3494.2 (58.4) — |3443.7 (56.3)
(FmeanE,0.85) | 1554.1 (2.2) — | 1599 (198.4) — | 1553.4 (1.9) ~ | 1553.9 (1.8) — | 1553 (1.4)
(FmeanE,0.95) | 1875.6 (5.9) ~ | 1913.2 (95.7) ~ | 1873.4 (5.9) ~ | 1878.7 (9.1) = | 1876.3 (5.7)
(WFmeanE,0.85)| 1975.6 (3.5) ~ | 1999.8 (65.3) ~ | 1974.4 (3.7) = | 1977.7 (4) — |1975.2 (4.1)
(WFmeanE,0.95) |2484.1 (17.4) ~(2592.8 (436.1) ~|2483.1 (17.6) ~| 2480.4 (14.8) ~ |2481.1 (14.7)
win/draw/lose 0-8-4 0-5-7 1-11-0 0-6-6
mean rank 2.92 4.38 1.58 413 2.00
p-values 1.000 0.002 1.000 0.010

Table 5.7: Average test objective values (std.) in the third scenario set.

Scenarios G2LGP LGP+ G2LGP/input |G2LGP/locnum| G2LGP-IF
(TmaxER,0.85) |1643.9 (26.3) —| 1640.2 (36.7) — | 1621.5 (18) ~ | 1637.3 (25.4) — | 1624.9 (20)
(TmaxER,0.95) (2807.6 (52.5) —| 2838 (112.7) — (2790.4 (61.5) ~| 2833.9 (66.9) — |2794.5 (142.5)
(TmeanER,0.85) | 995(2.4) — |1007.9 (35.1) ~| 9929 (2.6) ~ | 990.1 (4.4) + 992.7 (3.4)
(TmeanER,0.95) | 1457.5 (9.1) — |1542.5 (235.7) —|1444.7 (25.4) —| 1405.3 (21.1) + | 1424 (29.2)

(WTmeanER,0.85)| 1132.2 (9.6) =~ | 1174.1 (81.5) — | 1128.6 (3.4) ~ | 1131.9 (4.6) ~ | 11304 (4.7)
(WTmeanER,0.95)|1774.5 (21.6) ~| 2003.5 (806) — (1767.9 (18.9) ~| 1754.2 (29.4) ~ | 1761.2 (23.8)
(FmaxER,0.85) [1882.5 (28.5) —| 1889.2 (31) — |1858.5 (18.9) ~| 1882.3 (61) ~ |1866.2 (22.8)
(FmaxER,0.95) | 3053.9 (49) — 3293 (1052.1) — |3014.4 (46.1) ~| 3054.2 (59.5) — | 3000.6 (47.5)
(FmeanER,0.85) |1173.2 (2.6) — | 1206.7 (72.7) — | 1171.4 2.9) =~ | 1167.3 4.7) + | 1170.4 (3.7)
(FmeanER,0.95) | 1636.2 (9.7) — | 1665.1 (95.8) — |1625.7 (20.5) —| 1583.9 (22.3) + | 1602.8 (29.8)
(WFmeanER,0.85)| 1523 (3.8) — | 1566.3 (82.5) — | 1520.6 (3.6) ~ | 1522.8 (4.5) — 1521 (3.8)
(WFmeanER,0.95)| 2174 (17.9) — | 2276.6 (342) — (2162.6 (14.6) ~| 2142.5 (29.6) + | 2154.5 (22.3)
win/draw /lose 0-2-10 0-1-11 0-10-2 5-3-4
mean rank 4.25 4.42 217 2.33 1.83
p-values 0.002 0.000 1.000 1.000

5.5 Experiment Results

5.5.1 Test Performance

This section compares the test performance of the five compared meth-
ods on the three scenario sets, as shown in Table to The test per-
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formance indicates the actual tardiness and flowtime (by time units) of
the compared methods for solving unseen instances in different scenarios.
For each scenario set, we first analyze the overall performance of the com-
pared methods by the Friedman'’s test and then analyze the performance
on each scenario based on the Wilcoxon rank-sum test with Bonferroni
correction. The significance levels of the Friedman’s test and the Wilcoxon
test are 0.05. Specifically, the “+” in Table 5.5/to 5.7|indicates that a certain
method is significantly better (i.e., having a smaller objective value) than
the proposed G2LGP-IF, the “~” indicates that a method is statistically
similar to G2LGP-IF, and the “—" indicates that a method is significantly
worse than G2LGP-IF. The p-values at the last row indicate the pair-wise
comparison between a certain method and G2LGP-IF, with a null hypoth-
esis that the performances of the two compared methods belong to the

same distribution and an alternative hypothesis of different distributions.

For the basic scenario set, the p-value of the Friedman’s test is 4.25E-
07, which indicates a significant difference among the compared methods.
Based on the pair-wise comparison and the mean rank, we confirm that
the proposed G2LGP-IF has a significantly better overall test performance
than directly evolving IF-included dispatching rules by basic LGPHH (i.e.,
LGP+) and G2LGP without location and number restrictions. On the other
hand, we cannot see significant performance differences between state-
of-the-art LGP (i.e., G2LGP) whose primitive set has been well designed
and G2LGP-IF, and between G2LGP/input and G2LGP-IFE. It is likely that
the existing primitive set (i.e., excluding the IF operations and normalized
terminals) is large enough to compose effective dispatching rules for the
basic scenario set, and the grammar of G2LGP-IF and G2LGP/input effec-
tively reduces the search space to a similar size with G2LGP. The Wilcoxon
test confirms our observations on the inferior performance of LGP+ and
G2LGP/locnum.

The second scenario set which concerns energy cost shows a simi-

lar pattern to the basic scenario set, with a Friedman’s test p-value of
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5.53E-06. In the second scenario, G2LGP-IF is also superior to LGP+ and
G2LGP/locnum and performs similarly to G2LGP and G2LGP/input. It
is worth mentioning that, despite the insignificant overall performance
discrepancy between G2LGP and G2LGP-IF, G2LGP-IF performs signif-
icantly better than G2LGP on four scenarios and has better mean perfor-
mance on eight scenarios. Together with the results in Table[5.5} the results
confirm that G2LGP-IF has a very competitive performance with the state-
of-the-art LGPHH methods and is superior to basic LGPHH when solving

relatively simple scenarios.

The third scenario set which considers tardiness (or flowtime), energy
cost, and job response time, shows a substantial difference. The p-value of
the Friedman’s test is 7.34E-06, indicating a significant difference among
the compared methods. Based on the pair-wise comparison, we see that
G2LGP-IF significantly outperforms G2LGP and LGP+ in terms of test per-
formance. The Wilcoxon test further verify the superior performance of
the proposed G2LGP-IF. On the other hand, the other two G2LGP variants
G2LGP/input and G2LGP/locnum have a very competitive performance
with G2LGP-IF, but with worse mean ranks (i.e., 2.17 for G2LGP/input
and 2.33 for G2LGP/locnum are worse than 1.83 for G2LGP-IF). The re-
sults confirm that G2LGP with the proposed grammar restrictions is very
effective in solving the complex scenario set which simultaneously opti-

mizes multiple performance metrics.

Based on the results from the basic scenario set to the more complicated

ones, we have the following observations:

1) When scenario sets become more and more complicated, evolving
IF operations by grammar rules becomes more and more important. The
evidences are twofold. First, the performance gap between non-grammar-
guided LGP and grammar-guided LGP becomes larger and larger when
the scenarios have to optimize more and more performance metrics (e.g.,
the mean rank of LGP+ increases with scenario complexity). Second,

G2LGP, which has no IF primitives and necessary grammar rules, can-
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not handle complex scenarios effectively. It performs inferior to G2LGP-IF
on more scenarios when scenario sets become more complex (i.e., from 2

significantly worse scenarios to 10 worse scenarios).

2) Directly evolving IF-included dispatching rules is too difficult for ex-
isting LGPHH methods since IF operations introduce a large number of re-
dundant solutions into their search spaces. For example, LGP might waste
a lot of time searching the contradictory and tautological IF operations that
do not contribute to the final output. As shown in Table [5.5/to LGP+
which directly includes IF operations in its primitive set always has the
worst performance among the compared methods. However, without IF
operations, it is hard for existing LGPHH methods to solve complicated

scenarios.

3) Tables to give some insights into the number and location
of IF operations. For example, limiting the maximum number of IF opera-
tions to five (i.e., G2LGP-IF and G2LGP/input) is effective since G2LGP-IF
and G2LGP/input show a good performance in all the three scenario sets.
Setting the number of IF operations too small (i.e., G2LGP and LGP+) or
too large (i.e., G2LGP /locnum) likely reduces the effectiveness in complex

scenarios.

To further analyze the test performance of the compared methods, we
show the average test performance of all the compared methods over gen-
erations, as shown in Fig. Specifically, we select T'max, W1 mean,
Fmaz, and F'mean with a high utilization level of 0.95 in the three sce-

nario sets as the example scenarios.

We can see that the proposed G2LGP-IF (i.e., the red curves) shows a
very competitive performance with other compared methods. On the con-
trary, basic LGPHH cannot find stable IF-included dispatching rules (i.e.,
LGP+, the green curves). In some certain generations, the test performance
of LGP+ soars up to an extremely poor level, implying that basic LGPHH
fails to evolve IF-included dispatching rules with a good generalization
ability.
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Figure 5.10: The test performance over generations in example scenarios.

5.5.2 Program Size

To have a brief understanding of the interpretability of output rules, Fig.

shows the average effective program size (i.e., the average num-

ber of effective instructions) of best-of-run individuals for each compared

method for solving six example scenarios over 50 independent runs. We

simply assume that a concise rule (i.e., a smaller program) has good in-

terpretability. The curves of mean values and the shadows of standard
deviation show that the proposed G2LGP-IF and G2LGP/input averagely
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Figure 5.11: The average effective program size (+ std.) of best-of-run in-
dividuals of the compared methods over generations and 50 independent

runs.

achieves significantly smaller program size than the others. For exam-
ple, in the first example scenario (Tmax, 0.95), the red and purple curves
nearly have no overlap with the others at the end of their evolution, in-
dicating a significant program size difference of output programs. Given
that both G2LGP-IF and G2LGP/input have restrictions on the number
and locations of IF operations by grammar rules, we believe the two pro-

posed restrictions are essential reasons for producing concise programs.

5.5.3 Dimension Consistency

This section analyzes the example dispatching rules of G2LGP-IF and
G2LGP/input to demonstrate the dimension consistency achieved by the

proposed normalized terminals and input restriction. Specifically, we ran-
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domly select two best rules of G2LGP-IF and G2LGP/input from 50 in-
dependent runs respectively, for solving (Tmean, 0.95) and (WFmeanER,
0.95). Each pair of the selected rules for the same scenario has a similar
test performance. All the four rules have been manually simplified by
replacing registers with intermediate results and removing contradictory
and tautological IF operations.

(Tmean, 0.95)

The example rule from G2LGP-IF for (Tmean, 0.95) is shown in Eq. (5.1).
We can see that when the bottleneck situation is not too severe (i.e.,
BWR < 0.9), the dispatching rule prioritizes the operations with a large
processing time of the next operation (i.e., “—/NPT"” in a). It implies that
the rule intends to use a long-term strategy to process some tough oper-
ations before the bottleneck comes. When there is a severe bottleneck in
the job shop, the dispatching rule prefers operations with a small process-
ing time to finish more operations in a shorter time (i.e., both “PT” in the
main rule and “N PT"” in the conditional part are positively correlated to
the heuristic value). By this means, the job shop improves the pipeline of
the job shop as soon as possible.

5a +4NOR
PT
WINQ — NPT + PT,  if BWR<09 (5.1)

NPT x (NPT + NINQ), otherwise

RULE;r = max(PT, )+ (5a + ANOR) x PT

a =

The example rule from G2LGP/input for (Tmean, 0.95) is shown in
Eq. (5.2). The main rule is relatively simple, adding three simple terms
together. However, we can see dimension inconsistency in its conditional
part a. The first condition rFDR < WKRR and WINQ < 0.4 compares
the terminals with different physical meanings (i.e., rF'DR and W K RR)
and compares the workload in the next machine queue (WINQ) with a

meaningless constant 0.4. Note that WINQ is larger than 2 (the minimum
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workload unit for a single operation is 2) in most cases and is equivalent
to 0 only at the beginning of the simulation where most machines are idle.
Thus, the second condition is almost a tautological condition, and the third
branch of a can be neglected in many cases.

RULFE;pp = NINQ + 2PT + min(a, NPT)

NOR, ifrFDR<WKRR
and WINQ < 0.4 (5.2)
NINQ@?, elseif WINQ > 0.4
\rFDD, otherwise

(WFmeanER, 0.95)

When the problem considers three performance metrics, the example rule
from G2LGP-IF still maintains a good interpretability. The rules from
G2LGP-IF and G2LGP/input are shown in Eq. and Eq. respec-
tively. For the rule from G2LGP-IF, we can see that if the user response
time is important (i.e., SF'R > 0.2 implying SFR = 1 or SFR = 2.3) or the
number of operations in the next queue is relatively large (NNQR > 0.3),
the LGP rule emphasizes the next processing time NPT. Since a small NPT
also implies that the next operation will be prioritized when it is available
(i.e., replacing PT by NPT in Eq. (5.3)), the job shop prefers finishing those
easy-to-process jobs so that it can response more jobs to reduce the over-
all response time. Otherwise, the job shop focuses on WKR to reduce the
overall flowtime.

RULEr = ((4PT 4+ a) * a)?

b+ PT+ NINQ

B W (5.3)
NPT, if SFR>020r NNQR > 0.3
WKR, otherwise

a

Contrarily, the example rule from G2LGP/input compares terminals
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with different physical meanings in its IF operation. The conditional part
c compares the deviation of processing time (DPT) with the number of
remaining operations NOR and compares the number of operations in
the next machine queue (NI/NQ) with the processing time (P7'). These
comparisons make the decisions from Eq. hard to be interpreted and
might lead to unexpected behaviors during optimization.

W-PT-a-TIS
_l’_

RULEinput: b
W-PT-b-PT+WINQ- NPT -PT
_l’_
W2
2 +a+c+TIS+ PT+SL
w.pr T
(5.4)
a=c+ NOR
b=c+ PT

max(NINQ, PT), if DPT > NOR
PT, otherwise

CcC =

5.5.4 Training Time

Our experiments run on Intel Broadwell (E5-2695v4, 2.1 GHz). With the
same total number of fitness evaluations (i.e., 51200), the average training
time of the five compared methods are 3.26, 5.39, 8.08, 9.06, and 9.18 hours
respectively. They show a pattern of G2ZLGP < LGP+ < G2LGP/input ~
G2LGP/locnum ~ G2LGP-IF in terms of training time. G2LGP has the
shortest training time since it uses neither the normalized terminals nor
IF operations. Although LGP+ includes the normalized terminals and
IF operations in its primitive set, there are no grammar rules to enforce
each LGP rule to use these primitives. Contrarily, the last three compared
methods that use grammar to enforce the use of the normalized terminals
and IF operations, increase the computation time of each rule. The results
show that the use of the normalized terminals and IF operations increases

the computation time of dispatching rules.
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However, we advocate that the increase in the computation time of
dispatching rules here is acceptable in practice since the training of GP
methods is off-line and the decision time (i.e., the computation time of
all candidate operations) of LGP rules is much smaller than the processing
time in reality. Take the longest training time of G2LGP-IF (i.e., 9.18 hours)
as an example. The 9.18 hours are composed of 256 x 200 = 51200 fitness
evaluations, each evaluation processes more than 6000 jobs, and each job

with 6 operations on average. Thus, the average decision time for each

9.18hours
51200x6000x 6

than the operation processing time in many real-world applications. Once

operation is about = 1.8E~° seconds, which is much smaller
we obtain a dispatching rule from the off-line training, the rule can make
decisions for unseen problem instances in a very short time. Furthermore,
the normalized terminals and IF operation bring a significant performance

gain in many DJSS scenarios.

5.5.5 Summary on Main Results

This section investigates the effectiveness and interpretability of the five
compared methods. We found that existing LGPHH methods cannot ef-
fectively evolve rules with IF operations based on the inferior performance
of LGP+. But without IF operations, state-of-the-art LGPHH cannot effec-
tively solve complicated DJSS scenarios (see the inferior performance of
G2LGP in the third scenario set). To make effective use of IF operations,
we proposed to restrict dispatching rules to only use a limited number of
IF operations at the beginning of the rules, which substantially improves
the effectiveness of LGPHH in solving complicated scenarios. Moreover,
the proposed normalized terminals and input restriction improve the di-
mension consistency of IF operations in output rules, which can further
improve interpretability. This suggests that evolving dispatching rules
with IF operations by restricting the input features, number, and location
of IF operations has a promising performance in terms of both effective-
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(= /* other rules are the same as the proposed rules */ )
defset FLOWCTRL {IfLarge3,IfLessEq3};

;Andition(I\O\R) 1= <O\{FUNS}\R+I\R+I> :: branch :: <O\{FUNS}\R+I\R+I>

11 <O\{FUNS}\R+I\R+I> :: <O\{FUNS}\R+I\R+I>;

- /* other rules are the same as the proposed rules */ y

Figure 5.12: The grammar rules of G2LGP-body3.

ness and interoperability.

5.6 Further Analyses

5.6.1 Effectiveness of Simple IF Operations

LGP can naturally implement human-like programming styles of IF opera-
tions, including IF branches with different lengths and nested IF branches.
In our proposed grammar rules, we restrict IF branches to only contain
one instruction and avoid nested IF branches for simplicity, but have not
verified the effectiveness of these simple designs. Therefore, this section
investigates the effectiveness of long IF branches and nested IF branches.

The first variant of G2LGP, denoted as G2LGP-body3, forces IF branches
to include three instructions. The grammar of G2LGP-body3 is shown in
Fig. where dispatching rules use IF operations with three instructions
(i.e., IfLarge3 and IfLessEg3), and the derivation rule of condition
includes more instruction modules.

The second G2LGP variant is G2LGP-nested, which allows an IF branch
to include other IF branches (i.e., nested IF branches). The grammar rules
for G2LGP-nested are shown in Fig. where dispatching rules use IF
operations with one to three instructions, and each logical condition is fol-
lowed by up to three instruction modules (see condition in Fig. [5.13).

We verify the effectiveness of these two G2LGP variants by comparing
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(. /* other rules are the same as the proposed rules */ A
defset FLOWCTRL {IfLargel,IflLessEql,IflLarge2,IflLessEqz2,
IfLarge3,IfLessEq3};
condition(I\O\R) ::= <O\{FUNS}\R+I\R+I> :: branch :: <O\{FUNS}\R+I\

R+I>*3;
" /* other rules are the same as the proposed rules */ y

Figure 5.13: The grammar rules of G2LGP-nested.

Table 5.8: The test performance of the G2LGP variants in the second sce-

nario set.

Scenarios

G2LGP-IF

G2LGP-body3

G2LGP-nested

(TmaxE,0.85)
(TmaxE,0.95)
(TmeankE,0.85)
(TmeanE,0.95)
(WTmeanE,0.85)
(WTmeanE,0.95)
(FmaxE,0.85)
(FmaxE,0.95)
(Fmeank,0.85)
(FmeankE,0.95)
(WFmeanE,0.85)
(WFmeanE,0.95)

2078.4 (23.1)
3152.8 (65.9)
1330.4 (1.5)
1651.7 (9.6)
1487.6 (3.7)
1987.2 (15.2)
2369.7 (23.1)
3443.7 (56.3)
1553 (1.4)
1876.3 (5.7)
19752 (4.1)
2481.1 (14.7)

2085.8 (22.9) ~
3170.7 (61.5) ~
1330.4 (1.4) ~
1651.8 (6.6) ~
1487.6 (3.6) ~
1988.8 (16.4) ~
2374.3 (19.9) ~
3440.8 (55.2) ~
1552.9 (1.5) ~
1874.9 (6.2) ~
1976.2 (4.3) ~
2483.8 (21.5) ~

2083.7 (23.9) ~
3164 (56.9) ~
1330.1 (1.7) ~
1650.4 (5.3) ~
1487.6 (4.4) ~
1989.6 (14.1) ~

2369.5 (18.5) ~

3454.4 (69.1) ~
1553.2 (1.5) ~
1876.2 (6.8) ~
1976.7 (3.9) ~
2486 (21.3) ~

win/draw /lose

0-12-0

0-12-0

mean rank

p-values

1.71

2.08
1

221
0.633

their test performance with G2LGP-IF in the second scenario set, as shown
in Table 5.8 We use the second scenario set for verification because its
configurations follow the popularly used settings of existing studies [119],
which makes it comparable to existing studies. In addition, it is more chal-

lenging than the basic scenario set, which gives a better understanding of
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the proposed algorithm for readers. The Friedman test on the test perfor-
mance of the three compared methods returns a p-value of 0.428, indicat-
ing a null hypothesis of no significant difference among these test perfor-
mances. We can also see that both G2LGP-body3 and G2LGP-nested are
very competitive with G2LGP-IF in Table The results confirm that the
proposed grammar rules for IF operations are effective enough to produce
concise and effective rules. Increasing the complexity of IF branches by in-
creasing the length of IF branches or nesting IF branches does not improve
the effectiveness of IF-included dispatching rules in our problem.

5.6.2 Patterns of Normalized Terminals

This section moves a step forward in effectively evolving IF-included dis-
patching rules for DJSS problems. To understand the relationship between
IF operations and decision situations and inspire the future design of IF-
included dispatching rules, this section investigates the distributions of
input features of IF operations in the produced rules. Since we restrict
that G2LGP-IF only uses the proposed normalized terminals as the input
features of IF operations, we mainly analyze the frequency of normalized
terminals in the best rules over 50 independent runs, as shown in Fig.
The frequently used normalized terminals imply crucial information
in different decision situations. We select four scenarios respectively from
the three scenario sets.

In the basic scenario set (Fig. (a)), all the four example scenarios
switch behaviors based on long-term information, such as the remaining
operations and workload of a job (i.e., NORR and WKRR) and the ma-
chine that processes the next operation (i.e., NNQR and WNQR). Besides,
the maximum objectives like Tmax and Fmax, clearly consider processing
time (i.e., PTR and DPT) more than the mean objectives when switching
behaviors. PTR and DPT are frequently used in their logical operations. To

reduce the maximum values, maximum objectives also switch behaviors
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based on the deviation of operation waiting time (DOWT). When some
operations have a large waiting time, those operations are likely to be de-
layed or have a long flowtime. Dispatching rules should prioritize these
operations before it is too late. Contrarily, to improve global performance,
Tmean and Fmean do not consider DOWT but consider more machines
in the job shop. For example, Tmean emphasizes the deviation of work-
load in the next machine (DWNQ) and bottleneck workload ratio (BWR).
Furthermore, WFmean has the highest rate of using the job weights (WR),
with a frequency of nearly 0.15. It implies that switching dispatching be-
haviors based on the job weights can effectively improve the performance

of weighted objectives.

In the energy-considered scenario set (Fig. [5.14}(b)), we have two main
observations. First, energy-related terminals are all highlighted in the sec-
ond scenario set. For example, (TmaxE, 0.95) frequently considers MER,
and (TmeanE, 0.95) frequently considers EPR. This implies that different
energy prices need different dispatching behaviors. Second, the distribu-
tions of other normalized terminals are similar to those in the basic sce-
nario set. For example, NNQR and WNQR are also frequently used in
all four example scenarios, (TmaxE, 0.95), and (FmaxE, 0.95) prefer pro-
cessing time-related terminals such as PTR, and (WFmeanE, 0.95) changes
behaviors based on WR. The two observations confirm that the G2LGP-IF
dispatching rules simultaneously optimize tardiness- or flowtime-related
objectives, and energy cost by dynamically adjusting the dispatching be-
haviors based on decision situations.

In the third scenario set (Fig. [5.14}(c)) that simultaneously optimizes
tardiness/flowtime, energy cost, and response time, the response cost
rate ratio SFR is extensively considered in TmeanER and WFmeanER,
which means different response cost rates need different dispatching rules.
However, the results show that changing behaviors based on SFR is not
a good choice for optimizing maximum tardiness and maximum flow-
time. (TmaxER, 0.95) and (FmaxER, 0.95) mainly change behaviors based



5.7. CHAPTER SUMMARY 187

on processing time (PTR) and the workload of the next machine queue
(WNQR).

Based on the twelve example scenarios, we find that WNQR (and
NNQR) and WIQR (and NIQR) are frequently used information in all dif-
ferent scenarios. WNQR and NNQR represent similar information indi-
cating how large a work burden the next machine has. WIQR and NIQR
represent similar information indicating how large a work burden the cur-
rent machine has. Although these four normalized terminals might not
be the most frequently used ones in the example scenarios, WNQR (and
NNQR) and WIQR (and NIQR) have a relatively high frequency (i.e., more
than 0.1) in nearly all the cases. The observation implies that different ma-
chine situations likely need different dispatching rules.

The analyses for Fig. have some new findings compared to exist-
ing feature analyses of DJSS [135|261]. Some input features that did not
show their importance in existing studies are highlighted by IF operations.
For example, existing studies seldom see WIQ and NIQ as important fea-
tures. But WIQR and NIQR which represent the same information as WIQ
and NIQ are frequently used by IF operations. Existing studies seldom use
the operation waiting time (OWT) in output rules. But our analyses show
that operation waiting time (i.e., DOWT) is very useful in the IF operations
of (Tmax, 0.95), (Fmax, 0.95), and (TmaxE, 0.95).

5.7 Chapter Summary

This chapter aims to find a way to effectively evolve dispatching rules
based on domain knowledge for solving complicated DJSS problems.
Specifically, we propose G2LGP which provides a way to define con-
straints on LGP search spaces. Then we identify three key domain knowl-
edge of IF operations and further propose a new set of normalized termi-
nals for DJSS problems and a set of grammar rules to restrict the avail-

able inputs, the number, and the locations of IF operations for evolving
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IF-included dispatching rules.

We comprehensively investigate the effectiveness of dispatching rules
and our proposed method on three scenario sets. The empirical results
confirm that IF operations are crucial for dispatching rules in complex
problems. The results have verified that using grammar rules to restrict
the usage of IF operations in LGPHH is an effective way to harness IF
operations. Armed with the proposed normalized terminals and gram-
mar rules, the proposed method outperforms the state-of-the-art LGPHH
method in terms of both effectiveness and interpretability. Further analy-
ses highlight that IF operations greatly improve the flexibility of dispatch-
ing rules, performing different dispatching behaviors based on different
decision situations. The analyses also show a better interpretability of dis-
patching rules evolved by G2LGP than basic LGP. The analysis on the out-
put dispatching rules finds three important DJSS features that are missed
by existing IF-excluded dispatching rules. By properly restricting the use
of IF operations, this chapter shows great potential for dispatching rules
with IF operations in solving complex problems. This chapter also gives an
example for DJSS users to incorporate domain knowledge into GP search
via grammar-guided techniques.

In the previous chapters, we have improved the performance of GPHH
by 1) replacing tree-based representation with linear representation, 2) de-
signing graph-based search mechanisms for LGPHH, and 3) incorporating
domain knowledge to restrict LGP search spaces. These improvements
are essentially designing better FLs for solving DJSS problems. However,
designing better FLs is tedious and highly dependent on specific domain
knowledge. In the next chapter, we will propose a fitness landscape opti-
mization method to automatically optimize FLs.



Chapter 6

Fitness Landscape Optimization
for LGP for DJSS

A fitness landscape (FL) plays a crucial role in genetic programming
search. In this chapter, we propose an FL optimization method to auto-
matically design easier FLs by optimizing the neighborhood structure of
LGP solutions.

6.1 Introduction

An FL is a surface that reflects the fitness of all the possible solutions in
a search space [105]. A smoother FL with less local optima (e.g., an uni-
modal landscape) normally implies an easier search problem. An FL con-
sists of three components: fitness function, solution space, and the neigh-
borhood structure of solutions [228]]. A fitness function measures the ef-
fectiveness and quality of all the possible solutions, the possible solutions
compose a solution space, and the neighborhood structure defines the dis-
tance among the possible solutions in the solution space. However, the FL
of GP is normally extremely rugged because of the low causality among
symbolic solutions (i.e., a small change in a computer program might lead
to a huge change in the final output). The rugged FLs make GP search

189



190 CHAPTER 6. FITNESS LANDSCAPE OPTIMIZATION

very challenging.

In recent years, some advanced techniques successfully enhanced GP
search performance by designing better FLs. For example, frequency-
based [259] and semantic-based operators [183] change the neighborhood
structures (e.g., one-hop mutation) so that GP prefers particular neighbors
with a large possibility of good solutions. MRGP in chapter {4 helps GP
jump out from local optima by cooperating synergy between GP repre-
sentations. However, these manually enhanced fitness landscapes need
very specific domain knowledge and strong assumptions. For example,
MRGP has to find two (or more) helpful GP representations and design
their graph-to-representation transformations. Frequency-based mutation
has to assume that the effective solutions include an effective primitive
multiple times, which might not be the case in some applications (e.g., in
program synthesis, a program repeats a primitive by looping [238]]). More-
over, it is tedious for human experts to design better FLs.

Given the performance gain brought by better fitness landscapes, this

chapter aims to study two research questions:
1. Are there any other better fitness landscapes than the existing ones?
2. How can we find these better fitness landscapes automatically?

To answer these two research questions, this chapter proposes a fitness
landscape optimization (FLO) method that aggregates good solutions and
separates good and poor solutions in the search space by changing their
neighborhood structures automatically. We take LGP as an example to
verify the effectiveness of the proposed method. The linear representation
of LGP individuals facilitates our demonstration of the proposed method.

6.1.1 Chapter Goals

The main goal of this chapter is to develop an FLO method to automatically
design better FLs for LGP. This chapter first proposes an FLO method based
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on LGP. We model the fitness landscape optimization into a minimization
problem whose decision variables are symbol indexes. Then, this chapter
verifies the hardness reduction caused by the proposed methods on simple
benchmark problems. We also visualize the FLs to make a further discus-
sion. Based on the achievement on the simple benchmarks, this chapter
extends the proposed methods to common DJSS problems to verify its ef-
fectiveness. Specifically, this chapter has the following goals:

1. Develop an FLO method and illustrate the proposed method based
on LGP. The proposed FLO method optimizes the FL by changing the
neighborhood structures of LGP solutions.

2. Analyze the optimized FLs by visualizing the FLs of a simple DJSS
problem. The simple DJSS problem facilitates us to enumerate and evalu-
ate all the possible solutions for visualization.

3. Apply the proposed FLO to solve common DJSS problems and verify
the performance gain of LGP methods if searching against the optimized
FLs.

6.1.2 Chapter Organization

The rest of this chapter is organized as follows. First, section |6.2| proposes
the FLO method based on LGP. Section |6.3| investigates the hardness re-
duction of FLs and makes a discussion on the visualized FLs. Section[6.3.2]
further extends the proposed method to common DJSS problems to verify
the superior performance of the proposed method. Section |6.4{ concludes
this chapter.

6.2 Proposed Method

6.2.1 Main Idea

The main idea of fitness landscape optimization is first indexing symbols

into integers and second optimizing the fitness landscape based on symbol
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indexes. In this chapter, a symbol is an LGP instruction, and LGP individ-
uals are fixed-length index vectors. The Euclidean distance of the index
vectors defines the neighborhood structures of LGP solutions on FLs. Dif-
ferent from the neighborhood structures that are defined by basic genetic
operators (e.g., macro mutation), the neighborhood structures based on
indexes are flexible to be optimized. We optimize the fitness landscape,
essentially the neighborhood structure, by changing the indexes of LGP
instructions. We do not optimize the fitness function and the solution
space here since they are usually given by specific problems. We denote
the indexes of symbols as I = [I;, Iy, ..., I, ..., Hn]T where n is the number of
symbols. We define an optimization objective function F'(I) for the fitness
landscape. FLO is virtually an optimizing problem

I = arg; min F(I).

The main idea of the objective F(I) is to minimize the distance between
good solutions (i.e., good GP individuals), maximize the distance between
good and poor solutions, and encourage the optimized indexes to be con-
sistent with domain knowledge. By this means, the local optima between
optimal solutions would be reduced, and the FL becomes less rugged. The
symbol indexes I represent an LGP genotype G; by a mapping matrix 6;,
G; = 6,1, where
Gi = [Gi, Gigs ooy Gty ooy Gi]

and _ .
01 Oiig b1z - Oiin
0, = R™" = % = fiza .
: O; .1
O; | Oima o O

m is the maximum length of G;. Each row of ¢; has at most one “1”, and
the rest of its elements are “0”. Since LGP individuals unnecessarily have
the maximum length m, G; uses a placeholder “—1" to index those empty

symbols.
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Figure 6.1: A simple example of FLO. (a) the initial FL is rugged; (b) the
optimized FL is cone-like. The coordinate of a program is equivalent to its

index vector.

To illustrate the idea, Fig. shows a simple example of FLO. Sup-
pose there are 12 possible instructions in the LGP search space, denoted
from A to £. These instructions are indexed by 0 to 11 initially (i.e.,
I=10,1,.. 11]T). Each program in the search space has one instruction.
We thus have 12 unique programs, denoted from G; to G2. Specifically,
Gy = [A], Gy = [B], G5 = [C], etc. Fig. [6.1}(a) shows the initial FL of these
programs. We can see that the initial FL is rugged. There are two optimal
programs (supposing it is a minimizing problem) on the FL, “G; = [A]”
and “Gy = [£]”, indexed by “[0]” and “[11]” respectively. To smoothen
the FL and reduce the local optima, we aggregate good programs (e.g.,
G and (3) and separate good and poor programs (e.g., Gy and Gg). For
example, we let A and £ have indexes of 3 and 4 respectively. Conse-
quently, G; has an index vector of “[3]”, and G, has an index vector of
“[4]”, Fig. [6.1H(b) shows the optimized FL, where the instruction index
I=[3201,..,9, 4]T, each instruction with a different index from the ini-
tial I. The new I defines new neighborhood structures of the LGP search
space. We can see that by aggregating good solutions and separating good

and poor solutions, the FL becomes smoother and more “cone-like” (i.e.,
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Figure 6.2: The overall framework of FLO (along with the evolutionary
framework of LGP on the left).

the distance to the optimal solutions is highly correlated to the fitness dis-
crepancy) than the initial one. The number of local optima is also reduced.
It is easier for GP to search for optimal solutions on the optimized FL than

on the initial one.

6.2.2 Overall Framework

We optimize the fitness landscape over GP evolution. Fig. shows the
overall framework of FLO along with the evolutionary framework of basic
LGP. We first enumerate all the possible instructions based on the given
primitive set and index an initial symbol index I. Each LGP instruction
is a symbol. To improve efficiency, we treat the alphabetically equivalent
instructions as one instruction. For example, instruction “R[0]= z¢ +z,” is

equivalent to “R[0]= z;+z,”. We randomly index the instructions initially.
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At each generation, we optimize FL after the fitness evaluation of LGP
individuals. FLO collects LGP individuals from the current LGP popula-
tion. FLO optimizes the symbol indexes based on the collected LGP in-
dividuals in the population since it is impractical to consider all possible
LGP individuals, and the evolved individuals in the population often have
better fitness (i.e., more important) than the randomly sampled individu-
als (i.e., importance sampling) [228]. We denote the set of collected LGP
individuals as B. To collect a diverse set of good LGP individuals, B con-
tains the individuals of the top B fitness in the population, each fitness
value sampling one individual.

FLO then evaluates F'(I) based on the collected LGP individuals. FLO
applies a stochastic gradient descent method to optimize the indexes. FLO
repeats the optimization until it reaches the stopping criteria. In this work,
the stopping criterion is the maximal iteration number of the stochastic
gradient descent.

6.2.3 Optimization Objectives

This section formulates our optimization objectives F'(I). Based on the
main idea of optimization objectives, there are three sub-objectives: in-
ner distance between good individuals, inter distance between good and
poor individuals, and the consistency with domain knowledge. They are
denoted as D(I), D, (I), and E(N(I)), respectively. F(I) combines these
three objectives linearly, as shown in Eq. where a; to a3 are 1.0 by
default.

Qg X DloseGIO) + a3
Dlose<]1) E<N(]IO))

E(N(D)) (6.1)
subject to
I, € N; T <n,]117£]1]1f27éj

The three constraints ensure that the range and the uniqueness of the in-

dexes. Because these sub-objectives have different data scales, they are
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normalized to [0, 1] by D(Iy), Diose(lo), and E(N (L)), where I are the ini-
tial indexes at each generation before optimization.

Inner Distance between Good Individuals

B B

ZZ G — Gy |2 (6.2)

a=1 b=1

D(I) formulates the Euclidean distance between good LGP individuals, as
shown in Eq. (6.2). To simplify the derivation, we omit the square root in
the Euclidean distance (i.e., squaring the L? norm). For any pairs of good
LGP individuals in B, D(I) summarizes the squaring Euclidean distance
and gets their average. Here, we optimize the inner distance of the best-
of-the-run individuals to avoid the distraction from less effective solutions
at the beginning of the evolution.

To clarify the relationship between I and D(I), we denote

m

Qun(l) = ||Ga = Gill5 = D _(Gar — Gix)’

k

akI[_eblc]I

n

Z kil — Obse)l )? (6.3)
!

>
¥

and D(I) = g S, 52, QD).
Note that since G, and Gy, might be a placeholder “—1”. The subtrac-
tion of G, — Gy, is redefined as:

Gak — G, Garp, > 0and Gy, > 0
Gakz - Gbk = 0 Gak < 0and Gbk <0

1 otherwise
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Inter Distance between Good and Bad Individuals

|]B| ‘Blosel
DloseoI HG GbH
BB 2 2 :
1 |]B| ‘Elosel
a 6.4
a€B beB; 5

In contrast to D(I), D,y (I) formulates the Euclidean distance between
good and poor LGP individuals, as shown in Eq. . Dipse(I) consid-
ers poor LGP individuals (i.e., “less competitive” LGP individuals) in the
calculation (i.e., Bj,s.). Because at the late stage of GP evolution, the poor
individuals in the population also likely contain useful building blocks,
Bjose are collected from both the current population and historical poor in-
dividuals to make D, (I) more comprehensive. Specifically, the less com-
petitive LGP individuals from the current population are sampled from
the half population with worse fitness. The historical poor LGP individ-
uals are sampled from an archive that records the poor LGP individuals
over the generations. B;,,. have the same size with B.

Domain Knowledge Consistency

E(ND) = 1No @ No — N (I) ® N(D) 65

E(N(I)) is defined as the differences between the domain knowledge and
the existing indexes, as shown in Eq. (6.5). Smaller differences imply
that the symbol indexes are more consistent with the domain knowledge.
Eq. squares the L? norm to simplify the derivation, and applies the
element-wise production (denoted as ®). NN is a predefined distance ma-
trix whose elements are the distance between symbols based on the do-

main knowledge. For example, character A is closer to B than to Z based
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on the alphabetical order. We denote N as

nxn
NU:R :[dN,la"' 7dN,l7"' >dN,n]
dyai -+ dyga - dypa
. dni2
dN,l,n e dN,n,n

In this chapter, we define dy,; as the product of the editing distance

(Dg,qp) and the semantic distance (D;, ;) of instructions a and b. dyqp, =
Dg,a,b . Ds,a,b
Dg,maz s,max

the possible instructions. The semantic distance is defined as the Eu-

where D, 4, and D 1o, are the maximum D, and D, among

clidean distance between instruction outputs. The instructions get their
outputs based on ten randomly sampled input instances. As these instruc-
tion outputs can be reused for different problems, they are not counted in
the total fitness evaluation.

N(I) is a distance matrix between the current indexes.

N(I) =R = [AL - AL« A

where

Ithcolumn

Al — RTLXTL —

_ O = =

—1

Because dy;; € [0,1], we normalize N(I) ® N(I) by 5. Based on N, and
N(I), Eq. 1i canbe extended as E(N(I)) = Y27 > (dy;; — nz (I — I[i)2)2.
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6.2.4 Stochastic Gradient Descent

We optimize F'(I) by a stochastic gradient descent method. Specifically,
the new indexes

oF OF
B ) —U(on) x 5

where o is the maximum step size and U(on) returns a uniformly random

I'=|I— sign(— (6.6)

float value in [0, on]. 0 has a range of (0, 1] and multiplies by n to represent
actual step size. sign(-) returns 1 for positive inputs, 0 for zero inputs,
and -1 otherwise. —szgn( ) ensures that a symbol index at least moves
one unit along the negative gradient. If F'(I') < F(I), I is updated by I
(i.e., I = I'). The stochastic gradient descent iterates until it reaches the
maximum number of iterations. Based on Eq. (6.1)),

OF oy 0D s x Diw(lp) @Dise a5 OF
__m 9D 9% 7
o~ Dy ol D@2 01 T EN@Gar &7

The partial derivation of D(I) is shown as Eq. (6.8).

o _[op op ooy o
ol oL’ oL’ oL,
where
Bl B 00,
a_m |B|2 ZZ é?lf
1 |B| |]B| m
|IB%|2 ; bz:; Xk: 2(Gar — Goi) (ages — b it)) (6.9)

Based on Eq. (6.9), we can know that when a and b are duplicated individ-
uals, the gradient of g_z]i will vanish. To avoid the gradient vanishing, we
should eliminate duplicated individuals in B and consider diverse good
GP individuals.

Similarly, the partial derivation of Dj,.(I) is shown as Eq. (6.10).

al)lose o al)lose al)lose al)lose g
or | on, * 7 oon 7 ool

(6.10)
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where
Bl Brosel
al)lose - 1 1 6Qab
aﬂl B ‘B‘ ‘Blose’ Z Z a]Il
a€B bEB; s
|]B| |Blosc|
1 1
Bl Bl 2,2
a lose
[Z 2(Gak — Gor)(Oa kg — 9b,k,l)] (6.11)
k

As B and B, are unlikely overlapped (if they are overlapped, just simply
remove the overlapped part), Eq. (6.11) is non-zero.
The partial derivation of E(N(I)) is shown as Eq. (6.12).

OE [OE OF oE1"
ﬁ_[a_]h’...,g_]h’...,a_d (6.12)
where
OF - 1 2
a ZJ: |:le_7 Q(Hj - ]11)2} ﬁ(ﬂj - 1)
2
+ 22 {d?\ml — (L - 1) ] (- 1) (6.13)

Note that in Eq. (6.13), the first item is not zero only when i =l and j # [,
and the second item is not zero when j = [ and ¢ # [. We can simplify
Eq. by assuming dy;; = dy,; and denoting j in the first item as i
without loss of generality, as shown in Eq.

OF 4 | 1
o, n? [Z |:d?\f,l,z’ —a(li- Hz)2] (L — 1)

()

= % [Z [dJQV,l,z' - %(Hi - W} (I — Hz)] (6.14)
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In practice, we do not have to care the |I; — ;| if I, and [; are not effective
symbols. So, we further simplify Eq. (6.14) as:

(D]
oE 8 1
a4~ m {Z s gt~ 107 - H”] o1

iepu(l)

where 4(II) are the used symbols in good individuals B.

9 is normally very sparse (i.e., there are a large number of zero or

nearly zero elements) when n is large after normalization, which greatly
limits the search efficiency of the stochastic gradient descent. To improve

the search efficiency, we adjust 9 by

To satisfy the constraints in Eq. (6.1), we perform a flooring operation on
I, if it is not an integer. To prioritize the effective symbols (indicated by
p(I)), we first update I;(I € p(I)) one-by-one in a random order, and then
update I;(I ¢ p(I)) one-by-one in a random order based on Eq. (6.6). If
I; = T’(i # j), we assign I; a random integer ranging between 0 and n — 1
until I} is unique in I'.

To show the proposed method more clearly, Alg. [15{shows the pseudo-
code of FLO. Given an LGP population P and symbol indexes I, we collect
the good and bad individuals (B and By,.) and the used symbols p(I) in
good individuals from the population. Then we iterate the stochastic gra-
dient descent up to 20 times. If the new objective function F(I') is smaller
than the original objective value F'(I), we use I to update I. The new sym-

bol indexes are outputted to form new FLs.

6.3 Experimental Studies of FLO

To verify the effectiveness of the proposed FLO method, this section first
analyzes the optimized FL based on a simple DJSS problem and then ap-
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Algorithm 15: Fitness Landscape Optimization

Input: An LGP population P, symbol indexes I
Output: New symbol indexes L.,

[y

B,Bjose < collect good and bad individuals from P.

N

p(I) < get the used symbols in B.
Evaluate F'(I).

for j < 1to20do

5 | Evaluate % if I is changed.

6 I' + |I— sign(%-) — U(on) x 25
7 | Evaluate F/(I').

8 if F(I') < F(I) then

w

'S

/x T+ T */
9 I < I}, € p(I) in a random order.
10 I < 1,1 ¢ p(I) in a random order.
11 F(I) «+ F(I').
12 I, < L.

13 Return I,,.,,;

plies the proposed FLO to enhance LGP for solving common DJSS bench-

marks.

6.3.1 Analyses on An Optimized FL
Measures of FL Hardness

We first analyze the hardness of FLs. We expect that after FL optimization,
the hardness of the examined problems should be reduced. We apply four
common FL analysis metrics to measure the hardness of the test problems,
including fitness distance correlation (FDC) [99], negative scope coefficient
(NSC) [229], robustness (RBS) [86], and evolvability (EVO) [228]. Specif-
ically, FDC implies the degree that an FL looks like a “cone” (i.e., a high



6.3. EXPERIMENTAL STUDIES OF FLO 203

correlation between the distance to optima and the fitness difference from
optima). NSC implies the degree of “bad evolvability”. RBS implies the
probability of a neutral move. EVO implies the probability of moving to-
ward a better neighbor. The larger values of the four metrics imply an
easier FL.

We select (I'mean,0.85) as a case study DJSS problem. To limit the
number of possible solutions in (T'mean,0.85), we only retain necessary
primitives (i.e., {+, —, max, Ry, Ry, PT,OWT}) and constrain the maxi-

mum program size of 3 instructions.

Compared Methods

The compared methods in our experiments are essentially the neighbor-
hood structures of FLs, which are the genetic operators of LGP in existing
studies. The FLs of these compared methods have problem-specific fitness
functions and use LGP search spaces as the solution spaces. With different
neighborhood structures, the hardness of LGP FLs might be different.

We compare FLO with two methods, free macro mutation (denoted as
“freemut”) [21] and frequency-based macro mutation (denoted as “freq-
mut”). These two genetic operators define the neighborhood structures of
compared FLs. The freemut is a basic macro mutation, serving as a base-
line. It produces new LGP offspring by inserting or removing a random
instruction from an LGP parent. The freqmut is a self-adaptive genetic op-
erator over the generation. It samples new primitives of offspring based
on the primitive frequency in the top-K individuals (K=10% in our exper-
iments). The assumption that primitive frequency implies the importance
of primitives is also common in advanced GP methods [259,284].

The neighborhood structure of FLO is defined based on the Euclidean
distance of index vectors. If denoting the neighborhood threshold as ¢, two
LGP individuals G, and G, are neighbors if |G, — Gp||2 < €. Since freemut
and freqmut only vary one instruction each time, we also only vary one

instruction when finding neighbors in FLO.
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The FL analysis metrics analyze the hardness of FLs based on the three
compared neighborhood structures respectively (i.e., freemut, freqmut,
and the optimized neighborhood structures of FLO). We treat the LGP
population at the final generation as the samples of FLs (i.e., importance
sampling [228]) when calculating FL metrics. To compare the performance
comprehensively, each method runs 50 independent runs on each tested

problem.

Parameter Settings

FLO has two main parameters, the number of sampled good solutions
from the population B and the maximum step size in the stochastic gra-
dient descent 0. We set B = 10 and set ¢ = 0.1 by default. Specifically,
to sample diverse good solutions in B, we consider the top-B fitness val-
ues in the population, each getting one individual, and vice versa for B,s..
The threshold of the neighborhood in FLO ¢ is not a parameter in FLO.
It is a problem-specific parameter when calculating FL. metrics. ¢ is set as
approximately 5% of the total number of instructions. The parameters of
the basic LGP evolution follow the settings in chapter |3, Each FLO iterates
up to 20 times and it performs every two generations.

Experiment Results of FL Hardness

Table shows the mean metric values (and their standard deviations)
of the compared methods for (T'mean, 0.85). We apply the Wilcoxon rank-
sum test with a significant level of 0.05 to analyze these metric values. “+”
indicates a significantly better metric value, “—" indicates a significantly
worse metric value, and “~” indicates a statistically similar metric value
with FLO. The best mean metric values are highlighted in bold. We can
see that the FLs of FLO have significantly better FDC and EVO values
than the compared methods. In terms of NSC, the optimized FLs of FLO
show competitive hardness with the compared methods. Although the
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Table 6.1: The mean metric values (and standard deviation) on the tested
problem

Metrics freemut freqmut FLO
FDC | 0.072 (0.086) — 0.046 (0.082) — 0.184 (0.128)
NSC |—-21.13 (70.12) ~ —11.83 (42.6) ~ —11.23 (37.59)
RBS | 0.699 (0.037) ~ 0.765 (0.034) + 0.695 (0.019)
EVO | 0.182(0.043) — 0.092 (0.03) — 0.407 (0.078)

* — freemut — 4 — freqmut FLO
03sT” . T el : . . . . . . .
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Figure 6.3: FL metrics over generations. X-axis: the number of generations,

Y-axis: the metric values. The four sub-figures from the left to right are
FDC, NSC, RBS, and EVO.

FLs of freqmut have better RBS values (i.e., a high probability of neutral
move), they sacrifice the probability of moving to better neighbors (i.e,
significantly worse EVO values than FLO). To conclude, the optimized FLs
of FLO are significantly easier than the compared methods in terms of FDC
and EVO and at least competitive with the compared methods in terms of

NSC. The results show a very encouraging optimization performance of
FLO.

To understand the optimization process of FLO, this section investi-
gates the metrics over generations, as shown in Fig. Each column in
Fig. 6.3|shows a certain metric. In terms of FDC (i.e., the first sub-figure in
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Fig. [6.3), FLO substantially improves FDC values over generations and
maintains at a significantly higher level than freemut and freqmut. In
terms of NSC, the three compared methods all stay at a similar level over
the whole evolution. But we can see that FLO on average has a smaller
standard deviation than the compared methods at the final stage of evolu-
tion, which implies a more stable FL hardness of FLO. The curves of RBS
show that FLO is competitive with freemut but worse than freqmut, which
is consistent with the results in table The FLs of FLO also maintain a
significantly higher level of EVO than the compared methods. The curves
of FL metrics also confirm that the optimization of FLO is efficient since

the curves of FLO often converge at the early stages of evolution.

FL Visualization

To intuitively investigate the FLs of FLO, we visualize the example FLs
in this section, as shown in Fig. Specifically, we show the initial FLs
and the FLs at the 200" generation in the first independent run. Fig.
shows the scatter plots of the example FLs. Each point on the FLs is a GP
solution. The color of the points represents the fitness of the GP solution.
To highlight the solutions with good and bad fitness, we only color the
solutions with the best 25% fitness and the solutions with the worst 25%
fitness, by cool tones and warm tones respectively. We also highlight the
optimal solutions by purple stars.

We have three interesting findings based on Fig. First, Fig.
confirms the optimization on FLs. In Fig. [6.4}(a-1) and -(a-2), good and
bad solutions are distributed uniformly across the initial FLs. The blue
and dark lines spread across the space. However, we can see that the
good and bad solutions aggregate respectively after optimization of 100
times (i.e., optimizing FLs every two generations). For example, the good
solutions approximately aggregate to the indexes from 15 to 35 on 2"?-37%-
instruction plane in Fig. [6.4}(b-2). More interestingly, the optimal solutions
are also located near the cold-tone regions.
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Figure 6.4: The example FLs of (Tmean,0.85). The cool tone indicates good
fitness and the warm tone indicates bad fitness. The purple stars indicate
the optimal solutions. (a-1) and (a-2) are initial FLs, (b-1) and (b-2) are the
FL at the 200th generation. (a-2) and (b-2) are the FLs projected on x-y, x-z,
and y-z planes.

Second, we can see a fitness aligning phenomenon. The fitness aligning
phenomenon means that the solutions with very similar fitness allocate
along an axis or a hyperplane (i.e., the fitness is aligned), rather than aggre-
gating as an ellipse or a hypersphere. For example, there are considerable
2-D planes with the same color across Fig. (b-1). This is because there
are introns in the search space. A GP solution can easily reach another
solution with the same fitness by adding, removing, or modifying introns,
which is equivalent to moving along axes or against hyperplanes. The

fitness aligning phenomenon also implies an empirically recommended
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setting in LGP macro mutation, that is only mutating one instruction each
time [21]. Based on the fitness aligning phenomenon, only mutating one
instruction can 1) perform a neutral move if moving along the aligned
fitness (i.e., similar to mutating introns), and 2) jump out of the current fit-
ness if moving orthogonally to the aligned fitness (i.e., similar to mutating
exons).

Third, Fig. implies the building block theory to some extent. For
example, the 2"¢ — 3"%-instruction planes in Fig. [p.4-(a-2) and -(b-2) is sym-
metrical diagonally approximately (named diagonal symmetry of FLs). Be-
cause the building blocks likely have similar effectiveness in similar places
of LGP programs, performing crossover to share effective building blocks
is an important way to produce better offspring.

Insights On Fitness Aligning And Diagonal Symmetry

We can see fitness aligning and diagonal symmetry of FLs in Fig. To
have a better understanding on these two newly found phenomena, this
section makes a further discussion. To show the FL of (Tmean, 0.85) at the
200" generation in a clearer way, we show the cutting planes of Fig. [6.4}(b-
1) in Fig. Specifically, we draw the cutting planes at the first, second,
and third instruction with an index of 25%n = 18, 50%n = 35, and 75%n =
53, respectively. The indexes of 25%n = 18, 50%n = 35, and 75%n = 53
represent the instruction “R[0] = max(OWT, R[0])”, “R[1] = R[0] + R[0]”,
and “R[0] = max(PT,OWT)”, respectively.

There are two key issues in the two newly found phenomena. First, fit-
ness aligning holds when the search space extends to higher dimensions.
We can see that in the third sub-figure in the first row of Fig. instruc-
tion 53 (R[0] = max(PT, OWT))is an ineffective exon (i.e., overwriting the
final output R[0] by ineffective results) for DJSS. It forces the first two in-
structions to be introns and leads programs to be less effective. Thus, the
2-D plane (1'-2"-instruction) has the same poor fitness of 642 (i.e., white
color). The 2-D fitness aligning can also be seen in Fig. where some



6.3. EXPERIMENTAL STUDIES OF FLO

3rd instruction=18

3rd instruction=35

209

3rd instruction=53

L ——— 704 704

601 I I I 60+ 601
N =

&0 i &0 8 501
=] 3= =
Q Q Q

40 . 40 40
&304 £ 30 .5 309
T2 f— - T2 B
N ] —— - N ] N

104 10 104

0 0 0

0 10 20 30 40 50 60 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
Ist instruction 1st instruction 1st instruction
2nd instruction=18 2nd instruction=35 2nd instruction=53

70 - 70 70

601 I 60 60
g 504 g 504 L g 504 § e e " ) i s -—--
g 2 3
Q Q Q

404, = 40 b2 404 =
g L - i % g & Eo:h Lis kR
R 1 = g 304 F.E307, . —
3 s o = S MU PO B el
=204 = Z 204 b & 20 !

T T 104 H w0 T i

HlHEH H H
0 [ oI H 0
0 10 20 30 40 50 60 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
Ist instruction Ist instruction Ist instruction
Ist instruction=18 1st instruction=35 ‘ ‘ 1§t lns‘truct1‘0n=§3 ‘ ‘

70 b 704 HE R0 70— ]

604 - -'I--l'lllIJ 60+ 60 pll!nl-!{. r -I---'r-'l'l.'l-.l'Jll'!II-l'II! [
£ 50 p—— £ 504 [ .S 50| 4 i e e e e .i.:___ %
§407 - 5 404 =K g
5 - B &

5 L=l g 7]
£ 304 - £ 30 b g 304
ke
Ezo’ - L ;gzo— L= 20
10 - 10 o104
Jmene I--”..lllﬂl."ﬂ ...... I.”". ..... —
of 1 1T 0 Y

0 10 20 30 40 50
2nd instruction

. :
0 10 20 30 40 50 60 70
2nd instruction

0 10 20 30 Jo_éo )
2nd instruction

Figure 6.5: The cutting planes of the FL of (Tmean, 0.85) at the 200" gen-

eration (i.e., Fig. [6.4:C(b-1)). The 3-D FL is transformed into nine cutting

planes by fixing the first, second, and third instruction at an index of 18,

35, and 53, respectively.

2-D fitness planes with the same color go across the cutting planes.

Second, the diagonal symmetry is dependent on two consecutive in-
structions. In the three rows of Fig. the first and third rows have a
clear symmetrical layout, while the second row hardly shows diagonal

symmetry. Specifically, the second row gets the cutting planes by fixing

the second instruction in a program. We believe that because of fixing
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Table 6.2: Visualized explanations on (non-)neutral move of instructions
and their positions.

Phenomena Search Operators Variation on LGP Programs
Mutating introns ~+ neutral move on instructions
Fitness . ;
Mutating exons ~+ non-neutral move on instruc-
alignin :
sNng tions
Swapping consecutive ~» neutral move on instruction
Diagonal instructions positions

Symmetry  Swapping  inconsecu- ~» non-neutral move on instruc-

tive instructions tion positions

the second instruction, the programs with three instructions (i.e., the pro-
grams for (Tmean, 0.85)) are broken into inconsecutive two parts, the first
and third instructions. It is likely that swapping inconsecutive instructions

greatly affects the effectiveness of programs.

Given the importance of neutral moves in LGP search [21] and the
connection between fitness aligning and mutating only one instruction,
we highly suspect that the diagonal symmetry implies a missed operator
in existing LGP studies, that is, swapping two consecutive instructions.
Swapping two consecutive instructions makes use of the diagonal sym-
metry to perform neutral moves on instruction positions in an LGP solu-
tion. Based on the visualized FLs, table|6.2|shows the relationships among
the two newly found patterns, the LGP operators, and the (non-)neutral
move on instructions (i.e., what instructions should be used) and instruc-
tion positions (i.e., where should place the instruction). The “~~" in table
6.2]indicates that the operators perform the neutral and non-neutral moves
with a high probability, rather than absolutely.
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6.3.2 Test Performance on Common DJSS Problems

The previous section has verified that the proposed method can effectively
reduce the hardness of FLs. This section applies LGP to search dispatching
rules against the optimized FLs. Specifically, FLO optimizes the FL during
LGP evolution, and LGP searches for new solutions based on the up-to-
date optimized FLs.

We select four DJSS problems, (Tmax, 0.95), (Tmean, 0.95), (Fmax,
0.95) and (WFmean, 0.95). They are four DJSS problems with different
optimization objectives for the overall job shop. The utilization level of
0.95 indicates a much busier and more complex job shop than the utiliza-
tion level of 0.85.

To verify the effectiveness of the proposed method, there are four com-
pared methods. First, the basic LGP serves as a baseline, denoted as “ba-
sicLGP” [21]]. The second compared method is a basic LGP method that
applies the frequency-based mutation in its evolution (i.e., freqmut). The
third compared method is an LGP that applies the operator of swapping
consecutive instructions in LGP search. The third method verifies our in-
sight into the neutral move of instruction positions, denoted by “swap”.
The final compared method is the proposed method which automatically
optimizes the FL and applies basic LGP to search against the optimized
FL (denoted as LGP-FLO). Specifically, LGP-FLO searches against the opti-
mized FL by moving a symbolic solution toward another better one within
the neighborhood. For example, we select two parents by tournament se-
lection. These two parents are represented by index vectors. Then, we
produce offspring by moving the index vector of the worse parent toward
the index vector of the better parent. In other words, the index vector
of the worse parent adds the index vector difference between better and
worse parents multiplied by a limited step length. Finally, we construct
programs based on the new index vector. LGP-FLO also uses the neutral
move on instructions and their positions during the search. The parame-
ters of FLO (i.e., B and o) are set as 10 and 0.1, respectively. The threshold
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Table 6.3: Mean test performance (and standard deviation) on the four
DJSS problems. The best mean performance is highlighted in bold.

Problems basicLGP freqmut swap LGP-FLO
(Tmax,0.95) 3999.2 (90.9) ~ 3976.3(190.1) ~ 3969.1 (91.5) ~ 3967.5 (88.3)
(Tmean,0.95) 11182 (10.7) ~ 11141 (9.1)~ 11138 (114) = 1115(7.7)
(Fmax,0.95) 4585.4 (126.1) — 4523.2 (107.3) ~ 4518.4 (70.3) — 4477.4 (71.4)

(WFmean,0.95) | 2715.8 (16.4) — 2710.6 (37.7) ~ 2708.8 (20.6) ~ 2711.6 (26.4)
mean ranks 4 1.75 2.75 1.5
pair-wise p-value 0.037 1.0 1.0

of neighborhood structures ¢ is approximately 5% of the total number of
instructions, that is, 1000 for DJSS problems. The other parameters of the
basic LGP follow chapter

Table 6.3/ shows the mean test performance (and their standard devia-
tion) over 50 independent runs. The Friedman test on the compared meth-
ods shows a p-value of 0.026, which indicates a significant difference in the
performance. We further apply the Wilcoxon rank-sum test with a Bonfer-
roni correction and a significance level of 0.05 to analyze the performance
of a compared method versus LGP-FLO on each benchmark. The nota-
tions of “+”, “—", “~” have the same meanings as table

We can see that by optimizing the FL over the search and searching
against the optimized FL, we can significantly improve the performance
of LGP methods. Specifically, LGP-FLO has significantly better perfor-
mance than basic LGP in many benchmarks. Besides, LGP-FLO also has
a very competitive performance with the LGP with advanced manually-
designed operators (i.e., freqmut). This confirms that searching on the
automatically optimized FLs has a very competitive performance with
those manually-designed advanced FLs. The mean ranks of the Friedman
test also show that LGP-FLO has the best overall performance (i.e., 1.5)
amongst the compared methods on the tested benchmark problems. These
results imply that the proposed FLO works effectively in much higher di-

mensions and larger search spaces, given that these benchmarks have a
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much larger primitive set and much longer programs in the search spaces.

6.4 Chapter Summary

This chapter shows that there are very likely better FLs than the manually
designed ones. To find these landscapes, this chapter proposes an FLO
method, which is essentially an optimization problem that optimizes the
symbol indexes of symbols to construct better neighborhood structures for
symbolic solutions. Specifically, FLO aggregates good solutions, separates
good and bad solutions, and encourages the new neighborhood structures
to be consistent with the domain knowledge. The experimental studies of

FLO draw four main conclusions:

1. The four kinds of FL metrics indicate that the proposed FLO success-
tully finds significantly more cone-like landscapes than the manually
designed landscapes, which reduces the hardness of FLs.

2. The visualization results on LGP landscapes show two important
patterns of LGP landscapes. When there are LGP introns in the
search space, the solutions with similar fitness likely aggregate to a
hyperplane on FL (i.e., fitness aligning), and the hyperplanes spaned
by two consecutive LGP instruction positions normally have a diag-

onally symmetric layout (i.e., diagonal symmetry).

3. The pattern analyses on the visualized FLs further help us find a
new operator for LGP, that is, swapping two consecutive instruc-
tions, which is missed by existing LGP studies. The results confirm
that swapping consecutive instructions implements an essential ca-

pability of fine-tuning instruction positions.

4. By simply searching against the optimized FLs, LGP achieves very
competitive performance with advanced LGP methods when solv-

ing common DJSS problems.
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To the best of our knowledge, this work is the first attempt to explic-
itly optimize FLs of stochastic symbolic search automatically. The pro-
posed FLO method is general enough to apply to other stochastic symbolic
search methods once they convert their solutions into a list of symbols.
Our experiments use four common FL metrics to evaluate the quality of
FLs. This also facilitates further investigations of the correlation of these
FL metrics, which is missed by existing FL analysis studies.

Until this chapter, we have focused on optimizing a single DJSS sce-
nario from scratch. However, different DJSS scenarios likely have syn-
ergies and share common building blocks. It is interesting to investi-
gate whether these synergies help improve LGPHH performance. To this
end, we apply multitask optimization techniques in LGP search in the
next chapter, which simultaneously optimizes multiple similar problems

to make full use of the problem correlations.



Chapter 7

LGP-based Multitask
Optimization for DJSS

7.1 Introduction

Evolutionary multitask optimization is an emerging research area in the
last decade [173}252]]. In the light of the outstanding association ability
of human brains, evolutionary multitask optimization techniques aim to
design evolutionary computation methods that fully exploit the latent syn-
ergies among tasks. In contrast to solving every single task independently
from scratch, evolutionary multitask optimization techniques solve simi-
lar tasks simultaneously and exchange useful information in the course of
evolution. Genetic materials such as elite individuals and building blocks
are shared among tasks, to enhance convergence speed and search ef-
fectiveness. Nowadays, evolutionary multitask techniques have shown
remarkable performance on both continuous and discrete optimization
problems [71].

Existing literature has applied multitask optimization to enhance tree-
based GP in solving machine learning problems and combinatorial opti-
mization and has shown very impressive results [18,257,282]. However,
conventional tree-based GP is not good at reusing building blocks, since

215
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each node in the tree has at most one parent node. For reusing a sub-tree
(building block), tree-based GP has to duplicate that sub-tree or design
multiple outputs by complicated tricks [274], which is inefficient in both
space and computation and reduces the diversity of genetic materials in
the population. On the contrary, the graph characteristics of LGP allow
the building blocks of LGP (i.e., sub-graphs) to pass their outputs to mul-
tiple graph nodes in the calculation and enable LGP to represent multiple
solutions within a single individual naturally, which is very useful in mul-
titask optimization.

However, extending LGP to existing multitask GP methods cannot
fully utilize the graph characteristic. The existing multitask GP methods
simply see each individual as a solution/heuristic for a specific task and
transfer knowledge by duplicating genetic materials (e.g., instruction seg-
ments in LGP individuals). Multitask LGP methods have not yet been well

investigated.

7.1.1 Chapter Goals

This chapter aims to propose a new multitask framework based on the graph
characteristic of LGP, named Multitask LGP with Shared Individuals (MLSI)
for DJSS. MLSI evolves a sub-population of multi-output individuals (i.e.,
shared individuals). Each shared individual simultaneously encodes more
than one solution, each for a specific task and with a specific output, within
one directed acyclic graph. These solutions share common building blocks
to perform knowledge transfer. The shared individuals then participate in
the evolution of all the tasks by shifting their graph outputs, in which way
they behave like task-specific individuals, but intrinsically carry common
building blocks from the other tasks. Specifically, there are four main goals
in this chapter:

1. Develop a new knowledge transfer strategy based on LGP. The pro-
posed strategy fully utilizes the topological structures in LGP by encoding
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the solutions from different tasks into a directed acyclic graph.

2. Develop new genetic operators based on the new knowledge trans-
fer strategy. Specifically, we propose a riffle shuffle operator to integrate
elite individuals into shared individuals and develop a better-parent reser-
vation strategy to further enhance the effectiveness of the crossover in
multitask LGP.

3. Analyze the performance of the proposed method for solving DJSS
problems.

4. Verify the reasons for the superior performance of the newly pro-
posed method and the effectiveness of the key components in the pro-

posed method.

7.1.2 Chapter Organization

The rest of this chapter is organized as follows. First, section [7.2| presents
the details of the proposed method. Experiment designs including prob-
lem formulation and comparison design are illustrated in section Sec-
tion[7.4land[7.5show the results and further analyses, respectively. Finally,

section [7.6ldraws the conclusions.

7.2 Proposed Method

This section demonstrates the proposed MLSI in detail. The chromosome
representation and evolutionary framework of MLSI are first described,
followed by the selection method. We finally introduce the key new ge-

netic operators in this section.

7.2.1 Program Representation

Fig.[7.1/shows an example of an LGP individual in solving multitask opti-

mization. The registers are initialized by the designated problem features.
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Task,  Task,
Ry=PT,R; =W,
Ry= OWT, R;= WKR
Ry, =R XPT
R;=W-—-R,
R{=PT + R;
Ry =R1*X R3

Figure 7.1: An example of LGP individual with three outputs (i.e., Ry, R;,
and R,). PT: processing time of each operation, W: weight of job, OWT:
waiting time of an operation, WKR: remaining processing time of a job.

In Fig. Ry to Rj are respectively initialized by the input features (i.e.,
processing time of a job (PT), weight of a job (W), waiting time of an op-
eration (OWT), and the remaining processing time of a job (WKR)). The
instructions in the LGP program are executed one by one from the top of
the program to the bottom, as single-task LGP individuals. However, to
produce the results for different tasks, multiple output registers are de-
tined for LGP. For the sake of simplicity, we designate the first k registers
as the output registers for the k tasks (e.g., Ry to R, in Fig. [7.1). We can see
that some of the registers are shared among different tasks (i.e., different
output registers), such as Rj3 in the second instruction. Fig. also gives
an example of converting LGP instructions into a DAG for multitask opti-
mization. The output of the DAG is stored in output registers Ry, R;, and
R;. When an LGP individual is shared by multiple tasks, it is evaluated
on these tasks respectively and obtains a list of fitness values, each for a

specific task.
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Intra-task —> Inter-task

Subpop ¢ Subpop | Subpop 2

O O

Figure 7.2: The intra- and inter-flow of genetic materials among tasks.

Generation i

Generation i+1

7.2.2 Algorithm Framework

Different from existing multi-population multitask evolutionary frame-
works in which each sub-population solves a specific task, the first sub-
population Sy of MLSI is a generalist sub-population that aims to solve all
the tasks, while the remaining sub-populations S;(i = 1, ..., k) are special-
ist sub-populations that aim to solve a single task respectively. Fig.
shows the flow of genetic materials (e.g., building blocks) among tasks.
The knowledge of different tasks is shared via S,. The specialist sub-
populations give genetic material to the generalist one and accept knowl-
edge from the generalist sub-population for every generation. Since the
individuals in the generalist sub-population S, are shared on all tasks, the
evolution of the generalist sub-population is seen as another kind of shar-
ing knowledge. By this means, the common building blocks across tasks
can be carried in a compact representation in S, and flexibly switch rep-
resentations based on different output registers (i.e., cooperate with task-
specific sub-graphs in the individuals).

Each individual f € S is evaluated on all the £ tasks, and thus has
a vector of fitnesses, denoted as Fit(f) = [Fit,(f),..., Fity(f)]. Contrar-
ily, the individuals in S;(i > 0) only have a single fitness value for its
corresponding task (ie., (Fit(f) = [Fit;(f)],: € {1,....k}). Based on
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Fitf) Rank(f)

g | fi [1.1,08,15] [1,2,14]]
"L e n2o07j00 R
f,  ([13]] [3]

S; i | LrAT
ool 2

Figure 7.3: An example of determining the rank of the third task (i.e.,
Ranks(f)) for Sy and S;, each sub-population with two individuals.

Fit(f), the rank of an individual Rank(f) is designed accordingly. For
each generalist individual f € Sy, the rank of f is denoted as Rank(f) =
[Ranky(f), ..., Rank(f)]. For each specialist individual f € S;(i > 0),
Rank(f) = [Rank;(f)],i € {1,...,k}. To determine the rank of f, ie.,
Rank(f) for solving task ¢, all the individuals f € Sy US;(t > 0,t = i)
are combined and sorted together. The example of determining Rank(f)
is shown in Fig. There are two individuals in each sub-population.
When we are identifying the rank of the third task (i.e., Ranks(f)), those
individuals which are evaluated on the third task (i.e., f € Sy|JS;) are
sorted together based on the corresponding fitness, i.e., Fiit3(f). Smaller
fitness has a better rank.

The pseudo-code of MLSI is shown in Alg. [16| where the underlines
“ 7 highlight the major differences from existing multitask GP methods.
To solve k similar tasks simultaneously, MLSI first initializes k£ + 1 sub-
populations. At each generation, the individuals in S, are evaluated on
all the £ tasks, and the individuals in S;(¢ > 0) are evaluated on task i
respectively. Then, Fit(f) and Rank(f) of the individuals are updated
based on the new fitness. Elitism selection is applied to retain competent
individuals.

New offspring are produced by five genetic operators, including macro

mutation, micro mutation, crossover, reproduction, and riffle shuffle based
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Algorithm 16: Framework of MLSI

Input: k tasks, macro mutation rate 6,,,, micro mutation rate 6,,;, crossover rate

0., reproduction rate 6,., step size of RiffleShuffle 7, tournament

selection size s.

Output: k best heuristics h:(t = 1, ..., k), each for a specific task.

1 Initialize k + 1 sub-populations Sy to Sy.

2 while stopping criteria are not satisfied do

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

// Evaluation

Evaluate f € Sy on all the tasks. Evaluate f € S;(: = 1, .., k) on task ¢
respectively;

Update Fit(f) and Rank(f) for f € {Sy, ..., Sk };

// Breeding

foreach S;(i =0, ..., k) do

St 0;

Clone elite individuals of S; into S;

while [S}| < [S;| do

rnd < Uniform(0,1);

if rnd < 0, then
t ¢ < TournamentSpecific(S;,i,s);

else if rnd < 0, + 6. then
L ¢ < LGP crossover with BetterParentRes({Sy,....S;}, 7, 5);

else
// generalist sub—-population
if i = 0 then

// specialist sub-population
else
p < TournamentSpecific(S;,1,s);
if rnd — (6. + 0,) < 0,,, then
L Apply LGP macro mutation on p to produce offspring
C;

else

L Apply LGP micro mutation on p to produce offspring c;

if c is produced by macro operators then
L Apply LGP micro mutation on c to update it;

| Si < SiU{ek

Si — S;,

Update the best heuristics h(t = 1, .., k) for the k tasks;

28 Return hy(t =1, .., k).
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on their rates. The riffle shuffle is the newly proposed genetic opera-
tor in this chapter to vary the individuals with multiple outputs, while
the other four genetic operators are off-the-shelf operators [21]. Specifi-
cally, effective macro mutation, effective micro mutation, and linear crossover
in [21] act as mutation and crossover respectively. Linear crossover is
enhanced by a newly proposed better-parent reservation strategy (i.e.,
BetterParentRes(-)). Given that each individual in Sy has a list of fit-
nesses, a new tournament selection TournamentSpecific(:) is devel-
oped to select parents based on a specific task. More specifically, S, applies
reproduction, linear crossover, and the riffle shuffle (i.e., RiffleShuffle(-))
to produce offspring, while S;(i > 0) apply reproduction, linear crossover,
and mutation to produce offspring. To share knowledge among tasks,
the parents of the linear crossover and riffle shuffle are selected from a
merged sub-population, formed by S and specialist sub-populations. As
suggested by [21], all macro operators (i.e., crossover, riffle shuffle, and
macro mutation) are followed by a micro mutation. All the produced off-
spring replace the parents without further comparison and form the pop-
ulation of the next generation. This evolutionary process is iterated for
every generation until the stopping criteria are met. The best individuals
of the tasks in all the sub-populations are outputted as the final results.

7.2.3 Selection

The parent selection is implemented by the TournamentSpecific(-)
method. This method is extended from the standard tournament selection
by enabling cross-sub-population selection for a specific task. The pseudo-
code of TournamentSpecific(-) is shown in Alg. [17] in which Fit(f,?)
returns the ¢ element of Fit(f) if |Fit(f)] > 1, and the only element in
Fit(f) otherwisd]

Note that in the proposed multitask framework, the parents of linear

!same as Rank(f,t) in Alg.
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Algorithm 17: TournamentSpecific

Input: A merged sub-population S,,.4, task index t, tournament size s
Output: An LGP individual f

1 Randomly select an LGP individual f’ from S;,c,;

2 £« f/;

3 Fit «+ Fit(f,¢t);

4 forj« 1tos—1do

5 Randomly select an LGP individual ' from S,,,;

6 Fit' + Fit(f',t);

7 if ['it’ is better than F'it then

8 | £, Fit = Fit;

9 Return f;

crossover and riffle shuffle for a certain task ¢ are selected from the gen-
eralist sub-population (i.e., Sy) and specialist sub-population (i.e., S;) si-
multaneously. Specifically, Sy and S; are merged into one sub-population,
and the two parents for one mating are selected from the merged sub-
population based on the paradigm of tournament selection. Therefore,
the parents for linear crossover and riffle shuffle can both come from
Sy, or both come from S,;, or come from either Sy or S;. The knowledge
sharing among different tasks for the linear crossover and riffle shuffle is
achieved by selecting the parents from S, whose individuals are shared
by all the tasks. The parents for task ¢ are selected based on their fit-
ness on that task. When the individuals in Sy have better fitness on
task ¢ than those in S;, they have a higher probability to be selected by
TournamentSpecific(:), and vice versa. Such design helps MLSI de-
termine the suitable timing and frequency of knowledge transfer across
tasks (i.e., transfer knowledge when the individuals with common build-
ing blocks have better performance).
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Parent 1 Parent 2 Offspring 1 Offspring 2
Fitness: 0.8 < Fitness: 1.2 (retrain) (abandon)
Swap
% 1 instruction % 1.
segments

2| | ®
@ 3.

4 4.
® ®

Figure 7.4: An example of linear crossover with better-parent reservation

strategy. Smaller fitness is better.

7.24 Breeding Offspring

To improve the effectiveness of sharing knowledge, the better-parent reser-
vation is proposed to enhance the crossover operator. The riffle shuffle is
proposed to effectively integrate knowledge from different tasks.

Linear Crossover with Better-parent Reservation

Multitask optimization framework promotes effectiveness by sharing knowl-
edge among similar tasks. However, different tasks may have different
specialist knowledge. The crossover operator should not only share use-
ful common knowledge among different sub-populations but also retain
useful specialist building blocks for each specific task. It is reasonable to
assume that the parent with better fitness on a certain task is more likely to
have more useful building blocks for that task. Based on this assumption,
the crossover operator in this work only retains the child whose corre-
sponding parent (i.e., the parent accepting a new genome to form the off-
spring) has better fitness. An example of the better-parent reservation is
shown in Fig. [7.4)in which the to-be-swapped instructions are highlighted
as dark. Since Parent 1 has better (i.e., smaller) fitness than Parent 2, only
offspring 1 which is generated from Parent 1 by accepting new instructions

is retained. The pseudo-code of the linear crossover with better-parent
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Algorithm 18: Linear crossover with BetterParentRes(-)

Input: Set of sub-populations {Sy, ..., Sg }, index of current sub-population 3,

tournament selection size s
Output: A new offspring c.
1t=1y;
2 if i = 0 then
3 t t < UniformInt(1l,k);

4 Speg — SoUS:

5 Apply TournamentSpecific(Speg,t, s) to select p, and py, respectively;

6 Apply linear crossover on p, and py, to produce two offspring c, and cy,;
// Better-parent reservation

7 €4 Ca;

8 if py, is better than p, then

9 L C < Cp;

10 Return c;

reservation is shown as Alg. (18} in which the linear crossover is followed

by the better-parent reservation based on the fitness of the parents.

Riffle Shuffle

Riffle shuffle is a technical term for playing cards. When there are two
decks of cards, the riffle shuffle integrates them into a single deck by alter-
natively interleaving the two decks of cards and maintaining the relative
order of cards within every deck. This concept is extended to our work
to integrate individuals from different tasks into a new offspring. By this
means, heuristics for different tasks cannot only maintain the relative or-
der of their instructions, but also they can use the building blocks from
other tasks.

The pseudo-code of the proposed riffle shuffle operator is shown in
Alg. (19, First, the riffle shuffle operator samples several LGP parents from
different tasks. Then, the effective instructions (i.e., exons) are extracted

based on their output registers (lines 5 to 13) (The extraction method of
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effective instructions can be referred to [21]). The extracted effective in-
structions for different tasks are stored in lists respectively. The task index
whose sampled parent has the best rank is recorded for later use. For
lines 14 to 19, the riffle shuffle operator alternatively interleaves instruc-
tions from the lists to form a new instruction sequence. To prevent LGP
programs from increasing size too rapidly, a maximum step size 7 is de-
fined to limit the largest variation of program size. Specifically, the new
program size L of the offspring is defined by aggregating the average pro-
gram size of parents and a random variation size based on 7 (lines 20 to
21). L is also limited by the maximum and minimum program size of LGP
individuals (L,,4,; and L,,;,). For lines 22 to 27, when the actual program
size after merging exceeds L, instructions are randomly removed until the
actual program size is consistent with L. To protect the useful building
blocks, the instructions from the parent with a better rank have a higher
priority to be kept in the offspring. Specifically, the instructions from the
parent with a better rank are extracted based on the output register R;-_4
(line 24). When the program size of the parent with a better rank is smaller
than L and the offspring still contains the instructions from other tasks
(i.e., |G| < |c|), the instructions of better parent are protected from being
removed (lines 25 and 26).

Fig. shows an example of the riffle shuffle. The two LGP parents
come from two different tasks and have three and two effective instruc-
tions respectively. They first extract the effective instructions, which are
the second, fourth, and fifth instructions of the first parent, and the first
and second instructions of the second parent. Then, the two sequences
of effective instructions are integrated into one sequence alternatively to

form an offspring.

Both better-parent reservation and riffle shuffle can be applied to other
methods. Specifically, better-parent reservation strategy can be applied
together with other crossover operators that accept more than one parent.
Riffle shuffle is an LGP-based genetic operator for transferring genetic ma-
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Algorithm 19: RiffleShuffle

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Input: Set of sub-populations {Sy, ..., St }, step size n, tournament selection size s

Output: A new offspring c.
n < UniformInt(2,k);
T,P,G,c + 0;
Randomly select » unique task indices to initialize T;
t*, Rank* + +o0
foreach tin T do
p’ < TournamentSpecific(SolJS:,t,s);
P+ PUp;
G < IdentifyExtrons(p’,{Ri-1});
if G # () then
| G+ GUG;

if Rank(p’,¢) < Rank* then
Rank* + Rank(p’, t);
t* «— t;

// merge into one individual
while G # () do
G < Randomly select an element from G;
f « get and remove the first element from G;
Append f toc;
if G = () then
L remove G from G;

// randomly remove instructions

L+ Z"ETMP‘ + UniformInt(—n,n);

L < lpin if L < lppin (O L < Lz if L > las);
while |c| > L do

frmv < randomly select an instruction from c;
G < IdentifyExtrons(c, Riy_1);

while |G| < Land |G| < |c| and frmy € G do

frmv < randomly select an instruction from c;

Remove f,.,, from c;

Return c;
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Figure 7.5: An example of the riffle shuffle operator for LGP individuals.

terials. Further, riffle shuffle is designed for merging building blocks from
different tasks. Applying riffle shuffle to evolve a single task might pro-
duce many redundant instructions since the building blocks from a single
task are often too similar. The effectiveness of the two operators and their
collaboration with other methods are investigated in section[7.5.1]

7.3 Experiment Design

DJSS often has many similar optimization problems. For example, the
peak and off seasons of the same production line might have similar
scheduling methods, and the customers might share similar requirements
with the manager on the production line. Fully utilizing the common
knowledge among these tasks (i.e., multitask optimization) is more effi-

cient than searching from scratch for every single task.

7.3.1 Multitask Scenarios

In multitask optimization of DJSS, six multitask scenarios are designed for
verifying the performance of the proposed method according to the above
objectives [257]. We regard the tasks with similar settings of the simula-

tion, including the number of machines, the number of operations, and the
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Table 7.1: The setting of multitask scenarios represented by optimized ob-

jectives and utilization levels.

Scenarios |#tasks (k) Specific settings of tasks
A 3 < Fmean, 0.95 >,< Fmean, 0.85 >,< Fmean, 0.75 >
B 3 < Tmean, 0.95 >,< Tmean, 0.85 >,< Tmean, 0.75 >
C 3 < WTmean, 0.95 >,< WTmean, 0.85 >,< WTmean, 0.75 >
D 2 < Fmax, 0.95 >,< Tmax, 0.95 >
E 2 < WFmean, 0.95 >,< WTmean, 0.95 >
F 3 < Fmean, 0.95 >,< Tmean, 0.85 >,< WTmean, 0.75 >

processing time of operations, as similar tasks. In these multitask scenar-
ios, each specific optimization problem with a specific optimized objective
and a specific utilization level (denoted as p) of the simulation is defined
as a task, denoted as “< objective, p >". The settings of the six multitask
scenarios are shown in table To have a comprehensive investigation,
Scenarios A to F cover a wide range of tasks, with respect to the optimized
objective and utilization level. It should be noted that the six scenarios
cover different job sets which are specified by the utilization level. For ex-
ample, Sce. A, B, C, and F have the same settings of utilization level for
the three tasks (i.e., 0.95, 0.85, and 0.75) and thus have the same job sets
with each other. Sce. D and E have different job sets from Sce. A, B, C, and
F. Further, the three tasks in Sce. A are configured with different job sets
since each task is set with a different utilization level. Other parameters in

the simulation are the same as the previous chapters (refer to chapter 3).

7.3.2 Comparison Design

We select four compared methods to verify the performance of MLSI. First,
multi-population LGP (MPLGP) is included as the baseline method. It
solves multiple tasks simultaneously, each by a sub-population. But these
sub-populations do not exchange any information and solve tasks inde-

pendently. Second, one of the state-of-the-art multitask tree-based GP
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methods, M2GP [257], is compared in the experiment. M?2GP is a recently
proposed method for solving multitask dynamic scheduling. In addition,
to comprehensively verify the effectiveness of the proposed mechanism
(i.e., transfer knowledge via shared individuals), we directly apply two
recent multitask optimization frameworks to LGP, denoted as M*LGP and
MFLGP respectively. Specifically, M*LGP replaces the tree-based GP in-
dividuals in M?GP [257] with LGP individuals, and MFLGP replaces the
individual representation and genetic operators in MFEA [71] (a popular
framework for multitask optimization) with that of LGP.

The parameters of the compared methods are designed based on their
original paper [257] or chapter[3] All the compared methods have the same
total number of simulations to ensure fairness. For MLSI,
TournamentSpecific(-) replaces the conventional tournament selec-
tion. M*GP, which is designed based on tree-based GP, mainly breeds off-
spring by crossover, mutation, and reproduction. The rates of these three
operators are 80%, 15%, and 5% respectively [257]. On the other hand, the
LGP-based methods, including MPLGP, M?LGP, MFLGP, and MLSI, em-
ploy macro mutation, micro mutation, linear crossover, and reproduction
with rates of 0,4 : i : 6. : 6, = 30% : 30% : 35% : 5% to produce offspring.
MLSI enhances the linear crossover by the better-parent reservation, and
the generalist sub-population in MLSI replaces mutation operators by rif-
tle shuffle.

The transfer rate of M?GP is set as 0.3 as suggested in [257]. Given that
their knowledge transfer is mainly implemented based on the crossover,
actually 80% x 0.3 = 24% of crossover mate parents from different sub-
populations. To keep the rate of knowledge transfer the same, 68.6% of
linear crossover (35% x 68.6% = 24%) in M*LGP and MFLGP produce
offspring based on parents from different sub-populations. Since MLSI
selects parents from a merged population, the parameter of transfer rate
is not needed for MLSI. Contrarily, MLSI introduces two new parameters,

the population size of the generalist sub-population and the step size of
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Table 7.2: Parameters of all compared methods.
Parameters M?GP MPLGP M?LGP MFLGP MLSI
number of sub-population k k k 1 k+1
list:30,
(sub) population size 400 100 100 k100 BN
specialist:70
generations 50 200 200 200 200
elitism selection siz‘e 10 3 3 6 3
for each sub-population
tournament selection size 5 7 7 7 7
segment length <30,

crossover parameter S

inner node 90%,
leaf node 10%

segment length difference<5,
crossover point distance<30

mutation parameters

inner node 90%,
leaf node 10%

macro(insertion 67%, deletion 33%),
micro (function 50%, destination
register 25%, source register
12.5%, constant 12.5% )

initial program size

min depth=2,
max depth=6

min instruction=1,

max instruction=10

maximum program size

max depth=8

max instruction=50

riffle shuffle . Without loss of generality, the size of the generalist sub-

population is defined as 30 to approximate the transfer rate of 0.3. 7 is

defined as 15 by default. The parameters are summarized in table [7.2

In the training phase, all the compared methods are trained by k DJSS

instances for every generation, each DJSS instance for a specific task. The

random seeds of instances are rotated every generation.

7.4 Experiment

Results

In this section, we compare the training and test performance of all the

compared methods. All the multitask compared methods output the best
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solution for each task for comparison. We analyze the objective values
on test instances and training convergence curves. Friedman test and
Wilcoxon test with a significance level of 0.05 are also applied to make

a comprehensive analysis.

7.4.1 Test Performance

Fig. shows the test performance of all the compared methods on dif-
ferent multitask scenarios. We can see that the results of MLSI have rela-
tively small objective values in most tasks. For example, in the complex
tasks of Scenarios A, B, and D (e.g., A-<Fmean,0.95>, B-<Tmean,0.95>,
and D-<Fmax,0.95>), MLSI has better medians and averages of test per-
formance than the other compared methods over 50 independent runs. In
other tasks such as C-<WTmean,0.95> and F-<Fmean,0.95>, although we
cannot see significant differences between MLSI and the other compared
methods, we can confirm that the medians and averages of MLSI test per-
formance are similar to the best medians and best averages in the tested
problems.

To have a more comprehensive comparison, we analyze the test per-
formance by the Friedman test, as shown in table The p-value of the
Friedman is 1.14E~*, which is much smaller than 0.05. It implies that there
is a significant difference among these compared methods. Besides, the
mean rank from the Friedman test shows that MLSI has the best average
ranking on these tasks.

Based on the Friedman test, post-hoc analyses by the Wilcoxon rank
sum test with Bonferroni correction and a significance level of 0.05 are con-
ducted to further analyze the performance on different tasks. In table
“+” denotes that a method is significantly better than MLSI, “—" denotes
that a method is significantly worse than MLSI on a certain task, and “~”
denotes competitive performance with MLSL. It can be seen that the four

compared methods are significantly inferior to MLSI on most tasks. Specif-
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Figure 7.6: The box plots of test performance on all tasks in different mul-

titask scenarios.
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Table 7.3: The significance analysis by Friedman test and Wilcoxon test

with Bonferroni test (vs. MLSI) with significance level of 0.05.

Scenarios Tasks

MPLGP M?2GP M?LGP MFLGP

MLSI

<Fmean,0.95>
A <Fmean,0.85>

<Fmean,0.75>

~
~

~ _ _
~

Q

<Tmean,0.95>
<Tmean,0.85>
<Tmean,0.75>

Q
Q

Q

<WTmean,0.95>
<WTmean,0.85>
<WTmean,0.75>

Q
Q

Q
Q

<Fmax,0.95>
<Tmax,0.95>

<WFmean,0.95>
<WTmean,0.95>

Q

Q

<Fmean,0.95>
<Tmean,0.85>
<WTmean,0.75>

~
~

~
~

Q

~
~

Q

~ ~
~ ~

win-draw-lose

0-6-10

0-8-8 0-9-7 0-9-7

p-value with Bonferroni correction

1.53E~* 8.24E~

0.015 0.012

mean rank

3.78

3.56 3.13 3.16 | 1.38

ically, MLSI is significantly better than the three state-of-the-art methods
(i.e., M?GP, M2LGP, MFLGP) in nearly half of the tasks. The p-values
with Bonferroni correction also validate that MLSI has a significantly bet-

ter overall performance than the others since all of them are much smaller

than 0.05. These results verify that the newly proposed multitask mech-

anism is very effective in improving the performance of multitask LGP.
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7.4.2 Training Efficiency

To validate the training efficiency of MLSI, we compare the training con-
vergence. Fig. shows the test objectives of all compared methods
over evaluation times. We select one of the most complex tasks (i.e.,
those with a utilization level of 0.95) in each scenario for investigation.
It can be seen that MLSI converges faster and lower than the others over-
all. Specifically, MLSI achieves better performance than the other com-
pared methods over the whole training processing in A-<Fmean,0.95>,
B-<Tmean,0.95>, D-<Fmax,0.95> and F-<Fmean,0.95>. Although MLSI
performs similarly to other compared methods at the final stage of training
in C-<WTmean,0.95> and E-<WFmean,0.95>, MLSI has a faster training
efficiency at the early stage of training (e.g., before 10000 simulations) in
E-<WFmean,0.95>. The results imply that MLSI has better efficiency in
designing effective dispatching rules.

7.5 Further Analyses

In this section, we make further analyses to answer the following research

questions:

What is the effectiveness of the newly proposed riffle shuffle and the

better-parent reservation strategy?

How does performance change with the key parameters of MLSI
(i.e., the population size of the generalist population and the step
size of riffle shuffle 1)?

How does MLSI control the rate of knowledge transfer?

What do MLSI individuals look like?

These questions are answered respectively as follows.
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Figure 7.7: Test objectives during evolution. X-axis:evaluation times, Y-

axis:objective values.

7.5.1 Component Analysis

To investigate the effectiveness of each key component of MLSI, this sec-
tion conducts a component analysis. First, to verify the effectiveness of rif-
fle shuffle, an MLSI variant without riffle shuffle, denoted as “MLSI/RS”
is developed. Second, to verify the effectiveness of the better-parent reser-
vation, we replace the crossover with the better-parent reservation with
conventional crossover, which retains both of the two offspring after mat-
ing. This variant of MLSI is denoted as “MLSI/BPR”. Further, to verify

the performance gain from genetic transfer rather than genetic operator
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Table 7.4: Mean (std.) test performance of MLSI with different components
and MPLGP+. The best mean values are highlighted by bold font.

Tasks MPLGP+ MLSI/RS MLSI/BPR MLSI
A-<Fmean095> | 1584.6 (21.4) —| 1570 (11.27) =|1570.9 (10.85)—|1567.1 (16.51)
A-<Fmean085> |1118.4 (192.7)—| 863.4 (2.67) =| 863.4 (3.62) ~| 862.6 (2.53)
A-<Fmean075> | 761.3 (100.3) —| 656 (1.01) =~| 656.2 (1.25) =2| 655.9 (1.02)
B-<Tmean0.95> | 1133.8 (23.3) —| 1123.3 (18.82) —|1123.9 (13.42)—|1116.6 (11.25)
B-<Tmean0.85> | 691.2 (164.8) —| 417.2 (2.53) =| 417.2 (2.28) ~| 417 (3.14)
B-<Tmean075> | 332.4 (141.9) —| 216 (1.12) =| 216.2 (1.12) ~| 216.2 (1.06)
C-<WTmean0.95> |1925.8 (302.3)—| 1743.3 (22.13) ~|1732.3 (24.65)=2|1735.8 (23.08)
C-<WTmean0.85> |1670.2 (691.2)—| 726.4(5.34) —| 724 (5.51) =| 724 (6.05)
C-<WTmean0.75> | 682.5 (192.5) —| 393.2 (2.8) =~| 392.3 (1.95) ==| 392.3 (2.41)
D-<Fmax095> |4628.9 (117.6)—|4624.5 (208.65)—| 4559.2 (96.6) ~|4533.5 (75.13)
D-<Tmax095> | 1.6E4 (23142)—|4024.3 (102.35)=| 3968 (73.01) ~| 3994.7 (92.4)
E-<WFmean 095> |2856.4 (233.2)—| 2722.8 (25.9) ~(2713.5 (21.78)~|2718.2 (26.33)
E-<WTmean095> |4799.1 (1517) —| 1734.2 (24.55) ~[1727.1 (26.63)~|1732.4 (25.78)
F-<Fmean095> | 1587.3 (16.5) —| 1569.7 (11.88) ~| 1568 (11.26) ~| 1568.8 (9.34)
F-<Tmean085> | 671.5 (180.1) —| 418.1(2.45) —| 418(2.62) —| 417.3 (3.3)
F-<WTmean0.75> | 786.6 (211.5) —| 394.1 (2.65) —| 393 (2.66) =~| 392.8 (3.86)

win-draw-lose 0-0-16 0-11-5 0-13-3
mean rank 3.94 2.75 1.81 1.50
p-value 5.0E-07 0.03 0.90

bias, we apply riffle shuffle and better-parent reservation to MPLGP, but
has no knowledge transfer among tasks, denoted as “MPLGP+”. Other
settings of these two compared methods are the same as MLSI by default.
The comparative results are shown in table

First, table 7.4/ shows that simply applying the riffle shuffle and better-
parent reservation to MPLGP is harmful to MPLGP performance. MPLGP+
performs much worse than MLSI on all the tasks. Since riffle shuffle is spe-
cialized for merging various building blocks from different tasks, the simi-
lar building blocks in the parents from a single task might be unnecessarily
duplicated by riffle shuffle, which produces a large number of redundant

instructions in offspring. The results further verify that the performance
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gain of MLSI is due to genetic transfer. Second, removing riffle shuffle
from MLSI reduces the effectiveness since MLSI/RS is significantly worse
than MLSI on five tasks and has a significantly worse (higher) mean rank
than MLSI based on the Friedman rank sum test with the Bonferroni cor-
rection. The results imply that the riffle shuffle operator is prominent for
MLSI. Third, MLSI without the better-parent reservation performs sim-
ilarly to MLSI on average, implying that selectively retaining offspring
based on superior parents is not so crucial for MLSI.

7.5.2 Parameter Sensitivity Analysis

There are two new parameters in MLSI, which are the population size of
the generalist sub-population and step size 7 of the riffle shuffle. To in-
vestigate the parameter sensitivity, we compare the performance of MLSI
with different parameter settings. Four different MLSI versions are de-
veloped. Specifically, “MLSI-pop15”, “MLSI-pop20”, and “MLSI-pop45”
set the population size of the shared population as 15, 20, and 45 respec-
tively. “MLSI-n5”, “MLSI-n10” and “MLSI-20” set n as 5, 10 and 20 re-
spectively. When the population size of the shared population is changed,
to be fair, the population size of other specialized sub-populations is up-
dated accordingly (e.g., MLSI-pop15 has specialized sub-populations with
85 individuals). Other parameters of the four methods are set the same as
MLSIL

The test performance of different settings is shown in table The
results show that the performance of all different settings is quite similar
to the default ones in most cases based on the Wilcoxon rank sum test.
Though significant differences can be seen on a few tasks, the mean rank
by the Friedman test and the p-values with Bonferroni correction verify
that different parameters have no significant difference in terms of overall
performance on these tasks. The results verify the performance of MLSI is

robust to the two newly introduced parameters.
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Table 7.5: Mean (std.) test performance of MLSI with different parameter

settings.
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7.5.3 Rate of Knowledge Transfer

When selecting parents from a merged set of individuals that consists
of generalist and specialist sub-populations, MLSI always selects parents
that are good at a certain task, no matter where they come from. It helps
MLSI flexibly adjust the rate of knowledge transfer (i.e., selecting parents
from the generalist sub-population) in the course of evolution. To vali-
date the necessity of selecting a suitable rate of knowledge transfer, we
compare MLSI with different fixed transfer rates and analyze the ratio of
knowledge transfer over generations in this section.

First, we explicitly distinguish generalist and specialist sub-populations
in the crossover. We select parents from generalist and specialist sub-
population based on a fixed rate. The fixed rate of selecting parents from
the generalist sub-population is set as 0.1, 0.2, and 0.35 respectively. When
the rate is small, the sub-populations will mainly mate within their in-
dividuals for crossover, and thus the knowledge transfer among tasks is
weak. These compared methods are denoted as “MLSI-fix0.1”, “MLSI-
tix0.2”, and “MLSI-fix0.35” respectively. As shown in table when fix-
ing the knowledge transfer rate, the performance of all fixed-rate MLSI
variants is decreased. They have a larger mean rank than MLSI and per-
form significantly worse on two tasks. Furthermore, MLSI-fix0.1 has a
significantly worse overall performance than MLSI based on the p-value
with Bonferroni correction. Besides, we can see that these fixed-rate vari-
ants have different performances on different tasks. For example, while
MLSI-fix0.35 has worse mean performance on tasks of Scenario B, MLSI-
tix0.2 is not so effective on tasks of Scenario D. It implies that to further
improve the performance of specific tasks, a suitable transfer rate should
be deliberated.

Second, we investigate the adaptation ability of the knowledge trans-
fer rate in MLSI, which is defined as the mean rate of mating with gener-
alist sub-population parents. The curves of mating rate over generations

are drawn. If the mating rate is high, MLSI prefers to produce offspring



7.5. FURTHER ANALYSES

Tasks MLSI-fix0.1 MLSI-fix0.2 | MLSI-fix0.35 MLSI
A-<Fmean095> |1569.5 (11.7) ~| 1568.6 (11.0) ~|1570.9 (12.3) —|1567.1 (16.5)
A-<Fmean,0.85> 864 (2.1) —| 863.3(24) —| 863.6(2.7) 862.6 (2.5)
A-<Fmean075> | 656.4 (1.1) =| 656.1 (1.1) =~| 656.2 (1.1) =~| 655.9 (1.0)
B-<Tmean095> |1120.4 (12.8) ~| 1118.8 (12.1) =~|1121.7 (12.1) ~|1116.6 (11.3)
B-<Tmean085> | 417.7 (3.3) =| 417.3(3.3) =| 417.4(2.3) =~| 417 (3.1)
B-<Tmean075> | 216.3(0.9) =| 216.3(1.3) =| 216.4(1.1) =~| 216.2(1.1)
C-<WTmean,095> |1730.8 (22.5) ~| 1739.1 (30.7) ~|1723.4 (24.8) +|1735.8 (23.1)
C-<WTmean085> | 724.6 (5.4) ~| 725.1(6.6) =| 724 (6.9) =| 724(6.1)
C-<WTmean0.75> | 391.7 (2.0) ~| 392.7 (2.4) =| 3924 (2.1) =| 392.3 (2.4)
D-<Fmax095> |4558.5 (91.1) ~|4586.9 (106.8) —|4532.4 (83.8) ~|4533.5 (75.1)
D-<Tmax095>  [3985.6 (89.1) ~| 4004.9 (93.4) =|3970.6 (86.2) ~|3994.7 (92.4)
E-<WFmean 095> |2722.2 (27.9) =| 2714.8 (25.3) ~| 2719 (28.1) ~|2718.2 (26.3)
E-<WTmean095> |1734.4 (25.9) ~| 1733.6 (28.1) ~|1731.7 (27.5) =|1732.4 (25.8)
F-<Fmean095> |1573.4 (12.9) ~| 1567.9 (12.0) ~|1567.6 (11.2) ~| 1568.8 (9.3)
F-<Tmean085> | 418.4 (2.6) —| 4174 (2.5) =| 417.2(2.3) =~| 417.3 (3.3)
F-<WTmean075> | 393.9 (12.4) ~| 393.8 (12.2) =~| 391.8 (1.9) =~| 392.8 (3.9)

win-draw-lose 0-14-2 0-14-2 1-13-2
mean rank 3.31 2.63 2.22 1.84
p-value 0.01 0.31 0.84
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Table 7.6: Mean (std.) test performance of MLSI with fixed transfer rates.

based on the parents from the generalist sub-population. Thus, the knowl-
edge transfer among tasks is frequent. Contrarily, the individuals from the
generalist sub-population are hardly selected by MLSI. The specialist sub-
populations mainly evolve independently.

As shown in Fig. the decline in mating rate can be seen in all sce-
narios. At the beginning of evolution, sharing knowledge among tasks is
very useful. Individuals in generalist sub-populations often have superior
performance, which is more likely to produce effective offspring. How-
ever, the mating rate decreases with generations. When heuristics become
more sophisticated, evolving them specifically is more effective than shar-
ing knowledge (e.g., building blocks) with other similar tasks. Besides, if

we look at the level of the mating rate, we can also find that problems with
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Figure 7.8: The mean rate of knowledge transfer over generations of MLSI.
X-axis: generations, Y-axis: the mean rate of mating with the generalist

sub-population.

less similar tasks have lower mating rates. For example, Scenario F whose
both optimization objectives and utilization levels are different has a mat-
ing rate of 0.1 at the final stage of evolution. Contrarily, other problems in
which only the objective or utilization level is different, have a mating rate
of 0.15 at the end. Based on these results, we believe MLSI not only adjusts
the transfer rate in different stages of evolution but also decides the rate

based on similarity among tasks.

7.5.4 Example Program Analysis

To further analyze the behavior of MLSI, we investigate the obtained pro-
grams by MLSI. Specifically, we pick the final obtained programs for the
three tasks (i.e., individuals with the best training fitness for each task)
from an independent run in Scenario A as examples, which are shown in
Fig. to In these figures, ovals denote functions while rectangles
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Figure 7.9: The final outputted programs for <Fmean,0.95> from an inde-
pendent run in Scenario A. The common building blocks are highlighted

in dark nodes.
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min
|
@\
|

Figure 7.10: The final outputted programs for <Fmean,0.85> from an
independent run in Scenario A. The common building blocks are high-
lighted in dark nodes.
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Figure 7.11: The final outputted programs for <Fmean,0.75> from an
independent run in Scenario A. The common building blocks are high-
lighted in dark nodes.
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denote terminals. The directed edges specify the inputs of functions. The
numbers (i.e., 0 and 1) beside the edges respectively indicate the first or

second argument for the function.

It can be seen that these outputted programs for the three similar tasks
share some similarities. First, some common building blocks can be found
in these outputted programs. For example, these three programs share a
building block of “min(WINQ—NPT, NPT)+PT”. It implies that minimiz-
ing the processing time (PT) and the smaller value between the processing
time of the next operation (i.e., NPT) and the remaining total processing
time in the next corresponding machine buffer (i.e., WINQ-NPT), is a use-
ful strategy to minimize mean flowtime. Second, they have a similar distri-
bution of terminals. All of them utilize the processing time of operations
and the next operation (i.e., PT and NPT), and the total processing time
and the number of operations in the next corresponding machine buffer
(i.e., WINQ and NINQ). Additionally, at least two of the three programs
include a number of remaining operations (NOR), waiting time of an op-
eration (OWT), and other machine-related terminals (e.g., WIQ and MWT)

as primitives.

Despite the similarity, we can find that the outputted programs are spe-
cialized for different tasks respectively. For example, outputted programs
for <Fmean,0.95> (Fig. and <Fmean,0.85> (Fig. mainly ap-
ply “PT” together with addition. Contrarily, the one for <Fmean,0.75>
(Fig. directly minimizes “PT” (i.e., min(PT, %), “*” denotes any in-
put) in most cases. It shows that the three programs have different build-
ing blocks when using a terminal. Besides, the output register for specific
tasks (e.g., RO for <Fmean,0.95>) aggregates the results from most of the
graph nodes, standing for the most sophisticated program in this LGP in-
dividual. On the contrary, the other output registers only store the inter-
mediate results from part of the computer program. It implies that these
programs are specifically designed for a certain task. Simply seeing the

whole individual from one task as the parents of another is likely to be
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ineffective.

By comparing the learnt heuristics from multitask tree-based GP and
transfer learning methods for tree-based GP [171,264], we find that the
common building blocks in graph-based structures can be flexibly dis-
tributed in different parts of the graphs and can be reused multiple times
without duplication, which is different from tree-based GP whose com-
mon building blocks appear in particular parts of a tree, and each can be
typically used by a single part of tree only. To summarise, graph-based
structures show a flexible and concise way of reusing shared knowledge

among tasks.

7.6 Chapter Summary

The main goal of this chapter is to improve the effectiveness and training
efficiency of LGPHH for DJSS problems by multitask optimization. It has
been successfully achieved by designing a new knowledge transfer mech-
anism that evolves shared individuals with multiple outputs, each for one
task, based on the graph-based structure. We also propose corresponding
genetic operators to evolve the multitask LGP method.

The experiment results show that the proposed method (i.e., MLSI)
is significantly better than the baseline method and three state-of-the-art
multitask GP methods. Further analyses verify that the adaptation ability
of the transfer rate based on the evolutionary process and the similarity
among tasks is the essential reason for the superior performance. These
results fully imply the great potential of graph-based structures in multi-
task optimization. The proposed knowledge transfer mechanism enriches
the methodologies in transferring knowledge, but also provides an effec-
tive example of designing graph-based knowledge transfer.

Based on this chapter and the previous chapters, we have proposed
four advanced LGP methods (i.e., LGP with graph-based search mecha-
nisms, grammar-guided LGP, LGP with FLO, and multitask LGP). These
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advanced LGP methods show superior performance in solving DJSS. In
the next chapter, we will extend two of the proposed advanced LGP meth-
ods to other problem domains, symbolic regression more specifically, to
investigate the potential of their generality.



Chapter 8

Further Discussions — Extension
of the Advanced LGP to Symbolic

Regression

8.1 Introduction

The proposed advanced LGP methods in this thesis have a good potential
generality to other domains besides DJSS. To investigate the potential gen-
erality of the proposed methods, this chapter extends multi-representation
GP (MRGP, see chapter 4) and fitness landscape optimization (FLO, see
chapter [) to symbolic regression (SR). MRGP makes use of the synergy
between GP representations to enhance GP performance, and FLO helps
discover effective solutions by optimizing the neighborhood structures on
the fitness landscape. We choose these two proposed methods for SR prob-
lems mainly because they are generic and are less dependent on the char-

acteristics of investigated DJSS problems.

249



250 CHAPTER 8. EXTENSION TO SR

8.1.1 Chapter Goals

The goal of this chapter is to investigate the potential generality of the two pro-
posed advanced LGP methods by extending them to symbolic regression problems.
Specifically, this chapter has the following research objectives:

1. Develop the experiments of SR problems, including the synthetic
and real-world benchmarks in SR and the comparison of other GP meth-
ods.

2. Verify the performance of MRGP in SR problems, including the test
effectiveness and training efficiency.

3. Verify the performance of FLO in SR problems, including the test

effectiveness and training efficiency.

8.1.2 Chapter Organization

The rest of this chapter is organized as follows. Section |8.2|first introduces
the SR problems. Sections [8.3]and [8.4 apply MRGP and FLO to SR prob-
lems to verify their performance, respectively. Finally, section 8.5/ summa-

rizes this chapter.

8.2 Problem Description

SR is a supervised learning problem, in which GP learns regression models
to map the input features to given target outputs without presuming the
model structure [154,192,276|]. The effectiveness of solving SR problems
gives insights into the generality of the proposed algorithms in this thesis.

We verify the proposed methods based on three synthetic benchmarks
and five real-world benchmarks, as shown in table The benchmarks
are selected from recently published papers for solving symbolic regres-
sion [2,87], which are downloaded from the UCI machine learning datasets.

The ground truth functions of the synthetic benchmarks cover a wide
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Table 8.1: The symbolic regression problems.

. Data #Points
Benchmarks Function #Features .
range | (Train,Test)
Synthet1c benc marks
Nguyend |/ 2(”2 =@t talta 1 [-1,1] | (20,1000)
T
x, zy+sin((x—1)(y—
Keijzer11 { )() ) = a+sin((z—1)(y 2 [1,1] | (100,900)
T 3
R1 fla) = $HL 1 [-22] | (20,1000)
Real-world benchmarks
Airfoil unknown 5 - (1127,376)
BHouse unknown 13 - (380,126)
Tower unknown 25 - (3749,1250)
Concrete unknown 8 - (772,258)
Redwine unknown 11 - (1199, 400)

range of functions (e.g., x and sin), and the real-world benchmarks have
various numbers of features and data ranges.

This chapter applies relative square error (RSE) as the fitness function
to measure the performance of GP methods, as shown in Eq.

where MSE is the mean square error, VAR is the variance, and y and § are
the target output and estimated output respectively. 7 is the average of
the target output. A small RSE value implies that a regression model has
a good fitting performance with the given data.
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8.3 Multi-representation GP for SR

8.3.1 Comparison Design

This section verifies the effectiveness of MRGP for solving SR problems.
The comparison design in this section follows the one in section We
take MRGP with tree-based and linear representation (MRGP-TL) as an
example to verify the effectiveness of MRGP. We compare MRGP-TL with
three baseline methods. They are the basic TGP, basic LGP, and the TLGP
which evolves tree-based and linear representations independently by two
sub-populations.

We set the parameters of the compared GP methods based on the pop-
ular settings in existing literature [29}[106] and section In symbolic re-
gression problems, each LGP individual has at most 100 instructions, and
each TGP individual has a maximum tree depth of 10. All the compared
GP methods use the same function set and terminal set (LGP methods
have registers in the terminal set additionally). The function set includes 8
functions, which are {+, —, x, =, sin, cos, In(] - |), m The input feature
set is defined based on the inputs of benchmark problems.

8.3.2 Test Performance

Table 8.2/ shows that MRGP-TL has superior test effectiveness to the other
compared methods. The best mean performance among the compared
methods is highlighted in bold. The Friedman test with the Bonferroni cor-
rection and a significance level of 0.05 shows a p-value of 0.041, which in-
dicates a significant difference among the compared methods. The further
pair-wise comparison shows that MRGP-TL has the best mean rank over

L+ returns 1.0 if the dividend equals to 0.0. In(] - |) returns the operand if the raw
output is smaller than —50.
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Table 8.2: The mean test performance (std.) of the compared methods.

Datasets or TLGP TGP LGP MRGP-TL
scenarios
Nguyend | 0.069 (0.059) — | 0.053 (0.091) ~|0.149 (0.248) — | 0.051 (0.087)
Keijzerll | 0.365 (0.240) ~|0.273 (0.121) ~ | 0.339 (0.142) ~ | 0.323 (0.133)
R1 0.035 (0.029) ~ | 0.022 (0.023) ~| 0.034 (0.035) ~ | 0.025 (0.025)
Airfoil  |0.667 (0.091) ~|0.638 (0.117) ~ | 0.643 (0.132) ~ | 0.643 (0.098)
BHouse  |0.384 (0.100) —|0.392 (0.131) ~ | 0.404 (0.126) — | 0.325 (0.076)
Tower  |0.358 (0.052) — | 0.364 (0.053) — | 0.345 (0.046) — || 0.325 (0.037)
Concrete  |0.496 (0.096) — | 0.438 (0.107) ~ | 0.471 (0.099) — || 0.39 (0.078)
Redwine | 0.745 (0.042) ~|0.761 (0.036) ~ | 0.759 (0.034) ~ | 0.757 (0.035)
win-draw-lose 0-4-4 0-7-1 0-4-4
Mean rank 3.0 2.13 3.25 1.63
p-value 0.20 1.0 0.071
(vs. MRGP-TL)

the others. The Wilcoxon rank-sum test with a significance level of 0.0
confirms that MRGP-TL is significantly better than the compared methods
in many cases. The comparison of the test performance confirms the good

effectiveness of MRGP-TL for solving SR problems.

8.3.3 Training Performance

Fig.|8.1|shows the training performance of MRGP-TL and other compared
methods on four example SR benchmarks. We can see that the red curves
(i.e., MRGP-TL) reach better fitness (i.e., lower) than the other within fewer
fitness evaluations. For example, in BHouse, the red curves reach the fit-
ness of 0.4 at about 10000 fitness evaluations, while the other compared
methods reach a similar fitness at about 30000 fitness evaluations. The
results show a high training efficiency of MRGP-TL.

2“+” indicates a method is significantly better than MRGP-TL, “—" indicates a method
is significantly worse than MRGP-TL, and “~” indicates a statistical similarity.
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Figure 8.1: Test performance of the compared methods over generations
in the four symbolic regression benchmarks. X-axis: fitness evaluations.

Y-axis: average test RSE for symbolic regression problems.

8.4 Searching against Optimized Fitness Land-
scapes of SR

This section verifies the generality of FLO. We verify the effectiveness of
FLO by applying LGP to search against the optimized FLs by FLO, de-
noted as LGP-FLO.

8.4.1 Comparison Design

We select six benchmark problems from symbolic regression problems, in-
cluding Nguyen4, Keijzer11, R1, Airfoil, BHouse, and Redwine. We apply
relative square error (RSE) to measure the performance in symbolic regres-
sion. We verify the effectiveness of LGP-FLO by the compared methods in
chapter [6} Specifically, “basicLGP” indicates the basic LGP. “freqmut” in-
dicates a basic LGP with a frequency-based mutation. “swap” indicates
an LGP that applies the operator of swapping consecutive instructions in
LGP search. We also select a state-of-the-art method (denoted as SOTA) in
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Table 8.3: Mean test performance (and standard deviation) on the six SR
benchmark problems. The best mean performance is highlighted in bold.

Problems basicLGP freqmut swap SOTA LGP-FLO
Nguyen4 0.149 (0.248) — 0.069 (0.052) ~ 0.071 (0.064) — 0.052 (0.064) ~ 0.048 (0.045)
Keijzer1l 0.339 (0.142) — 0.299 (0.103) — 0.288 (0.121) — 0.213 (0.091) =~ 0.22 (0.104)

R1 0.034 (0.035) — 0.02(0.026) — 0.016 (0.027) — 0.011 (0.034) —  0.01 (0.02)
Airfoil 0.643 (0.132) — 0.557 (0.113) = 0.559 (0.114) =~ 0.524 (0.049) ~ 0.521 (0.095)
BHouse 0.404 (0.126) ~ 0.443 (0.11) ~ 0.374 (0.114) + 0.312(0.063) + 0.417 (0.088)
Redwine 0.759 (0.034) — 0.74(0.037) = 0.741 (0.033) = 0.699 (0.025) + 0.735 (0.031)

mean ranks 4.67 4.17 2.83 1.5 1.83
pair-wise p-value 0.019 0.106 1 1

symbolic regression problems as one of the compared methods. The SOTA
in this section represents a semantic LGP [87] in SR problems. The param-
eters of SOTA methods are set as their recommendation. The primitive set
of the compared methods is the same as section 8.3]

8.4.2 Test Performance

Table [8.3|shows the test RSE of the compared methods. The Friedman test
with the Bonferroni correction and a significance level of 0.05 shows a p-
value of 9.14e-4, indicating a significant difference. The pair-wise analyses
further show that LGP-FLO is competitive with SOTA methods and has
significantly better test effectiveness than basic LGP. The Wilcoxon rank-
sum test confirms that LGP-FLO has superior performance to basic LGP,
freqmut, and swap in many cases, which indicates a promising perfor-
mance of LGP-FLO in SR problems.

8.4.3 Training Performance

We analyze the training performance of the compared methods to have a
better understanding of the efficiency of FLO, as shown in Fig. We can
see that the red curves (i.e., LGP-FLO) achieve better fitness (i.e., lower)

than most of the compared methods and have competitive performance in
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Figure 8.2: The training performance over generations of the compared
methods for SR problems. X-axis: the generations, Y-axis: the training
RSE.

most cases. Although the SOTA method for SR problems has better train-
ing efficiency than LGP-FLO in the last two problems, it is too specific too
SR problems and cannot be applied to DJSS problems. In light of the com-
petitive performance of LGP-FLO in both SR problems and DJSS problems
(see chapter |§[), we believe that FLO is a potential research direction.

8.5 Chapter Summary

The main goal of this chapter is to investigate the potential generality of
the proposed advanced LGP methods in this thesis. Specifically, we extend
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two of the proposed LGP methods, MRGP and FLO, to SR problems. We
extend these two methods by replacing the primitive set and using the
common parameter settings of SR problems.

The results of these two methods both show better or at least compet-
itive performance with the compared methods, which is consistent with
our findings in DJSS problems. By taking advantage of different GP rep-
resentations, MRGP is less dependent on the domain knowledge of the
suitable representations for different problems. By optimizing the neigh-
borhood structures of FLs based on elite solutions, LGP-FLO achieves en-
couraging test effectiveness and training efficiency. We believe that both
MRGP and FLO are effective in enhancing GP performance and have good
generality. It would be interesting to further investigate and make full use

of these advanced LGP methods in other domains.
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Chapter 9
Conclusions

The overall goal of this thesis is to enhance the performance of LGP
methods for DJSS problems. This goal has been successfully achieved
by developing four advanced LGP methods, including the graph-based
search mechanism, grammar-guided LGP, the fitness landscape optimiza-
tion technique, and the LGP-based multitask optimization techniques. We
apply these advanced techniques to solve DJSS problems to verify the ef-
fectiveness of these techniques. We further extend two proposed meth-
ods, the graph-based search mechanism and fitness landscape optimiza-
tion techniques, to symbolic regression problems. The performance on
symbolic regression problems verifies that the two advanced LGP meth-
ods have a very good generalization ability in other domains. The rest
of this chapter highlights the achieved objectives and their main contri-
butions in this thesis. Then, this chapter discusses the potential research
directions motivated by the achievement of this thesis.

9.1 Achieved Objectives

The following research objectives have been fulfilled by this thesis.
1. Chapter[3|developed an LGP-based hyper-heuristic method for solv-
ing DJSS problems. We identified key adaptations when applying LGPHH

259
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for DJSS. Specifically, 1) LGP should evolve with a small population and
long generations, 2) mutation-dominated settings of genetic operator rates
are effective for LGPHH, and 3) LGP should fine-tune the number of regis-
ters and initialize them by diverse and useful attributes of DJSS problems.
The results verify that the LGP is promising in evolving dispatching rules
for DJSS and can produce more compact dispatching rules than TGP.

2. Chapter 4] developed a series of graph-based search mechanism to
make full use of the graph characteristics of LGP for DJSS. The graph-
based search mechanism includes three achievements. First, we verified
the effectiveness of the building blocks in graphs by developing graph-
based crossover. Second, we proposed an effective graph-to-instruction
transformation for LGP programs based on the adjacency list. Converting
graphs into LGP instructions based on the adjacency list effectively carries
the search information between the graph and instruction representations.
Third, based on the graph-to-instruction transformation, this thesis further
proposed a multi-representation GP which makes use of the synergy be-
tween different GP representations to improve LGP performance in DJSS

problems.

3. Chapter |5 developed a grammar-guided LGP framework to incor-
porate the domain knowledge of DJSS into LGP search. The grammar-
guided LGP framework includes a module context-free grammar system
and a set of grammar-guided genetic operators. The module context-free
grammar system defines the grammar rules, and the grammar-guided ge-
netic operators evolve LGP programs based on the grammar rules. Based
on this method, we further incorporate the domain knowledge of the IF
operation, a representative flow control operation, into the LGP search for
DJSS dispatching rules. The results show that the introduction of IF oper-
ations and grammar rules significantly enhances dispatching rule perfor-
mance for solving complicated DJSS problems.

4. Chapter [f] developed a fitness landscape optimization method to

automatically design better fitness landscapes for LGP search. The fit-
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ness landscape optimization method improves the fitness landscape by
optimizing the neighborhood structures of LGP solutions. We design a
stochastic gradient descent method to optimize the neighborhood struc-
tures based on the symbol indexes. After the optimization, we visualize
the fitness landscape of LGP and discover two patterns of the fitness land-
scape, that is, fitness aligning and diagonal symmetry.

5. Chapter [/| proposed a multitask LGP and developed an LGP-based
multitask evolutionary framework. We designed a graph-based knowl-
edge transfer mechanism (i.e., shared individuals) in the LGP-based mul-
titask optimization framework to make use of the natural sharing of build-
ing blocks in LGP. The results show that the proposed method can auto-
matically adjust the transfer rate over the evolution to enhance effective-
ness and evolve more compact rules than state-of-the-art methods.

6. Chapter[§extended two advanced LGP methods, multi-representation
GP and LGP with fitness landscape optimization, to symbolic regression
problems. The superior performance in symbolic regression problems
suggests the good potential generality of the two proposed methods.

9.2 Main Conclusions

This section describes the main conclusions for this thesis drawn from the
six major contribution chapters, i.e., chapters3|to

1. To the best of our knowledge, it is the first time to apply LGP as
an HH method for solving dynamic combinatorial optimization problems.
Specifically, this thesis proposes three key adaptations of LGP to overcome
the limited training instances. The results verify that LGP is an effective
method to evolve dispatching rules for DJSS.

2. The performance gain by the graph-based search mechanism veri-
fies that making full use of the graph-based characteristics of LGP is ef-
fective in improving LGP performance for DJSS. The proposed graph-to-

instruction transformation can be seen as a bridge from DAGs to LGP in-
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structions, to make up the missing part of the graph-based characteris-
tics in existing LGP literature. This transformation greatly facilitates fu-
ture cooperation between LGP and many other graph-based techniques,
such as neural networks. In the thesis, we give an example of cooperating
the tree-based and linear representation for GP evolution, that is multi-
representation GP. To the best of our knowledge, multi-representation GP
is the first work highlighting that the interplay among different GP repre-

sentations is useful for improving GP performance.

3. The proposed grammar-guided LGP is the first work that directly
imposes grammar rules on LGP. Aimed with the grammar-guided tech-
niques, we can restrict the search space based on our domain knowledge
by grammar rules and enhance the effectiveness of solving DJSS. Further-
more, we introduce the domain knowledge of IF operations into LGPHH
for DJSS based on the grammar-guided techniques. It is a very first step in
evolving flow control operations in LGPHH. The thesis summarizes three
key principles for designing grammar rules of flow control operations.
The results show that our proposed methods and principles successfully
evolve effective and interpretable dispatching rules with IF operations,
and the IF operations significantly improve the performance of dispatch-
ing rules for complicated DJSS problems. The achievement of grammar-
guided LGP implies the great potential of flow control operations in DJSS
problems.

4. The proposed fitness landscape optimization method is the very
tirst work that explicitly optimizes the fitness landscape of LGP in an au-
tomatic manner. The proposed method is general enough to improve the
titness landscape for a specific task. The results on DJSS confirm that the
proposed fitness landscape optimization method successfully optimizes
the landscape to be significantly more cone-like. The visualization of the
optimized landscapes further discovers two patterns, which successfully
insight a missed effective genetic operator for LGP (i.e., swapping consec-
utive instructions). The proposed method can significantly improve the
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effectiveness of LGP. The achievement shows great potential for the re-
search direction of fitness landscape optimization.

5. The proposed LGP-based multitask optimization framework ver-
ifies the performance gain by the multitask optimization techniques for
LGPHH methods. The multitask optimization technique improves the
effectiveness and efficiency of LGPHH for DJSS. Besides, the proposed
multitask LGP provides a new way of sharing search knowledge within
one LGP individual. By sharing common building blocks within a multi-
output LGP individual, the proposed multitask LGP has a concise repre-
sentation and efficiently transfers effective knowledge among tasks. The
superior test performance of the proposed method verifies the potential of
the multi-output characteristic of LGP.

6. Further investigation of LGP on SR problems suggests the good po-
tential generality of the proposed advanced LGP methods. This shows
that the proposed advanced LGP methods have great potential in other

domains.

9.3 Applications of Our Proposed Methods

This thesis proposed advanced LGP methods for designing dispatching
rules in DJSS problems. These methods take advantage of different levels
of search information of dispatching rules to enhance LGP performance.
Specifically, the graph-based search mechanism improves the search effi-
ciency of LGP based on the DAGs of dispatching rules. The grammar-
guided technique facilitates the incorporation of the DJSS domain knowl-
edge into LGP search. The fitness landscape optimization enhances the
effectiveness of dispatch rules by optimizing the neighborhood structures
of LGP fitness landscapes. The multitask optimization technique further
improves LGP performance when users have multiple similar DJSS tasks.
DJSS users and researchers can choose the proposed methods based on

their needs. When they have limited training time, graph-based mecha-
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nism will help. When they have a lot of domain knowledge, grammar-
guided techniques will help. When they have multiple similar tasks to
solve, the multitask optimization technique will help.

Furthermore, combining these proposed methods into one powerful
method is another potential direction. The reason is two-fold. First,
these proposed methods enhance LGP search from different perspectives,
which can cooperate with each other easily. Second, the proposed multi-
representation GP framework facilitates different GP methods with dif-
ferent representations and different search mechanism to evolve together

and share search information.

9.4 Future Work

9.4.1 Feature Engineering for DJSS

Existing GPHH methods for DJSS evolve dispatching rules based on my-
opic features, which limit the overall performance. To further improve the
effectiveness of solving DJSS problems, a dispatching rule should consider
more foresighted features, such as estimating the arrival time of coming
jobs. Besides, designing effective features for DJSS is a tedious but less ef-
fective job currently. The features for DJSS are mainly designed manually,
and the expert knowledge likely limits GPHH to discover more effective
rules. Performing feature engineering for DJSS problems is a potential re-

search direction.

9.4.2 Evolving Large LGP Programs

Based on the achieved objectives in this thesis, a very important future
research direction is to evolve large LGP programs. The term “large” in-
dicates that the maximum program size is large, and the primitive set of
LGP is large. Existing LGP methods suffer from the bloat effect and lack
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effective methods to handle those large programs. When problems be-
come complicated and need more sophisticated programs, short and sim-
ple programs from the existing LGP methods cannot effectively tackle the
problems.

The proposed methods are potential tools to evolve large LGP pro-
grams. For example, we would apply grammar-guided LGP to remove
the redundant search spaces in large programs and evolve more advanced
flow control operations such as FOR operations. We would apply fitness
landscape optimization techniques to optimize the neighborhood struc-
tures of effective solutions and make a better estimation on the optimal so-
lutions. Furthermore, we would transfer optimized symbol indexes from
simple tasks to difficult tasks so that we improve the efficiency and effec-

tiveness of LGP search.

9.4.3 LGP Computation Hardware

Existing LGP studies only apply multiple threads to parallelize the fitness
evaluation of individuals. However, this design ignores the potential of
pipelining the execution of LGP instructions. To efficiently evaluate large
LGP programs, powerful LGP-efficient computation hardware is neces-
sary. LGP represents programs in the form of assembly programs (i.e.,
register-based instruction sequences), which is straightforward for com-
puter execution. Pipelining the execution of LGP instructions is a potential
direction to further improve the computation efficiency of LGP.

9.4.4 Applications to Other Domains

The results on DJSS and SR problems suggest the good potential gener-
ality of the proposed advanced LGP methods. It is interesting to further
extend the proposed methods to other domains such as classification and
clustering. Besides, the investigated DJSS does not consider some realistic

constraints during optimization. It is meaningful to consider more realistic
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constraints such as resource constraints in DJSS.
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